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Abstract—We layout a blue-print of a complete threat-
landscape for data falsification/false data injection (FDI) attacks
on telemetry data collected from IoT/CPS applications under
zero-trust assumptions. Our motivation stems from the often-
criticized lack of formal threat and realistic model for data falsifi-
cation attacks on IoT and CPS telemetry data in the sensing loop.
We first offer perspectives on why and when IoT/CPS telemetry
data is vulnerable to false data injection attacks and related
adversarial motivations. Thereafter, we enlist characteristic facets
that should characterize the threat model for false data injection
in IoT/CPS. Specifically, we discuss implementation issues for
developing an advanced FDI attack simulation. Our approach
helps researchers generate a parameterized threat state space
universe, where many actual attacks are an instance within that
threat state space. This will enable better validation of anomaly
based attack detection methods that detect such attacks.

Index Terms—Data falsification attack; CPS security; IoT
security; Threat Landscape; Attack Simulation Datasets; False
Data Injection

I. INTRODUCTION

Enormous amounts of telemetry data are being collected by
smart devices, the so-called Internet of Things (IoT), which
are the building blocks of cyber-physical systems (CPS). Such
wide area telemetry data drive decision making and operations
in smart living IoT applications (viz., smart energy, smart
transportation etc.) that improve civic well-being.

Dependence on data analytics, immediate civilian impact of
wrong decisions, economic motivations, vast attack surfaces
(due to the community scale IoT and CPS domains), make an
extremely attractive target of data integrity attacks.

Parallelly, the last decade has seen unprecedented advanced
persistent threats (e.g., Stuxnet [1], Ukraine power grid attack)
that can change various telemetry data, alter monitoring pro-
cesses, when an adversary gains access privileges through a
creative zero-day cyber, physical or social engineering exploit.

Traditional cyber security is designed on the premise that
everything within an enterprise/utility network is trustworthy
as long as the perimeter is not breached. Therefore, the main
focus is on protecting from outside using cryptography, net-
work traffic analysis, network segmentation and fine grained
user-access control. However, many agencies such as Palo
Alto Networks, US Department of Defense, and NIST, have
formalized the need for Zero Trust Architecture [2], which
recognizes that (static) trust on users and end point devices
is a vulnerability. Once inside the network, adversaries and
malicious insiders are free to move laterally and access and

modify any data after gaining appropriate privileges. This
creates data falsification attacks apart from the cyber physical
couplings that create data falsification attacks.
Contributions In this article, we unify a detailed threat
landscape for data integrity attacks on telemetry data that
target the operational accuracy of smart living IoT. We first
reveal why traditional cybersecurity practices are not enough
and cyber physical factors that make data integrity attacks a
credible threat. Then, we propose four facets that characterize
the data integrity threat landscape of a IoT/CPS telemetry
data. The four facets include: (1) Attack Types, (2) Attack
Strength and Aperture, (3) Attack Scale, and (4) Attack
Strategies. We provide detailed exposition of different threat
modeling aspects, attack emulation techniques, and a way to
mathematically parameterize these facets such that all kinds
of adversarial capabilities are implicitly accounted for. This
in turn allows an unbiased evaluation of a defense framework
where the limits of the defense model can be tested. This is
mainly because a defender never knows what kind of attack
will be launched.

Our effort in the threat model specification is to discuss
some pitfall assumptions that creates asymmetry between real-
ity and perception which leads to incomplete threat assessment
and biased security performance evaluation. We offer a recipe
to create unbiased attack simulations for other researchers
working in industrial and smart living IoT applications where
use of telemetry data is common. Furthermore, we layout our
threat model in a generic way but with some examples, to help
researchers get a common recipe to tailor our threat model for
their needs. In the absence of labeled attack datasets, our threat
modeling approach can be used to create a superset of many
possible attack realizations. Even if labeled dataset of specific
attacks are present, evaluating a defense framework is based
on a specific instance of an attack. In contrast, our approach
helps researchers generate a parameterized threat state space
universe, where the actual attack is an instance within this
threat state space.

