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Abstract. In this article, we study energy decay of the damped wave equa-
tion on compact Riemannian manifolds where the damping coefficient is
anisotropic and modeled by a pseudodifferential operator of order zero.
We prove that the energy of solutions decays at an exponential rate if
and only if the damping coefficient satisfies an anisotropic analogue of
the classical geometric control condition, along with a unique continu-
ation hypothesis. Furthermore, we compute an explicit formula for the
optimal decay rate in terms of the spectral abscissa and the long-time
averages of the principal symbol of the damping over geodesics, in analogy
to the work of Lebeau for the isotropic case. We also construct genuinely
anisotropic dampings which satisfy our hypotheses on the flat torus.

1. Introduction

Let (M, g) be a smooth, compact Riemannian manifold without boundary and
let A, be the associated Laplace-Beltrami operator (taken with the convention
that A, < 0). Suppose W : L?(M) — L*(M) is bounded and nonnegative. We
consider the generalized damped wave equation given by
O2u— Agu~+2Wou =0
(U, atu) |t:O = (u07 Ul),
for (ug,u1)? € # = HY (M) @ L?*(M), where 2 is taken with the natural
norm

(1.1)

1
(a0, un) 15 = 11 = Ag)2uolZ2(ary + lua |22 (ar)-

We study the asymptotic properties of the energy of solutions to (1.1) as
t — oo. Here, the energy is defined by

E(u,t) = %/|Vgu(t,x)|2 + [Opu(t, z)|* dvy(z), (1.2)
M
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where dvg is the Riemannian volume form on M. It is straightforward to
compute that

%E(u, t) = —2Re (Wu, dyu) < 0, (1.3)

where (-, ) denotes the inner product on L?(M, g). Thus, the assumption that
W is a nonnegative operator guarantees that the energy of solutions to (1.1)
experiences dissipation, but (1.3) does not indicate how quickly the energy
decays as t — oo. The most straightforward type of decay is uniform stabi-
lization, i.e., when there exists a constant C' > 0 and a real-valued function
t — r(t) with r(¢t) — 0 as t — oo such that

E(u,t) < Cr(t)E(u,0). (1.4)

It is worth noting that if (1.4) is satisfied, standard semigroup theory implies
that the decay rate r(t) must be exponential.

In the case where W acts via multiplication by a bounded, nonnegative
function b, a great deal is known about energy decay rates. Perhaps the most
well-known result states that solutions to (1.1) experience uniform stabilization
if and only if W satisfies the geometric control condition (GCC) [26,28]. The
GCC is satisfied if there exists some T" > 0 such that every geodesic with
length at least T intersects the set where b is bounded below by some positive
constant. In the setting where the GCC is not satisfied, many other works have
proved weaker decay rates with respect to higher regularity initial data (c.f.
[2-7,21,23]). With more restrictive assumptions on W and M, one can show
that some of these weaker decay rates are in fact sharp (c.f. [1,10,11,14,18,19,
22,30,32]).

A distinct shortcoming of the multiplicative case is that the damping
force is sensitive only to positional information and not to the direction in
which the solution propagates. For this reason, one can classify multiplicative
damping as an isotropic force, but many physical systems which experience
anisotropic damping forces are studied in materials science, physics, and
engineering [8,15,16]. However, a general analysis of the damped wave
equation in the anisotropic case has not yet been done. This article aims to
address this gap in the literature by studying the case where the anisotropic
damping force is modeled by a pseudodifferential operator.

It is common in analysis of the generalized damped wave Eq. (1.1) to
assume that W takes the form of a square, i.e., W = B*B for some bounded
operator B (c.f. [1]). This guarantees that W is nonnegative and enables the
use of certain techniques from spectral theory. We allow for a slightly more
general assumption here, namely that W takes the form

N
W =Y BB,
j=1
for some finite collection {B;}}L, C W,(M), where W% (M) denotes the space

of classical pseudodifferential operators on M of order zero with polyhomoge-
neous symbol expansions (c.f. [33, Ch. 7]). The corresponding space of symbols
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is denoted S (T*M). We note that allowing W to take the form of a sum of
squares is indeed a generalization, as it is not generically possible to write
Z;-V:l B3 B; as B*B for some B € W2 (M), since the pseudodifferential cal-
culus only allows for the computation of square roots modulo a smoothing
remainder. Indeed, even at the level of symbols it is in general not possible
to take a smooth square root of a sum of squares of smooth functions. We
denote by w € S%(T*M) the principal symbol of W, taken to be positively
fiber-homogeneous of degree 0 outside a small neighborhood of the zero section
in T*M. That is, w(z, s§) = w(xz,§) for all s > 1 and all |¢] > ¢ for some ¢ > 0
which can be chosen to be arbitrarily small. This homogeneity allows us to
treat w as a function on the co-sphere bundle

S*M = {(z,&) € T*M : |¢|, = 1}.

