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A theoretical study is made of the stability of propagating internal gravity wave modes
along a horizontal stratified fluid layer bounded by rigid walls. The analysis is based on
the Floquet eigenvalue problem for infinitesimal perturbations to a wave mode of small
amplitude. The appropriate instability mechanism hinges on how the perturbation spatial
scale relative to the basic-state wavelength, controlled by a parameter y, compares to the
basic-state amplitude parameter, ¢ < 1. For u = O(1), the onset of instability arises due
to perturbations that form resonant triads with the underlying wave mode. For short-scale
perturbations such that y < 1 but @ = u/e > 1, this triad resonance instability reduces
to the familiar parametric subharmonic instability (PSI), where triads comprise fine-scale
perturbations with half the basic-wave frequency. However, as u is further decreased holding
€ fixed, higher-frequency perturbations than these two subharmonics come into play, and
when @ = O(1) Floquet modes feature broadband spectrum. This broadening phenomenon
is a manifestation of the advection of small-scale perturbations by the basic-wave velocity
field. By working with a set of ‘streamline coordinates’ in the frame of the basic wave, this
advection can be ‘factored out’. Importantly, when @ = O(1) PSI is replaced by a novel,
multi-mode resonance mechanism which has a stabilizing effect that provides an inviscid
short-scale cut-off to PSI. The theoretical predictions are supported by numerical results
from solving the Floquet eigenvalue problem for a mode-1 basic state.
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1. Introduction

The original motivation for the present work comes from a recent asymptotic treatment
of small-scale instabilities of finite-width internal gravity wave beams in an unbounded
uniformly stratified fluid (Fan & Akylas 2021). The focus of the earlier study was on validating
the approximate models for parametric subharmonic instability (PSI) of internal wave beams
proposed by Karimi & Akylas (2014, 2017). PSI is a particular case of triad resonance
instability (TRI), where the unstable perturbations which form resonant triads with the basic
wave state are fine-scale disturbances at half the basic-wave frequency. This small-scale
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instability mechanism has been studied widely for sinusoidal plane waves (e.g. Staquet &
Sommeria 2002) and more recently for wave beams (e.g. Dauxois et al. 2018) owing to
its potential significance in the dissipation of the oceanic internal tide (Hibiya er al. 2002;
MacKinnon & Winters 2005).

As wave beams are time-periodic states, Fan & Akylas (2021) used Floquet-type normal
mode analysis. The associated eigenvalue problem was solved asymptotically in the limit
where PSI may arise — namely, for a small-amplitude uniform wave beam subject to
fine-scale perturbations under nearly inviscid conditions — but without assuming that
perturbations at half the beam frequency are the dominant components of the unstable Floquet
modes. Apart from assessing the validity of the earlier PSI models, this asymptotic treatment
also revealed a short-scale instability that, unlike PSI, involves a broadband spectrum of
frequency components. Importantly, this novel instability mechanism can impact wave beams
that are not susceptible to PSI.

In view of the findings of Fan & Akylas (2021) for wave beams in an unbounded fluid,
it is natural to ask whether a similar small-scale instability would apply to internal wave
modes propagating along a waveguide, such as the ocean thermocline. This question is
addressed here for propagating gravity wave modes in the simplest waveguide configuration
of a horizontal stratified fluid layer bounded by rigid walls. Background rotation also is
ignored.

In contrast to plane waves in an unbounded stratified fluid, there are only few prior
studies devoted to the stability of internal wave modes. Thorpe (1966) first showed that
wave modes in a continuously stratified fluid layer with a rigid bottom and a fixed or free
upper surface, can form resonant triads. The conditions for such triads require that the
horizontal wavevectors and the frequencies of the participating modes sum up to zero. Davis
& Acrivos (1967) presented experimental evidence and theoretical confirmation of TRI for a
propagating mode-1 wave in a thin stratified layer separating two homogeneous fluid layers.
In a follow-up laboratory experiment, Martin et al. (1972) investigated the TRI of a mode-3
wave in a uniformly stratified fluid layer (constant background buoyancy frequency) bounded
by rigid walls. Their observations of unstable disturbances generally are consistent with the
theoretically predicted modes forming resonant triads with the mode-3 wave.

In more recent related work, Joubaud er al. (2012) reported the first experimental
measurement of TRI growth rates for a mode-1 wave propagating along a uniformly stratified
fluid tank. Varma & Mathur (2017) examined theoretically resonant triads that comprise
two modes with the same frequency, in a stratified layer bounded by rigid walls and also
including background rotation. Their results recover the triad resonance conditions of Thorpe
(1966) and confirm that resonant triad interactions are more likely to occur in non-uniform
background stratification than a uniformly stratified fluid. Sutherland & Jefferson (2020)
explored the stability of mode-1 waves in a stratified layer with rigid bottom and top and in
the presence of background rotation, via numerical simulations of an initial-value problem
using small-amplitude noise as initial perturbation. These simulations suggest that PSI is
the dominant instability for uniform background stratification but this may not be the case
for other stratifications. Finally, Young et al. (2008) developed a theory for near-inertial
PSI, where the frequencies of the subharmonic perturbations are assumed to be close to
the inertial frequency, based on the approximate equations of Young & Jelloul (1997). This
theory predicts strong instability for a mode-1 wave under conditions representative of the
oceanic internal tide.

The present stability analysis is based on the eigenvalue problem that governs Floquet-
mode perturbations in the moving frame where the basic wave mode is steady in time
and spatially periodic along the horizontal. It follows from this problem that the onset of
instability in the limit of small basic-state amplitude parameter (¢ < 1), arises due to TRI.
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The triad resonance conditions are consistent with Thorpe (1966), and the associated O(¢)
growth rate is computed for general background stratification from a certain 2 X 2 eigenvalue
problem.

Attention then is focused on small-scale instabilities that involve perturbations of high
modal number and short wavelength relative to the basic wave mode, assuming for simplicity
constant background buoyancy frequency. The appropriate small-scale instability mechanism
hinges on how the perturbation scale, controlled by a parameter 4 < 1, compares to the
basic-state amplitude €: for € < u < 1 (@ = /e > 1) TRI reduces to PSI; however, as u is
further decreased holding € fixed, higher-frequency perturbations than the two subharmonics
at half the basic-wave frequency come into play, and when @ = O(1) Floquet modes feature
broadband spectrum.