II. UNIFIED ABSTRACTION OF IOT/CPS

Regardless of the type of smart living IoT/CPS domain
(viz., smart grid, smart transportation), a unified abstraction
of the architecture and operations in smart living IoT domains
is possible. Under the umbrella of such a unified view, an
effective unified characterization of a threat landscape of



telemetry data in the sensing loop, is enabled that applies
across various IoT/CPS domains.

Smart Grid: A smart grid is a large domain consisting of
multiple functional units such as advanced metering infras-
tructure (AMI) [3] and phasor measurement unit infrastructure
(PMU) [4]. Each functional unit typically has a controller that
runs specific services (e.g., demand response and automated
billing by AMI, voltage sag detection by PMUs) based on the
telemetry data collected from IoT endpoint devices (e.g., smart
meters, phasor measurement units). For simplicity, we call the
field area IoT end-points as just IoT devices.

In the AMI, smart meters collect energy consumption and
generation data from smart home appliances (customer loads)
and renewable energy sources. In the hierarchical architecture
shown in Figure 1, multiple smart meters connect to a neigh-
borhood area network (NAN) device, that forwards all meter’s
data, to a FAN gateway (fog node) for local area analytics.
Multiple FANs gateways connect to a cloud controller host-
ing computations for wide area analytics (e.g., billing, load
profiling) and decisions (signalling remote disconnect of an
appliance), which is communicated to the demand response
switches (actuators) at the customer site. The AMI also applies
to water distribution monitoring in a similar way [5].

Similarly, the distribution/transmission layers in smart grid
have multiple PMUs acting as IoT devices that collect sam-
ple voltage, current amplitudes, angles between voltage and
current on each of the three phases. Multiple PMUs transmit
such telemetry data to a phasor data concentrator (PDC).
A PDC forwards data from multiple PMUs to a local link
controller (LLC). Multiple LLCs, then connected to a wide
area controller determining the events, state of the grid and
control decisions (e.g., islanding, load balancing).
Smart Transportation: In this domain, vehicle-to-
infrastructure (V2I) [6] and vehicle-to-vehicle (V2V) [7]
units run telemetry data driven services to control traffic
congestion, vehicular re-routing, platooning and incident
response. Future V2I systems will collect vehicular data (e.g.,
speeds, road segment, velocity, direction) via dedicated short
range radios hosted on smart cars. In other implementations,
a Transport Measurement Channel (TMC) [6] equipment
autosenses such data as vehicles pass by a road segment.
Such data is forwarded to IoT devices known as road side
units (RSU). These RSUs collect data from smart cars or
TMCs and then forwards it to the respective fog and cloud
servers for local and wide area analytics via internet. The
fog/cloud server can issue control commands to vehicles or
driving apps (e.g., rerouting and speed recommendations), or
traffic signals (the signal switching information) for traffic
management. The actuators are humans taking actions or
signalling logic in traffic signals.

III. ANATOMY OF DATA INTEGRITY EXPLOITS IN IOT

We know that cryptography-based approaches such as dig-
ital signatures, encryption, can offer protection from adver-
saries accessing and modifying data, thus reducing chances of
a data falsification attack. Naturally, the question arises, why
does the research community still need to worry about data

integrity attacks in IoT telemetry? In this section, we provide
practical reasons, why data falsification attacks is a credible
threat in IoT/CPS domains.

A. Lack of Crypto-Agility in IoT

The secrecy of the RSA algorithm (commonly used public-
key cryptography method) depends on the inability of an
adversary to factorize the two randomly-chosen prime numbers
used to derive RSA’s algorithms’ public key. Hence, if the
prime factors are discovered, the adversary can re-derive the
RSA’s private key. Following this, the adversary can decrypt,
modify the data from devices. To prevent the above, two key
requirements need to be fulfilled: (R1) high randomness in
prime numbers; (R2) enough computing power to transform
input data into a strong key.