We now state the required assumptions for the main theorem. The first is
an anisotropic analogue of the classical geometric control condition, given in
terms of the long-time averages of w over lifted geodesics.

Assumption 1 (Anisotropic Geometric Control Condition). Let ¢; denote the
lift of the geodesic flow to T M. Assume that there exists a compact neigh-
borhood K of the zero section in T*M and constants Ty, c > 0 such that for
every (xo,&) € T*M\K,

T

1

T /w(gat(xo,ﬁo)) dt > ¢, for T >Tp.
0

That is, the long-time averages of w over geodesics are uniformly bounded be-
low. In this case, we say W satisfies the anisotropic geometric control condition

(AGCQ).

Remark 1.1. One can equivalently state the AGCC as requiring that every
lifted geodesic intersects the elliptic set of W in time T < Ty, but the above
characterization is more useful for our purposes. Also, note that in the case
of multiplicative damping, Assumption 1 is equivalent to classical geometric
control condition stated in [28].

The second key assumption requires that the kernel of W contain no
nontrivial eigenfunctions of A,.

Assumption 2. If v € L?(M) satisfies —A, v = A\?v with X # 0, then Wv # 0.

In the case where W = b(x), Assumption 2 is satisfied when b is supported
on any open set, since eigenfunctions of A, cannot vanish on open sets by the
unique continuation principle (c.f. [28]). It is for this reason that we sometimes
refer to Assumption 2 as a “unique continuation hypothesis.”

With these assumptions stated, we then have the following equivalence.

Theorem 1. All solutions u to (1.1) with W € W%, (M) satisfy
E(u,t) < Ce P E(u,0) (1.5)
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for some C, 8> 0 and for all t > 0 if and only if W satisfies Assumptions 1
and 2.

In other words, solutions experience uniform stabilization if and only if W
satisfies Assumptions 1 and 2.

The existing literature on anisotropic damping coefficients is quite lim-
ited. In the context of pseudodifferential W, Sjostrand [29] studied the as-
ymptotic distribution of eigenvalues of the stationary damped wave equation.
Christianson, Schenck, Vasy, and Wunsch [9] showed that a polynomial resol-
vent estimate for a related complex absorbing potential problem gives another
polynomial resolvent estimate of the same order for the stationary damped
wave equation. However, these results do not consider anisotropic damping in a
time-dependent setting and so do not provide energy decay results. Theorem 1
addresses this gap in the literature by providing conditions which guarantee
exponential uniform stabilization, in analogy to the classical result of Rauch
and Taylor [28].

Since Theorem 1 only claims the existence of some exponential decay
rate (3, a natural question is to determine the optimal rate of decay for a given
damping coefficient. Given a fixed W € WY, (M), we define the best exponential
decay rate as in [21] via

o :=sup{B € R: 3C > 0 such that E(u,t) < Ce ""E(u,0) Yu which solve (1.1)}.
(1.6)

Our next result shows that a can be expressed in terms of two fundamental
quantities: the spectral abscissa and the long-time averages of w over lifted
geodesics. The spectral abscissa is defined with respect to the operator

0 Id
Aw = <Ag —2W) ’
which is the infinitesimal generator of the solution semigroup for (1.1). For
each R > 0, we set

D(R) =sup{Re(\) : |A\| > R, X\ € Spec(Aw)}.
We then define the spectral abscissa as

Dy = lim D(R). 1.7
0 RLH(}Jr () ( )

We also define for ¢t € R the time-average of the damping along geodesics

t

Lt)= nf / w(ipa(, £)) ds,

C (@8)esS Mt

and the long-time limit

Lo = lim L(t). (1.8)

t—oo

We can then characterize « as follows.
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Theorem 2. The best exponential decay rate for solutions to (1.1) with W €
WO, (M) is

a =2min{—Dy, L},
where Dy and Ly, are defined by (1.7) and (1.8), respectively.

Remark 1.2. Tt is noteworthy that the optimal decay rate here is an exact
analogy of the multiplicative case studied by Lebeau (c.f. [21, Theorem 2]).
While the broad structure of our proof is similar, there are portions of the
analysis which diverge greatly, particularly in Sect. 2 where we investigate the
action of pseudodifferential operators on Gaussian beams.

