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Abstract— In human-robot collaboration, robot errors are
inevitable—damaging user trust, willingness to work together,
and task performance. Prior work has shown that people
naturally respond to robot errors socially and that in social
interactions it is possible to use human responses to detect
errors. However, there is little exploration in the domain of non-
social, physical human-robot collaboration such as assembly
and tool retrieval. In this work, we investigate how people’s
organic, social responses to robot errors may be used to enable
timely automatic detection of errors in physical human-robot
interactions. We conducted a data collection study to obtain
facial responses to train a real-time detection algorithm and a
case study to explore the generalizability of our method with
different task settings and errors. Our results show that natural
social responses are effective signals for timely detection and
localization of robot errors even in non-social contexts and that
our method is robust across a variety of task contexts, robot
errors, and user responses. This work contributes to robust
error detection without detailed task specifications.

I. INTRODUCTION

Unmanaged robot errors are harmful to human-robot col-
laboration. These errors present a safety concern, damage
task performance, and erode users’ trust and willingness
to continue that cooperative partnership [1], [2]. The first
step towards successful error management is timely error
detection, which is key to enabling error mitigation and
recovery [3]. While prior research has explored various
methods for error detection, these methods tend to be task
dependent and are not adaptable to other contexts or unex-
pected errors [4]. However, robot errors can be unexpected
and independent of task, situation, and user [5].

To enable automatic detection of robot errors that may
occur in varying contexts, we build on prior work [6] and
explore how social signals may be an indicative source for
automatic error detection. Though prior work has shown that
human collaborators are likely to exhibit social signals due to
errors’ unexpectedness [7], most research has been situated in
social contexts using a social robot (e.g., [8], [9], [10]). It is,
however, unclear whether this social signal-based approach
to robot error detection would work for a non-social robot
(e.g., a manipulator) interacting with people in a non-social
setting (e.g., task demonstration).

In this work, we explore how Action Units (AUs)—
individual muscular movements as defined in the Facial
Action Coding System [11]—may be used for automatic,
timely detection of robot errors in non-social contexts. To this
end, we first conducted a data collection study in which robot
errors were intentionally produced to elicit natural social
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Fig. 1. In this work, we investigate the use of human response (action
units) to detect unexpected robot errors in non-social interaction scenarios.
Our approach works over a diverse array of tasks, errors, and responses.

responses from participants (Fig. 1). The collected data was
then used to train a machine learning model for detection
and temporal localization of robot errors. We additionally
conducted a case study with a different set of participants
experiencing different types of robot errors in various con-
texts to explore the generalizability of our approach. Our
results indicate that AUs can be advantageously used for
timely detection and temporal localization of unexpected
robot errors and that our data-driven model can reasonably
generalize its effectiveness to different settings and error
types. Our work makes the following set of contributions:

• We show that it is possible to detect robot errors using
social signals, especially AUs, in non-social, physical
interaction scenarios.

• We develop a real-time human-in-the-loop error detec-
tion system, using the human collaborator as part of the
detection process.

• Our approach shows its effectiveness beyond its training
setting and generalizes to different contexts and errors.

II. BACKGROUND AND RELATED WORK

Robotic systems often make unavoidable technical and
unexpected errors. For example, Nourbakhsh et al. deployed
three mobile robots in museums over five years and found
that the mean time between failures was about 72 to 216
hours; it was difficult to increase the time between errors be-
yond that [12]. Robot errors harm robot performance, which
impacts user trust [13] and the intensity of that negative effect
is dependent on the error severity and quantity [14], [15].
Furthermore, robot errors are dependent on the individual’s
perception and how a robot’s behavior deviates from the
individual’s mental model of the robot [16].
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A. Social Responses to Robot Errors

People respond socially to robot errors [9], [17]. More-
over, humans exhibit more behaviors during error-occurring
situations than error-free ones [17]. In particular, gaze [8],
[18], [19], facial expressions [9], verbalizations [8], and
body movements [7], [8], [20] have been shown to be
common instinctive responses to robot errors. Much of this
prior work was contextualized in social scenarios and relied
on participants’ existing expectations of robots during the
interactions. Furthermore, the robots used in prior works
typically were humanoid, which could have impacted the
elicited responses [19]. Our preliminary work indicates that
people exhibit social signals in response to robot errors even
during physical human-robot interaction scenarios [6].