Random number generators in digital systems, rely on phys-
ical non-deterministic inputs/measurements that are sourced
from the device hardware (e.g., mouse pointer movements,
keystroke patterns, clock signals, phase noise, etc.). Comput-
ers/smartphones have the hardware that allows the collection
of non-deterministic inputs, which creates randomness.

In contrast, IoT devices lack sources of randomness due to
limitations in the attached hardware (e.g. absence of keystroke
patterns, mouse movements). Keys generated by lightweight
IoT devices are therefore at risk of not being sufficiently
random. This increases the chance that two keys share a factor
and allowing the keys to be broken. The [8] found that most
of the keys were broken and [9] reported that every 1 in 172
devices’ digital certificates were compromised.

Pre-loading of keys on the IoT device during manufacturing
will open up devices to supply-chain attacks where an un-
trustworthy manufacturer or logistics company tampers with
the keys en-route [10]. Also [11], noted that many industrial
IoT/CPS systems cannot afford authentication and encryption
altogether due to hard real-time operational requirements.

B. Physical Data Manipulation via Transduction Attacks

IoT devices are vulnerable to transduction attacks [12] that
disturb analog signals sensed by the device or physical tam-
pering of firmware [13] such that it alters accurate conversion
of analog to digital output of the telemetry data. This results
in false data reported from the device. A transduction attack
exploits a vulnerability in the physics of how sensor/hardware
processes input analog signals as surveyed in [14] by directing
some malicious electromagnetic signal as interference onto
the IoT device. Sensors translate physical analog signals into
electrical signals. Thereafter, the software in the firmware (or
a remote App) interprets and reads the binary representations
rather than the direct physical or electrical quantities. As
adversary vary the intensity of the malicious signal on the
target IoT devices, the extent of falsified data may change. In
[7], a transduction attack was shown over a self-driving car.

Security practices such as static analysis, fuzz testing, and
signed software updates do not offer detection of a sensor
delivering false data [12]. Similarly, cryptography/network
intrusion detection is unable to detect or prevent such attacks.



Fig. 1. An example of Cross-Domain Layered IoT Architecture in CPS domains

C. Insider Threats and Social Engineering Exploits

A set of detailed case studies done in [15] finds 68%

of the cybersecurity breaches have some involvement of at

least one or more utility/enterprise insider in key positions

of knowledge, even when the main threat actor is external

to the organization. Furthermore, various social engineering

exploits are used (e.g. phishing emails) on employees of an

organization to extract privileges that bypass the traditional

cybersecurity, and give control of data and devices to the

adversary, causing data integrity attacks.

D. Heterogeneity in IoT Markets and Network Interfaces

While some hardware security to transduction attacks ex-

ist, it requires all manufacturers to adhere to a common

hardware security standard. Additionally, a single network

contain devices assembled from tens to hundreds of distinct

manufacturers. Most importantly, the sheer community scale

of the IoT devices for smart living makes embedded and secure

hardware an expensive solution as reasoned in [16]. Thus,

detection of data integrity attacks from physical exploits is

going to be a challenge in community-scale IoT and the status

quo on commodity hardware in IoT markets.

Furthermore, IoT devices in smart cities are getting con-

nected to the utility WAN via a field area network/edge inter-

facing layer that uses 5G, software radios, and shared spectrum

technologies, which use highly programmable wired and wire-

less networking components [17]. The software-defined nature

allows field area network devices to be compromised, enabling

implementation of advanced attack strategies. This is further

elaborated in Sec. IV-A and Sec. IV-D.

Conclusion The reasons for IoT devices being an attrac-

tive target is: (i) ease of physical access causes transduc-

tion/physical attacks, (ii) limited hardware/memory capabili-

ties causing lack of cryptoagility, (iii) large scale deployment

makes deploying in-situ embedded security in IoT devices

very expensive and impractical for a utility provider, (iv) cyber

connectivity of IoT devices to the internet, (v) data integrity

attacks in smart living have both an immediate civilian as well

as non-immediate economic impact based on the attack type.