Remark 1.3. Theorem 2 is significantly stronger than Theorem 1, although
this is not immediately obvious. The main portion of this article is dedicated
to the proof of Theorem 2. We then show that Theorem 2 implies Theorem 1
in Sect. 5.

Theorems 1 and 2 fit into a broad range of existing results which attempt
to reproduce the equivalence of the GCC and exponential decay under modi-
fied hypotheses on the damping. It is not uncommon for such statements to be
somewhat inconclusive. For example, when the damping is allowed to be time
dependent, [24] showed that for time periodic damping, the GCC indeed guar-
antees exponential decay. In recent work, [20] showed that a generalization of
the GCC implies exponential energy decay for non-periodic, time-dependent
damping, but the converse is not known in either the periodic or non-periodic
case. In the setting where the damping is allowed to take negative values (com-
monly called “indefinite damping”), the state of the art is similarly mixed. If
M is an open domain in R™ with C? boundary, [25] proves an exponential
decay rate provided that the damping is positive in a neighborhood of 9M
(which implies the GCC) and inf, e W () is not too negative. However, it is
currently not known if an appropriate generalization of the GCC is equivalent
to exponential stability in the indefinite case. The limitations of these results
illustrate that seemingly simple changes to hypotheses on the damping coef-
ficient can create substantial barriers to reproducing the classical equivalence
theorem. So, the fact that Theorem 1 provides a direct analogy of the GCC for
pseudodifferential damping which is equivalent to exponential decay is some-
what exceptional. Note also that these other generalizations do not possess an
analogy of Theorem 2. To the authors knowledge, there are no results provid-
ing explicit exponential decay rates for general time-dependent damping on
manifolds, and although [25] provides a rate for the exponential decay in the
indefinite case, it is not shown to be sharp.

Our final result concerns Assumption 2, which is necessary in order to
obtain Theorem 1. To see this, suppose that v satisfies —A 0 = A0 with A # 0
and Wov = 0. Then, the function

u(t,z) = e v(x),
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solves (1.1) with initial data (v,i\v)T, but has energy E(u,t) = )\2””“%2(1\4)
for all t. As previously mentioned, when W is a multiplication operator sup-
ported on any open set, unique continuation results guarantee that W does
not annihilate any eigenfunctions of A,, making Assumption 2 unnecessary.
However, in the pseudodifferential setting, verifying this assumption is more
difficult.

A special case in which Assumption 2 is easy to check is when W is
constructed from functions of Ay. Suppose W = B*B with B = f(—-A,),
where f : R — R satisfies a “symbol-type” estimate of the form

05 f1 <O+ )~

for any k. The functional calculus of Strichartz [31] shows that W is pseudodif-
ferential of order 0 when constructed in this way. The calculus also immediately
implies that Assumption 2 holds as long as f does not vanish on the spectrum
of —Ay, since for any eigenfunction v with eigenvalue \, we have Wov = f(\)?v.
However, damping coefficients constructed in this fashion are somewhat un-
interesting in the sense that the principal symbol is a function of |§ |3, and
therefore independent of direction. Thus, examples of this type are not truly
anisotropic. In general, it is not obvious that one can always construct non-
trivial anisotropic examples satisfying Assumption 2, although we expect that
a rich class of examples do indeed exist. The following theorem demonstrates
that one can always produce such examples when (1M, g) is real analytic.

Theorem 3. If (M, g) is compact and real analytic, then there exists W €
WO (M) of the form W = Zj\]:l B} Bj, such that for each x € M, the principal
symbol of W wvanishes on an open cone in T M, and for any eigenfunction v
of Ay, we have Wv # 0.

The fact that the principal symbol vanishes in an open cone of directions at
each point implies that the W in this theorem is not built from functions
of Ay, which rules out the trivial case discussed above. Using the machinery
developed in the proof of Theorem 3, we are able to produce explicit examples
on the flat 2-torus of operators W € ¥Y which satisfy both Assumptions 1
and 2. This construction is presented in Sect. 6.

Remark 1.4. As mentioned previously, Assumption 2 follows directly from the
geometric control condition in the multiplicative case. One might hope that
this could be generalized to the scenario where W is pseudodifferential, but this
problem is exceedingly difficult in general. In fact, there is no result known to
the authors which addresses this question fully. One scenario in which there is
some progress is manifolds with Anosov geodesic flow. In this setting, Dyatlov,
Jin and Nonnenmacher were able to show a semiclassical lower bound on || Avy, ||
for A € U9)(M) and v € ker(h?A, — 1) when the principal symbol of A does
not vanish identically on S*M [10]. However, even this result only proves
unique continuation in the high-frequency limit. One still cannot exclude the
possibility that a low-frequency eigenfunction is annihilated by the damping
term. Furthermore, even in this specialized setting, the proof involves highly
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sophisticated techniques. An analysis of the general case is an open problem,
and we suspect that it would be a significant undertaking.