Similar to Fan & Akylas (2021), this broadening phenomenon is a result of the advection
of small-scale perturbations by the basic-state velocity field and can be ‘factored out’ by
working with a set of ‘streamline coordinates’ in the frame of the basic wave. We find
that when @ = O(1) PSI is replaced by a multi-mode resonance mechanism, which has
a stabilizing effect and provides a short-scale cut-off to PSI. An important factor in this
stabilisation is the Lagrangian mean flow due to the ‘Stokes drift’ of the basic wave mode
(Thorpe 1968). The theoretical predictions are supported by numerical results from solving
the Floquet eigenvalue problem for a mode-1 basic state. Furthermore, estimates of instability
growth rates based on dimensional scales representative of the oceanic internal tide, suggest
that PSI and the inviscid cut-off discussed here could be relevant in the field.

It appears that the present asymptotic analysis of small-scale instabilities of internal wave
modes can be extended to allow for non-uniform stratification and background rotation.
However, a wave mode with nearly twice the inertial frequency, where near-inertial PSI
becomes relevant, would require special treatment.

2. Floquet stability problem

Consider an inviscid, continuously stratified, horizontal fluid layer of uniform depth bounded
by rigid walls. This configuration supports a countable infinity of horizontally propagating
internal gravity wave modes (e.g. Yih 1979). The focus here is on the stability of these
modes to infinitesimal two-dimensional perturbations. We shall use dimensionless variables
with A, /2w as the length scale and 1/N, as the time scale. Here, A, denotes the wavelength
in the horizontal (x-) direction of the basic mode and N, is a characteristic value of the
background buoyancy frequency, which generally is a function of the vertical coordinate z
pointing upwards (antiparallel to gravity). The fluid is assumed to be incompressible and
the Boussinesq approximation will be made. Incompressibility is satisfied automatically by
working with a streamfunction ¥ (x, z, f) such that ¥, and —¥, are the horizontal and vertical
velocity components, respectively.

It is convenient for the stability analysis to make the basic wave steady by moving along x
with the wave speed ¢ > 0. In this reference frame, the (linearized) equations governing the
perturbation streamfunction  (x, z, t) and density p(x, z, ) read

D 2 AT _

=V lﬁ—px+J(V \P,w) -0, 2.1a)
D
5Pt N>y +J (p,¢) = 0. (2.1b)

Here, @(x, z) is the basic-wave streamfunction (i.e. ¥ = ¥+ W), p(x,z) is the basic-wave
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density, N(z) is the background buoyancy frequency profile and

D 0 0 —
—=2_.Z ‘I‘) 2.2

i ‘ax ! ( 2.2)
denotes the (linearized) advective time derivative, where J (a,b) = ayb, — a b, is the
Jacobian. Furthermore, ¥ obeys

Yx =0 (z=0,H) (2.3)

on the channel walls (z = 0, H), where H is the dimensionless fluid depth.

Before proceeding to the stability analysis, we specify (v, p;c}. Our choice for basic
state is a finite-amplitude progressive wave mode with (normalised) wavelength 2z along x
and phase speed ¢, which generally is a function of the wave amplitude (Yih 1974). Such
finite-amplitude waves of permanent form are steady solutions of the nonlinear stratified flow
equations and need to be computed separately, by amplitude expansions (Thorpe 1968; Yih
1974) or numerically.

Our interest here will be on the onset of instability, which occurs when the amplitude of
the basic state is small. Accordingly, we introduce the small amplitude parameter e,

_ 2xnU.

€=
AN,

< 1, 2.4)

where U, is a characteristic velocity of the basic wave. In this limit, {@, p;c} may be
approximated as (Yih 1974)

¥ = ef,(z) cosx + O(€?), (2.5a)
2

o= E]:—fn(z) cosx + O(e?), (2.5b)

c=cp+0(). (2.5¢)

Here, the wave speed ¢, and mode shape f,(z) are the eigenvalue and eigenfunction
corresponding to a certain eigensolution (n = 1,2, ...) of the problem

df, N2 _
dZJ; + (C—2 - 1) fn=0, (2.6a)
fn=0 (z=0,H). (2.6b)

It should be noted that for uniform background stratification (N = 1), the problem (2.6)
has the simple closed-form solution
- H nm H

=i e =— T =12, 2.7
I an VH G cn (n27c2+H2)1/2 (n ) @.7)

where f,, has been normalised such that U, in (2.4) is the peak horizontal velocity of the
mode-n wave. Moreover, when N = 1 the assumed background flow conditions conform to
‘Long’s model’ for steady stratified flow (Dubreil-Jacotin 1932; Long 1953), so the small-
amplitude basic state (2.5) with f, and ¢, given by (2.7) also satisfies the full nonlinear
equations of motion. Accordingly, in this instance it is permissible to use this basic state in
a stability analysis for any € below the threshold for overturning €, = c¢,,.

Returning now to the governing equations (2.1), we follow the procedure used in the
stability analysis of a Stokes surface gravity wave (e.g. McLean 1982): as the basic state (2.5)
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is steady in ¢ and 2x-periodic in x, we look for Floquet-mode solutions in the form

W,p) =771 N (Qm(2), Rm(2)) €™, (2.8)

m=—00

Here, in keeping with a temporal stability analysis, p is a prescribed real wavenumber and
o is a possibly complex frequency to be determined along with the Fourier coefficients Q,,
and R,,. It should be noted that, without loss of generality, p can be restricted in the range
0 < p < 1; however, here we find it convenient to treat p as a free parameter (—o0 < p < o).

Upon substituting (2.8) in (2.1), we first eliminate the density coefficients R,,(z) and then
simplify the equations for the streamfunction coefficients Q,,(z) by using the O(1) balance
of terms to eliminate third-order z-derivatives at O(¢). Finally, Q,,(z) are governed by the
infinite equation system (—oco < m < o)

m

€ —_
= (K;lQm+1 +KQO—1 +D:n

de+1 +D- de—]
2Q,,

dz " odz

) +0(eh), (9

K$=(p+mil){N2%[i+P+m_ (p+m=+1) (P+m+p+mil)]

dz C‘%L Ccn€m Qnzl Qn Qs
_ - | p+m p+rm=xl 1 p+m
M) fa — , 2.10
N ( Zf Q1 an+l N C%L " cn€dp } ( @
N | (p+m)(p+m=l) (p+m+x1> 1 p+m
D% ==N’f, - = - : 2.10b
m=7 f ( Q1 " an+1 C%l cnm ( )
with
Qu=0+(p+m)cy. (2.11)
Furthermore, in view of (2.3), Q,,(z) satisfy the boundary conditions
Om=0 (z=0,H). (2.12)

The equation system (2.9) along with the boundary conditions (2.12) constitute an
eigenvalue problem for o = o} + i0j. Given that the governing equations (2.1) are real,
eigenvalues appear in complex conjugate pairs and o; # 0 is sufficient for instability. The
discussion below focuses on solving the eigenvalue problem (2.9) and (2.12) for 0 < € < 1
and understanding the various instability mechanisms in this limit.