B. Error Detection Using Social Signals

To the best of our knowledge, there has been one system
built utilizing social signals to detect social errors automati-
cally. Kontogiorgos et al. showed that—with a collection of
head, body, gaze, AU, and verbal tracking—it is possible to
both automatically detect and classify certain types of social
errors during conversational failures with a social robot [8].
However, little is known about how social signal responses to
robot errors may enable automatic error detection in phys-
ical human-robot interactions, such as a robot manipulator
committing technical task errors.

III. MODELING USER RESPONSE TO ROBOT ERRORS

In this work, we investigated whether it is possible to
detect unexpected robot errors during physical interactions
with a non-humanoid robot using facial action units (AUs).
Our investigation consisted of (1) a data collection study to
understand how people’s AUs may manifest in response to
technical robot errors in a non-social setting and (2) a data-
driven model to allow for timely detection and localization
of robot errors based on observed AUs.

A. Data Collection

Our data collection study was contextualized in a program-
ming by demonstration (PbD) scenario in which participants
provided task demonstrations through kinesthetic teaching
using a Kinova Gen3 robot arm. This setup allowed par-
ticipants to establish accurate mental models of the robot’s
capabilities and treated the participants as the task “experts,”
similar to real-world applications. Throughout the study, a
real-time data collection system logged facial AUs exhibited
by participants in response to robot movements and errors.
In addition, the experimenter was not in the room with the
participant during our study except to introduce the task
and the PbD interface as the presence of an experimenter
has been shown to increase implicit social signal quantity
expressed [7].

1) Study Task: Before the actual data collection, par-
ticipants completed a practice task, seeking to reduce any
possible novelty effect associated with the robot moving,
thereby leveling out participants’ reactions to “normal” robot
movements. The practice task, similar to the actual task,

involved picking and placing wooden blocks with the robot
executing the task without errors (see practice task in Fig. 2).
Participants had the option to repeat the practice task until
they were confident that they could program the robot and
that the robot executed what they programmed.

For the actual data collection (see Fig. 2 for training and
actual task workflow), participants were asked to “program”
the robot to unpack two pasta boxes from a crate and place
each of them in predefined locations on a table. The robot
was “trained” with one of the boxes and executed the pick-
and-place with both. The box the robot trained with was
placed first without error before the robot “generalized” and
performed a pick-and-place with the other box. During the
execution of the second box’s pick-and-place, we inserted a
pre-programmed error—the robot dropping the box before
it reached its goal—for the participant to observe and react
to. Unbeknownst to the participants, their robot’s training
had no effect on the robot’s behavior as its movements were
pre-programmed by the experimenter.

2) Study Procedure: After consenting to partake in the
study, participants were informed about the task and taught
how to program the robot. The participants then conducted
the practice task. Once done, the experimenter confirmed
participants’ confidence in programming the robot and intro-
duced the actual task. The actual task included the drop error
embedded in robot execution. After the task, participants
were asked to fill out a questionnaire about whether they
witnessed an error, its severity, and basic demographics. The
experimenter then debriefed the participants and informed
them of the involved deception. The study lasted about
30 minutes and was approved by our institutional review
board (IRB). Participants were compensated $8 for study
completion.

3) Study Systems: In support of our data collection, we
developed two systems to allow the experimenter to (1)
operate the robot as in a Wizard of Oz (WoZ) paradigm [21]
and track the study progress from a different room and
(2) collect video and AU data. The first system was a
PbD interface which served as a simulated programming
environment, provided a sequence of instructions to the
participants, and allowed the experimenter to oversee the task
status for WoZ operations. The second system logged user
AUs while the robot carried out tasks. Below, we provide
detailed descriptions of the two systems.