1.1. Outline of the Article

The majority of this article is devoted to the proof of Theorem 2, which spans
Sects. 2, 3, and 4. We begin in Sect. 2 with a detailed study of the action
of certain pseudodifferential operators on coherent states, which is a critical
component of constructing quasimodes for (1.1). This analysis is a key point
where the pseudodifferential case becomes significantly more difficult than the
multiplicative setting. In Sect. 3, we then use the result of Sect. 2 to produce
quasimodes for the damped wave equation whose energy is strongly localized
near a fixed geodesic. The analysis of these quasimodes allows us to prove
that o < 2min{—Dy, L~ }. The proof of Theorem 2 is completed in Sect. 4,
where we prove the lower bound « > 2min{—Dy, L, }. This section primarily
utilizes spectral theory arguments and follows in close analogy to [21], so we
omit some of the more technical details.

In Sect. 5, we show that Theorem 2 implies Theorem 1. This follows
directly from spectral theory analysis.

Finally, in Sect. 6, we restrict to the case of real analytic manifolds to
produce some examples. We provide a fairly generic condition on pseudodif-
ferential operators which guarantees that they satisfy Assumption 2. We also
show that one can always produce examples which fall into this category, thus
proving Theorem 3. We then conclude by constructing some explicit examples
on the flat torus which satisfy both Assumptions 1 and 2.

2. Pseudodifferential Operators Acting on Coherent States

A key component of the proof of Theorem 2 is to build quasimodes for (1.1)
using Gaussian beams, which are strongly localized along a given geodesic. In
this section, we obtain precise estimates for pseudodifferential operators acting
on slightly simpler objects, namely coherent states. A coherent state on R™ is
a sequence of smooth functions {hy} taking the form

hi(z) = k¥ eihe=20.80) o 5 (Al —20),(z=20)) (1) (2.1)

for some fixed (zg, &) € S*R™, where b € C°(R™) and A € C"*™ has posi-
tive definite imaginary part. Heuristically, one thinks of hj as being strongly
microlocalized near (x,&). The objective of this section is to show that
if a symbol a € S7(R?") vanishes to some finite order at (zg,&p), then
|Op(a)hy|| 12wy satisfies a bound which depends on the symbol order m and
on the order of vanishing. Here, Op(a) denotes the standard quantization given
by

Op(@)f(e) = e [ € a1 w) dy . (22)

R2n

Proposition 2.1. Fiz (z9,&) € S*R™, b € C*(R"™), and a matriz A € C"*",

with positive definite imaginary part. Then, for any k > 1, let hy be given by
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(2.1). Let a € ST (R?*™) have compact support in x and a polyhomogeneous
expansion given by
s

320

where each apm—; € S;Tg*j(]RQ"). Suppose there exists an £ € N such that a,,—;
vanishes to order £ — 2j at (x9,&o) for all j < g. Then, for each € > 0, there
exists a C' > 0, depending on €, m, and ¢, so that

10D (@)l 2y < CR™= 5+, (2.3)

Remark 2.2. In the subsequent sections, we only strictly need Proposition 2.1
in the case where m = 0 and ¢ = 1. However, the proof in the general case is
not much more difficult, and so we believe it to be worthwhile to state the full
strength of the estimate.

Proof. By the polyhomogeneity of a, for any Ny > 0 there exists ry, € SZ'Z*NO
such that
No—1

a= Z Am—j + TNy - (2.4)
3=0

We begin with the following lemma, which handles the remainder term in this
expansion.

Lemma 2.3. Let r € S_,°(R*") with s > 0. Then, there exists a C > 0 such
that

|Op(r) g L2 any < CR™2. (2.5)

Proof. By the quantization formula (2.2), we have
2

1O (r)hilF2@n) = / / Y2, )i (y) dy €| da.
R 2n

Assume without loss of generality that xqg = 0. We then change variables via
x— k 2z, y— k 2y, and £ — k2&. Recalling the definition of hy, we obtain

10p(r) k|72 )
2
:/ /ei<$’y’5>r(k’%x,kéf)eik%<y’50>e%<Ay’y>b(k’%y)dydg dz.
R 2n
(2.6)

