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A theoretical study is made of the stability of propagating internal gravity wave modes

along a horizontal stratified fluid layer bounded by rigid walls. The analysis is based on

the Floquet eigenvalue problem for infinitesimal perturbations to a wave mode of small

amplitude. The appropriate instability mechanism hinges on how the perturbation spatial

scale relative to the basic-state wavelength, controlled by a parameter 𝜇, compares to the

basic-state amplitude parameter, 𝜖 ≪ 1. For 𝜇 = O(1), the onset of instability arises due

to perturbations that form resonant triads with the underlying wave mode. For short-scale

perturbations such that 𝜇 ≪ 1 but 𝛼 = 𝜇/𝜖 ≫ 1, this triad resonance instability reduces

to the familiar parametric subharmonic instability (PSI), where triads comprise fine-scale

perturbations with half the basic-wave frequency. However, as 𝜇 is further decreased holding

𝜖 fixed, higher-frequency perturbations than these two subharmonics come into play, and

when 𝛼 = O(1) Floquet modes feature broadband spectrum. This broadening phenomenon

is a manifestation of the advection of small-scale perturbations by the basic-wave velocity

field. By working with a set of ‘streamline coordinates’ in the frame of the basic wave, this

advection can be ‘factored out’. Importantly, when 𝛼 = O(1) PSI is replaced by a novel,

multi-mode resonance mechanism which has a stabilizing effect that provides an inviscid

short-scale cut-off to PSI. The theoretical predictions are supported by numerical results

from solving the Floquet eigenvalue problem for a mode-1 basic state.
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1. Introduction

The original motivation for the present work comes from a recent asymptotic treatment

of small-scale instabilities of finite-width internal gravity wave beams in an unbounded

uniformly stratified fluid (Fan & Akylas 2021). The focus of the earlier study was on validating

the approximate models for parametric subharmonic instability (PSI) of internal wave beams

proposed by Karimi & Akylas (2014, 2017). PSI is a particular case of triad resonance

instability (TRI), where the unstable perturbations which form resonant triads with the basic

wave state are fine-scale disturbances at half the basic-wave frequency. This small-scale
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instability mechanism has been studied widely for sinusoidal plane waves (e.g. Staquet &

Sommeria 2002) and more recently for wave beams (e.g. Dauxois et al. 2018) owing to

its potential significance in the dissipation of the oceanic internal tide (Hibiya et al. 2002;

MacKinnon & Winters 2005).

As wave beams are time-periodic states, Fan & Akylas (2021) used Floquet-type normal

mode analysis. The associated eigenvalue problem was solved asymptotically in the limit

where PSI may arise — namely, for a small-amplitude uniform wave beam subject to

fine-scale perturbations under nearly inviscid conditions — but without assuming that

perturbations at half the beam frequency are the dominant components of the unstable Floquet

modes. Apart from assessing the validity of the earlier PSI models, this asymptotic treatment

also revealed a short-scale instability that, unlike PSI, involves a broadband spectrum of

frequency components. Importantly, this novel instability mechanism can impact wave beams

that are not susceptible to PSI.

In view of the findings of Fan & Akylas (2021) for wave beams in an unbounded fluid,

it is natural to ask whether a similar small-scale instability would apply to internal wave

modes propagating along a waveguide, such as the ocean thermocline. This question is

addressed here for propagating gravity wave modes in the simplest waveguide configuration

of a horizontal stratified fluid layer bounded by rigid walls. Background rotation also is

ignored.

In contrast to plane waves in an unbounded stratified fluid, there are only few prior

studies devoted to the stability of internal wave modes. Thorpe (1966) first showed that

wave modes in a continuously stratified fluid layer with a rigid bottom and a fixed or free

upper surface, can form resonant triads. The conditions for such triads require that the

horizontal wavevectors and the frequencies of the participating modes sum up to zero. Davis

& Acrivos (1967) presented experimental evidence and theoretical confirmation of TRI for a

propagating mode-1 wave in a thin stratified layer separating two homogeneous fluid layers.

In a follow-up laboratory experiment, Martin et al. (1972) investigated the TRI of a mode-3

wave in a uniformly stratified fluid layer (constant background buoyancy frequency) bounded

by rigid walls. Their observations of unstable disturbances generally are consistent with the

theoretically predicted modes forming resonant triads with the mode-3 wave.

In more recent related work, Joubaud et al. (2012) reported the first experimental

measurement of TRI growth rates for a mode-1 wave propagating along a uniformly stratified

fluid tank. Varma & Mathur (2017) examined theoretically resonant triads that comprise

two modes with the same frequency, in a stratified layer bounded by rigid walls and also

including background rotation. Their results recover the triad resonance conditions of Thorpe

(1966) and confirm that resonant triad interactions are more likely to occur in non-uniform

background stratification than a uniformly stratified fluid. Sutherland & Jefferson (2020)

explored the stability of mode-1 waves in a stratified layer with rigid bottom and top and in

the presence of background rotation, via numerical simulations of an initial-value problem

using small-amplitude noise as initial perturbation. These simulations suggest that PSI is

the dominant instability for uniform background stratification but this may not be the case

for other stratifications. Finally, Young et al. (2008) developed a theory for near-inertial

PSI, where the frequencies of the subharmonic perturbations are assumed to be close to

the inertial frequency, based on the approximate equations of Young & Jelloul (1997). This

theory predicts strong instability for a mode-1 wave under conditions representative of the

oceanic internal tide.

The present stability analysis is based on the eigenvalue problem that governs Floquet-

mode perturbations in the moving frame where the basic wave mode is steady in time

and spatially periodic along the horizontal. It follows from this problem that the onset of

instability in the limit of small basic-state amplitude parameter (𝜖 ≪ 1), arises due to TRI.
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The triad resonance conditions are consistent with Thorpe (1966), and the associated O(𝜖)
growth rate is computed for general background stratification from a certain 2×2 eigenvalue

problem.

Attention then is focused on small-scale instabilities that involve perturbations of high

modal number and short wavelength relative to the basic wave mode, assuming for simplicity

constant background buoyancy frequency. The appropriate small-scale instability mechanism

hinges on how the perturbation scale, controlled by a parameter 𝜇 ≪ 1, compares to the

basic-state amplitude 𝜖 : for 𝜖 ≪ 𝜇 ≪ 1 (𝛼 = 𝜇/𝜖 ≫ 1) TRI reduces to PSI; however, as 𝜇 is

further decreased holding 𝜖 fixed, higher-frequency perturbations than the two subharmonics

at half the basic-wave frequency come into play, and when 𝛼 = O(1) Floquet modes feature

broadband spectrum.

Similar to Fan & Akylas (2021), this broadening phenomenon is a result of the advection

of small-scale perturbations by the basic-state velocity field and can be ‘factored out’ by

working with a set of ‘streamline coordinates’ in the frame of the basic wave. We find

that when 𝛼 = O(1) PSI is replaced by a multi-mode resonance mechanism, which has

a stabilizing effect and provides a short-scale cut-off to PSI. An important factor in this

stabilisation is the Lagrangian mean flow due to the ‘Stokes drift’ of the basic wave mode

(Thorpe 1968). The theoretical predictions are supported by numerical results from solving

the Floquet eigenvalue problem for a mode-1 basic state. Furthermore, estimates of instability

growth rates based on dimensional scales representative of the oceanic internal tide, suggest

that PSI and the inviscid cut-off discussed here could be relevant in the field.

It appears that the present asymptotic analysis of small-scale instabilities of internal wave

modes can be extended to allow for non-uniform stratification and background rotation.

However, a wave mode with nearly twice the inertial frequency, where near-inertial PSI

becomes relevant, would require special treatment.

2. Floquet stability problem

Consider an inviscid, continuously stratified, horizontal fluid layer of uniform depth bounded

by rigid walls. This configuration supports a countable infinity of horizontally propagating

internal gravity wave modes (e.g. Yih 1979). The focus here is on the stability of these

modes to infinitesimal two-dimensional perturbations. We shall use dimensionless variables

with 𝜆∗/2π as the length scale and 1/𝑁∗ as the time scale. Here, 𝜆∗ denotes the wavelength

in the horizontal (𝑥-) direction of the basic mode and 𝑁∗ is a characteristic value of the

background buoyancy frequency, which generally is a function of the vertical coordinate 𝑧

pointing upwards (antiparallel to gravity). The fluid is assumed to be incompressible and

the Boussinesq approximation will be made. Incompressibility is satisfied automatically by

working with a streamfunction Ψ(𝑥, 𝑧, 𝑡) such that Ψ𝑧 and−Ψ𝑥 are the horizontal and vertical

velocity components, respectively.

It is convenient for the stability analysis to make the basic wave steady by moving along 𝑥

with the wave speed 𝑐 > 0. In this reference frame, the (linearized) equations governing the

perturbation streamfunction 𝜓(𝑥, 𝑧, 𝑡) and density 𝜌(𝑥, 𝑧, 𝑡) read

D

D 𝑡
∇2𝜓 − 𝜌𝑥 + 𝐽

(

∇2
Ψ, 𝜓

)

= 0, (2.1a)

D

D 𝑡
𝜌 + 𝑁2𝜓𝑥 + 𝐽 ( 𝜌̄, 𝜓) = 0. (2.1b)

Here, Ψ(𝑥, 𝑧) is the basic-wave streamfunction (i.e. Ψ = Ψ + 𝜓), 𝜌̄(𝑥, 𝑧) is the basic-wave
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density, 𝑁 (𝑧) is the background buoyancy frequency profile and

D

D 𝑡
≡
𝜕

𝜕𝑡
− 𝑐

𝜕

𝜕𝑥
+ 𝐽

(

· ,Ψ
)

(2.2)

denotes the (linearized) advective time derivative, where 𝐽 (𝑎, 𝑏) = 𝑎𝑥𝑏𝑧 − 𝑎𝑧𝑏𝑥 is the

Jacobian. Furthermore, 𝜓 obeys

𝜓𝑥 = 0 (𝑧 = 0, 𝐻) (2.3)

on the channel walls (𝑧 = 0, 𝐻), where 𝐻 is the dimensionless fluid depth.