A Simulated Programming System. We created a 2D Unity
application to increase the realism of our PbD scenario,
hoping to lead participants to believe that they were actually
programming the robot even though all of the robot’s actions
were actually pre-programmed. As a simulated programming
system, the Unity application walked participants through a
sequence of task steps. For the PbD portion of the task, the
application provided the user a UI to add/delete waypoint
and gripper commands as they kinethestically programmed
the robot through the pick and place motions. On subsequent
steps, the application informed participants about the task
layout, robot movements, and then robot task execution. In
addition, as the user progressed through the task steps, the



Practice Task Training Task Actual Task
Practicing with
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Fig. 2. Data collection study workflow. The practice task had the robot pick-and-place blocks from pre-designated positions, which was comparable to
the actual task. Participants worked with the robot to train it in a pick-and-place task and then have it execute unpacking boxes from a crate. Participants
kinethestically demonstrated to and programmed the robot by waypoint, using Box 1, the pick-and-place task needed to execute the actual task (Training
Task). For the actual task, the robot executed a grocery unpacking task. The robot first unpacked Box 1 and then simulated the generalization to unpack
Box 2, during which it dropped the box (pre-programmed error).

application sent the experimenter relevant signals for WoZ
operations (e.g., when to trigger robot movements and turn
on the data collection system).

A Data Collection System. We constructed a data col-
lection system (Fig. 3) that took in live video (30fps) and
processed it in real-time to log AU occurrence and intensity
for each timestep, where a timestep was 1/3 second. Our
system was built on top of Microsoft’s Platform for Situation
Intelligence (\psi) [22], which allowed us to synchronize
multiple device inputs to a common time base, collect data,
and add our real-time detection algorithm. We used Open-
Face [23] to extract 17 AUs. To allow the participants to have
full freedom of body and head movement around the robot
during the study, our system took input from two cameras
strategically placed such that the system could maximize
facial detection confidence regardless of participant position.
The system then simultaneously stored the recordings and
piped the videos to two instances of our AU detection com-
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Fig. 3. Diagram of the real-time data collection platform. The bolded
lines and box show how the error detection algorithm is integrated into the
platform for the case study.

ponent, one for each camera. These components computed
AU occurrences and intensities, along with facial detection
confidence. At each time step, the data from the component
with higher facial detection confidence was logged. If neither
components’ facial detection confidence was above 50%,
then the AU calculation was considered inaccurate and zeros
were logged for the AU metrics.

4) Participants: Twenty-three participants were recruited
for the study. Among all the participants, two participants
exhibited strong robot novelty effects despite the practice
task (i.e., consistently reacting to the robot picking up an
object) and two exhibited no visible reaction to the robot
errors. We considered these four participants special cases
and did not include them in training our detection algorithm;
however, we included an evaluation of our algorithm on these
cases. Consequently, the resulting training data consisted of
11 females and 8 males with ages ranging from 18 to 39
(M = 23.4, SD = 4.6). Participants’ experience with robots
and technology was assessed through three questions on a
5-point scale (Cronbach’s α = 0.83); they had low-medium
prior experience, M = 2.93, SD = 0.89.

5) Dataset: In total, we amassed 25.05 min of video
of which 3.03 min consisted of participants’ responses to
the drop error through this data collection study. All 23
participants said that they did witness an error; however,
two of them had no visible reaction. On average, the
drop error’s severity was evaluated as medium-high severe,
M = 4.91, SD = 1.70, with 1 being low and 7 is high
severity. In addition, we had each participant rate to what
extent they thought the error was their fault as a metric
to determine participant’s confidence in programming the
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Fig. 4. Diagram of our detection algorithm. The input is the AU intensity of each timestep and the output, when the error is detected, is the timestep
of error detection and the algorithm’s estimated error start. Phase 1 consists of a 2-layer neural network that classifies each frame and the output of that
is weighted by the softmax probability (classification confidence). The weighted classifications (no error: 0, error: ≥ 0.5 and ≤ 1) are the inputs for the
sliding window of size 3.67s. If the window’s convolution is greater than or equal to 6, then an error has been detected. The algorithm then traces back
through the window to find the earliest timestep that is marked as an error and denoted as the estimated error start.

robot and perception of their mental model of the robot’s
capabilities. Across all participants, they minimally blamed
themselves for the error, M = 2.00, SD = 1.12.