IV. UNIFIED DATA INTEGRITY THREAT LANDSCAPE

In this section, we list a set of characteristics that specify

a detailed and realistic threat model in smart living IoT

telemetry data. The IoT domain can be a target from the

following categories of organized adversaries: (i) rival nation,

(ii) insiders (iii) cyber criminals, (iv) rogue/selfish customers

v) business competitors. Depending the capability, the actual

parameters will vary but there is no way of predicting what

it might be. Instead of snapshot attacks, our contribution

provides a recipe to generate a superset of threat landscape

that in turn allows unbiased evaluation of defense methods.

A. Attack Scale

It refers to the number of compromised IoT telemetry

devices or telemetry data streams. Redundancy is often present

in the IoT telemetry end-point layer to achieve wide-area

monitoring. Most works assume a fixed fraction of compro-

mised IoT devices constrained by an attack budget. Also,

many research works do not parameterize the attack scale as a

variable in the threat model or assume only lower attack scales

as ‘realistic’. The above results in the following pitfalls:

First, the effective fraction of compromised devices depends

on the size of the network and is unrelated to adversaries’

attack budget. Hence, smaller-sized networks will have a large



fraction of compromised IoT devices even with a seemingly
smaller budget. Examples are smart meters in micro-grids and
TMC sensors for decentralized traffic monitoring.

Second, the effective scale of attack, increases if an attacker
compromises the intermediate data aggregator that is present in
most wide area IoT/CPS applications (e.g., NAN gateway [3],
PDC [4], RSU [6]) since it can manipulate data streams from
multiple IoT devices at once. This is realistic possibility, since
most edge aggregator devices in smart cities are planned to
be wireless and programmable USRP radios which contain
an USB port, easily accessible physically, and programmable
over the air [17].

Third, the cheapness of the exploit should be taken into
account. If the exploit is cheap, a high number of compromised
IoT devices are possible, even with a small attack budget that
is not impractically high. As an example, in 2009/10, an attack
on Puerto-Rico’s smart grid [13] metering utility’s (PREPA),
was carried out by utility insiders and maintenance personnel
who tampered the thousands of smart meters to launch data
falsification, using a portable optical laser probe toolkit that
cost just $400.

For proper scientific treatment, it is necessary that the
research community parameterizes the attack scale from very
small to large values and then test breakdown points to validate
proposed defense models.

B. Attack Strength and Aperture

Attack strength denotes the average margin of falsified data
from each compromised IoT device. Our preliminary research
on smart meters, revealed that many works rarely identify
compromised meters when the margins of false data are below
450W. Similarly, we observed in [18] that existing works on
PMU data integrity attacks rarely parameterize the average
margin of falsification of current magnitude values.

In our recent work [19], we showed that since the standard
deviation of the data is high in smart living IoT/CPS systems
due human and environmental randomness, the average margin
of false data if lower than the standard deviation, makes classi-
cal statistics-based detection ineffective. Furthermore, popular
information-theoretic detection approaches are bypassed under
such low margins [19]. At the same time, we showed that
the attack impact on the utility under low attack strengths is
significant. Thus, large dynamic variations in the data of smart
living IoT enable valid low attack strengths to hide behind this
randomness. Similarly, in [18] we showed that current data
measured at PMUs installed at the distribution level show high
fluctuations.

For modeling, we denote δavg as a strategic attack strength
variable, which is the mean of the sample perturbations δt
(over the attack lifetime), which gives the average extent of
falsification from original data values. The specific distribution
of perturbations is dictated by the attack strategy used as
detailed in Sec IV-D.

The perturbations δt, are sampled from a strategic interval
[δmin, δmax]. We name the width of this interval |δmax−δmin|
as the aperture of attack strength. The aperture for attack simu-
lation should be such that it does not raise obvious suspicions
or violate the physical bounds of legitimate operation. The

aperture affects the shape of the falsified data distribution and
the ease of detection by AI-based attack detectors.