Before proceeding to the stability analysis, we specify {Ψ, 𝜌̄ ; 𝑐}. Our choice for basic

state is a finite-amplitude progressive wave mode with (normalised) wavelength 2π along 𝑥

and phase speed 𝑐, which generally is a function of the wave amplitude (Yih 1974). Such

finite-amplitude waves of permanent form are steady solutions of the nonlinear stratified flow

equations and need to be computed separately, by amplitude expansions (Thorpe 1968; Yih

1974) or numerically.

Our interest here will be on the onset of instability, which occurs when the amplitude of

the basic state is small. Accordingly, we introduce the small amplitude parameter 𝜖 ,

𝜖 =
2π𝑈∗

𝜆∗𝑁∗
≪ 1, (2.4)

where 𝑈∗ is a characteristic velocity of the basic wave. In this limit, {Ψ, 𝜌̄ ; 𝑐} may be

approximated as (Yih 1974)

Ψ = 𝜖 𝑓𝑛 (𝑧) cos 𝑥 + O(𝜖2), (2.5a)

𝜌̄ = 𝜖
𝑁2

𝑐𝑛
𝑓𝑛 (𝑧) cos 𝑥 + O(𝜖2), (2.5b)

𝑐 = 𝑐𝑛 + O(𝜖2). (2.5c)

Here, the wave speed 𝑐𝑛 and mode shape 𝑓𝑛 (𝑧) are the eigenvalue and eigenfunction

corresponding to a certain eigensolution (𝑛 = 1, 2, ...) of the problem

d2 𝑓𝑛

d𝑧2
+

(

𝑁2

𝑐2
𝑛

− 1

)

𝑓𝑛 = 0, (2.6a)

𝑓𝑛 = 0 (𝑧 = 0, 𝐻). (2.6b)

It should be noted that for uniform background stratification (𝑁 = 1), the problem (2.6)

has the simple closed-form solution

𝑓𝑛 =
𝐻

𝑛π
sin

𝑛π

𝐻
𝑧 ; 𝑐𝑛 =

𝐻
(

𝑛2π2 + 𝐻2
)1/2

(𝑛 = 1, 2, ...), (2.7)

where 𝑓𝑛 has been normalised such that 𝑈∗ in (2.4) is the peak horizontal velocity of the

mode-𝑛 wave. Moreover, when 𝑁 = 1 the assumed background flow conditions conform to

‘Long’s model’ for steady stratified flow (Dubreil-Jacotin 1932; Long 1953), so the small-

amplitude basic state (2.5) with 𝑓𝑛 and 𝑐𝑛 given by (2.7) also satisfies the full nonlinear

equations of motion. Accordingly, in this instance it is permissible to use this basic state in

a stability analysis for any 𝜖 below the threshold for overturning 𝜖𝑐 = 𝑐𝑛.

Returning now to the governing equations (2.1), we follow the procedure used in the

stability analysis of a Stokes surface gravity wave (e.g. McLean 1982): as the basic state (2.5)

Focus on Fluids articles must not exceed this page length
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is steady in 𝑡 and 2π-periodic in 𝑥, we look for Floquet-mode solutions in the form

(𝜓, 𝜌) = e−i𝜎𝑡ei𝑝𝑥
∞
∑︁

𝑚=−∞

(𝑄𝑚(𝑧), 𝑅𝑚(𝑧)) ei𝑚𝑥 . (2.8)

Here, in keeping with a temporal stability analysis, 𝑝 is a prescribed real wavenumber and

𝜎 is a possibly complex frequency to be determined along with the Fourier coefficients 𝑄𝑚

and 𝑅𝑚. It should be noted that, without loss of generality, 𝑝 can be restricted in the range

0 ⩽ 𝑝 < 1; however, here we find it convenient to treat 𝑝 as a free parameter (−∞ < 𝑝 < ∞).

Upon substituting (2.8) in (2.1), we first eliminate the density coefficients 𝑅𝑚(𝑧) and then

simplify the equations for the streamfunction coefficients 𝑄𝑚(𝑧) by using the O(1) balance

of terms to eliminate third-order 𝑧-derivatives at O(𝜖). Finally, 𝑄𝑚(𝑧) are governed by the

infinite equation system (−∞ < 𝑚 < ∞)

d2𝑄𝑚

d𝑧2
+ (𝑝 + 𝑚)2

(

𝑁2

Ω2
𝑚

− 1

)

𝑄𝑚

=
𝜖

2Ω𝑚

(

𝐾+
𝑚𝑄𝑚+1 + 𝐾

−
𝑚𝑄𝑚−1 + 𝐷

+
𝑚

d𝑄𝑚+1

d𝑧
+ 𝐷−

𝑚

d𝑄𝑚−1

d𝑧

)

+ O(𝜖2), (2.9)

where

𝐾±
𝑚 = (𝑝 + 𝑚 ± 1)

{

𝑁2 d 𝑓𝑛

d𝑧

[

1

𝑐2
𝑛

+
𝑝 + 𝑚

𝑐𝑛Ω𝑚

−
(𝑝 + 𝑚 ± 1)

Ω𝑚±1

(

𝑝 + 𝑚

Ω𝑚

+
𝑝 + 𝑚 ± 1

Ω𝑚±1

)]

∓
(

𝑁2
)

𝑧
𝑓𝑛

(

𝑝 + 𝑚

Ω𝑚Ω𝑚±1

+
𝑝 + 𝑚 ± 1

Ω2
𝑚±1

∓
1

𝑐2
𝑛

∓
𝑝 + 𝑚

𝑐𝑛Ω𝑚

)}

, (2.10a)

𝐷±
𝑚 = ∓𝑁2 𝑓𝑛

(

(𝑝 + 𝑚) (𝑝 + 𝑚 ± 1)

Ω𝑚Ω𝑚±1

+
(𝑝 + 𝑚 ± 1)2

Ω2
𝑚±1

−
1

𝑐2
𝑛

−
𝑝 + 𝑚

𝑐𝑛Ω𝑚

)

, (2.10b)

with

Ω𝑚 = 𝜎 + (𝑝 + 𝑚)𝑐𝑛. (2.11)

Furthermore, in view of (2.3), 𝑄𝑚(𝑧) satisfy the boundary conditions

𝑄𝑚 = 0 (𝑧 = 0, 𝐻). (2.12)

The equation system (2.9) along with the boundary conditions (2.12) constitute an

eigenvalue problem for 𝜎 = 𝜎r + i𝜎i. Given that the governing equations (2.1) are real,

eigenvalues appear in complex conjugate pairs and 𝜎i ≠ 0 is sufficient for instability. The

discussion below focuses on solving the eigenvalue problem (2.9) and (2.12) for 0 < 𝜖 ≪ 1

and understanding the various instability mechanisms in this limit.

3. Triad resonance instability

3.1. Resonant triads

As expected, if the basic wave is absent (𝜖 = 0), the eigenvalue problem (2.9) and (2.12)

recovers the free propagating modes in the fluid layer. Specifically, as the coefficients𝑄𝑚 are

entirely uncoupled when 𝜖 = 0, we write

𝑄𝑚 = 𝑞𝑚,𝑙 (𝑧; 𝑝 + 𝑚) (𝑙 = 1, 2, ...), (3.1)
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for any given −∞ < 𝑚 < ∞, with the rest of the 𝑄’s being zero. Here, 𝑞𝑚,𝑙 denote the

eigenfunctions of the problem

d2𝑞𝑚,𝑙

d𝑧2
+

(

𝑁2

𝑐2
𝑚,𝑙

− (𝑝 + 𝑚)2

)

𝑞𝑚,𝑙 = 0, (3.2a)

𝑞𝑚,𝑙 = 0 (𝑧 = 0, 𝐻), (3.2b)

and 𝑐2
𝑚,𝑙

are the corresponding eigenvalues, with

𝑐2
𝑚,𝑙 =

Ω2
𝑚

(𝑝 + 𝑚)2
(𝑙 = 1, 2, ...). (3.3)

It should be noted that (3.3) are the dispersion relations of (the countable infinity of) free

propagating modes (𝑙 = 1, 2, ...), and Ω𝑚 = ±(𝑝+𝑚)𝑐𝑚,𝑙 (with 𝑐𝑚,𝑙 > 0) are the frequencies

(in the rest frame) of these modes at the wavenumber 𝑝 + 𝑚. Hence, in view of (2.11), for

𝜖 = 0, the stability eigenvalues 𝜎 are simply the (Doppler-shifted) frequencies of these waves

in the frame moving with 𝑐𝑛,

𝜎 = 𝜎± ≡ −(𝑝 + 𝑚)𝑐𝑛 ± (𝑝 + 𝑚)𝑐𝑚,𝑙 (𝑙 = 1, 2, ...). (3.4)

Next, we inquire into how the interaction with the underlying wave affects 𝜎 in the small-

amplitude limit (0 < 𝜖 ≪ 1). According to (2.9), to leading order in 𝜖 , each 𝑄𝑚 is coupled

to its nearest neighbours𝑄𝑚±1 only. As this coupling is weak, it is natural to attempt to solve

the eigenvalue problem (2.9) and (2.12) approximately in an iterative manner, starting from

the known solution for 𝜖 = 0 (c.f. (3.1)–(3.3)). Specifically, for any given −∞ < 𝑚 < ∞ and

𝑙 = 1, 2, ..., one may anticipate that

𝑄𝑚 = 𝑞𝑚,𝑙 (𝑧 ; 𝑝 + 𝑚) + O(𝜖2) , 𝑄𝑚±1 = 𝜖𝑞𝑚±1,𝑙 (𝑧) + O(𝜖2), (3.5)

with the rest of the 𝑄’s being smaller than O(𝜖) and

𝜎 = 𝜎± + O(𝜖2). (3.6)