3. Triad resonance instability
3.1. Resonant triads

As expected, if the basic wave is absent (¢ = 0), the eigenvalue problem (2.9) and (2.12)
recovers the free propagating modes in the fluid layer. Specifically, as the coefficients Q,, are
entirely uncoupled when € = 0, we write

Om=qmi(zp+m) (=1,2,..), 3.1
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for any given —co < m < oo, with the rest of the Q’s being zero. Here, g,,; denote the
eigenfunctions of the problem

g N?
dqz e m)z) i =0, (3.2a)
¥4 Conl
gmi=0 (2=0,H), (3.2b)
and sz , are the corresponding eigenvalues, with
QZ
2 m
=—7 (=12,..). 33
Cm,l (p + m)2 ( ) ( )

It should be noted that (3.3) are the dispersion relations of (the countable infinity of) free
propagating modes (! = 1,2,...),and Q,,, = £(p+m)cy,,; (With ¢, > 0) are the frequencies
(in the rest frame) of these modes at the wavenumber p + m. Hence, in view of (2.11), for
€ = 0, the stability eigenvalues o are simply the (Doppler-shifted) frequencies of these waves
in the frame moving with c,,,

c=c"=-(p+m)cyt(p+m)cpy (1=1,2,..). (3.4)

Next, we inquire into how the interaction with the underlying wave affects o~ in the small-
amplitude limit (0 < € < 1). According to (2.9), to leading order in €, each Q,, is coupled
to its nearest neighbours Q,,,.; only. As this coupling is weak, it is natural to attempt to solve
the eigenvalue problem (2.9) and (2.12) approximately in an iterative manner, starting from
the known solution for € = 0 (c.f. (3.1)—(3.3)). Specifically, for any given —oco < m < oo and
[ =1,2,..., one may anticipate that

Om = dm1(z:p+m) + O(€?) . Qmat = €Gma1,1(2) + O(€?), (3.5)
with the rest of the Q’s being smaller than O(€) and
o=0*+0(e). (3.6)

Here, ¢,,,; and o* are the free-mode eigenfunctions and (real) frequencies defined in (3.2)
and (3.4), respectively, and the correction terms §,,,+1; satisfy the forced equations

&2 Gms1.1 [ N? 1 . = dgm,
ey (p+m=1 -1|4 =—|K} +D, ,——|,(B.7a
de (p ) anil qmil,l 2Qmil m=1 Qm,l m=1 dZ )
subject to the boundary conditions
dm+11=0 (z=0,H). (3.7b)

According to (3.5), to leading order, the interaction with the basic wave induces the nearest
two neighbours of Q,, to O(e). Furthermore, as indicated by (3.6), no instability is predicted
at O(e).

It is important to note, however, that the above (naive) approximation procedure breaks
down if sz g/ (p+m < 1)? in (3.7a) happens to coincide with a free-mode eigenvalue
(i.e., an eigenvalue cfn 111 of the problem (3.2)). Under this resonance condition — which
as discussed below may be interpreted as two free modes forming a resonant triad with the
underlying wave — the forced problems (3.7) generally cannot be solved, and (3.5)—(3.6)
need to be revised. Moreover, in this instance it turns out that o5 = O(¢€), so triad resonances
are associated with the onset of instability in the limit € < 1.

To analyze this triad resonance instability (TRI), without loss of generality (—co < p < o0
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is a free parameter), suppose that (m = 0,1) and (m = 1,1 + r) are resonant free modes,
where [ and [ + r are positive integers. Then, in view of (2.11) and (3.3), the coresponding
eigenvalues co; and ¢y 4, must satisfy

(o +pen)’ = pic (3.84)
(c+(p+ D))’ = (p+1)%ct - (3.8b)

Hence,
£pcos = —cn £ (p+ 1)1 ier, (3.9)

where the + signs above can be chosen independently. Therefore, the wavenumbers kg = p
and k| = p + 1, along with the corresponding frequencies (in the rest frame) wo = +pco
and w; = £(p + 1)cy 14 of free modes that satisfy the resonance conditions (3.8), are linked
via

ki—ko=1, wi+xwy=cy. (3.10)

This confirms that such modes form a resonant triad with the basic wave as the latter has
(normalized) wavenumber 1 and frequency (in the rest frame) c,,. Alternatively, in the moving
frame where the basic wave has zero frequency, the two resonant free modes have the same
frequency, o, and the frequency condition in (3.10) is met trivially.

3.2. TRI eigenvalue problem

For given [ and r, conditions (3.8) determine specific (real) p = p. and o = o, say, at which
the triad conditions (3.10) are met. (Equations (3.8) may admit multiple such solutions.)
Close to these critical values, we write

P =Ppc+Pe, 0 =0+, (3.11)

where p is a real O(1) wavenumber detuning and A is a possibly complex eigenvalue
perturbation. In this neighbourhood, we seek solutions of the eigenvalue problem (2.9) and
(2.12) in the form

Qo = A0qo,1(z; pe) + €40.1(2) + O(€?), (3.12a)
Q1 = A1q114r (25 pe + 1) + €41 14 (2) + O(€7), (3.12b)

with Q_1, Q> = O(e) and the rest of the O’s ¢ (¢€). Here, go; and g ;. are the eigenfunctions
corresponding to the resonant eigenvalues co; and ci 4, Of the problem (3.2), under the
normalization

H H
l Wﬁm=[ N’qi . dz =1, (3.13)

and Ap, A; are constants.

Upon substituting (3.12) along with (3.11) in (2.9) and (2.12), the O(1) balance of terms
is satisfied automatically. Next, the O(e) corrections to Qg and Q; in (3.12) are to be found
by solving the forced problems

d%go,; N? .
—dzz’ + CT - k(% q0,1 = RO’Z, (31461)
0,1

Goy=0 (z=0,H) (3.14b)
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and
d*q11er N? )
31’2” + ( — — ki | G1er = Riger, (3.15q)
N CLi+r
Gri+r =0 (z=0,H). (3.15b)
Here,

kK2 (p  A+cyp
Ro.1 = 2A0q0.,1 3 kop — N> =2 P _ TP
’ ’ w? \ ko wo

(3.16a)

Aj
+— | K} + D7}
(och,m 07 gz

2wo

K (5 Ad+cnp
Riter = 2A1q1 147 L k1 p — N> — P _TZ%P
’ ’ w% k1 w1

dQI,l+r)

A

0 [, - _dqo,
+— (Kl qo,1 +Dl _—

dz

o, ), (3.16b)

where kg = pe, wo = 0c +cppe and k| = pe+ 1, wy = o + ¢, (p- + 1) are the resonant triad
wavenumbers and frequencies (in the rest frame), and the constants Kg KT, Dg and D7 are
evaluated using (2.10) at p = p. and o = 0.