For notational convenience, we define g4 (y) = e2¢4%¥) and let 7, : C°°(R") —
C>(R™) denote dilation by s > 0. That is, 75f(y) = f(sy). Then, using " to
denote the standard Fourier transform, we define

Fie) = [ e 09 gab gy = K2 [ga < 1B O 2)
Rn
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Thus, we can rewrite (2.6) as
2

HOp(r)th%z(Rn)Z/ /ei<“”5>r(k_%x7k%§)Fk(§—k%&))df dz. (2.8)
]R'n. n

We claim that for any N € N and any multi-index 3, there exists a constant
Cn,3 > 0 which is independent of £, such that

ang(@‘ < COnp(1+1€)~N forall k € N. (2.9)

To see this, consider the case where || = 0 and note that
|+ 16Dk 2[5+ 7,3 B (O)|
< COnk™? /(1 +1€=nD)N (1 + )V [ga (€ — )| [b(kz )] dn
R’V‘L

<Cyk? [ ) k)
R®
where the last inequality follows from the fact that g4 is Schwartz class, since
A has positive definite imaginary part. Now, observe that

. o . 1—|—]€% N+n+1 _ N
o2 [ Bt aol < kov2 [ SRV Gt ay
ST R

<ok [ kb
]Rn
for some new Cy > 0, since b is Schwartz class. Changing variables via 1 —
k_%m we obtain that

(1+ €D k2G4 73 B(E)] < On

after potentially increasing Cy. Dividing through by (1 + |¢]) completes the
proof of (2.9) for |5] = 0. To obtain the estimate when |3| # 0, simply repeat
the above proof with g4 replaced by 8?/9\,4.
Now, in order to estimate (2.8) we introduce a smooth cutoff function x
which is identically one in a neighborhood of z = 0. We then write
1Op(r) i || 72gny = T + 1,

where [ is defined by
2

I= @Oy (@) (k™ 2a, k2€) Fy(€ — k2&o)de| du,
1

and I is defined analogously with x(z) replaced by 1 — x(x). To estimate I,
we note that when €| < 1,

(k™ 22, k2€) Fiy(€ — k2&)| < On(1+ 1€ — k2&|) ™ < Ok,
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for some Cy, C > 0 and any N, by (2.9) and the fact that  has nonpositive
order and is therefore uniformly bounded. Thus,

I= / / Ty (2)r(k™ 2w, k2 €)F(€ — k2&)d¢| dz + O(k™).

R €1>1
(2.10)
Now, when [§| > 1
[r(k™ 2, k26l < OO+ k)™ < Ok F,
Combining this with (2.10), we have
I < Ck™*||Fil7i@ny < C'E5, (2.11)

where the final inequality follows from (2.9).

Now, consider . Since 1 — x vanishes in a neighborhood of z = 0, we
(x,Ve)

2|1"2 ’

may integrate by parts arbitrarily many times in £ using the operator
which preserves e*%:¢) That is, for any v > 0, we have
2

- / / 60 (1~ y(2)) (“x’W)V(r(k5x7k%£>Fk(£—k%@>) de| du.

|2
R

By (2.9) and the fact that » € S_,°, we have for any multi-index # and any N,
]65 (rk b kO File — ko))

< Y Ok ) 4 e — ki)Y
[vI<I8]

In the region where |£| > 1, the above is bounded by Cnk™2 (1+ \f—k%&ﬂ)_N
for some C > 0. Alternatively, when || < 1, we have a bound of the form
Cnk=N/2 since 1+ |€ — k2&| > Ck2. Combining these facts, we have

2

@8 (1 - () (L2 YY" (b, k3 b .
R/[ @8 (1 — x( ))< 5) ((k kEe)Fy(¢ kfo))dg q

jz?

< CNk_s7
for some Cy > 0, provided v > ”H
Therefore,

so that the integral in = is convergent.

I <CnkE™°.

Combining this with (2.11) and taking square roots of both sides completes
the proof. O
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We now return to the proof of Proposition 2.1. We aim to estimate each
of the terms in the sum in (2.4) separately. For each j < Ny — 1, we have
2

HOp(am—j)hk”%Q(R”) :/ /€i<m_y7£>am—j(aj7f)hk(y)dydg dz.
Rn [R2n
As before, we change variables via x — k_%x,y — k:_%y, and £ — kéé. This
gives
2
P(am—)hillizeny = [ | [ € amj(k™ 20 k2O Fu(€ ~ k26)d¢| da,
10D (@m—;) w22 @ () (k
]R’n n

where Fy, is given by (2.7). Now, let x(z,£) = x(§) be a smooth function
which is identically one for |{| < § and supported where || < 1. Then, for any
0 <d < 1/2and any k > 0, define