Here, 𝑞𝑚,𝑙 and 𝜎± are the free-mode eigenfunctions and (real) frequencies defined in (3.2)

and (3.4), respectively, and the correction terms 𝑞𝑚±1,𝑙 satisfy the forced equations

d2𝑞𝑚±1,𝑙

d𝑧2
+ (𝑝 + 𝑚 ± 1)2

(

𝑁2

Ω2
𝑚±1

− 1

)

𝑞𝑚±1,𝑙 =
1

2Ω𝑚±1

(

𝐾∓
𝑚±1𝑞𝑚,𝑙 + 𝐷

∓
𝑚±1

d𝑞𝑚,𝑙

d𝑧

)

, (3.7a)

subject to the boundary conditions

𝑞𝑚±1,𝑙 = 0 (𝑧 = 0, 𝐻). (3.7b)

According to (3.5), to leading order, the interaction with the basic wave induces the nearest

two neighbours of𝑄𝑚 to O(𝜖). Furthermore, as indicated by (3.6), no instability is predicted

at O(𝜖).
It is important to note, however, that the above (naive) approximation procedure breaks

down if Ω2
𝑚±1

/(𝑝 + 𝑚 ± 1)2 in (3.7a) happens to coincide with a free-mode eigenvalue

(i.e., an eigenvalue 𝑐2
𝑚±1,𝑙

of the problem (3.2)). Under this resonance condition — which

as discussed below may be interpreted as two free modes forming a resonant triad with the

underlying wave — the forced problems (3.7) generally cannot be solved, and (3.5)–(3.6)

need to be revised. Moreover, in this instance it turns out that 𝜎i = O(𝜖), so triad resonances

are associated with the onset of instability in the limit 𝜖 ≪ 1.

To analyze this triad resonance instability (TRI), without loss of generality (−∞ < 𝑝 < ∞
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is a free parameter), suppose that (𝑚 = 0, 𝑙) and (𝑚 = 1, 𝑙 + 𝑟) are resonant free modes,

where 𝑙 and 𝑙 + 𝑟 are positive integers. Then, in view of (2.11) and (3.3), the coresponding

eigenvalues 𝑐0,𝑙 and 𝑐1,𝑙+𝑟 must satisfy

(𝜎 + 𝑝𝑐𝑛)
2
= 𝑝2𝑐2

0,𝑙 , (3.8a)

(𝜎 + (𝑝 + 1)𝑐𝑛)
2
= (𝑝 + 1)2𝑐2

1,𝑙+𝑟 . (3.8b)

Hence,

±𝑝𝑐0,𝑙 = −𝑐𝑛 ± (𝑝 + 1)𝑐1,𝑙+𝑟 , (3.9)

where the ± signs above can be chosen independently. Therefore, the wavenumbers 𝑘0 = 𝑝

and 𝑘1 = 𝑝 + 1, along with the corresponding frequencies (in the rest frame) 𝜔0 = ±𝑝𝑐0,𝑙

and 𝜔1 = ±(𝑝 + 1)𝑐1,𝑙+𝑟 of free modes that satisfy the resonance conditions (3.8), are linked

via

𝑘1 − 𝑘0 = 1 , 𝜔1 ± 𝜔0 = 𝑐𝑛. (3.10)

This confirms that such modes form a resonant triad with the basic wave as the latter has

(normalized) wavenumber 1 and frequency (in the rest frame) 𝑐𝑛. Alternatively, in the moving

frame where the basic wave has zero frequency, the two resonant free modes have the same

frequency, 𝜎, and the frequency condition in (3.10) is met trivially.

3.2. TRI eigenvalue problem

For given 𝑙 and 𝑟, conditions (3.8) determine specific (real) 𝑝 = 𝑝𝑐 and 𝜎 = 𝜎𝑐, say, at which

the triad conditions (3.10) are met. (Equations (3.8) may admit multiple such solutions.)

Close to these critical values, we write

𝑝 = 𝑝𝑐 + 𝑝𝜖, 𝜎 = 𝜎𝑐 + 𝜆𝜖, (3.11)

where 𝑝 is a real O(1) wavenumber detuning and 𝜆 is a possibly complex eigenvalue

perturbation. In this neighbourhood, we seek solutions of the eigenvalue problem (2.9) and

(2.12) in the form

𝑄0 = 𝐴0𝑞0,𝑙 (𝑧 ; 𝑝𝑐) + 𝜖𝑞0,𝑙 (𝑧) + O(𝜖2), (3.12a)

𝑄1 = 𝐴1𝑞1,𝑙+𝑟 (𝑧 ; 𝑝𝑐 + 1) + 𝜖𝑞1,𝑙+𝑟 (𝑧) + O(𝜖2), (3.12b)

with𝑄−1, 𝑄2 = O(𝜖) and the rest of the𝑄’sℴ(𝜖). Here, 𝑞0,𝑙 and 𝑞1,𝑙+𝑟 are the eigenfunctions

corresponding to the resonant eigenvalues 𝑐0,𝑙 and 𝑐1,𝑙+𝑟 of the problem (3.2), under the

normalization
∫ 𝐻

0

𝑁2𝑞2
0,𝑙d𝑧 =

∫ 𝐻

0

𝑁2𝑞2
1,𝑙+𝑟d𝑧 = 1, (3.13)

and 𝐴0, 𝐴1 are constants.

Upon substituting (3.12) along with (3.11) in (2.9) and (2.12), the O(1) balance of terms

is satisfied automatically. Next, the O(𝜖) corrections to 𝑄0 and 𝑄1 in (3.12) are to be found

by solving the forced problems

d2𝑞0,𝑙

d𝑧2
+

(

𝑁2

𝑐2
0,𝑙

− 𝑘2
0

)

𝑞0,𝑙 = R0,𝑙 , (3.14a)

𝑞0,𝑙 = 0 (𝑧 = 0, 𝐻) (3.14b)
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and

d2𝑞1,𝑙+𝑟

d𝑧2
+

(

𝑁2

𝑐2
1,𝑙+𝑟

− 𝑘2
1

)

𝑞1,𝑙+𝑟 = R1,𝑙+𝑟 , (3.15a)

𝑞1,𝑙+𝑟 = 0 (𝑧 = 0, 𝐻). (3.15b)

Here,

R0,𝑙 = 2𝐴0𝑞0,𝑙

{

𝑘0𝑝 − 𝑁
2
𝑘2

0

𝜔2
0

(

𝑝

𝑘0

−
𝜆 + 𝑐𝑛𝑝

𝜔0

)

}

+
𝐴1

2𝜔0

(

𝐾+
0 𝑞1,𝑙+𝑟 + 𝐷

+
0

d𝑞1,𝑙+𝑟

d𝑧

)

, (3.16a)

R1,𝑙+𝑟 = 2𝐴1𝑞1,𝑙+𝑟

{

𝑘1𝑝 − 𝑁
2
𝑘2

1

𝜔2
1

(

𝑝

𝑘1

−
𝜆 + 𝑐𝑛𝑝

𝜔1

)

}

+
𝐴0

2𝜔1

(

𝐾−
1 𝑞0,𝑙 + 𝐷

−
1

d𝑞0,𝑙

d𝑧

)

, (3.16b)

where 𝑘0 = 𝑝𝑐, 𝜔0 = 𝜎𝑐 + 𝑐𝑛𝑝𝑐 and 𝑘1 = 𝑝𝑐 + 1, 𝜔1 = 𝜎𝑐 + 𝑐𝑛 (𝑝𝑐 + 1) are the resonant triad

wavenumbers and frequencies (in the rest frame), and the constants 𝐾+
0
, 𝐾−

1
, 𝐷+

0
and 𝐷−

1
are

evaluated using (2.10) at 𝑝 = 𝑝𝑐 and 𝜎 = 𝜎𝑐.

Now, similar to the forced problems (3.7), we ask whether the forced problems (3.14) and

(3.15) can be solved, given that the corresponding homogeneous problems have non-trivial

solutions, namely the eigenfunctions 𝑞0,𝑙 (𝑧 ; 𝑝𝑐) and 𝑞1,𝑙+𝑟 (𝑧 ; 𝑝𝑐 + 1), respectively. It turns

out that, for (3.14) and (3.15) to be solvable, the forcing terms R0,𝑙 and R1,𝑙+𝑟 must be

orthogonal to these homogeneous solutions:

∫ 𝐻

0

R0,𝑙𝑞0,𝑙d𝑧 = 0,

∫ 𝐻

0

R1,𝑙+𝑟𝑞1,𝑙+𝑟d𝑧 = 0. (3.17)

The above solvability conditions are a particular instance of the Fredholm alternative (e.g.

Haberman 2012). Here, they are obtained by multiplying both sides of equations (3.14a) and

(3.15a) with 𝑞0,𝑙 (𝑧 ; 𝑝𝑐) and 𝑞1,𝑙+𝑟 (𝑧 ; 𝑝𝑐 + 1), respectively, and integrating in 𝑧 from 0 to

𝐻. After two integrations by parts and using the boundary conditions (3.14b) and (3.15b), it

follows that the left-hand sides of these equations vanish; thus, the right-hand sides must do

so as well, implying (3.17).