In addition, two independent coders annotated the videos
frame by frame to help quantify human response to robot
errors in terms of reaction time and duration (See Fig. 5 for
a visual representation):

• Human Reaction Time (seconds). This metric quanti-
fies how fast a participant reacted to the robot’s error.
It is defined as the difference between user reaction
start and perceived error start. The user reaction start
is defined as the time in which the first sign of any
visible change in a participant’s face happened. The
perceived error start time is defined as when the coder
was completely certain that the error was occurring,
because some errors were slow to unfold. The average
reaction time of the participants to the error was 0.5s
(SD = 0.68).

• Human Reaction Duration (seconds). This metric
quantifies how long a participant reacted to the robot’s
error. It is defined as the difference between user reac-
tion start and user reaction end—when the participant’s
face/behavior returned to their norm as seen through
video. The average reaction duration was 11.78s (SD =
7.08).

We further examined if AU intensities during error and
no-error instances were significantly different. Since we had
heavily imbalanced data for error and no-error instances and
potential unequal variance in the corresponding intensities,
we used Welch’s t-tests to compare the AU intensities. Our
analysis revealed that there was a statistically significant
difference in intensities between error and no-error frames
for 16 action units, except for AU 4 (brow lowerer), illus-
trating the discriminative potential of AUs in characterizing
the manifestation of an unexpected robot error.

B. Modeling Action Units for Error Detection

We designed an algorithm that capitalizes on the discrim-
inative potential of AUs to detect and localize unexpected

robot errors. Rather than building a “complete” error detec-
tor, our goal in this work is to explore the possibility of
automatic recognition of robot errors using facial cues in
non-social settings. We, however, explored various modeling
methods including bidirectional LSTM, anomaly detection
using an autoencoder, and SVM. Ultimately, due to the small
size of our dataset and large imbalance in error versus non-
error instances, we chose a simple, yet sufficiently robust
method. Our detection algorithm takes 17 AU intensities as
inputs at each timestep and outputs the timestep number at
which an error is detected. The detection algorithm consists
of two phases: (1) weighted binary classification and (2)
sliding window filtering (Fig. 4).

Phase 1: Weighted Binary Classification. At each time
step, 17 AU intensities are fed into a two-layer neural
network (input: 17, hidden: 4, output: 2) that conducts
timestep-by-timestep classification of participant expressions
and outputs a binary classification of error versus no error.
In training this binary classifier, we accounted for the large
imbalance in the number of error versus error-free timesteps
by randomly undersampling the error-free timesteps every
training epoch so that their counts matched those of the error
timesteps. Moreover, each time step was treated as its own
data point, and the temporal dimension was not preserved;
this decision was made in part because of the small size
of the training dataset. Two independent coders annotated
ground truth for each time step. The classification output
from the network was then weighted by the classification
confidence (softmax probabilities) and then summed to min-
imize the impact of out-of-distribution samples and misclas-
sifications; prior work has shown this weighted approach to
be effective [24].

Phase 2: Sliding Window Filtering. To reduce spurious er-
ror classifications (e.g., any quick movements the participants
made such as twitch), we employed a sliding window filter
after the weighted binary classification. The sliding window
was 3.67s long which translates to 11 timesteps. As every
new weighted classification (ranging from 0 to 1 with 0 being
no error) at each timestep was outputted, the window slid



In this example, detection delay is negative
showing that our algorithm identified an error
before it was fully manifested
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Fig. 5. Case study example of one participant’s reaction to and our algorithm’s error detection of a sorting error. The participant reacted to the error
before the coder’s perceived error start and so our algorithm was able to detect the error before then. The blue represents the coded timesteps (left to right):
start reaction, perceived error start, and end reaction. The yellow indicates (left to right): our algorithm’s estimated error start and robot error detected.

over by one timestep to include the most recent output. If
the convolution of the window was at least 6 (empirically
tuned), then the algorithm outputted that a robot error had
occurred.

When an error was detected, we considered the estimated
error start as the earliest timestep in the window that
was classified as an error and the detected error timestep
as the newest timestep of the latest error classification. If
the estimated error start or detected error timestep was
within one timestep of a previously detected error timestep,
then the present error was considered part of the former
error. We integrated this two-phase detection algorithm into
our data collection system (Fig. 3) with AU intensities at
each timestep inputted into the algorithm in real time. In
production, our detection system could be run in real-time.