_ 1
X6 (8) = x(k~° (€ = k&),
so that xy s is identically one on the ball of radius %k‘s centered at k%&) and
zero outside the corresponding ball of radius k°. Since |€] > 2 on the support
of x,s for sufficiently large k, the homogeneity of a,,—; implies that
Xks () am—j (™22, k2€) = k™7 xp 6(&)am—; (k™2 2,€). (2.12)

Recall that a,,—; vanishes to order ¢; := ¢ — 2j at (zg = 0,§) for all j < g,
so we can Taylor expand to write

é- v
am*j(xag) = Z mryfmfj,’y(mag) + <|€| - 50 gmfj,'y(x,g)
lvI=¢;
where fi—j -, gm—j~ € Sg_j (R?") have compact support in 2 for each multi-
index «. Combining this with (2.12), we have
Xes (©)am—; (k™ 2, k?¢)
m—j f

L 1 Rl 1
— T 5@ X (K F e a0+ (1§~ 60) s 30.0))
[v]=¢;

Then, we define

Aia@) =k 5 S €O (O3 g (b, )i (€ — ko) dE,

[v|=¢€;pn

(2.13)

Ajo@) =k'= Y / e k6 (8) (i

[v]=2;gn |§‘

v 1 1
50) G gy (K2, ) Fi (€ — kb E0)de.
(2.14)

and

1

R;(x) = / P8 (1= o 5(6)) am_j (k™ 2, k2E) Fy(€ — k2€)dE,  (2.15)
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so that
Op(am_j)hk = Aj71 + Aj72 +R;.

We claim that R; is negligible for large k. Since Fj (€ — k2&) is a Gaussian
centered at kéfo and 1 — x5 is supported at least k% away from that center,

we are able to show that R is controlled by an arbitrarily large negative power
of k.

Lemma 2.4. For any N' € N there exists Cy: > 0 such that
1Ryl 2qeny < Onok ™" (2.16)
Proof. To begin, note that for any multi-index
O xws(6) = kIO (K (€ — K2 6n))- (2.17)

Combining (2.17) with (2.9) shows that for any N € N and any multi-index
B, there exists Cy,g > 0 such that

92 [(1 = Xk.5) Fi(8)) < O, g Loupp (1) () (1 + 1€ — k7 E0]) 7Y,

where for any set £ C R", 1 denotes the indicator function of E.
Now, when |z| > 1, for ¥ > 0 we may integrate by parts in (2.15) as in
the proof of Lemma 2.3 to obtain

; ) Z, \Y v _1 1
Ryta) = [ 09 (KDY [0 - was@)an- i b RO ae
Rn
Since ap,—; € S:Z_j (R?"), we have that for any multi-index (3,
]

108 am—j (k™ 2, k2€)] < CK'Z (L+ k3™ 710 < CR'F (1 + k3 (g™

Thus, for any N € N, there exists a constant Cy such that whenever |z| > 1,

1 f 1 _N, 81 1 im
Rj()] < CN|S|U<p EE /1supp(1_m5)(€)(1+ € = k26o))TVE 2 (14 K2[E)™ dé.
IV R"

Recall that [£y| = 1, and so by the triangle inequality
L+ R3] < 14k +k31E — k2| < OR(1+ 1€ — k3 &)).
Thus, when |z| > 1,

1 1 — mipm+%
|R](x)| gCNi/]lsupp(lfxrc,a)(g)(l_"|£_k2£0|) N k +2d€'

||
R’VL
(2.18)
Using polar coordinates & — kéfo = rw with 7 € RT, w € S, we compute
1 — m - m_mn—
[ 1o n@a+le=sa) ™ mae< [ [ aenT e
R Sn=1kd/2

< Cké(m-&—n—N).
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Combining this with (2.18), we have

[R;j(x)] < Cnla| VRO Tn=NITmEs - if || > 1.
Since v and N were both arbitrary, given any N’ > 0 we can choose v > "7'"1
and N sufficiently large so that

IR;(2)] < Onek™N'|a| "3, it |2] > 1.
By an analogous argument when |z| < 1, except without integration by parts,
we have
IR (z)] < O™ if 2] < 1.
Combining these inequalities and taking the L? norm completes the proof of
(2.16). -

It remains to estimate A; ;1 and A;j . It is here that we take advantage
of the compatibility of the vanishing of a,,—; with the particular form of the
coherent state hj. We first consider A; ;.