Inserting the forcing terms (3.16) in the solvability conditions (3.17) yields the following

2 × 2 eigenvalue problem for 𝜆

(

𝜆 − 𝑐0
𝑔𝑝

)

𝐴0 = 𝐸1𝐴1, (3.18a)

(

𝜆 − 𝑐1
𝑔𝑝

)

𝐴1 = 𝐸2𝐴0. (3.18b)
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Here, using (2.10), the interaction coefficients 𝐸1 and 𝐸2 can be brought to the form

𝐸1 =
𝜔2

0

4𝑘2
0

{

(𝑘1𝐼1 + 𝐼3)

(

𝑘2
1

𝜔2
1

+
𝑘0𝑘1

𝜔0𝜔1

−
𝑘0

𝑐𝑛𝜔0

−
1

𝑐2
𝑛

)

+𝑘1𝐼2

(

𝑘0

𝜔0𝜔1

+
𝑘1

𝜔2
1

−
𝑘0

𝑐𝑛𝜔0

−
1

𝑐2
𝑛

)}

, (3.19a)

𝐸2 =
𝜔2

1

4𝑘2
1

{

(𝑘0𝐼1 − 𝐼4)

(

𝑘2
0

𝜔2
0

+
𝑘0𝑘1

𝜔0𝜔1

−
𝑘1

𝑐𝑛𝜔1

−
1

𝑐2
𝑛

)

−𝑘0𝐼2

(

𝑘1

𝜔0𝜔1

+
𝑘0

𝜔2
0

+
𝑘1

𝑐𝑛𝜔1

+
1

𝑐2
𝑛

)}

, (3.19b)

where the constants 𝐼1, ..., 𝐼4 are given by

𝐼1 =

∫ 𝐻

0

𝑁2 𝑓 ′𝑛𝑞0,𝑙𝑞1,𝑙+𝑟d𝑧, (3.20a)

𝐼2 =

∫ 𝐻

0

(𝑁2)′ 𝑓𝑛𝑞0,𝑙𝑞1,𝑙+𝑟d𝑧, (3.20b)

𝐼3 =

∫ 𝐻

0

𝑁2 𝑓𝑛𝑞0,𝑙𝑞
′
1,𝑙+𝑟d𝑧, (3.20c)

𝐼4 =

∫ 𝐻

0

𝑁2 𝑓𝑛𝑞
′
0,𝑙𝑞1,𝑙+𝑟d𝑧 = −(𝐼1 + 𝐼2 + 𝐼3), (3.20d)

with prime denoting derivative with respect to 𝑧. Finally, the constants 𝑐0
𝑔 and 𝑐1

𝑔 in (3.18) are

associated with the wavenumber detuning in (3.11). From (3.17), making also use of (3.13),

these constants can be expressed as

𝑐0
𝑔 = −𝑐𝑛 +

𝜔0

𝑘0

(

1 − 𝜔2
0

∫ 𝐻

0

𝑞2
0,𝑙d𝑧

)

, (3.21a)

𝑐1
𝑔 = −𝑐𝑛 +

𝜔1

𝑘1

(

1 − 𝜔2
1

∫ 𝐻

0

𝑞2
1,𝑙+𝑟d𝑧

)

, (3.21b)

and they represent the group velocities (in the frame moving with the basic wave) of the

modes that form a resonant triad with the basic wave. (Ignoring their interaction with the

underlying wave, these modes would be free propagating waves, so a wavenumber shift 𝑝𝜖

would cause a frequency shift 𝑐𝑔𝑝𝜖 in (3.11); i.e., 𝜆 = 𝑐0
𝑔𝑝, 𝑐

1
𝑔𝑝, consistent with (3.18) for

𝐸1 = 𝐸2 = 0.)

Based on the eigenvalue problem (3.18), instability (𝜆 = 𝜆r + i𝜆i complex) requires

𝐸1𝐸2 < 0. Moreover, under this condition, instability is present within the O(𝜖) wavenumber

window 𝑝 = 𝑝𝑐 + 𝑝𝜖 specified by

𝑝2 < −
4𝐸1𝐸2

(

𝑐1
𝑔 − 𝑐

0
𝑔

)2
, (3.22)

with the maximum growth rate

𝜎i |max= 𝜖𝜆i |max= 𝜖 (−𝐸1𝐸2)
1/2 (3.23)
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realized at 𝑝 = 0 (𝑝 = 𝑝𝑐).

3.3. The case 𝑁 = 1

In the case of uniform background stratification (𝑁=1), the eigenfunctions 𝑞𝑚,𝑙 of the

eigenvalue problem (3.2) are sines that depend on the modal number 𝑙 but not on the

wavenumber 𝑝 + 𝑚,

𝑞𝑚,𝑙 = 𝐶 sin
𝑙π

𝐻
𝑧 (𝑙 = 1, 2, ...), (3.24)

where 𝐶 is a normalisation constant, and the free-mode dispersion relations (3.3) read

Ω
2
𝑚 =

(𝑝 + 𝑚)2

(𝑝 + 𝑚)2 + (𝑙π/𝐻)2
(𝑙 = 1, 2, ...). (3.25)

Thus, the eigenfunctions of possible resonant modes (𝑚 = 0, 𝑙) and (𝑚 = 1, 𝑙 + 𝑟), under the

normalization (3.13), take the form

𝑞0,𝑙 =

(

2

𝐻

)1/2

sin
𝑙π

𝐻
𝑧 , 𝑞1,𝑙+𝑟 =

(

2

𝐻

)1/2

sin
(𝑙 + 𝑟)π

𝐻
𝑧. (3.26)

Next, based on (3.19)–(3.20), we compute the interaction coefficients 𝐸1, 𝐸2 in the TRI

eigenvalue problem (3.18). These are linear combinations of 𝐼1, ..., 𝐼4 and, according to

(3.20b), 𝐼2 ≡ 0 when 𝑁 is constant. Moreover, using (3.26) and the basic-wave mode (2.7), it

follows from (3.20) that the rest of the 𝐼’s vanish as well, unless 𝑟 = ±𝑛. Thus, in the case of

uniform background stratification, TRI requires that perturbations, apart from the resonant

triad conditions (3.10), also satisfy

𝑙1 − 𝑙0 = ±𝑛, (3.27)

where 𝑛 is the basic-wave modal number (c.f. (2.7)) and 𝑙0, 𝑙1 denote the modal numbers

of the perturbations. This condition is reminiscent of that satisfied along the vertical by the

wavevectors of resonant triads in the TRI of propagating plane waves in an unbounded fluid

(e.g. Mied 1976). Here, however, the basic state as well as the perturbations are standing

waves in the vertical; moreover, in contrast to the triad conditions (3.10), the constraint

(3.27) applies only when 𝑁 is constant. The fact that uniform background stratification limits

possible resonant triad interactions of wave modes was also noted by Varma & Mathur

(2017).

To be specific, we satisfy (3.27) by taking 𝑙0 = 𝑙 and 𝑙1 = 𝑙 + 𝑛, where 𝑙 = 1, 2, .... Then,

from (3.19), making also use of (2.7), (3.20) and (3.26), we find that

𝐸1 =
1

8𝑛
(𝑛𝑘0 − 𝑙)

𝜔2
0

𝑘2
0

{

𝑘2
1

𝜔2
1

+
𝑘0𝑘1

𝜔0𝜔1

−
𝑘0

𝑐𝑛𝜔0

−
1

𝑐2
𝑛

}

, (3.28a)

𝐸2 =
1

8𝑛
(𝑛𝑘0 − 𝑙)

𝜔2
1

𝑘2
1

{

𝑘2
0

𝜔2
0

+
𝑘0𝑘1

𝜔0𝜔1

−
𝑘1

𝑐𝑛𝜔1

−
1

𝑐2
𝑛

}

. (3.28b)

Here, in keeping with (3.10), 𝑘0 = 𝑝𝑐. 𝑘1 = 𝑝𝑐 + 1, 𝜔0 = 𝜎𝑐 + 𝑐𝑛𝑘0 and 𝜔1 = 𝜎𝑐 + 𝑐𝑛𝑘1

are the triad wavenumbers and frequencies, where 𝑝 = 𝑝𝑐 and 𝜎 = 𝜎𝑐 are obtained from the

Rapids articles must not exceed this page length
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resonance conditions (3.8). In view of (3.25), for 𝑁 = 1 these conditions take the form

𝜔2
0 =

𝑝2
𝑐

𝑝2
𝑐 + (𝑙π/𝐻)2

, (3.29a)

𝜔2
1 =

(𝑝𝑐 + 1)2

(𝑝𝑐 + 1)2 + ((𝑙 + 𝑛)π/𝐻)2
. (3.29b)

Expressions (3.28) agree with Martin et al. (1972) after converting to their non-dimensional

variables.

3.4. Comparison with Joubaud et. al. (2012)

The laboratory experiments of Joubaud et al. (2012) employed a wave generator at one end

of a uniformly stratified fluid tank to excite monochromatic mode-1 waves which eventually

became unstable due to TRI as they propagated along the tank. For each basic wave,

Joubaud et al. (2012) verified experimentally that the unstable disturbances satisfied the

triad resonance conditions and also measured the instability growth rate. Furthermore, they

compared the observed TRI growth rates with theoretical estimates based on the TRI of a

sinusoidal plane wave in an unbounded fluid.

Here, we make a brief comparison of these observations with the theoretically predicted

TRI for mode-1 (𝑛 = 1) waves in a uniformly stratified fluid (𝑁 = 1). Specifically, we focus

on the basic wave corresponding to 𝑐𝑛 = 0.95, 𝐻 = 9.2 and 𝜖 = 0.14 (in our dimensionless

variables), for which Joubaud et al. (2012) report the strongest TRI. In this instance, the

resonance conditions (3.29) for 𝑙 = 9 yield 𝑘0 = 1.3, 𝜔0 = −0.39, 𝑘1 = 2.3 and 𝜔1 = 0.56.

This resonant triad is a good approximation to the frequencies𝜔0 = −0.38,𝜔1 = 0.57 as well

as the wavenumbers of the observed unstable disturbances in figures 1 and 2 of Joubaud et al.

(2012). The growth rate found from (3.23) and (3.28) for this triad is𝜎i |theor = 6.8×10−2 while

the measured growth rate is 𝜎i |exp ≈ 5.3× 10−2. This fair agreement seems reasonable given

that the theory does not account for viscous damping so 𝜎i |theor is expected to overpredict

𝜎i |exp.

4. Short-scale disturbances

We now focus on small-scale instabilities that involve disturbances with high modal number

(𝑙 ≫ 𝑛) and large wavenumber (𝑝 ≫ 1) relative to the basic wave mode. In this limit, while

the eigenvalue problem (3.2) generally cannot be solved exactly by analytical means, it is

possible to compute the eigenfunctions (3.1) and dispersion relations (3.3) of free modes

via the WKB approximation. For simplicity, however, here and in the rest of the paper, we

assume uniform background stratification (𝑁 = 1), where exact expressions are available

(c.f. (3.24)– (3.25)).

