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Abstract— Epilepsy affects approximately 50 million people
worldwide. Despite its prevalence, the recurrence of seizures
can be mitigated only 70% of the time through medication.
Furthermore, surgery success rates range from 30% - 70%
because of our limited understanding of how a seizure starts.
However, one leading hypothesis suggests that a seizure starts
because of a critical transition due to an instability. Unfortu-
nately, we lack a meaningful way to quantify this notion that
would allow physicians to not only better predict seizures but
also to mitigate them. Hence, in this paper, we develop a method
to not only characterize the instability of seizures but also
to leverage these conditions to stabilize the system underlying
these seizures. Remarkably, evidence suggests that such critical
transitions are associated with long-term memory dynamics,
which can be captured by considering linear fractional-order
systems. Subsequently, we provide for the first time tractable
necessary and sufficient conditions for the global asymptotic
stability of discrete-time linear fractional-order systems. Next,
we propose a method to obtain a stabilizing control strategy
for these systems using linear matrix inequalities. Finally, we
apply our methodology to a real-world epileptic patient dataset
to provide insight into mitigating epilepsy and designing future
cyber-neural systems.

I. INTRODUCTION

Epilepsy significantly inhibits the quality of life for ap-
proximately 50 million patients worldwide and results in
$16 billion in annual expenditures in the United States alone
to treat [1]. Unfortunately, 15 million of those patients are
unresponsive to medication [2], and surgery success rates are
in the range of 30% - 70% due to our limited understanding
of how and where the disease originates [3]. However, one
leading hypothesis suggests that a seizure starts because of
an instability in the brain [3], [4]. Leveraging this notion
may lead to a better ability to not only predict seizures but
also to mitigate them. However, stability criteria depend on
the assumed mathematical description of the system [5], [6].

Many studies have opted to use linear dynamical models
to describe the underlying neural dynamics exhibited in the
brain [7], [8]; however, these models fail to capture the long-
term memory clearly evidenced in neural signals [9], [10].
This inherent memory is characterized by the current state
depending on an infinite combination of the previous states,
where the absolute values of the weights on these previous
states decay with time and are enclosed in an envelope that
is described by a power law [11].

As an alternative to linear systems, fractional-order sys-
tems, which encapsulate this so-called long-term memory,
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have been shown to accurately represent neural behav-
ior [12]-[14]. Furthermore, seizures in the brain can be
characterized as critical shifts in dynamical behavior, which
have been shown to correspond to an increase in long-
term memory [15]. Therefore, considering the long-term
memory of fractional-order systems and the stability of
these systems may be beneficial in assessing, predicting, and
mitigating seizures. From here on, we focus on the stability
of fractional-order systems and the stabilization of these
systems as a mechanism to mitigate seizures in the brain.
The recent survey on fractional cyber-neural systems
in [16] overviews all of the stability results pertaining
to fractional-order systems. In this paper, we focus on
discrete-time systems since the measurements of neural
behavior are inherently discrete in nature. While recent
work has investigated conditions for the stability of discrete-
time linear fractional-order systems (DTLFOS) [17], these
conditions are not tractable for analysis let alone for design
as they are dependent on each time step. Therefore, tractable
stability conditions for DTLFOS do not currently exist. Thus,
we provide the following three main contributions.
Main contributions: (/) We provide tractable necessary and
sufficient conditions for the global asymptotic stability of
discrete-time linear fractional-order systems. (2) We develop
a computationally efficient framework to stabilize linear
fractional-order dynamical networks. (3) We demonstrate
the validity of our proposed mathematical formalism by
considering a comprehensive real-world epileptic dataset and
provide a novel understanding of new treatments for epilepsy.

II. PROBLEM STATEMENT

In this paper, we consider (non-commensurate) discrete-
time linear fractional-order systems (DTLFOS) described by

A%k + 1] = Azxlk], (D

where k£ € N is the time step, z[k] € R™ denotes the
state, A € R"*" is the coupling matrix that describes the
spatial relationship between different states, a € R™ are
the fractional-order exponents that capture the long-term
memory in the system, and A® is the Griinwald-Letnikov
discretization of the fractional derivative (Chpt.1, [18]). For
any i-th state (1 < ¢ < n), we can express A% x;[k] =
k
> (o, j)xi[k — j], where o; € R is the fractional-order
j=0
exponent of the ith state and ¥ (v, j) = % with
I'(-) denoting the Gamma function [19]. From here onward,
we will use the tuple (A, «) to represent the DTLFOS (1).
The fractional-order exponents determine the weights on
the previous states that are needed to compute the next state.
These weights decay as a power law. As the fractional-
order exponents approach zero, the next state depends less
on states in the distant past and ultimately become LTI if



all exponents are equal to zero [11]. Thus, when learned, if
the exponents are significantly different from zero, then the
system is inherently not an LTI system.