Lemma 2.5. For any j > 0, there exists C; > 0 such that

.4y
H-A',l ‘L2(]Rn) < Cjkm7]77. (219)

Proof. Let xj,s be as in the proof of Lemma 2.4, and observe that on the
support of xi.s

K — k0 < ¢l < k? + k.
Also, recall that fp,—;~ € S;Zij (R?") has compact support in z, so

102 finj (,6)] < Clé|™ 7191 for all 2 € R™.

Therefore,
m—j—|
seung) \8?fm,jﬁ(x,§)| < Cgk™ 2 B‘, for all £ € supp xx,5.  (2.20)
wERN

Now, when |z| > 1, we may integrate by parts as before to obtain that for any
v > 0 and any N sufficiently large,

M@l <k Y L e Ty (62" Fire gy (k™ 32, €) (€ — k3 €0)dE

[v|=2;
m—j—~£ ;
<ETE JW]/ (Z<$7Vs>
ER
]R’n.

. 'n
< cu,Nkm—J—f\wW”/(H|§—kiﬁo\>*ng

R”

) [k 56 s (K™ 3, ) Fi(€ — kiso)]] dg

>
! m—j—-t L;—v
<Oy Nk ENEY R

where the second-to-last inequality follows from (2.9), (2.17) and (2.20). When
|z| < 1, by the same argument with v = 0, we obtain

. fj
|Aj1(z)| < CE™ 772
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for some C > 0. Thus, for each v > 0, there exists a constant C,, > 0 so that

[Aj1(2)] < Cukm_J_%(l +|z|)%™"  for all x € R™.
Choosing v so that £; — v < —%H and taking the L? norm gives the desired

inequality. U

Finally, we turn our attention to .Aj2. The estimation of this term is
the most subtle of the three, and requires some very technical analysis of the
relationship between the vanishing factor (l% — 50) and the structure of the
support of 5.

Lemma 2.6. For any j > 0, there exists C; > 0 such that
||Aj,2||L2(Rn) < Cjkm_j+(6_7)g (2.21)

Proof. Once again, we let x1 s be as in the proof of Lemma 2.4. We first
consider the case where |z| > 1, and the case |z| < 1 follows from an analogous
argument. When |z| > 1, we may again use integration by parts to see that
for any v > 0 and any N sufficiently large,

Ay ()| k™Y / <7s><<9|fx|Zs>)

[vI=2; |gn

x [m( >(|§| éo);mm(k—%m,@Fk(f—k%)]df‘.

Recall that on suppxk’g, kz — k9 < €| < kz + k%, and so |8§gm,jﬁ| <
crr" <o (2.9) gives

Apa@) <Ok Iel = 30 S0 [ ok (st (5 - &) )| +ie- ke N ae,

BLV |v|=L;gn
(2.22)

when |z| > 1. Therefore, it is sufficient to show that for any multi-indices 3,
with |3 < v and |y| = ¢;, there exists C' > 0 such that

8l
‘3? (Xk,é( ) (é fo) )’ < CkU=2)4, (2.23)

To show this, it is convenient to choose coordinates on R™ so that & =
(1,0,...,0). Writing & = (§1,&2, - - -,&n), we have that on the support of xy s,

€ — k26| = \/(51 — kY224 342 <K
by the definition of xj,s. Thus,

&, | <k forr#1  and €] = kY2 — K for all € € supp xr.s. (2.24)

Also, note that & > 0 on supp xx s for k large enough, and so we can write

=& = (¢ + &) NG+ + &)
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Combining these facts, we have that for large k,
G+ +& < (n—1k»
\€|+£1 SR S

We can now show (2.23) for 8 = 0. Recalling that v = (y1,72,...,7) € N" is
a multi-index with |y| = v +- - -4+, = £;, we make use of the above inequality

and (2.24) to obtain
S Tl S R S

é_ vy
’(m f“) - HE

- 1)m ko2 .. kOn
— OkO—G+E—3)m

< Ok2-3,

1€l =& =

< Ok

since § < %, which proves (2.23) in the case where || = 0. To handle the case
where 3 # 0 we let 5,33 3™ be multi-indices which partition 3, and
expand via the product rule to obtain

ﬂ vy
‘a (|§| 5“)

< Z Cs j

1BV 482 4...48(n) =

- (2.25)

58 ( \£|)"*1 58 (52) g™ (gi)”"
¢ €] ¢ I3 ¢ €]
Since &2kl and &

| 7] Ty are homogeneous of degree zero, we have that for any

multi-index 6,
& — €] c &r c .
(g )< g ma (o2 ()| < g 1

Furthermore, we recall that |¢| > k3 — k® > Ck? on supp Xk,s, and so

& —I¢]
€l

@ (S < on ¥, ama fus@at (f)| <ortr £

(2.26)