Now, similar to the forced problems (3.7), we ask whether the forced problems (3.14) and
(3.15) can be solved, given that the corresponding homogeneous problems have non-trivial
solutions, namely the eigenfunctions qo(z; p.) and g1 14+ (z; pc + 1), respectively. It turns
out that, for (3.14) and (3.15) to be solvable, the forcing terms Rp; and R ;. must be
orthogonal to these homogeneous solutions:

H H
/ Ro.1d10,1dz = 0, / Ry 111 ez = 0. (3.17)
0 0

The above solvability conditions are a particular instance of the Fredholm alternative (e.g.
Haberman 2012). Here, they are obtained by multiplying both sides of equations (3.14a) and
(3.15a) with qo(z; pc) and g4+ (2 pe + 1), respectively, and integrating in z from O to
H. After two integrations by parts and using the boundary conditions (3.14b) and (3.15b), it
follows that the left-hand sides of these equations vanish; thus, the right-hand sides must do
so as well, implying (3.17).

Inserting the forcing terms (3.16) in the solvability conditions (3.17) yields the following
2 x 2 eigenvalue problem for A

(/l—cgﬁ) Ao = E\A,, (3.18a)

(a—c;ﬁ)Al = E>Ap. (3.18b)
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Here, using (2.10), the interaction coefficients £ and E; can be brought to the form

w; ki koki  k 1
ElZé (ki1 + I3) —%‘F e

w Wow1  CpWwo C%l
k k k 1
+k112( . +—‘2——°——2)}, (3.19a)
wwi Wl cpwo
2 2
w k kok1 kq 1
Ey= —~ {(koly - I) [ 2 + -— =
2 4k? {( oft = 1a) (a)g Wowi  Cpw1  c
k k k 1
—kol ( 1 +—g+ ! +—2)}, (3.19b)
wow Wi cawi
where the constants /i, ..., I4 are given by
H -
I =/ N’ frqo.1q1.1+rdz, (3.20a)
0
H -
12=/ (N?) faq0.191.1+rd2, (3.206)
0
H -
I = / N? fa0.44) 1,42, (3.200)
0
H -
Iy = / N?fudf q10erdz = (I + 1 + I3), (3.20d)
0

with prime denoting derivative with respect to z. Finally, the constants ¢ and ¢} in (3.18) are
associated with the wavenumber detuning in (3.11). From (3.17), making also use of (3.13),
these constants can be expressed as

0 _ ) PN 3.21
cg——cn+k—0 — wy A qp,9z2] (3.21a)
H
w
c;, =—c,+ k_ll (1 - w%/o qilwdz), (3.21b)

and they represent the group velocities (in the frame moving with the basic wave) of the
modes that form a resonant triad with the basic wave. (Ignoring their interaction with the
underlying wave, these modes would be free propagating waves, so a wavenumber shift pe
would cause a frequency shift cgpe in (3.11);i.e., A = cgﬁ, céﬁ, consistent with (3.18) for
E\=E;=0)

Based on the eigenvalue problem (3.18), instability (1 = A; + id; complex) requires
E|E; < 0. Moreover, under this condition, instability is present within the O (€) wavenumber
window p = p. + pe specified by

AE\E
< —ﬁ, (3.22)
(cg —c2)

with the maximum growth rate

Jij |max= €d; |max= € (_E]EZ)]/Z (3.23)
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realized at p =0 (p = pc).

3.3. Thecase N =1

In the case of uniform background stratification (N=1), the eigenfunctions g,,; of the
eigenvalue problem (3.2) are sines that depend on the modal number / but not on the
wavenumber p + m,

[
gm1 = Csin ﬁ“z (I=1,2,..), (3.24)
where C is a normalisation constant, and the free-mode dispersion relations (3.3) read

2 _ (p +m)?
" (p+m)?+ (In/H)?

(1=1,2,..). (3.25)

Thus, the eigenfunctions of possible resonant modes (m = 0,[) and (m = 1, [+ r), under the
normalization (3.13), take the form

2 1/2 I o) 1/2 I
qo,l=(ﬁ) sin %z ql,m:(ﬁ) sin L2DF (3.26)

Next, based on (3.19)—(3.20), we compute the interaction coefficients E;, E> in the TRI
eigenvalue problem (3.18). These are linear combinations of Iy, ..., I4 and, according to
(3.20b), I = 0 when N is constant. Moreover, using (3.26) and the basic-wave mode (2.7), it
follows from (3.20) that the rest of the I’s vanish as well, unless r = +n. Thus, in the case of
uniform background stratification, TRI requires that perturbations, apart from the resonant
triad conditions (3.10), also satisfy

I — 1y = +n, 3.27)

where n is the basic-wave modal number (c.f. (2.7)) and [y, /; denote the modal numbers
of the perturbations. This condition is reminiscent of that satisfied along the vertical by the
wavevectors of resonant triads in the TRI of propagating plane waves in an unbounded fluid
(e.g. Mied 1976). Here, however, the basic state as well as the perturbations are standing
waves in the vertical; moreover, in contrast to the triad conditions (3.10), the constraint
(3.27) applies only when N is constant. The fact that uniform background stratification limits
possible resonant triad interactions of wave modes was also noted by Varma & Mathur
(2017).

To be specific, we satisfy (3.27) by taking /o =/ and /; =/ + n, where [ = 1,2, .... Then,
from (3.19), making also use of (2.7), (3.20) and (3.26), we find that

1 w2 (K2 kok k 1

Ei= —(nko—)—2 ¢ L4 20L 20 4 (3.284)
&n ki |w)  @owi  chwo  cp
1 W (k2 kok k 1

Er, = —(nky — l)—21 —g + ottt (- (3.28b)
8n ki |wg @owi  chwr oy

Here, in keeping with (3.10), kg = pc. k1 = pe + 1, wo = 0¢ + cpko and w; = o + ¢k
are the triad wavenumbers and frequencies, where p = p. and o = o are obtained from the
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resonance conditions (3.8). In view of (3.25), for N = 1 these conditions take the form

2

2 Pc
W= Pe (3.29a)
 p2+(Ix/H)
)2
? (pe 1) (3.29b)

T (et 12+ ((U+mm/H)

Expressions (3.28) agree with Martin et al. (1972) after converting to their non-dimensional
variables.

3.4. Comparison with Joubaud et. al. (2012)

The laboratory experiments of Joubaud et al. (2012) employed a wave generator at one end
of a uniformly stratified fluid tank to excite monochromatic mode-1 waves which eventually
became unstable due to TRI as they propagated along the tank. For each basic wave,
Joubaud et al. (2012) verified experimentally that the unstable disturbances satisfied the
triad resonance conditions and also measured the instability growth rate. Furthermore, they
compared the observed TRI growth rates with theoretical estimates based on the TRI of a
sinusoidal plane wave in an unbounded fluid.