Next, we recall the generic definition of global asymptotic
stability (Definition 5.4.1, [6]). Specifically, a DTLFOS (1)
is globally asymptotically stable (g.a.s.) when the following
two conditions hold: (/) for every € > 0 and ko € N, there
exists & = d(g, ko) > 0 such that for every z[ko] € R™ if
lx[ko]ll2 < 4, then ||z[k]||2 < € for all k& > ko, and (2)
klim lz[k]|]2 = 0, where || - ||2 is the Euclidean norm.

— 00

As previously mentioned, it is believed that a seizure starts
because of a critical transition due to an instability [3], [4].
Under this assumption, we seek to develop methods to stabi-
lize the behavior of the brain as a means to mitigate seizures.
As a proxy to brain behavior, we consider sampled neural
recordings (i.e., intracranial electrocortiography) and model
them as a DTLFOS—for which we later provide evidence
to be a suitable model. That said, towards stabilization, one
approach is to alter the interconnections between different
states, which could represent the inter-dependencies among
neuronal populations. Thus, we introduce the first problem as
follows: given (A, «), find a coupling matrix A that satisfies
the following

minimize ||A]o
AeRnxn

st. (A+ A, «) is globally (P1)
asymptotically stable,
where || - ||o represents the zero quasi-norm, which measures

the number of non-zero entries in a matrix or vector. If o =
0, then we would be dealing with a LTI system, and the
problem could be solved using the methods in [20], [21].
Yet, when o # 0, we wonder if it is possible to alter the
fractional-order exponents to achieve stability. This leads us
to introduce the following problem: given (A, «), find the
fractional-order exponents & that satisfies the following

minimize ||&||o
aeRrn

s.t. (A, a+ @) is globally
asymptotically stable.

P2)

Notice that this problem is somewhat unconventional. It
means that we may be able to change the memory depen-
dency of specific brain regions, which then suggests that the
lack of asymptotic stability is the result of either too much
or too little integration of the memory in a neural region.

III. STABILIZING DTLFOS

In Section III-A, we show the necessary and sufficient
conditions for the g.a.s. of DTLFOS. In Section III-B, we
convexify P; and P, and give convexified solutions in
Section III-C. Finally, in Section III-D, we provide sufficient
yet computationally efficient solutions to P; and P5. All
proofs are relegated to the Appendix.

A. Necessary and Sufficient Conditions for Global Asymp-
totic Stability of DTLFOS

In contrast with the conditions given in [17], we provide
a closed-form solution to assess the g.a.s. of DTLFOS.

Theorem 1: A non-commensurate DTLFOS (1) is said to
be g.as. if and only if for Ag := A — D(«,1), where

P(a,j) 0 0
_ 0 Wlasg) .. 0
D(a,j) = ) , we have |\ < 1
0 |
0 0 o Plan,j)

for all A € 0(Ay), where o(Ap) is the set of eigenvalues of
matrix Ag.

B. Convexification of P1 and Po

By invoking Theorem 1, we can rewrite P; and P, as

minimize || Ao

Aenxn ] (P1)
st. p(A+A—D(a, 1)) < 1,
and e -
minimize ||&||o
&eRrn P2)

st. p(A—D(a+a,1)) <1,

where p(M) := max{|A| : A € (M)} is the spectral radius,
which is the largest eigenvalue in magnitude of an arbitrary
matrix M € R™*™,

Unfortunately, the objective functions of P, and P, are
nonconvex, so we propose a convexification by considering
the sparsity promoting 1—norm [22]. Specifically, we obtain
respectively, the following objectives for both problems:

minimize || A

AgRnxn . P9
st. p(A+A—D(a, 1)) < 1,
and
minimize ||&||x
&ER™ 5 P5)
st. p(A—D(a+a,1)) < 1.
C. Solutions to P§ and P$§
Next, we present the solutions to P{ and P5.
Proposition 1: The solution to P{ is given by
A=LP, (2)

where P; and L are found by solving the following convex
optimization problem:

AoP1+Ly . Py .
In contrast, the solution to P is as follows.
Proposition 2: A suboptimal solution to P§ is given by

minimize I1Pillx + || L1]l1
Py e{P eR"X": Py >0},L; ERn*n
s.t. { B PASTLT ) S,

a; = T(2)(LaPy V)i — €)



foralli € {1,...,n}, where P, and Ly are found by solving
the following convex optimization problem:

minimize 1P2l1 + || L2]l1
Pa€{Py€R"X": Py >0}, Lo €RAX"

Py PQATJFL; :
APotLo Py > 0 and P», Ly diagonal.