Finally, a mathematical function quantifying the attack
impact as a function attack strength is crucial for realistic
attack and defense performance evaluation. Furthermore, a
practical time horizon within which the adversary wants its
attack budget investment to be accrued via the attack impact
break-even time should be taken into consideration. A way to
calculate this was shown in our previous work [16]. The attack
budget depends on the exploit used which could very cheap.
Therefore, smaller attack strengths may have quick breakeven
time and still offer tangible benefits to the adversary.

C. Data Integrity Attack Types

Attack types specify the way data is falsified that depends
on the goal. We give some examples of how different attack
objectives manifest as attack types. Following this, one can
model attack type according to how any application works.

1) Additive: The adversary adds some strategic values to
the original data stream of an IoT end-point, such that the
reported value P irep(t) = P iact(t) + δt, where δt a sample
from a strategic distribution whose mean converges to δavg.
The goal of an additive attack can vary according to the IoT
application, should be understood from the perspective of how
the application is using the data.

In the AMI context, it is achieved by a load altering
exploit that causes the smart meters to sense more than
actual power consumption, causing increased bills and undue
increase power generation [16].

In the transportation context, an additive attack will prevent
congestion detection. For this, the adversary needs to make
sure that legitimately decreasing speeds from vehicles (due to
real congestion or accident) in a neighborhood, are not visible
to the traffic control application. To do that, it has to add
a strategic amount to the true speed values. Therefore, the
adversary is effectively doing an additive perturbation to the
original IoT data stream.

In the PMU context, the additive attack type introduced on
the current data stream by organized criminals/rival nations
makes the control center believe in a sudden increase in load
that will lead to load shedding in that particular phase in a 3-
phase. Therefore, for additive falsification, the modified attack
sample is Iit = Iit(act) + Iδt from a compromised PMU.

2) Deductive: From compromised IoT data streams, the ad-
versary reduces the original data points such that the reported
value P irep(t) = P iact(t)− δt.

In smart metering, this is the most widely seen attack type,
where the adversary’s goal is to inflict losses for the utility or
an equivalent gain for a large set of customers with low bills.

In the transportation context, this attack type will fake traffic
jams by reducing the values of speed data [6]. When launched
in strategic areas, it will lead to traffic re-routed from that area
to create a strategic void that may be used for criminal activity
or create congestion elsewhere.

In the PMU context, a reduced current implies a lower load
from the customer side [18] that would falsely indicate to
the control center to draw lesser power from the generator
or energy producers.



Fig. 2. The Unified Data Integrity Threat Landscape in Smart Living IoT Telemetry Data

3) Camouflage: The adversary divides the total attack scale

into two groups; then launches additive attacks from one group

and deductive attacks from the other group, maintaining the

same attack strength for each group at the same time [16].

This guarantees minimal difference in the mean and bypasses

many common statistical detectors. From a stealth point of

view, this attack type keeps the mean of the data the same

at any point of time from all IoT devices bypassing common

statistical detectors.

From an operational impact perspective, this attack is prac-

tical in the following ways: In smart metering, the deductive

group of customers benefits and the expense of the additive

group while no suspicion is raised in the detectors that use

sanity checks that measure total inflow and outflow at the

junction meters to detect evidence of deductive attacks.

In smart transportation (V2I), the network is divided into

zones (clusters) for traffic monitoring. Within a zone, one sub-

region’s TMC sensors [6] orchestrate deductive perturbation to

fake a jam while another region’s TMCs additive perturbation

in an area that actually is facing congestion. In this way, a

decentralized zone level anomaly detector while has lesser

suspicion due to an unchanged mean in the aggregate data

reported from this traffic zone. At the same time, a micro

traffic jam is faked and a real traffic jam is missed causing

more traffic to avoid the area with a fake jam and instead go

into the additive perturbed TMC area where the congestion

is real. This will worsen the original congestion in the area

where TMCs were additively perturbed.
4) Alternating switching: While camouflage attacks have

additive and deductive attacks at the same time from different

IoT devices, the alternating switching, involve an individual

IoT device stream alternating between additive and deductive

attacks over the attack lifetime (a time slice with equal parts

of additive and deductive attacks of same δavg) [19].