4.1. Parametric subharmonic instability

To analyze short-scale instabilities, we introduce a parameter 𝜇 that controls the perturbation

vertical length scale and also we scale the horizontal wavenumber 𝑝 in sympathy with 1/𝜇,

𝜇 =
𝐻

π𝑙
, 𝑝 =

𝜅

𝜇
, (4.1)
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where 𝜅 = O(1) is a re-scaled wavenumber. Thus conditions (3.29) for determining 𝑝 = 𝑝𝑐
and 𝜎 = 𝜎𝑐 at which the onset of TRI occurs for given 𝑙, take the form

𝜅2
𝑐

(

1

𝜔2
0

− 1

)

= 1, (4.2a)

(𝜅𝑐 + 𝜇)
2

(

1

𝜔2
1

− 1

)

=

(

1 +
𝑛π

𝐻
𝜇
)2

. (4.2b)

These re-scaled conditions specify 𝜅𝑐 = 𝜇𝑝𝑐 and 𝜔0 = 𝜎𝑐 + 𝑐𝑛𝑝𝑐 (𝜔1 = 𝜔0 + 𝑐𝑛), for given

𝜇.

In the short-scale limit of interest here, (4.2) are solved by expanding in 𝜇 ≪ 1

𝜅𝑐 = 𝜅0 + 𝜇Δ𝜅 + ..., 𝜔0 = −
𝑐𝑛

2
+ 𝜇Δ𝜔0 + ..., (4.3a)

where

𝜅0 = ±
𝑐𝑛

(

4 − 𝑐2
𝑛

)1/2
, Δ𝜅 =

1

2

(𝑛π

𝐻
𝜅0 − 1

)

, Δ𝜔0 = −
𝑐3
𝑛

8𝜅3
0

Δ𝜅. (4.3b)

Therefore, in this limit, TRI involves two short-scale modes with frequencies (in the rest

frame) half the basic-wave frequency: 𝜔0 = −𝑐𝑛/2 and 𝜔1 = 𝑐𝑛/2. This is the hallmark

of the widely studied parametric subharmonic instability (PSI) of sinusoidal plane internal

waves and plane wave beams in an unbounded uniformly stratified fluid (Staquet & Sommeria

2002; Dauxois et al. 2018).

Using (4.3), we may compute asymptotically the interaction coefficients 𝐸1, 𝐸2 in (3.28)

of the TRI eigenvalue problem (3.18), in the PSI regime. Specifically,

𝐸1 ∼ −
1

16(1 − 𝑐𝑛2)1/2

{

(

1 − 𝑐2
𝑛

)3/2

±
(

2𝑐2
𝑛 + 1

) (

1 − 𝑐2
𝑛/4

)1/2
}

, (4.4a)

𝐸2 ∼ −𝐸1, (4.4b)

where the ± sign corresponds to 𝜅0 = ±𝑐𝑛/(4−𝑐
2
𝑛)

1/2 in (4.3b). This confirms that 𝐸1𝐸2 < 0

so, in view of (3.23), PSI is always possible. Furthermore, numerical results (see §6) indicate

that PSI (for the + sign in (4.4), which provides a higher growth rate) is the dominant resonant

triad instability.

4.2. Beyond PSI

Recent asymptotic analysis of the Floquet stability eigenvalue problem for internal wave

beams (Fan & Akylas 2021) pointed out that, as the length scale of the perturbation is

decreased (for small but fixed beam amplitude), Floquet modes become ‘broadband’ – they

develop higher-frequency components than the two subharmonics at half the basic wave

frequency which are dominant in PSI. This broadening of the frequency spectrum had been

noted in earlier numerical work (Onuki & Tanaka 2019) and was attributed to the advection

of the perturbation by the underlying wave beam. By adopting a frame riding with the wave

beam, Fan & Akylas (2021) were able to ‘factor out’ this advection effect and reveal a novel

small-scale instability mechanism, distinct from PSI.

Motivated by these findings, we now return to expansion (3.12) and examine the behaviour

of the O(𝜖) Fourier coefficients 𝑄−1 and 𝑄2 in the short-scale limit (𝜇 ≪ 1). It should be

noted that, since 𝜔0 ∼ −𝑐𝑛/2 and 𝜔1 ∼ 𝑐𝑛/2 in this limit according to (4.3a), these Fourier

coefficients are associated with the ±3𝑐𝑛/2 frequency components (in the rest frame) of the

Floquet mode (2.8).
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Specifically, from (2.9) and (2.12) combined with (3.12a),𝑄−1 satisfies the forced equation

d2𝑄−1

d𝑧2
+ (𝑘0 − 1)2

(

1

Ω2
−1

− 1

)

𝑄−1 = 𝜖R−1, (4.5a)

subject to

𝑄−1 = 0 (𝑧 = 0, 𝐻), (4.5b)

where

R−1 =
𝐴0

2Ω−1

(

𝐾+
−1𝑞0,𝑙 + 𝐷

+
−1

d𝑞0,𝑙

d𝑧

)

. (4.6)

Generally, the boundary-value problem (4.5) is solvable as Ω−1 = 𝜔0 − 𝑐𝑛 does not match

the frequency of a free mode at the wavenumber 𝑘−1 ≡ 𝑘0 − 1; i.e., 𝑘−1,Ω−1 do not satisfy

the dispersion relation (3.25) for any (integer) modal number 𝑙. Rather than determining the

detailed solution, however, here it suffices to look at the asymptotic behaviour of 𝑄−1 for

𝜇 ≪ 1. Briefly, upon combining (2.7), (2.10) and (3.26) with (4.1), (4.3) and Ω−1 ∼ −3𝑐𝑛/2,

we find from (4.6)

R−1 ∼
16

9

𝐴0

𝑐3
𝑛

(

2

𝐻

)1/2 𝜅2
0

𝜇3

{

𝜅0 cos
𝑛π

𝐻
𝑧 sin

𝑧

𝜇
+
𝐻

𝑛π
sin

𝑛π

𝐻
𝑧 cos

𝑧

𝜇

}

. (4.7)

Therefore, the solution of problem (4.5), in the limit 𝜇 ≪ 1, schematically, takes the form

𝑄−1 ∼
𝜖

𝜇

{

𝐴+
−1 sin

(

𝑧

𝜇
+
𝑛π

𝐻
𝑧

)

+ 𝐴−
−1 sin

(

𝑧

𝜇
−
𝑛π

𝐻
𝑧

)}

, (4.8)

where 𝐴±
−1

are certain O(1) constants. Thus, 𝑄−1 = O(𝜖/𝜇) and, by a similar procedure, it

can be deduced that 𝑄2 = O(𝜖/𝜇) as well.

The fact that 𝑄−1, 𝑄2 = O(𝜖/𝜇) in the joint limit 𝜖, 𝜇 ≪ 1 suggests that the coupling

of the two resonant free modes in (3.12) with the basic wave, actually is O(𝜖/𝜇). Hence,

the assumption of weak coupling, which enables these modes to form a resonant triad with

the basic wave, is valid when 𝜇 ≫ 𝜖 only. If this condition is violated (as will be the case

for sufficiently fine-scale perturbations), all Fourier coefficients in the Floquet mode (2.8),

formally, are expected to be equally important and the disturbance frequency spectrum would

be broadband. A similar situation was encountered in the Floquet stability analysis of internal

wave beams by Fan & Akylas (2021). The treatment of broadband instability of internal wave

modes below follows along the lines of this earlier study.

5. Broadband instability

5.1. Streamline coordinates

Returning to the governing equations (2.1), the dominant coupling of the perturbations to the

basic wave in the limit 𝜖, 𝜇 ≪ 1 derives from the Jacobian term in (2.2) which accounts for

the advection due to the underlying wave velocity field. This effect can be ‘factored out’ by

working with a new set of coordinates, (𝑥, 𝑧) → (𝜉, 𝜁), defined by

𝜉 = 𝑥 +
1

𝑐

∫ 𝑥

Ψ𝑧d𝑥
′, 𝜁 = 𝑧 −

Ψ

𝑐
. (5.1)

It should be noted that the curves 𝜁 = constant coincide with the streamlines of the background

steady flow
(

−𝑐 + Ψ𝑧 , −Ψ𝑥

)

, so switching to these ‘streamline coordinates’ is analogous to

the change of frame used by Fan & Akylas (2021).
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For uniform background stratification, in particular, according to (2.5) and (2.7),

Ψ = 𝜖𝜓 ≡ 𝜖
𝐻

𝑛π
sin

𝑛π

𝐻
𝑧 cos 𝑥, (5.2)

so the coordinates (5.1) are given by

𝜉 = 𝑥 +
𝜖

𝑐𝑛
cos

𝑛π

𝐻
𝑧 sin 𝑥, 𝜁 = 𝑧 −

𝜖

𝑐𝑛

𝐻

𝑛π
sin

𝑛π

𝐻
𝑧 cos 𝑥. (5.3)

We remark that the basic wave streamfunction Ψ is 2π-periodic in the transformed horizontal

coordinate 𝜉, a property that is utilised in the Floquet stability analysis below (see §5.2). This

holds because Ψ in (5.2) does not involve a term uniform in 𝑥; i.e., there is no (Eulerian)

horizontal mean flow. (Under more general flow conditions where such a mean flow may be

present, the definition of 𝜉 in (5.1) would need to be reconsidered.)