Notice that in contrast with the solution to P¢, in the
suboptimal solution to P§, we only alter the elements of &
to be possibly nonzero. In turn, & corresponds to the diagonal
entries of Lo P, ! that in all likelihood are only numerically
possible when both matrices Lo and P; are restricted to be
diagonal and P» is positive definite.

S.t.

D. Computationally Efficient and Graphically-Interpretable
Sufficient Approximate Solutions for P{ and PS

In this section, we present graphically-interpretable suffi-
cient approximate solutions to solve P{ and P5.

Proposition 3: The following problem formulation is suf-
ficient for solving P¢:

minimize || ],
e n n

. a; - P?)
s.t. ‘ai,i+ai7i+r(;)‘ <1-— Z ‘Cli,j+ai,j|~ 1

JeN\{i}

Similarly, we present the graphically-interpretable suffi-
cient approximate solution for P§.

Proposition 4: The following problem formulation is suf-
ficient for solving P§:

minimize ||&|;
aERn

@Y

S.t. <1l-—

(i + ay)
EEE P VR
JeN\{i}

We remark that these solutions are more computationally
efficient as there is only a single (n X n) matrix in the case of
P{ and a single vector of size n in the case of P§ that need
to be found, whereas in P§ and P§ two (n x n) matrices
must be found. Furthermore, P§ has 4n? constraints and P$
has 6n* — 4n constraints, whereas both P{ and P§ only
have n constraints. These sufficient approximate solutions
are advantageous in the context of epilepsy as there may be
many sensors to measure brain activity, so the network may
be very large. Furthermore, they enable neuroscientists and
physicians with criteria that are graphically intuitive.

ai i+

IV. MITIGATING EPILEPSY

We illustrate the usefulness of our framework by applying
it to a dataset from an epileptic patient [23]. Specifically, we
unveil new insights into novel treatments for epilepsy.

We studied the first 6 channels of electrocorticography
data from patient HUP64 ictal block 1 in the Interna-
tional Epilepsy Electrophysiology Portal [23]. The data was
recorded at a sampling rate of 512 Hz, it was marked by
clinical experts, and it was pre-processed according to the
procedure outlined in [7]. We verified that the data exhibits
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Fig. 1: Spatial matrix and fractional-order exponents 12 seconds
before the patient’s seizure.

long-range dependence by computing the Hurst exponents
for each channel {0.66,0.66,0.77,0.72,0.75,0.7}, which
motivates the use of a DTLFOS as a suitable model for the
data [24]. Next, we estimated the parameters of DTLFOS,
namely the coupling matrix A and the fractional-order expo-
nents «, from the data using the methods in [25] and a time
window of 1 second. We then examined the parameters 12
seconds before the seizure in Figs. 1 (a) and (b), and during
the seizure, specifically, 48 seconds after its start, in Figs. 3
(a) and (b).
Epileptic Data

By Theorem 1, we find that both systems (before and
during the seizure), are unstable, yet with different dynamical

properties, as captured by the systems’ eigenvalues before
and during the seizure, see Fig. 2 (a) and (b), respectively.

Eigenvalues Before Seizure Eigenvalues During Seizure
A%: A — D(a, 1) from Theorem 1 Alb: A — D(a, 1) from Theorem 1
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Fig. 2: Eigenvalués)of Ao =A—D(a,1) are s(h())wn as red crosses
and depicted in the complex plane using the DTLFOS parameters
12 seconds before and 48 seconds after the seizure starts.

Next, to stabilize the DTLFOS during the seizure, we solve

{ and P§ as proposed in Proposition 1 and Proposition 2,
respectively, using CVX in MATLAB [26] and the parame-
ters during the seizure. We present the results in Fig. 3.

Op the one hand, after solving P{, the djagonal values
of A and the updated spatial matrix A + A are lower as
compared to the diagonal values of A as shown in Figs. 3
(a), (c), and (e). Here, we can interpret the spatial matrix as
the level of activity between neuron populations. Therefore,
having lower values might indicate that there is less activity
between neuron populations.