C. Model Evaluation

Typical ML metrics, such as accuracy and F1-score, are
not representative of this algorithm’s performance for two
reasons: (1) errors are sparse in our dataset and (2) the
classification accuracy of individual time step classification
is not as important as sequential clustering of error time
steps. Therefore, in evaluating our algorithm performance,
we focused on the following metrics (See Fig. 5 for a visual
representation):

• Algorithmic Detection Delay (seconds). This metric
measures the root mean squared error of the delay
between algorithmic error detection and perceived error
start (as annotated by independent coders).

• Reaction Time Difference (seconds). This metric rep-
resents the robot mean squared error of the time dif-
ference between algorithmic error detection and coded
user reaction start.

• Internal Decision Delay (seconds). This metric com-
putes the average difference between the algorithm’s
detected error timestep and estimated error start.

• False Positive Rate. This metric quantified the average
number of false positives logged per trial. A false posi-
tive is defined as when the algorithm’s output timesteps

(detected error timestep and estimated error start) do
not overlap with the coded participant’s reaction to the
robot error.

We used leave-one-out cross validation with the collected
data to evaluate the family of models used (feasibility of
detecting errors), which allowed for a comprehensive eval-
uation of the model and also tested for overfitting due to
the small size of the data sets. Our error detection and
localization algorithm had an average algorithmic detection
delay of 3.25s and a reaction time difference of 3.10s.
The system’s internal decision delay was on average 2.37,
SD = 0.50. In addition, the false positive rate was 0.61 per
trial, SD = 0.78, and false negative rate was 0 per trial.
Table I summarizes results of our system evaluation.

IV. REAL-TIME ERROR DETECTION AND
MODEL GENERALIZATION

To explore how well our method for real-time error
detection generalized to different tasks and error types, we
ran a case study evaluating our algorithm against different
tasks and errors than the data collection study.

A. Task and Procedure

We contextualized our case study in a sorting task, where
participants demonstrated to the robot how to sort PVC pipes
and joints into differently labeled bins. Similar to the data
collection study, participants were given a practice task (sort-
ing blocks by color) to familiarize themselves with the robot
and the programming system. The task allowed participants
to establish an understanding of the robot’s capabilities to
pick and place objects. In addition to demonstrating pick-
and-place operations, we had the participants “teach” the
robot the concept of sorting by having them show the robot’s
wrist cameras the object and placing it in the appropriate bin.
The programming and teaching did not effect the robot’s
behavior; the robot errors were again pre-programmed.

For the main task, each participant experienced three
different errors in three interaction rounds, where each round
consisted of sorting three different objects into bins. In each



TABLE I
SUMMARY OF RESULTS FOR THE TWO COLLECTED DATASETS. THE GRAYED ROWS IN THE TABLE SHOW AN ADDITIONAL ANALYSIS OF THE CASE

STUDY DATASET AS BROKEN DOWN BY ERROR TYPE.

Model Training
Dataset

Case Study
Dataset

Human
Reaction Time

Human
Reaction Duration

Algorithmic
Detection Delay

Reaction Time
Difference

Internal Decision
Delay

False Positive
Rate

False Negative
Rate

0.50 ± 0.68 11.78 ± 7.08 3.25 3.10 2.37 ± 0.50

-0.02 ± 2.21 10.09 ± 5.57 5.98 5.95 2.64 ± 0.67 0.40 ± 0.51 0.27 ± 0.44
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TABLE II
THREE ERROR CATEGORIES EXPERIENCED BY PARTICIPANTS DURING

THE CASE STUDIES OF WHICH EACH HAS TWO POSSIBLE ROBOT ERRORS.

Physical

Concept

Generalization

Error Type Description
Dropping the object
Hitting the sorting bin with the object

Sorting the object incorrectly
Misplacing an object outside the target bin

Missing a pick by not extrapolating to object
Missing a pick with wrong gripper orientation

round, the participant programmed the robot with only one
of the objects, and the robot “generalized” to the other two
objects when executed. In order to reset the participant’s
mental models between each round, we had them “add” onto
the original robot program by programming the robot again
with the object it just had made a mistake with. That object
was then the first sorted by the robot in the following round
to confirm successful program (i.e., reset mental model).