Upon implementing the transformation (5.3), the advective derivative (2.2) takes the form

D

D 𝑡
→

𝜕

𝜕𝑡
− 𝑐𝑛

𝜕

𝜕𝜉
+
𝜖2

𝑐𝑛

(

𝜓
2

𝑧 −
(𝑛π

𝐻

)2

𝜓
2

𝑥

)

𝜕

𝜕𝜉
. (5.4)

Thus, the Jacobian term in (2.2) has been eliminated correct to O(𝜖). Furthermore, using

(5.2), the O(𝜖2) residual is expressed as

𝜖2

2𝑐𝑛

(

cos 2
𝑛π

𝐻
𝜁 + cos 2𝜉

) 𝜕

𝜕𝜉
+ O(𝜖3). (5.5)

The first term above represents the advection effect due to the ‘Stokes drift’ (Thorpe (1968)),

𝑈̄𝑠
=
𝜖2

2𝑐𝑛
cos 2

𝑛π

𝐻
𝜁, (5.6)

which here coincides with the Lagrangian horizontal mean flow associated with the basic

wave, since the Eulerian mean flow vanishes. This effect makes an important contribution to

the eigenvalue problem governing broadband instability (see §5.3). The second term in (5.5),

by contrast, is relatively insignificant and could have been eliminated by modifying via an

O(𝜖2) term the definition of 𝜉 in (5.3).

In terms of 𝜉 and 𝜁 , the governing equations (2.1) now read

D

D 𝑡
∇2𝜓 − 𝜌𝜉 +

𝜖

𝑐𝑛

{

𝜓𝑧

(

1

𝑐𝑛
𝜓 − 𝜌

)

𝜉

− 𝜓𝑥

(

1

𝑐𝑛
𝜓 − 𝜌

)

𝜁

}

+
𝜖2

𝑐3
𝑛

(

𝜓
2

𝑧 −
(𝑛π

𝐻

)2

𝜓
2

𝑥

)

𝜓𝜉 = 0, (5.7a)

D

D 𝑡
𝜌 + 𝜓𝜉 −

𝜖2

𝑐2
𝑛

(

𝜓
2

𝑧 −
(𝑛π

𝐻

)2

𝜓
2

𝑥

)

𝜓𝜉 = 0, (5.7b)

where

∇2 →

(

1 +
𝜖

𝑐𝑛
𝜓𝑧

)2
𝜕2

𝜕𝜉2
+

(

1 −
𝜖

𝑐𝑛
𝜓𝑧

)2
𝜕2

𝜕𝜁2

+ 2
𝜖

𝑐𝑛
𝜓𝑥

(

(𝑛π

𝐻

)2

− 1 −
𝜖

𝑐3
𝑛

𝜓𝑧

)

𝜕2

𝜕𝜉𝜕𝜁
+
𝜖

𝑐3
𝑛

(

𝜓
𝜕

𝜕𝜁
+ 𝜓𝑥𝑧

𝜕

𝜕𝜉

)

+
𝜖2

𝑐2
𝑛

𝜓
2

𝑥

(

𝜕2

𝜕𝜁2
+

(𝑛π

𝐻

)4 𝜕2

𝜕𝜉2

)

. (5.8)
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In addition, as the channel walls 𝑧 = 0, 𝐻 correspond to the streamlines 𝜁 = 0, 𝐻, the

boundary conditions (2.3) translate into

𝜓𝜉 = 0 (𝜁 = 0, 𝐻). (5.9)

5.2. Floquet stability analysis

As the coefficients of the transformed equations (5.7) are steady in 𝑡 and 2π-periodic in 𝜉,

we seek Floquet-mode solutions similar to (2.8),

(𝜓, 𝜌) = e−i𝜎𝑡ei𝑝𝜉
∞
∑︁

𝑚=−∞

(

𝑄̃𝑚(𝜁), 𝑅̃𝑚(𝜁)
)

ei𝑚𝜉 , (5.10)

where the Fourier coefficients 𝑄̃𝑚, 𝑅̃𝑚 (−∞ < 𝑚 < ∞) and the eigenvalue 𝜎 are to be

determined.

Here, our interest is on short-scale perturbations (𝜇 ≪ 1) in the regime

𝛼 ≡
𝜇

𝜖
= O(1), (5.11)

where, as argued in §4.2, PSI is replaced by a broadband instability. To analyse this

‘distinguished limit’, we shall work with the scaled wavenumber 𝜅 = 𝑝𝜇 = O(1) defined in

(4.1) and the ‘stretched’ coordinate

𝑍 =
𝜁

𝜇
. (5.12)

Furthermore, we re-scale 𝑄̃𝑚 → 𝜇𝑄̃𝑚 (𝑍, 𝜁) so that

d𝑄̃𝑚

d𝜁
→

𝜕𝑄̃𝑚

𝜕𝑍
+ 𝜇

𝜕𝑄̃𝑚

𝜕𝜁
. (5.13)

It should be noted that, in view of the transformation (5.3), exp(i𝑝𝜉) in (5.10) involves all

harmonics in 𝑥. Moreover, for 𝑝 = O(1/𝜇) and 𝜖/𝜇 = O(1) these harmonics contribute at

the same level. Thus, in the regime (5.11) the modes (5.10) are ‘broadband’ even though, as

discussed below, the 𝑚 = 0, 1 components are dominant in the Fourier series in 𝜉.

Now, we derive the equations governing 𝑅̃𝑚, 𝑄̃𝑚 and 𝜎 by substituting (5.10) in (5.7) and

implementing the scalings (5.11)–(5.13). Specifically, making also use of (5.5), equation

(5.7b) yields correct to O(𝜖)

Ω𝑚𝑅̃𝑚 = 𝜅𝑄̃𝑚 + 𝜖

{

𝛼𝑚 +
𝜅2

2𝛼𝑐𝑛Ω𝑚

cos 2
𝑛π

𝐻
𝜁

}

𝑄̃𝑚

+ 𝜖
𝜅2

4𝛼𝑐𝑛

{

𝑄̃𝑚+2

Ω𝑚+2

+
𝑄̃𝑚−2

Ω𝑚−2

}

, (5.14)

where Ω𝑚 is given in (2.11). Next, using (5.5), (5.8) and upon eliminating 𝑅̃𝑚 via (5.14), we

obtain from (5.7a) the following equation system for 𝑄̃𝑚 (−∞ < 𝑚 < ∞) correct to O(𝜖)
{

(

𝜕

𝜕𝑍
+ 𝛼𝜖

𝜕

𝜕𝜁

)2

+ (𝜅 + 𝛼𝑚𝜖)2

(

1

Ω2
𝑚

− 1

)

}

𝑄̃𝑚

+𝜖
{

cos 2
𝑛π

𝐻
𝜁𝐺𝑚𝑄̃𝑚 − cos

𝑛π

𝐻
𝜁

(

𝐺+
𝑚𝑄̃𝑚+1 + 𝐺

−
𝑚𝑄̃𝑚−1

)

+ sin
𝑛π

𝐻
𝜁

(

𝐻+
𝑚

𝜕𝑄̃𝑚+1

𝜕𝑍
− 𝐻−

𝑚

𝜕𝑄̃𝑚−1

𝜕𝑍

)

+ 𝐿+𝑚𝑄̃𝑚+2 + 𝐿
−
𝑚𝑄̃𝑚−2

}

= 0, (5.15)
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where

𝐺𝑚 =
𝜅3

𝛼𝑐𝑛Ω
3
𝑚

, (5.16a)

𝐺±
𝑚 =

𝜅2

𝑐𝑛

(

2 −
1

Ω2
𝑚±1

−
1

2Ω𝑚Ω𝑚±1

)

, (5.16b)

𝐻±
𝑚 =

𝜅

𝑐𝑛

(

𝐻

𝑛π

) (

(𝑛π

𝐻

)2

− 1 +
1

2Ω𝑚Ω𝑚±1

)

, (5.16c)

𝐿±𝑚 =
𝜅3

4𝛼𝑐𝑛Ω𝑚Ω𝑚±2

(

1

Ω𝑚

+
1

Ω𝑚±2

)

. (5.16d)

5.3. Eigenvalue problem for 𝛼 = O(1)

Using the equation system (5.15), we now derive the stability eigenvalue problem appropriate

to the asymptotic regime (5.11). To this end, 𝜅 and Ω0 are assumed to be in the vicinity of

the critical values 𝜅 = 𝜅𝑐 and Ω0 = 𝜔0 in (4.3) where the triad resonance conditions (4.2)

are met for 𝜇 ≪ 1. Accordingly, we write

𝜅 = 𝜅0 + (𝛼Δ𝜅 + 𝑠)𝜖, Ω0 = −
𝑐𝑛

2
+ (𝛼Δ𝜔0 + 𝜆)𝜖, (5.17)

where 𝜅0, Δ𝜅 and Δ𝜔0 are given in (4.3b), 𝑠 = O(1) is a real wavenumber detuning and 𝜆

is a generally complex eigenvalue to be determined. It should be noted that, since 𝜇 = 𝛼𝜖

according to (5.11), the O(𝛼𝜖) terms in (5.17) are the O(𝜇) corrections to 𝜅𝑐 and𝜔0 in (4.3a).

The eigenvalue 𝜆 hinges on the detuning 𝑠 and, more importantly, the resonant interaction of

perturbations with the basic wave, which can cause instability.