On the other hand, after solving P§, we notice that the val-
ues of the altered & and updated fractional-order exponents
«a + @ are, in general, lower than the values of o as shown
in Figs. 3 (b), (d), and (f). The original fractional-order
exponents («) during the seizure are close to 1. However,
the updated fractional-order exponents have lower values in
the range of (—0.6, 0.5), which provides converging evidence
for the empirical results presented in [15].

After solving P{ and P§, we find the eigenvalues for the
new systems as shown in Figs. 3 (g) and (h), which verify
the feasibility of our problems by invoking Theorem 1.

Finally, for illustration, we obtain the solutions to Pgl’ and
PJ given by Proposition 3 and Proposition 4, respectively,
depicted in Fig. 4. We again find that the diagonal values of
the new spatial matrix are lower than the diagonal values of
A. Similarly, the values of the new fractional-order exponents
are lower than the values of a. Once again, feasibility is
ensured by invoking Theorem 1.

Discussion

In this section, we analyze the implications that our
framework has on providing potential treatments for epilepsy.
We notice in Fig. 2 that while both systems before and
during the seizure are unstable, in the case of the system
during the seizure, there are more eigenvalues outside of
the unit circle. This might indicate that the system moves
further from stability during seizure [3], [4]. Therefore, to
mitigate the seizure, it is hypothesized that we must correct
for instability [3], [4]. Our framework achieves this by either
altering the fractional-order exponents or the spatial matrix.

In practice, changing the system parameters could be
achieved through the target release of a drug [27], electrical
or ultrasound neurostimulation [28], optogenetics [29], or
even through the regulation of the glia astrocytes [30]. Our
method is an event-triggered state-feedback control, i.e.,
ulk] = Kux[k], where u[k] is the control input, and it is
employed when a seizure is detected. For example, in the
case of P§, this is as simple as setting K = A. For Pg,

we simply set the diagonal entries of K;; = % for all

i €{1,...,n}, and the off-diagonal entries are zero.

V. CONCLUSIONS AND FUTURE WORKS

We provided computationally efficient necessary and suf-
ficient conditions for the stability of discrete-time linear
fractional-order systems. Leveraging these conditions, we
developed a framework using linear matrix inequalities to
stabilize fractional-order systems. We applied our framework
to a real-world dataset of an epileptic patient to show that
we can impose stability on these systems with the hope that
these methods will lead to the development of effective future
treatments of epilepsy and other neurological diseases.

More work is needed to study larger datasets in depth to
understand and verify the dependence between the DTLFOS
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Fig. 3: Spatial matrix and fractional-order exponents during the
seizure, and their updated values and updated eigenvalues (shown
in green crosses on the complex plane) after solving P{ and P5.

stability and the seizure onset. Previous work has exam-
ined this relationship for switched linear systems [7], but
future work is needed to rigorously examine this notion for
fractional-order systems. Future work also includes develop-
ing a framework that can simultaneously design both param-
eters of the fractional-order systems — the fractional-order
exponents and the spatial matrix — to ensure stability.
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VII. APPENDIX

Proof of Theorem 1: To present the global asymptotic stability
conditions of the non-commensurate DTLFOS we start by re-

writing the DTLFOS in (1) as z[k + 1] Z Ajx[k — j], where
Ao =A—-D(a,1), Aj = —D(a,j + 1), for]>1 and
YP(a1,7) 0 0
) 0 Plag,j) ... 0
D(e, j) = S ; 4
0 : 0
0 0 - Y(an,j)
by invoking Lemma 2 in [25]. Next, we can re-write it as
z[1] Ao 0 0 O ... z([0]
z[2] Ay Ag 0 O ... z[1]
z[3] | = | A2 A1 Ao O ... z2] | | (&)
A

We observe that the system in (5) is an infinite-dimensional linear
time-invariant system described by an operator .A.

We start by noticing that the dimension of A is countably infinite
since it is described by a countably infinite set of finite-dimensional
matrices. So, the point spectrum of A is countably infinite.

Next, we consider the point spectrum of the operator

Ag 0 0
Ay A 0O
A, denoted by spec(A) = spec Az A1 Ao - =
A9 0 0
Ay Ag O ...
o(Ao) U spec Az A1 4o ... , where the second equality is

a consequence of the properties of matrix determinants and the
Leibniz expansion. By induction and Theorem 2.12 in [31], it
(oo}

readily follows that spec(A) = LJU(AO)7 where the symbol co
indicates the union of a countable collection of sets. Subsequently,
it follows that spec(A) = o(Aop). Therefore, by the definition of
g.a.s. and the stability conditions stated in Theorem 8.3 in [5], the
DTLFOS is g.a.s. when |[A\| < 1,V € o(Ao).
Proof of Proposition 1: To solve P7, we notice that by invoking
Theorem 8.4 in [5], P§ can be restated as
minimize _
Py e{P R X":P; >0}, AcRn X"

t. (Ao + A)TPi (Ao + A) — P, <0.