Participants were randomly assigned errors from three
categories (physical, concept, and generalization errors), one
from each in a random order. Table II lists the possible
errors the participants could witness, the majority differing
from the error seen in the data collection study. These
error categories were chosen to represent the three aspects
of the task: the robot was “programmed” for a pick-and-
place (physical), was taught the notion of sorting into bins
(concept), and extrapolated those two lessons towards new
objects (generalization). All of the errors, except for the drop
error, are considered to be predictable errors meaning that the
errors initially make slow perceptible changes in trajectory
before they fully unfold.

For this case study, the error detection algorithm, only
trained on the data from the data collection study, was
integrated into the data collection system (Fig. 3); the AUs
were directly piped to the detection algorithm to allow for
indication of when robot errors happened based on human
reaction in real time. The overall procedure for this case
study was comparable to that in the data collection study.

This study lasted around one hour and participants were
compensated $16.

B. Participants

Five participants (three female and two male) were re-
cruited for this case study. Their ages ranged from 22 to 29
(M = 25.2, SD = 3.11) and had medium prior experience
with technology and robots, M = 3.00, SD = 0.85.

C. Case Analysis

The case study dataset consisted of 23.47 min of robot
interaction video, where 2.61 min involved facial reactions
to errors. The average error severity (1 is low and 7 being
high severity) for all errors rated by the participants was
medium severe (M = 4.33, SD = 1.60) where physical
(M = 4.00, SD = 2.00), concept (M = 3.80, SD = 1.48)
and generalization (M = 4.60, SD = 0.55) errors were
all considered medium severe. All participants confirmed
that they saw the robot make an error and attributed low
blame (1 being low and 7 is high blame) to themselves,
M = 3.00, SD = 1.85.

On average, the human reaction time was 0.02s before
coded perceived error start, SD = 2.21, indicating that the
participants reacted before the error was fully manifested.
The average human reaction duration was 10.09s, SD =
5.57. When we look at participants’ reactions to the different
error types (Table I), we see that, on average, participants
reacted to concept errors before the perceived error start
and the human reaction duration for the generalization errors
were longer than that of for physical and concept errors.
Furthermore, we ran the best resulting model, only trained on
the data collection dataset, with the case study data as a test
set (generalizability of use cases). The algorithm detected,
in real-time, errors with an algorithmic detection delay of
5.98s and a reaction time difference of 5.95s. It had an
internal decision delay of 2.64s, SD = 0.67. In addition,
the false positive rate was 0.40, SD = 0.51, and a false
negative rate of 0.27, SD = 0.44. If we were to separate
the model’s evaluation by error type, the results reveal that
the algorithm was able to timely detect the physical and
concept errors but was delayed about twice as long as for



Reacting to 
positive robot action

Reacting to 
negative robot action

Robot placed a task item successfully Robot hit the target bin with a task item

Fig. 6. Example of similar reaction to positive and negative robot actions.
The left image (positive robot action) shows the robot moving away from
a bin after it properly and correctly placed a pipe in it. The right image
(negative robot action) shows the robot making an error by pushing the
same bin with the same pipe.

detecting generalization errors. See Table I for a summary
of the statistics for this dataset.

V. DISCUSSION

In this paper, we demonstrate leveraging natural human
response to unexpected robot errors to automatically detect
them in real-time. Our results show that it is possible
to detect and temporally localize errors within reasonable
accuracy and timeliness using AUs and that this algorithm
can be generalized to a different task and to different types of
errors. More importantly, this approach is not person-specific.

A. Error Detection Through Social Responses

Robot errors likely and immediately elicit social responses.
Of all 28 participants in both studies, only two did not have
visible reactions to errors. In addition, participant reaction
times were, on average, within a second of the perceived
error start for both studies. By relying on implicit, social re-
actions to recognize robot errors, our approach does not lose
noticeable time to “wait” for the user’s explicit responses, as
evidenced by algorithmic detection delay and reaction time
difference, which are within 0.15s of each other. On the flip
side, our approach in principle is only as fast as detectable
social responses.