Here, we make a brief comparison of these observations with the theoretically predicted
TRI for mode-1 (n = 1) waves in a uniformly stratified fluid (N = 1). Specifically, we focus
on the basic wave corresponding to ¢, = 0.95, H = 9.2 and € = 0.14 (in our dimensionless
variables), for which Joubaud et al. (2012) report the strongest TRI. In this instance, the
resonance conditions (3.29) for [ = 9 yield k¢ = 1.3, wg = —0.39, k1 = 2.3 and w; = 0.56.
This resonant triad is a good approximation to the frequencies wy = —0.38, w; = 0.57 as well
as the wavenumbers of the observed unstable disturbances in figures 1 and 2 of Joubaud et al.
(2012). The growth rate found from (3.23) and (3.28) for this triad is ;| heor = 6.8X% 1072 while
the measured growth rate is oifexp = 5.3 X 1072, This fair agreement seems reasonable given
that the theory does not account for viscous damping so i|wmeor 1S €xpected to overpredict

i |cxp-

4. Short-scale disturbances

We now focus on small-scale instabilities that involve disturbances with high modal number
(I > n) and large wavenumber (p > 1) relative to the basic wave mode. In this limit, while
the eigenvalue problem (3.2) generally cannot be solved exactly by analytical means, it is
possible to compute the eigenfunctions (3.1) and dispersion relations (3.3) of free modes
via the WKB approximation. For simplicity, however, here and in the rest of the paper, we
assume uniform background stratification (N = 1), where exact expressions are available
(c.f. (3.24)- (3.25)).

4.1. Parametric subharmonic instability

To analyze short-scale instabilities, we introduce a parameter u that controls the perturbation
vertical length scale and also we scale the horizontal wavenumber p in sympathy with 1/,

H K
p== p==, @.1)
nl u
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where k = O(1) is a re-scaled wavenumber. Thus conditions (3.29) for determining p = p.
and o = o at which the onset of TRI occurs for given /, take the form

K2 (i2 - 1) =1, (4.2a)
Wy
1 nw o \2
(KC+/J)2(——1)= 1+ —u) . (4.2b)
L)<+

These re-scaled conditions specify . = up. and wg = o¢ + cyp. (W1 = wWo + ¢p), for given
u.
In the short-scale limit of interest here, (4.2) are solved by expanding in u < 1

Ke = Ko+ HAK + ..., wo = —%+yAwo+..., (4.3a)

where
3

c 1 /nx c
Ko = im, Ak =3 (EK() - 1), Awg =~ Ax. (4.3b)

n 8KO
Therefore, in this limit, TRI involves two short-scale modes with frequencies (in the rest
frame) half the basic-wave frequency: wg = —c,/2 and w; = ¢, /2. This is the hallmark
of the widely studied parametric subharmonic instability (PSI) of sinusoidal plane internal
waves and plane wave beams in an unbounded uniformly stratified fluid (Staquet & Sommeria
2002; Dauxois et al. 2018).
Using (4.3), we may compute asymptotically the interaction coefficients Eq, E; in (3.28)
of the TRI eigenvalue problem (3.18), in the PSI regime. Specifically,

Ey ~ —16(1_1—C"2)1/2{(1 —ci)mi (2e2+1) (1 —ci/4)1/2}, (4.4a)

E, ~-Ey, (4.4b)

where the + sign corresponds to kg = ¢, /(4 — cfl)l/2 in (4.3b). This confirms that E1E, < 0
so, in view of (3.23), PSI is always possible. Furthermore, numerical results (see §6) indicate
that PSI (for the + sign in (4.4), which provides a higher growth rate) is the dominant resonant
triad instability.

4.2. Beyond PSI

Recent asymptotic analysis of the Floquet stability eigenvalue problem for internal wave
beams (Fan & Akylas 2021) pointed out that, as the length scale of the perturbation is
decreased (for small but fixed beam amplitude), Floquet modes become ‘broadband’ — they
develop higher-frequency components than the two subharmonics at half the basic wave
frequency which are dominant in PSI. This broadening of the frequency spectrum had been
noted in earlier numerical work (Onuki & Tanaka 2019) and was attributed to the advection
of the perturbation by the underlying wave beam. By adopting a frame riding with the wave
beam, Fan & Akylas (2021) were able to ‘factor out’ this advection effect and reveal a novel
small-scale instability mechanism, distinct from PSI.

Motivated by these findings, we now return to expansion (3.12) and examine the behaviour
of the O(e) Fourier coefficients Q_; and Q5 in the short-scale limit (1 < 1). It should be
noted that, since wy ~ —c, /2 and w; ~ ¢, /2 in this limit according to (4.3a), these Fourier
coeflicients are associated with the +3c,, /2 frequency components (in the rest frame) of the
Floquet mode (2.8).
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Specifically, from (2.9) and (2.12) combined with (3.12a), O _; satisfies the forced equation

sz—l 2 1
a2 + (ko —1) Q_z_l -1|10-1 =Ry, (4.5a)
subject to
0-1=0 (z=0,H), (4.5D)
where
A dqo.1
R_1 = K* Dt —. 4.6
1T 20, ( 21900+ D7, & (4.6)
Generally, the boundary-value problem (4.5) is solvable as Q_; = wgy — ¢,, does not match
the frequency of a free mode at the wavenumber k_; = kg — 1; i.e., k_1,Q_; do not satisfy

the dispersion relation (3.25) for any (integer) modal number /. Rather than determining the
detailed solution, however, here it suffices to look at the asymptotic behaviour of Q_; for
u < 1. Briefly, upon combining (2.7), (2.10) and (3.26) with (4.1), (4.3) and Q_; ~ =3¢, /2,
we find from (4.6)

12 2
16 Ay (2 K H
R_| ~ 2201z -2 K( COS Ezsin£+—sinﬂzcosE . 4.7
9 3 \H u3 H u nn H u
Therefore, the solution of problem (4.5), in the limit y < 1, schematically, takes the form
€ . Z nrw _ . Z nw
0.1~ ; {Aflsm(l—l+gz) + A, sin (; - EZ)}, (4.8)
where A* | are certain O(1) constants. Thus, Q1 = O(e/u) and, by a similar procedure, it

can be deduced that Q> = O(e/u) as well.