For 𝜅, Ω0 and Ω1 = Ω0 + 𝑐𝑛 in keeping with (5.17), the solution of (5.15) consistent with

the boundary conditions (5.9) takes the form

𝑄̃0 =
∞
∑

𝑟=−∞
𝐴0,𝑟 sin

(

𝑍 + 𝑟π
𝐻
𝜁
)

+ O(𝜖2), (5.18a)

𝑄̃1 =
∞
∑

𝑟=−∞
𝐴1,𝑟 sin

(

𝑍 + 𝑟π
𝐻
𝜁
)

+ O(𝜖2), (5.18b)

with the rest of 𝑄̃𝑚 (𝑚 ≠ 0, 1) O(𝜖) or smaller. The coefficients 𝐴0,𝑟 and 𝐴1,𝑟 (−∞ < 𝑟 <

∞) above are determined by substituting (5.18) in (5.15) for 𝑚 = 0, 1 and collecting terms

proportional to sin
(

𝑍 + 𝑟π
𝐻
𝜁
)

correct to O(𝜖). Specifically, making also use of (5.16) and

(5.17), we find

{

𝜆 ± 𝑠(1 − 𝑐2
𝑛/4)

3/2 −
𝛼

2

𝑟π

𝐻
𝑐𝑛 (1 − 𝑐2

𝑛/4)
}

𝐴0, 𝑟

= 𝐸̃±𝐴1,𝑟+𝑛 + 𝐸̃
∓𝐴1,𝑟−𝑛 ±

𝐷̃

𝛼
(𝐴0,𝑟−2𝑛 + 𝐴0,𝑟+2𝑛),(5.19a)

{

𝜆 ∓ 𝑠(1 − 𝑐2
𝑛/4)

3/2 +
𝛼

2

(𝑟 − 𝑛)π

𝐻
𝑐𝑛 (1 − 𝑐2

𝑛/4)

}

𝐴1, 𝑟

= −𝐸̃∓𝐴0,𝑟+𝑛 − 𝐸̃
±𝐴0,𝑟−𝑛 ±

𝐷̃

𝛼
(𝐴1,𝑟−2𝑛 + 𝐴1,𝑟+2𝑛).(5.19b)
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Here

𝐸̃±
= −

1

16(1 − 𝑐𝑛2)1/2

{

(

1 − 𝑐2
𝑛

)3/2

±
(

2𝑐2
𝑛 + 1

) (

1 − 𝑐2
𝑛/4

)1/2
}

, (5.20a)

𝐷̃ =
1

8(1 − 𝑐2
𝑛/4)

1/2
, (5.20b)

where the upper (lower) sign in (5.19) and (5.20) corresponds to the positive (negative) value

of 𝜅0 in (4.3b).

The equation system (5.19) is the desired stability eigenvalue problem for short-scale

perturbations (𝜇 ≪ 1) in the broadband regime 𝜇 = O(𝜖). This problem, in contrast

to the 2 × 2 system (3.18) that governs TRI, formally involves infinite number of mode

amplitudes 𝐴0,𝑟 and 𝐴1,𝑟 (−∞ < 𝑟 < ∞): when 𝜇 = O(𝜖) all modes with wavenumber

𝑘0 ∼ 𝜅0/𝜇 (𝑘1 = 𝑘0 +1) and modal number (𝐻/π)/𝜇 + 𝑟 are nearly resonant and participate

in the interaction with the basic wave. Of particular note are the interaction terms proportional

to 𝐷̃/𝛼 in the system (5.19); in view of (5.20b) and (4.3b), ±𝐷̃/𝛼 = 𝑘0𝜖/4𝑐𝑛 so these terms

arise from the ‘Doppler shift’ 𝑘0𝑈̄
𝑠 of the perturbations by the Stokes drift 𝑈̄𝑠 in (5.6).

Finally, as expected when 𝜖 ≪ 𝜇 ≪ 1 (𝛼 ≫ 1), the broadband instability eigenvalue

problem (5.19) reduces to the PSI limit of the TRI eigenvalue problem (3.18). Specifically,

in the limit 𝛼 ≫ 1, 𝐴0,0 and 𝐴1,𝑛 dominate the rest of the amplitudes, so (5.19) simplifies to
{

𝜆 ± 𝑠(1 − 𝑐2
𝑛/4)

3/2
}

𝐴0,0 = 𝐸̃±𝐴1,𝑛, (5.21a)

{

𝜆 ∓ 𝑠(1 − 𝑐2
𝑛/4)

3/2
}

𝐴1,𝑛 = −𝐸̃±𝐴0,0. (5.21b)

Returning to (5.20a) and noting that 𝐸̃± and −𝐸̃± match the asymptotic expressions (4.4) for

the TRI interaction coefficients 𝐸1 and 𝐸2, respectively, the 2 × 2 eigenvalue problem (5.21)

agrees with (3.18) in the PSI limit.

6. Numerical results

Here we compare the theoretical predictions for TRI, PSI and broadband instability with

numerical results from solving the full Floquet eigenvalue problem for the 𝑛 = 1 wave mode

in a uniformly stratified (𝑁 = 1) fluid layer. Having in mind the oceanic internal tide, we

choose the horizontal length scale 𝜆∗/2π = 20 km, the background buoyancy frequency

𝑁∗ = 2 × 10−3 s−1 and the fluid depth 4 km so the dimensionless depth 𝐻 = 0.2. It should

be noted though that the assumption of constant 𝑁 – made here for analytical convenience –

is not realistic for the oceans and also that our analysis ignores the Earth’s rotation.

The differential equation system (2.9) for the Floquet modes (2.8) was tackled by expanding

𝑄𝑚(𝑧) in Fourier sine series in 0 < 𝑧 < 𝐻 consistent with the boundary conditions (2.12)

𝑄𝑚(𝑧) =

∞
∑︁

𝑗=1

𝐵𝑚, 𝑗 sin
𝑗π

𝐻
𝑧. (6.1)

Thus, (2.9) and (2.12) reduce to an algebraic eigenvalue problem for 𝐵𝑚, 𝑗 (−∞ < 𝑚 <

∞, 𝑗 ⩾ 1) and 𝜎. After truncating to a finite – but large enough to ensure convergence –

number of Fourier modes, this problem was solved using standard MATLAB algorithms.

The resolution used typically involved 10 modes in 𝑥 and 20 modes in 𝑧.

The results below are for the critical wavenumber 𝑝 = 𝑝𝑐, computed from the triad

resonance conditions (3.29) as a function of modal number 𝑙 (and 𝑛 = 1). It should be noted

that (3.29) determine two solution branches 𝑝𝑐 (𝑙) in which 𝑝𝑐 > 0 or 𝑝𝑐 < 0. Here, we
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Figure 1. Comparison of TRI instability growth rate (×) as a function of modal number 𝑙

with numerical results (◦) from the full Floquet stability problem for 𝜖 = 10−4. The dotted
line indicates the PSI limit (4.4).

report on 𝑝𝑐 > 0, which features a higher TRI growth rate (3.23). Furthermore, this choice

of 𝑝 provides the dominant instability (highest growth rate 𝜎i) for the values of the amplitude

parameter 10−4 ⩽ 𝜖 ⩽ 6 × 10−3 used in our computations. (This range of 𝜖 is below the

thershold 𝜖𝑐 = 6.35 × 10−2 for overturning of the mode-1 basic state.)

Figure 1 compares the instability growth rates obtained from the TRI stability problem

(3.18) for 3 ⩽ 𝑙 ⩽ 30 (and 𝑝 = 0) with those computed from the Floquet eigenvalue problem

for the same 𝑙 and 𝜖 = 10−4. TRI provides an excellent approximation near the onset of

instability (𝜖 ≪ 1), and for 𝑙 ≳ 10 the TRI growth rate (3.23) is already very close to the PSI

limit (4.4).

It was argued in §5 that in the short-scale limit (𝜇 = 𝐻/(π𝑙) ≪ 1) PSI applies if

𝛼 = 𝜇/𝜖 ≫ 1, but when 𝛼 = O(1) it is replaced by broadband instability. As a check of this

theoretical prediction, figure 2 plots as a function of 0 < 𝛼 < 5 the growth rate predicted by

the eigenvalue problem (5.19) (with 𝑠 = 0 and the upper sign which applies to 𝜅0 > 0) that

pertains to PSI and broadband instability, together with numerical results computed from

the Floquet problem for the same range of 𝛼 and various 𝜖 . Specifically, for 𝜖 = 10−4, 10−3

and 3 × 10−3, the computed growth rates are well approximated by PSI when 𝛼 ≳ 2, but

for 𝛼 less than about 1.5 the growth rate exhibits a sharp drop and the instability is severely

suppressed. Furthermore, for these 𝜖 the theoretical predictions based on (5.19) are in good

quantitative agreement with the numerical computations. For the relatively larger value of

𝜖 = 6 × 10−3, when 𝛼 is decreased the growth rate behaves in a similar manner as for the

smaller 𝜖 , but there is only qualitative agreement between theoretical and numerical results.

The stabilisation of PSI in figure 2 is caused by the terms ±𝐷̃/𝛼 in the eigenvalue

problem (5.19) that represent the effect of the Stokes drift of the basic wave (c.f. (5.6)).

This becomes apparent from the relative magnitudes of the interaction coefficients 𝐸̃± and

𝐷̃ in (5.19). Specifically, from (2.7), the mode-1 speed 𝑐1 = 0.0635 so, according to (5.20),

𝐸̃− = 7.89 × 10−4 is much smaller than 𝐸̃+ = −1.25 × 10−1 and 𝐷̃ = 1.25 × 10−1. As

a result, if the effect of the Stokes drift is ignored (by setting 𝐷̃ = 0 in (5.19)), 𝐴0,𝑟 and
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Figure 2. Comparison of theoretical instability growth rate (—) based on the eigenvalue
problem (5.19), as a function of 𝛼 = 𝜇/𝜖 , with numerical results from the full Floquet

stability problem for 𝜖 = 10−4 (◦), 10−3 (□), 3 × 10−3 (⋄) and 6 × 10−3 (△). The dotted
line indicates the PSI limit (4.4).

𝐴1,𝑟+1 practically are coupled to each other only. The multi-mode resonance interaction

thus degenerates to a set of (essentially uncoupled) resonant triads (−∞ < 𝑟 < ∞) and the

dominant instability arises for 𝑟 = 0, which recovers PSI.

For the dimensional scales chosen here, the (dimensionless) maximum instability growth

rate 𝜎i ≈ 0.12𝜖 in figure 2 translates to an e-folding time of roughly 5 × 10−2/𝜖 days. As an

example, taking 𝜖 = 3 × 10−3, which corresponds to 𝑈∗ = 12 cm s−1 for the peak horizontal

velocity of the mode-1 basic state, this e-folding time is 16 days — about twice the estimate

found by Young et al. (2008) for near-inertial PSI.