By applymg Theorem 3 in [21], the problem becomes

minimize I1Pillx + || L2
Pye{P;eR"X":P; >0},L; ER" XN

P PAT+L]
s.t. [A0P1+L1 By > 0,

IAllx

Py

D

where A = L1 P| 1. Since P¢ is convex, it can be easily solved
for Ly and P; by using the interior points method [32].
Proof of Proposition 2: Similarly to Proposition 1, we begin to
solve P5. Hence, by Theorem 8.4 in [5], we can restate P35 as
minimize l&|lx
Pye{Py€R"X":Py>0},&ER™ Ps

st. (A—D(a+a,1))"P(A—D(a+&,1)) — P, < 0.
We again apply Theorem 3 in [21] to obtain the following

minimize |P2]]1 + || L2]1
Py€{Py€R"X": Py >0}, Ly RN X7 .
Py PyATHL] (P2)
s.t. [AP2+L2 Py ] >0,
where D(a + &,1) = —La Py *. Since D(a + &, 1) is dlagonal,

we restrict Lo and P> to be dlagonal which imposes 2(n? — n)
additional linear constraints. P5 is convex and can be solved
for Ly and P» by usmg the interior points method [32]. From
D(a+ @&,1) = —L2P, ', we need a way to easily obtain &.
From (4), we notlze tha(t D(« +)§1 1) is dependent on
~ 'l — (ai + s .

(e + au, 1) T(—(on + &))T(2) forall ¢ € {1,...,n}. Yet,
remarkably, from the relationship T'(1 4 z) = 2I'(z), we have that
(s + @i, 1) can be simplified to

P(l — (Ozi —+ 651)) —(Oéi + dz‘) I'(=(as—=F0;

= . 6

I'(—(as + &:))T'(2) 2 IDi=fewFas ©
Hence, D(« + &, 1) becomes
e 0 0
0 —(agtag) 0
D(a+a,1) = re
0 . 0o
0 0 ~(optan)



By equating the diagonal entries of LoP; ' to the diagonal
entries of D(a + &, 1), we solve for & and obtain the result.
Proof of Proposition 3: We start by invoking Gershgorin’s theo-
rem [33] and the reverse triangle inequality, which combine to say
that for all A € (A + A — D(a, 1)) there exists a positive integer
i € {1,...,n} such that the following holds |A| < |a;; + @i, —
Plo D+ Y ai; + iyl

, JENLI , : .

Hence, in providing sufficient graphical conditions to solve Pf{,
we seek to find all @, ;, for all i € {1,...,n} and j € {1,...,n}
such that |am~ + ai,i — 1/1(041‘, 1)| +4 Z \aiyj + di’j| < 1. This

) FEN\{i}
implies that

F(l — C(i)

Qi3 + Q44 — 7I‘(—ai)F(2)

‘<1— Z lai,; + aijgl. (1)

JEN\{i}

Interestingly, we notice that the sufficient graphical constraint
in (7) implicitly requires that 1 — EjEN\{i} lai,; + @i ;] > 0,
which shows that the problem may not always be feasible. By the
same relationship used in (6), the term % reduces to %
Proof of Proposition 4:

Similar to the proof of Proposition 3, we again start by invoking
Gershgorin’s theorem [33] and the reverse triangle inequality, which
combine to say that for all A € 0(A — D(a + &, 1)) there exists
a positive integer ¢ € {1,...,n} such that the following holds
N < fass — (s +as, D+ > aiyl

JEN\{i} i

Hence, in providing sufficient graphical conditions to solve P35,
we seek to find &;, forall ¢ € {1,...,n} and j € {1,...,n} such
that [a;; — (o + &, 1)+ > lai| <1, which implies that

JEN\{i}

@i — 'l — (i + )
" T(—(ai +@))T(2)

> laigl ®

\ <1-
JEN\{i}

The sufficient graphical constraint in (8) implicitly requires that
L =3 iem (i) la;,;] > 0. Therefore, the problem may not al-
ways be feasible. By the same relationship used in (6), the term

I~ (ai+:)) (s +)
T(—(a; ta,)T(z) reduces to o
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