The fact that Q_1, Q> = O(€/u) in the joint limit €, u < 1 suggests that the coupling
of the two resonant free modes in (3.12) with the basic wave, actually is O(e/u). Hence,
the assumption of weak coupling, which enables these modes to form a resonant triad with
the basic wave, is valid when u > € only. If this condition is violated (as will be the case
for sufficiently fine-scale perturbations), all Fourier coefficients in the Floquet mode (2.8),
formally, are expected to be equally important and the disturbance frequency spectrum would
be broadband. A similar situation was encountered in the Floquet stability analysis of internal
wave beams by Fan & Akylas (2021). The treatment of broadband instability of internal wave
modes below follows along the lines of this earlier study.

5. Broadband instability
5.1. Streamline coordinates

Returning to the governing equations (2.1), the dominant coupling of the perturbations to the
basic wave in the limit €, 4 < 1 derives from the Jacobian term in (2.2) which accounts for
the advection due to the underlying wave velocity field. This effect can be ‘factored out’ by
working with a new set of coordinates, (x, z) — (£, {), defined by

1[5 = ¥
§=X+—/ Y.dx', (=z-—. (5.1)
C

C
It should be noted that the curves { = constant coincide with the streamlines of the background
steady flow (—c + @z, —@x), so switching to these ‘streamline coordinates’ is analogous to
the change of frame used by Fan & Akylas (2021).
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For uniform background stratification, in particular, according to (2.5) and (2.7),

= — H
V= e = e~ sin 7 cosx, (5.2)
nm H
so the coordinates (5.1) are given by
H
§=x+icosﬂzsinx, {=z—i—sinﬂzcosx. (5.3)
Cn H Cp NT H

We remark that the basic wave streamfunction ¥ is 2z-periodic in the transformed horizontal
coordinate &, a property that is utilised in the Floquet stability analysis below (see §5.2). This
holds because ¥ in (5.2) does not involve a term uniform in x; i.e., there is no (Eulerian)
horizontal mean flow. (Under more general flow conditions where such a mean flow may be
present, the definition of £ in (5.1) would need to be reconsidered.)
Upon implementing the transformation (5.3), the advective derivative (2.2) takes the form

D 0 0 € [ (nm\2_2)\ 0

— > — —Cp—+ — -|—= —. 54

D: ot "8 ¢, (‘”Z (H) ‘”X)ag 54)
Thus, the Jacobian term in (2.2) has been eliminated correct to O(€). Furthermore, using
(5.2), the O(€?) residual is expressed as

2

0
2%1 (cos 2%§+cos 2g) 7 +0(E). (5.5)
The first term above represents the advection effect due to the ‘Stokes drift’ (Thorpe (1968)),
2
-y € nw
= — 2— .
U 2 cos i Z, (5.6)

which here coincides with the Lagrangian horizontal mean flow associated with the basic
wave, since the Eulerian mean flow vanishes. This effect makes an important contribution to
the eigenvalue problem governing broadband instability (see §5.3). The second term in (5.5),
by contrast, is relatively insignificant and could have been eliminated by modifying via an
O(€?) term the definition of & in (5.3).

In terms of £ and £, the governing equations (2.1) now read

Doy oo flg (L) -7 (Ly-
D7 1/ p§+cn 1/ Cnt// /O{,E ¥y Cnll/ p:

e [— nw\2
e s [P
D 2 (. 2_
Epwg—j—z(wﬁ—(%) wi)wg:o, (5.7b)
where
2 a2 2 a2
2 (1.7 )9 (_e5) 9
v (”cn‘“) 65”(1 cn‘”Z) iy

+2i_ (E)Z_l_i_ 8_2+£ _24_— i
o\ V<) agar " 3 \Var Ve

— . (5.8)
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In addition, as the channel walls z = 0, H correspond to the streamlines { = 0, H, the
boundary conditions (2.3) translate into

Ye=0  ({=0,H). (5.9)

5.2. Floquet stability analysis

As the coefficients of the transformed equations (5.7) are steady in ¢ and 2x-periodic in &,
we seek Floquet-mode solutions similar to (2.8),

W,p) =e771ePE N (On(0), Rn(0)) &, (5.10)

m=—o0o

where the Fourier coefficients Q,,, R,, (—co < m < o) and the eigenvalue o are to be
determined.
Here, our interest is on short-scale perturbations (4 < 1) in the regime

a=t -0, (5.11)
€

where, as argued in §4.2, PSI is replaced by a broadband instability. To analyse this

‘distinguished limit’, we shall work with the scaled wavenumber x = py = O(1) defined in

(4.1) and the ‘stretched’ coordinate

z-% (5.12)
J7

Furthermore, we re-scale Q,,, — uQ,, (Z, ) so that
d0m  30m , 90m
- +u .
d¢ 0z al
It should be noted that, in view of the transformation (5.3), exp(ip¢) in (5.10) involves all
harmonics in x. Moreover, for p = O(1/u) and €/u = O(1) these harmonics contribute at
the same level. Thus, in the regime (5.11) the modes (5.10) are ‘broadband’ even though, as
discussed below, the m = 0, 1 components are dominant in the Fourier series in &.
Now, we derive the equations governing R, O, and o by substituting (5.10) in (5.7) and

implementing the scalings (5.11)—(5.13). Specifically, making also use of (5.5), equation
(5.7b) yields correct to O(¢€)

(5.13)

K2
2ac, Q2
K> {Qm+2 + Qm—z} ’

4(1’6'” -Qm+2 Qm72

QR = kO + € {a/m + cos 2%{} Om

+ €

(5.14)

where €, is given in (2.11). Next, using (5.5), (5.8) and upon eliminating R, via (5.14), we
obtain from (5.7a) the following equation system for Q,, (—c0 < m < o0) correct to O(e)

0 8\ 1 -
{(ﬁ +aea) + (k + ame)? (@ - 1)} Om
+e {cos 2%§GmQ~m — cos %{ (GOms1 + G Om-1)

. E + 6Qm+l - an—l
+sin —/¢ (Hm—ﬁZ H, 57

)+L;QMQ+L&Qm4}=o, (5.15)
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where
3
Gy = —— (5.164)
@c, Q3
K2 1 1
Gt =""[2- : 5.16b
m= Q2 20,0 (5.16P)
m=1
. Kk [H nm\2 1
Hyy= (E) ((ﬁ) 1+ —mmﬂmﬂ)’ (5.16¢)
K 1 1
Lt=— 5 (= . 5.16
"= @ (9m+9m+2) (>-16d)

5.3. Eigenvalue problem for a = O(1)

Using the equation system (5.15), we now derive the stability eigenvalue problem appropriate
to the asymptotic regime (5.11). To this end, x and Qg are assumed to be in the vicinity of
the critical values « = k. and Qg = wy in (4.3) where the triad resonance conditions (4.2)
are met for 4 <« 1. Accordingly, we write

Kk =ko+ (@Ak +s)e, Qo= —%‘ + (a@Awg + A)e, (5.17)

where kg, Ak and Awy are given in (4.3b), s = O(1) is a real wavenumber detuning and A
is a generally complex eigenvalue to be determined. It should be noted that, since u = e
according to (5.11), the O(ae) terms in (5.17) are the O (u) corrections to k. and wy in (4.3a).
The eigenvalue A hinges on the detuning s and, more importantly, the resonant interaction of
perturbations with the basic wave, which can cause instability.