From a stealth perspective, the benefit is circumventing

device-level diagnostics or detectors that use coarse-grained

auto-regression or time averages. From an operational impact

perspective, the benefit is to exploit features such as demand-

based changes in smart living IoT applications.

In [19], we show how alternating switching in smart meter

separately alternates between additive and deductive attacks

over the time domain with the same margin of false data.

In [18], we showed that it makes sense for PMUs to alternate

between high and low current values to create instability in

the control systems that use such data.
5) Replay: Replay attack, involves an adversary replaying

older (believable) data to mask a change point related to an

emergency event, which when missed by the control center

will lead to an unsafe condition [20]. In this attack type, the

adversary’s goal is to prevent the system from detecting certain

emergency conditions. The adversary usually remains silent for

most of the time, waiting for an emergency or a special event to

occur. As soon as this happens (detected via the data pattern),

the adversary replays older readings that do not accurately

reflect the altered state of the emergency. For example, in a

winter polar vortex, the smart meter data can show a spike

due to increased load from heating appliances. However, if

the adversary replays older data points not, the sudden spike

in consumption data is hidden. Hence, the event will be missed

and appropriate countermeasures such as increased generation

or islanding will not be taken. Similarly, this can happen on the

speed measurements in the transportation network on traffic

incident detection applications. Similarly, in water distribution

systems, a replay attack was shown in [20] to mask the

detection of water leak. For this attack, the main simulation

consideration is the effective attack lifetime, that is equal to the

required time between attack start and until intended damage

is done. The attack lifetime could vary between applications

and goals. The adversary needs to keep a copy of old values

over a time span that is equal to the attack lifetime.
6) Mirroring: A variation of the data replay is mirroring

attack [18], which replays old data instead of the current data

like a mirror image; where the most recent old data is replayed

first and the oldest data is replayed last. This type of attack is

effective in creating instability by masking change points in

a IoT network. Since the most recent data points are the first



ones to be replayed followed by older points, there is a less
change in a change point and time series detectors. Therefore,
less suspicion is raised compared to just replaying an old set
of data values in the sequence it was recorded. The attack
lifetime depends on the period in the actual incident lasts.

7) Conflict: In this slight variation of camouflage attack,
with the difference that additive and deductive attack groups
do not have the same attack scale and strength [21]. A practical
scenario for this is when an IoT application has been compro-
mised by two different adversaries with conflicting goals; one
adversary launching an additive attack and the other launching
a deductive attack uncoordinated with different goals and
stealth levels. The attack parameter here is the attack scale
of the additive and deductive group and their attack strengths.

8) Saturation: This type of attack occurs when the sensed
data from a IoT/CPS sensor get stuck at one value [22] and
the sensor is unable to sense and send the real physical
quantity. The exploit is a electromagnetic interference that
causes “sensor saturation”. Sensor hardware has a well defined
”operating region” based on the expected range of the strength
of input electromagnetic stimuli. If the input stimuli is within
this range, the sensors produce a linear digital output value
proportional to the changes in the input stimuli. However,
when the input stimuli strength is higher than the upper bound
of the operating range, the sensor output gets saturated (i.e.,
it gets stuck at one value) that is approximately equal to
the saturation point. To simulate such attack realistically, one
needs to find out the saturation point of the sensor type used
in the IoT device. In the context of medical IoT, the authors
in [22] showed how the drop sensors stopped sensing the exact
amount of fluid flowing through an infusion pump that controls
amount of medicine injected in a patient’s body.

D. Attack Strategies
Attack strategies specify the way the false data is injected

into the space/time distribution of the authentic data. Strategies
are influenced by level of prior knowledge and access. Prior
knowledge could be further categorized into no prior knowl-
edge, partial knowledge, and complete knowledge. Partial prior
knowledge is realistic between the other two extremes. These
include knowledge of data distributions and knowledge of state
of the art approaches to data integrity attack detection.