As discussed in §5, the transition from PSI to broadband instability is associated with the

broadening of the Floquet mode spectrum as the disturbance scale controlled by 𝜇 is decreased

for given 𝜖 . This is illustrated in figure 3, which shows the relative magnitudes of the Fourier

coefficients 𝐵𝑚, 𝑗 in (6.1) for 𝜖 = 10−3 and three values of 𝑙 = 3 (𝜇 = 2.12× 10−2 , 𝛼 = 21.2),

𝑙 = 38 (𝜇 = 1.68× 10−3 , 𝛼 = 1.68) and 𝑙 = 100 (𝜇 = 6.37× 10−4 , 𝛼 = 0.637). For 𝛼 = 21.2

(figure 3a), 𝐵0,𝑙 and 𝐵1,𝑙+1 are clearly dominant, as expected in TRI. For 𝛼 = 1.68 (figure

3b), 𝐵0,𝑙 and 𝐵1,𝑙+1 are still dominant in keeping with PSI, but the neighbouring Fourier

coefficients 𝐵−1,𝑙+1 and 𝐵2,𝑙 associated with the frequency components ±3𝑐𝑛/2 (in the rest

frame) as well as 𝐵0,𝑙+2 and 𝐵1,𝑙−1 are starting to gain strength. Finally, for 𝛼 = 0.637 (figure

3c), the PSI assumption is no longer valid as several Fourier coefficients are of comparable

magnitude to 𝐵0,𝑙 and 𝐵1,𝑙+1; this transition to a ‘broadband’ spectrum is accompanied by a

significantly reduced growth rate relative to PSI for 𝛼 ≲ 1 (figure 2).

7. Concluding remarks

We made a systematic stability analysis of internal gravity wave modes in a stratified fluid

layer bounded by rigid walls. The temporal stability of Floquet modes is governed by an

eigenvalue problem that involves an infinite system of differential equations subject to inviscid

conditions on the walls. Examining this problem in the limit of small basic-state amplitude

(𝜖 ≪ 1) shows that the onset of instability is triggered by perturbations that form resonant
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(a) (b) (c)

Figure 3. Relative magnitudes of Fourier coefficients 𝐵𝑚, 𝑗 in (6.1), normalised by the

coefficient of largest magnitude, for 𝜖 = 10−3. (a) 𝛼 = 21.2 (𝑙 = 3); (b) 𝛼 = 1.68 (𝑙 = 38);
(c) 𝛼 = 0.637 (𝑙 = 100).

triads with the underlying wave mode, and the associated O(𝜖) growth rate is determined

by the 2 × 2 eigenvalue problem (3.18). Generally, the resonant triad conditions (cf. (3.10))

require that the (horizontal) wavevectors and the frequencies of the perturbations sum up to

the wavevector and frequency of the underlying wave mode, consistent with Thorpe (1966).

The case of uniform background stratification (constant 𝑁) is exceptional, as the modal

numbers of the perturbations also need to satisfy the constraint (3.27) for triad resonance

instability (TRI) to be possible.

A particular case of TRI, where resonant triads comprise fine spatial-scale perturbations

with half the basic wave frequency, is the so-called parametric subharmonic instability (PSI).

Owing to its potential geophysical significance, PSI has attracted considerable interest in

the context of sinusoidal plane waves and finite-width beams in an unbounded, uniformly

stratified fluid. In an effort to understand the role of PSI for propagating internal wave modes

in a waveguide setting, we studied the Floquet eigenvalue problem for a small-amplitude basic

wave mode (𝜖 ≪ 1) subject to short-scale (𝜇 ≪ 1) disturbances, assuming for simplicity

constant 𝑁 background stratification. Our analysis reveals that the nature of the instability

mechanism in this joint limit hinges on the perturbation scale, controlled by 𝜇, relative to the

basic-state amplitude 𝜖 : PSI applies only when 𝜖 ≪ 𝜇 ≪ 1 (𝛼 = 𝜇/𝜖 ≫ 1); as 𝜇 is further

decreased for fixed 𝜖 , higher-frequency perturbations than the two subharmonics at half the

basic-wave frequency come into play, and when 𝛼 = O(1) Floquet modes feature broadband

spectrum.

A similar situation was encountered in a recent Floquet stability analysis of finite-width

wave beams (Fan & Akylas 2021), which confirmed an earlier claim (Onuki & Tanaka 2019)

that the broadening of the Floquet-mode spectrum is due to the advection of the perturbation

by the underlying wave beam. Furthermore, by riding on a frame moving with the beam

velocity field, Fan & Akylas (2021) ‘factored out’ this advection effect and revealed a novel

instability which features broadband frequency spectrum. Following an analogous approach,

switching to the ‘streamline coordinates’ (5.1) enabled us to factor out the advection due to

the underlying-mode velocity field and obtain the eigenvalue problem (5.19) which pertains

to the broadband regime 𝛼 = O(1).

Unlike the broadband instability of a wave beam, which is of the resonant triad type after

the advection effect has been removed, the instability mechanism found here for 𝛼 = O(1) is

a multi-mode resonance. This fundamental difference is reflected in the eigenvalue problem

(5.19), which involves infinite number of mode amplitudes. In particular, the interaction

terms in (5.19) that account for the effects of the O(𝜖2) Lagrangian mean flow due to the
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Stokes drift (5.6) of the basic mode, are responsible for the sharp drop of the instability

growth rate below the PSI limit when 𝛼 is less than about 1.5 (figure 2).

Based on the results presented in §6, the broadening of the Floquet-mode spectrum as 𝛼 is

decreased (figure 3) has a strong stabilizing effect that provides a short-scale cut-off to PSI.

A similar cut-off effect for 𝜇 ≪ 1 would be expected due to viscous dissipation, given that

the viscous decay rate of internal waves is O(𝜈/𝜇2) where 𝜈 is the inverse Reynolds number

(e.g. see Lighthill 1978). While viscous effects would be dominant in a laboratory setting,

the inviscid mechanism discussed here would prevail in a nearly inviscid environment where

𝜈/𝜇2 ≪ 𝜖 ; i.e., 𝜈 ≪ 𝜖3 for 𝛼 = O(1). Assuming a kinematic viscocity 𝜈∗ = 10−6 m2 s−1 and

taking 𝜖 = 10−3, this condition is met for the oceanic scales chosen in §6.
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Naz. Lincei Rend 6, 814–819.

Fan, B. & Akylas, T.R. 2021 Instabilities of finite-width internal wave beams: from Floquet analysis to
PSI. J. Fluid Mech. 913.

Haberman, R. 2012 Applied partial differential equations with Fourier series and boundary value problems,
5th edn. Pearson.

Hibiya, T., Nagasawa, M. & Niwa, Y. 2002 Nonlinear energy transfer within the oceanic internal wave
spectrum at mid and high latitudes. J. Geophys. Res. Oceans 107 (C11), 28–1.

Joubaud, S., Munroe, J., Odier, P. & Dauxois, T. 2012 Experimental parametric subharmonic instability
in stratified fluids. Phys. Fluids 24 (4), 041703.

Karimi, H.H. & Akylas, T.R. 2014 Parametric subharmonic instability of internal waves: locally confined
beams versus monochromatic wavetrains. J. Fluid Mech. 757, 381–402.

Karimi, H.H. & Akylas, T.R. 2017 Near-inertial parametric subharmonic instability of internal wave
beams. Phys. Rev. Fluids 2 (7), 074801.

Lighthill, J. 1978 Waves in fluids, 1st edn. New York: Cambridge University Press.

Long, R.R. 1953 Some aspects of the flow of stratified fluids: I. a theoretical investigation. Tellus 5 (1),
42–58.

MacKinnon, J.A. & Winters, K.B. 2005 Subtropical catastrophe: Significant loss of low-mode tidal energy
at 28.9°. Geophys. Res. Lett. 32 (15).

Martin, S., Simmons, W. & Wunsch, C. 1972 The excitation of resonant triads by single internal waves.
J. Fluid Mech. 53 (1), 17–44.

McLean, J.W. 1982 Instabilities of finite-amplitude water waves. J. Fluid Mech. 114 (1), 315–330.

Mied, R.P. 1976 The occurrence of parametric instabilities in finite-amplitude internal gravity waves. J.
Fluid Mech. 78 (4), 763–784.

Onuki, Y. & Tanaka, Y. 2019 Instabilities of finite-amplitude internal wave beams. Geophys. Res. Lett.
46 (13), 7527–7535.

Staquet, C. & Sommeria, J. 2002 Internal gravity waves: from instabilities to turbulence. Annu. Rev. Fluid
Mech. 34, 559–593.



22 T. R. Akylas and Christos Kakoutas

Sutherland, B.R. & Jefferson, R. 2020 Triad resonant instability of horizontally periodic internal modes.
Phys. Rev. Fluids 5 (3), 034801.

Thorpe, S.A. 1966 On wave interactions in a stratified fluid. J. Fluid Mech. 24 (4), 737–751.

Thorpe, S.A. 1968 On the shape of progressive internal waves. Philos. Trans. Royal Soc. A 263 (1145),
563–614.

Varma, D. & Mathur, M. 2017 Internal wave resonant triads in finite-depth non-uniform stratifications. J.
Fluid Mech. 824, 286–311.

Yih, C.-S. 1974 Progressive waves of permanent form in continuously stratified fluids. Phys. Fluids 17 (8),
1489.

Yih, C.-S. 1979 Fluid mechanics : a concise introduction to the theory, corrected edn. Ann Arbor, Michigan:
West River Press.

Young, W.R. & Jelloul, M.B. 1997 Propagation of near-inertial oscillations through a geostrophic flow. J.
Mar. Res. 55 (4), 735–766.

Young, W.R., Tsang, Y.-K. & Balmforth, N.J. 2008 Near-inertial parametric subharmonic instability. J.
Fluid Mech. 607, 25–49.


	Introduction
	Floquet stability problem
	Triad resonance instability
	Resonant triads
	TRI eigenvalue problem
	The case N=1
	Comparison with Joubaud et. al. (2012)

	Short-scale disturbances
	Parametric subharmonic instability
	Beyond PSI

	Broadband instability
	Streamline coordinates
	Floquet stability analysis
	Eigenvalue problem for =O(1)

	Numerical results
	Concluding remarks