For «, Qp and Q = Q + ¢, in keeping with (5.17), the solution of (5.15) consistent with
the boundary conditions (5.9) takes the form

S Ao, sin (Z + 2E¢) + O(€), (5.184)

r=—o00

Qo

\-Y}

1= X Apsin(Z+5E)+0(€), (5.18b)
with the rest of 0,,, (m # 0,1) O(e) or smaller. The coefficients Agrand Aj, (m0 <r <
o0) above are determined by substituting (5.18) in (5.15) for m = 0, 1 and collecting terms

proportional to sin (Z + o ) correct to O(e). Specifically, making also use of (5.16) and
(5.17), we find

{/l +s(1 - c,21/4)3/2 - %%cn(l - ci/4)} Ay, r

Q|

= EiAl,r+n + EiAl,r_n =+ (Ao,r—2n + AO,r+2n)’(5'19a)

g(r—n)n

A7 s(1-cp /42
{+s( ¢, /4) +2 T

cn(1 —ci/4)}A1,r

= _E~¢A0,r+n - EiAO,rfn + (Al,r72n + Al,r+2n)(5~19b)

R |
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Here

H

Bt = _m {(1 —cf,)mi (2e2+1) (1 —cﬁ/4)]/2}, (5.20a)

1
8(1 —c2/4)12’

where the upper (lower) sign in (5.19) and (5.20) corresponds to the positive (negative) value
of kg in (4.3D).

The equation system (5.19) is the desired stability eigenvalue problem for short-scale
perturbations (¢ < 1) in the broadband regime u = O(e). This problem, in contrast
to the 2 X 2 system (3.18) that governs TRI, formally involves infinite number of mode
amplitudes Ao, and Aj, (-0 < r < o0): when p = O(e) all modes with wavenumber
ko ~ ko/u (k1 = ko+1) and modal number (H/=n)/u +r are nearly resonant and participate
in the interaction with the basic wave. Of particular note are the interaction terms proportional
to D/ in the system (5.19); in view of (5.20b) and (4.3b), +D /a = koe/4c,, so these terms
arise from the ‘Doppler shift’ koU* of the perturbations by the Stokes drift U* in (5.6).

Finally, as expected when € < u < 1 (@ > 1), the broadband instability eigenvalue
problem (5.19) reduces to the PSI limit of the TRI eigenvalue problem (3.18). Specifically,
in the limit @ > 1, Ag o and A; ,, dominate the rest of the amplitudes, so (5.19) simplifies to

D = (5.20b)

{/l +s(1 - c3/4)3/2} Avo = E*Ayn, (5.21a)

{A (1 - c§/4)3/2} Avn = —E*Agy. (5.21b)

Returning to (5.20a) and noting that E* and —E* match the asymptotic expressions (4.4) for
the TRI interaction coefficients £ and E», respectively, the 2 X 2 eigenvalue problem (5.21)
agrees with (3.18) in the PSI limit.

6. Numerical results

Here we compare the theoretical predictions for TRI, PSI and broadband instability with
numerical results from solving the full Floquet eigenvalue problem for the n = 1 wave mode
in a uniformly stratified (N = 1) fluid layer. Having in mind the oceanic internal tide, we
choose the horizontal length scale A./2x = 20km, the background buoyancy frequency
N. = 2x 1073 s7! and the fluid depth 4 km so the dimensionless depth H = 0.2. It should
be noted though that the assumption of constant N — made here for analytical convenience —
is not realistic for the oceans and also that our analysis ignores the Earth’s rotation.

The differential equation system (2.9) for the Floquet modes (2.8) was tackled by expanding
Q. (z) in Fourier sine series in 0 < z < H consistent with the boundary conditions (2.12)

k.
Qm(z) = ; Bm,] sin H Z. (61)
Thus, (2.9) and (2.12) reduce to an algebraic eigenvalue problem for B, j (—c0 < m <
oo, j > 1) and o. After truncating to a finite — but large enough to ensure convergence —
number of Fourier modes, this problem was solved using standard MATLAB algorithms.
The resolution used typically involved 10 modes in x and 20 modes in z.

The results below are for the critical wavenumber p = p., computed from the triad
resonance conditions (3.29) as a function of modal number / (and n = 1). It should be noted
that (3.29) determine two solution branches p.(/) in which p. > 0 or p. < 0. Here, we
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FiGure 1. Comparison of TRI instability growth rate (X) as a function of modal number /

with numerical results (o) from the full Floquet stability problem for € = 10~#. The dotted
line indicates the PSI limit (4.4).

report on p. > 0, which features a higher TRI growth rate (3.23). Furthermore, this choice
of p provides the dominant instability (highest growth rate o) for the values of the amplitude
parameter 10™* < e < 6 x 1073 used in our computations. (This range of € is below the
thershold €. = 6.35 x 1072 for overturning of the mode-1 basic state.)

Figure 1 compares the instability growth rates obtained from the TRI stability problem
(3.18) for 3 < I < 30 (and p = 0) with those computed from the Floquet eigenvalue problem
for the same / and € = 10~*. TRI provides an excellent approximation near the onset of
instability (e <« 1), and for [ > 10 the TRI growth rate (3.23) is already very close to the PSI
limit (4.4).

It was argued in §5 that in the short-scale limit (u = H/(wnl) < 1) PSI applies if
a = u/e > 1, but when @ = O(1) it is replaced by broadband instability. As a check of this
theoretical prediction, figure 2 plots as a function of 0 < @ < 5 the growth rate predicted by
the eigenvalue problem (5.19) (with s = 0 and the upper sign which applies to «y > 0) that
pertains to PSI and broadband instability, together with numerical results computed from
the Floquet problem for the same range of a and various €. Specifically, for e = 1074, 1073
and 3 x 1073, the computed growth rates are well approximated by PSI when o 2 2, but
for « less than about 1.5 the growth rate exhibits a sharp drop and the instability is severely
suppressed. Furthermore, for these € the theoretical predictions based on (5.19) are in good
quantitative agreement with the numerical computations. For the relatively larger value of
€ = 6 x 1073, when « is decreased the growth rate behaves in a similar manner as for the
smaller €, but there is only qualitative agreement between theoretical and numerical results.