Accordingly, the following possible falsification strategies
can happen: (1) Data order aware (2) On-off strategy (3)
Incremental ramp or boil frog strategies (4) KL distance
minimization strategy. The last two strategies (5) step and (6)
scaling are added here for the sake of completion and are no
knowledge attacks.

These strategies can be easily launched from a NaN, PDC,
or RSU components for AMI, PMU, and V2I applications
respectively, which have visibility of multiple telemetry device
data flows at once or a botnet that receives data from multiple
IoT devices and implements these strategies with a certain
attack type and strength. The attack scale will be how many
device data flows are being intercepted.

1) Data Order Aware Strategy: In a data order aware strat-
egy, the adversary injects perturbations with just the knowl-
edge of the extreme points of whatever it observes any time

slot. This strategy works as follows: The adversary intercepts
the actual data from the set of M compromised (out of total N )
IoT devices/streams such that P (1)

t (act) ≤, · · · , P (m)
t (act),≤

P
(M)
t (act). This may happen by compromising an aggregator

or controlling multiple IoT sensing endpoints like a botnet.
Subsequently, M random numbers are generated by the ad-
versary for δt, sorted as δmint ≤, · · · ,≤ δmaxt .
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For an additive attack, the lowest observed data is changed
with the highest δmaxt , while highest observed power con-
sumption data is modified with lowest δmint , and so on, such
that P (1)

t (act) + δmaxt , · · · , P (M)
t (act) + δmint .

For a deductive attack, the highest observed data is changed
with the highest δmaxt , while the lowest observed power
consumption data is changed with the lowest δmint . Hence,
P

(1)
t (act)− δmint , · · · , P (M)

t (act)− δmaxt .
For a camouflage attack, the sorted P

(1)
t (act) ≤, · · · ,≤

P
(M)
t (act) is divided into two parts, and corresponding por-

tions are changed accordingly. This strategy aims to minimize
the sample distance between actual and the falsified data, while
keeping the same δavg .

The data order aware strategy is a nonoptimal but a real-
time and simple way of minimizing the pointwise distance
between realizations of the original and attack distributions,
and we reported the attack in our previous works [16], [19].
The evidence is shown in Figs. 3(a) and 4(b) where the data
order aware line is closer to the original data distribution.
Divergence-based detectors have a lesser probability of detec-
tion without sacrificing the operational impact of the attack.

2) On-Off strategy: On-off strategy alternates between no
attacks and attack periods; perturbations are sporadically dis-
tributed over the time domain. There are application specific
and application agnostic benefits of on-off strategy.

The application agnostic benefit of this is that such attacks
can delay convergence of ML and AI classifiers used in
the identification of compromised IoT devices. An example
using smart metering was shown in our recent work [21].
The delayed identification is caused because attacked data are
sporadically hidden within large periods of no attacks. Due this
imbalance the anomaly is detected after a long time horizon.
Therefore, appropriate modifications in AI based defenses are
necessary to speed up the detection under such strategies.

The application specific benefit of on-off in AMI and PMU
arise from the dynamic demand based pricing of electricity
that fluctuate throughput the day. Similarly, in transportation
systems, the traffic volumes are not uniform throughout all
times An adversary can be only interested to attack under
certain occasions of high or low prices or traffic demands.

For parameterized modeling, one needs to vary length of
each ON and OFF period within realistic bounds. The second



thing to vary is the ON-to-OFF ratio in the total attack life
time of the attack, that depends on how many ON and OFF
periods and the length of each ON and OFF period.

3) Incremental and Ramp Strategy:: The incremental/ramp
strategy are different names of the idea that involves a very
slow increment in effective δavg bias over multiple time slices,
until the intended δavg is attained [16], [19]. The goal of this
is to ensure that time series update metrics record very small
changes and fool them into thinking these changes as noise.
This has a benefit in terms of not raising a sudden alarm in
a change point detector, but the attacker eventually achieves
its application specific benefit, by reaching the intended δavg
after some delay. Similarly, if and when an adversary decides
to start or stop attacking in order to mimic a leak in water
distribution system, this strategy would make sense because
the leak grows over time. When the adversary intends to
stop attacks (note any strategy can be combined with on-off),
the δavg can gradually decrement to prevent another obvious
change point [23].