However, if the error is predictable by the human—
namely if the error causes gradual noticeable deviations in
behavior/trajectory before it fully unfolds—it is possible for
the person to observe and react before the perceived error
start. In our case study, some errors were predictable, and
when examining participants’ reaction times to predictable
vs. non-predictable errors, we found that, on average, they
reacted before the perceived error start for predictable errors,
M = −0.03, SD = 2.38, and after for non-predictable errors
M = 0.33, SD = 0. Thus, the algorithm has the ability to
take advantage of the early reaction and indicate that the
robot is making a mistake before the perceived error start.
Fig. 5 illustrates an example of such a detection.

B. Reliability, Customizability, and Generalizability

All of our results were consistent despite the fact that
no two participants reacted the same, even when the errors
were the same. Localization and detection of the robot error
for our data collection study was 3.25s delayed; for the
case study, the algorithmic detection delay was 2.73s longer
as compared to the data collection study. Nevertheless, our
approach was able to reliably detect different types of errors
in situations in which it was not trained.

We explored this discrepancy further by training the al-
gorithm on one of the trials for each person in the case
study, tailoring it to each person, before testing it on the
remaining trials for that person. This fine-tuning improved
algorithmic detection delay and reaction time difference by
0.74s and 0.60s, respectively. These results are similar to
what we see in human-human interaction where people have
a harder time (are less accurate) decoding meaning from
facial expressions with strangers than with friends [25].
Consequently, this finding shows the potential for improving
performance through fine-tuning detection, which would be
useful for longer-term interactions with the same person.

Our algorithm detects large changes in a person’s facial
reactions from their norm and then makes the assumption that
those changes are due to errors. This is, however, not always
the case. Indeed, we observed an average false positive rate
of about 0.51 per trial over both studies. All of the false
positives detected were a consequence of the participants
reacting to different robot actions, such as placing an object
correctly or relief from correct operation after an error.
The algorithm cannot tell the difference between a reaction
due to a positive or negative robot action; it needs context
(Fig. 6). In human-human interaction, facial expressions are
inherently ambiguous without context [26] and the same
facial expressions in different cultures could mean different
things [27]. However, it is important to note that some visible
reactions are not detected as errors by the algorithm.

C. Limitations

One limitation of our approach is that detection can only
occur if the user reacts and within a reasonable time frame.
We tested our algorithm on the two trials from the data
collection study where the participants had no reaction, and
the algorithm failed to detect the errors. On the opposite
side, if the user reacted to everything (mostly due to the
novelty effect), then the algorithm would constantly generate
false positives, as shown by testing our algorithm on two
trials from the data collection study where the participants
exhibited strong novelty effects (false positive rate: M =
2, SD = 0). In addition, the algorithm could not discern
differences between reactions to positive robot actions and
negative robot actions (errors). Another limitation is related
to reliable facial detection. For example, if the individual’s
face is obscured (e.g., by their hand) then our approach
would not be able to detect AUs. Moreover, we found that
if the person were to remove the obstruction, then there
would be a jump in AU intensity, triggering a false positive.
Finally, we had limited datasets; therefore, the algorithm



was not necessarily trained with a fully comprehensive array
of human responses to robot errors. In addition, we were
not able to implement this approach using other modeling
methods that require larger training sets.

D. Implications for Human-Robot Collaboration
Our findings illustrate the feasibility of detecting various

types of errors in different tasks in real-time using natural
responses during human-robot interaction. This work is the
first step towards robust error detection, key to successful er-
ror management. While our approach can detect errors across
different users, it also has the potential to be tailored to an
individual for more accurate error detection and localization.

Future work will focus on fully integrating the algorithm
into an autonomous robotic system that will perform error
recovery after detection. In addition, we look to collect
more data, improve the detection algorithm by exploring
different social signals, and add context to improve the false
positive rate. We should consider how this social signal-
based approach may be used with other error detection
methods to improve detection reliability and flexibility. We
also want to explore automatic classification of error severity
through social signals as that could provide information for
appropriate recovery strategies and help us understand the
impact of those errors.
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