The stabilisation of PSI in figure 2 is caused by the terms +D/a in the eigenvalue
problem (5.19) that represent the effect of the Stokes drift of the basic wave (c.f. (5.6)).
This becomes apparent from the relative magnitudes of the interaction coefficients £* and
D in (5.19). Specifically, from (2.7), the mode-1 speed ¢; = 0.0635 so, according to (5.20),
E~ = 7.89 x 107* is much smaller than £* = —1.25x 107" and D = 1.25 x 107!. As
a result, if the effect of the Stokes drift is ignored (by setting D = 0 in (5.19)), Ay, and
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FiGure 2. Comparison of theoretical instability growth rate (—) based on the eigenvalue
problem (5.19), as a function of @ = u/e, with numerical results from the full Floquet
stability problem for e = 107% (o), 1073 (1), 3 x 1073 (¢) and 6 x 1073 (a). The dotted
line indicates the PSI limit (4.4).

A1 r+1 practically are coupled to each other only. The multi-mode resonance interaction
thus degenerates to a set of (essentially uncoupled) resonant triads (—co < r < co) and the
dominant instability arises for r = 0, which recovers PSIL.

For the dimensional scales chosen here, the (dimensionless) maximum instability growth
rate oj ~ 0.12¢ in figure 2 translates to an e-folding time of roughly 5 x 1072 /€ days. As an
example, taking € = 3 x 1073, which corresponds to U, = 12cms™! for the peak horizontal
velocity of the mode-1 basic state, this e-folding time is 16 days — about twice the estimate
found by Young et al. (2008) for near-inertial PSI.

As discussed in §35, the transition from PSI to broadband instability is associated with the
broadening of the Floquet mode spectrum as the disturbance scale controlled by u is decreased
for given €. This is illustrated in figure 3, which shows the relative magnitudes of the Fourier
coefficients By, ; in (6.1) for € = 1072 and three values of / = 3 (u = 2.12x 1072, @ = 21.2),
1=38(u=1.68%x107,0=1.68)and/ =100 (u = 6.37x 10™*, & = 0.637). For @ = 21.2
(figure 3a), Bo,; and By ;4 are clearly dominant, as expected in TRI. For @ = 1.68 (figure
3b), By, and By ;. are still dominant in keeping with PSI, but the neighbouring Fourier
coeflicients B_1 ;41 and B, ; associated with the frequency components +3c¢, /2 (in the rest
frame) as well as By ;42 and By ;_; are starting to gain strength. Finally, for @ = 0.637 (figure
3c), the PSI assumption is no longer valid as several Fourier coefficients are of comparable
magnitude to By ; and B j4+1; this transition to a ‘broadband’ spectrum is accompanied by a
significantly reduced growth rate relative to PSI for & < 1 (figure 2).

7. Concluding remarks

We made a systematic stability analysis of internal gravity wave modes in a stratified fluid
layer bounded by rigid walls. The temporal stability of Floquet modes is governed by an
eigenvalue problem that involves an infinite system of differential equations subject to inviscid
conditions on the walls. Examining this problem in the limit of small basic-state amplitude
(e < 1) shows that the onset of instability is triggered by perturbations that form resonant
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FiGure 3. Relative magnitudes of Fourier coefficients By, j in (6.1), normalised by the
coeflicient of largest magnitude, for € = 1073, (@ @ =21.2( =3); (b) @ = 1.68 (I = 38);
(c) @ = 0.637 (I = 100).

triads with the underlying wave mode, and the associated O(€) growth rate is determined
by the 2 x 2 eigenvalue problem (3.18). Generally, the resonant triad conditions (cf. (3.10))
require that the (horizontal) wavevectors and the frequencies of the perturbations sum up to
the wavevector and frequency of the underlying wave mode, consistent with Thorpe (1966).
The case of uniform background stratification (constant N) is exceptional, as the modal
numbers of the perturbations also need to satisfy the constraint (3.27) for triad resonance
instability (TRI) to be possible.

A particular case of TRI, where resonant triads comprise fine spatial-scale perturbations
with half the basic wave frequency, is the so-called parametric subharmonic instability (PSI).
Owing to its potential geophysical significance, PSI has attracted considerable interest in
the context of sinusoidal plane waves and finite-width beams in an unbounded, uniformly
stratified fluid. In an effort to understand the role of PSI for propagating internal wave modes
in a waveguide setting, we studied the Floquet eigenvalue problem for a small-amplitude basic
wave mode (e < 1) subject to short-scale (1 < 1) disturbances, assuming for simplicity
constant N background stratification. Our analysis reveals that the nature of the instability
mechanism in this joint limit hinges on the perturbation scale, controlled by , relative to the
basic-state amplitude e: PSI applies only when € < y < 1 (@ = u/e > 1); as u is further
decreased for fixed €, higher-frequency perturbations than the two subharmonics at half the
basic-wave frequency come into play, and when a = O(1) Floquet modes feature broadband
spectrum.

A similar situation was encountered in a recent Floquet stability analysis of finite-width
wave beams (Fan & Akylas 2021), which confirmed an earlier claim (Onuki & Tanaka 2019)
that the broadening of the Floquet-mode spectrum is due to the advection of the perturbation
by the underlying wave beam. Furthermore, by riding on a frame moving with the beam
velocity field, Fan & Akylas (2021) ‘factored out’ this advection effect and revealed a novel
instability which features broadband frequency spectrum. Following an analogous approach,
switching to the ‘streamline coordinates’ (5.1) enabled us to factor out the advection due to
the underlying-mode velocity field and obtain the eigenvalue problem (5.19) which pertains
to the broadband regime a = O(1).

Unlike the broadband instability of a wave beam, which is of the resonant triad type after
the advection effect has been removed, the instability mechanism found here for @ = O(1) is
a multi-mode resonance. This fundamental difference is reflected in the eigenvalue problem
(5.19), which involves infinite number of mode amplitudes. In particular, the interaction
terms in (5.19) that account for the effects of the O(e?) Lagrangian mean flow due to the
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Stokes drift (5.6) of the basic mode, are responsible for the sharp drop of the instability
growth rate below the PSI limit when « is less than about 1.5 (figure 2).

Based on the results presented in §6, the broadening of the Floquet-mode spectrum as « is
decreased (figure 3) has a strong stabilizing effect that provides a short-scale cut-off to PSI.
A similar cut-off effect for u <« 1 would be expected due to viscous dissipation, given that
the viscous decay rate of internal waves is O(v/u?) where v is the inverse Reynolds number
(e.g. see Lighthill 1978). While viscous effects would be dominant in a laboratory setting,
the inviscid mechanism discussed here would prevail in a nearly inviscid environment where
v/u? < e;ie., v < € for @ = O(1). Assuming a kinematic viscocity v, = 107°m?s~! and
taking € = 1073, this condition is met for the oceanic scales chosen in §6.
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