For attack modeling and simulation, we need to consider
two parameters: (i) the step difference variable, ∆i = |δ(i)avg −
δ
(i+1)
avg | that dictates how much is the change in attack strength

between successive occurrences of attack strength change (i
represents iteration number). The second variable to consider
is the (ii) dwell time interval between successive increments
t(i+1)−i that dictates the time gap between successive incre-
ments of attack strength.
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Fig. 4. KL Distance Minimization Strategy (a) Additive (b) Deductive

4) KLD Minimizing Strategy: Kullback-Leibler Divergence
is used as a key concept in many ML classifiers for attack
detection. While false data is injected, one strategy could
be inject a distribution that minimizes the Kullback-Leibler
Divergence, while preserving the target δavg . This ensures
less obvious change in the classifiers. Fig. 4(a) depicts an
illustration of KLD minimizing attack strategy for one smart
meter device. The bold red line corresponds to the KLD
minimization strategy. Note that the data distribution under
KLD Minimization strategy closely to the true data distribution
(blue line) than to simple scaling attack (gray line), even when
the δavg = 200 for both strategies.We implemented such an
attack and discussed in stealth benefits in [19].

For attack simulation, we need to consider the following:
whether the attacker’s strategy should be mean seeking (For-
ward KL) or mode seeking (Reverse KL) [24]. If the defense
mechanism is supervised approach then forward KL should be
minimized and if its based on reinforcement learning reverse
KL should be minimized. However, this kind of attack strategy
takes a longer time horizon to optimize and is practical only
for delay tolerant attack objectives.

5) Step Strategy: In this simple attack commonly reported
in the CPS literature [25], the adversary modifies all samples
to higher (additive) or lower (deductive) values by a constant
δt(Ta) in a specified attack period Ta from the i-th device,
although δt(Ta) can change in a different attack period. Thus
the perturbation extent is mapped from a certain time context.

P it =

{
P it (act), if t /∈ Ta
P it (act) + δt(Ta), if t ∈ Ta.

6) Scaling Strategy: This attack involves the addition or
subtraction of positive values (generated by a random function)
to the actual measurements. It is the most commonly studied
strategy [16], [23]. The lower (Iδmin ) and upper (Iδmax )
bounds for selection are provided to the function as an input.
While this is simple, it does not change the resultant shape
of the load distribution drastically, making it a less obvious
attack.

P it =

{
P it (act), if t /∈ ∆a

P it (act)± rand(δmin, δmax), if t ∈ ∆a.

To conclude we showed 6 attack strategies and gave appli-
cation specific and application agnostic benefits of each of the
possibilities and implementation considerations.

V. CONCLUSION

In this article, we first explained why the data integrity
attacks offer a more credible threat in the IoT/CPS systems,
due to weaknesses arising in both cyber and physical domains.
We also showed that the data falsification attack landscape
should be specified by four main facets: i) attack scale, ii)
attack strength, iii) attack type, and iv) attack strategies. Within
each facet, we enumerated various possibilities of an attack
state space. In this paper we explained the facets of data falsi-
fication threat landscape in a way that allows a parameterized
view of a threat model rather than specific instances. This
approach will enable researchers to understand what variables
to introduce into the attack simulation; how to encompass
different adversarial goals and motivations behind inflicting
an operational damage to the IoT/CPS utility; and how to
assess the economic or service oriented disruption for the
customers. Next, we unified the literature on different attacks
and showed how they fall under the above facets. Following
this recipe will ensure that the research in data integrity attacks
on telemetry data for IoT/CPS sensing loop, embeds most
possibilities of falsifying data to assess the operational impact
and performance limits of various attack detection methods.
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