(r) Ir
Now consider 8? (I%I) . Expanding via the product rule, we can rewrite

this as a linear combination of terms of the form

&) () (&)
<€| NS ¢ €1’

where each 0 is a multi-index with |a(i)\ >1,00 +... 4 0@ = ") and
t-+q = 7y,. That is, there are t,. factors of % which do not have any derivatives,

and the remaining v, — t, factors each have at least 1 derivative applied to
them. Note then that ¢, > max(0,7, — |3(")|). By (2.24) each factor with no
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derivatives is bounded by k*~2. The homogeneous estimate (2.26) controls the
factors with derivatives, giving

Xk.6(§ )(%) 6g(1) (Z) agm (Z) < P T
< CRO-He—127
Thus, by the triangle inequality, we have
X569 <|f£|> < CRlo- -
When v, — 3] > 0, we have
16— 5t 15 < =D T 181 < OR-be

since ¢, > v, — |3 > 0 and § — 1 < 0. On the other hand, when v, < |3("],
we still have ¢, > 0 and so

16
2

EL(0—3)tr hAd <Ok~ Ck_* < Ck0O—3 )’YT7

since 6 > 0. Thus, there exists a Cg > 0 so that

Xk,(s(g)ag g <|€£|> ‘ Cﬁk((s*’)’ﬁ (227)

An analogous argument shows

1 _ 71
yis(€)22" (51 |§'5')

for some potentially different Cjg > 0. Combining (2.27) and (2.28) with (2.17)
and (2.25) yields

5
’8? (Xk,é(f) (é — 60) )‘ Cgk ) (vt +n)
= C’Bk(‘s—%)\’ﬂ

= Cpklo=2

< Cgk@®—2m, (2.28)

We have therefore proved (2.23).
Combining (2.22) and (2.23), we have that for any v > 0 and any N large
enough, there exists C,, C/, > 0 so that

A 2(2)| < Cpla| k5T +0 (1+ |¢ — k2g&))~Nae

|'Y‘ Z Rn
< C/V|I|*Vkmfj+(5*%)fj_
We then have
|Aj2(2)] < Cyla| k™ I+0=5  for all |z| > 1, (2.29)

for some C,, > 0.
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To estimate A, »(x) when |z| < 1, we repeat the above argument without
integrating by parts. From this, we obtain

|Aj 2 ()] < CE™ 0= for all 2| < 1 (2.30)
for some C > 0. Choosing v > 5%, we can combine (2.29) with (2.30), then
take L? norms to obtain (2.21) as desired. O

Recalling the definitions of R;, A; 1, and A; 2, we combine Lemmas 2.4,
2.5, and 2.6 to obtain that for each 0 < j < Ny — 1,

0p(am—j)hillLz@n) < [AjallLe@e) + [1Aj2llL2@n) + IRl L2 @n)
< Cjkm—j+(5—%)fj’ (2.31)
for some C; > 0. Since ¢; = ¢ — 2j, (2.5) and (2.31) imply that for any fixed
Ny > m, there exist C7,Csy > 0 so that
No—1
10p(a)hellz: < Y 11OD(@m—i)hwll 2 + 10D(rxg s 2
§=0
No—1 N
< Z O km—I+0-2) 4 O™ 2"
j=0
No—1
_ Z Clkm_%—i_(l_zj)é"-Cka_’zNo
j=0

e AN
Choosing Ng > £ —m — 2¢ and ¢ < § completes the proof of Proposition 2.1.
O

3. The Upper Bound for o

In this section, we show that o < 2min{—Dy, L}, where Dy and L., are
defined as in Sect. 1. That —2Dj is an upper bound is straightforward to show.
To see this, let A\; € Spec(Aw )\{0}. Then, there exists u = (ug,u1)” # 0 such
that Ay u = A\ju, where we recall

0 1d
Aw = (Ag 2W> '
tA

Tt is then immediate that u(z) = e ug(z) solves the damped wave equation

with initial data (ug,u1)?, and
E(u,t) = e ) By, 0).

Since E(u,0) # 0, we have that o < —2Re ();) for all j. Furthermore, by the
definition of Dy, there must either exist some A, with Re()\;)) = Dg, or a
sequence of \; with Re (\;) — Dy. In either case, we must have av < —2Dj.
Showing that 2L., is also an upper bound is more complicated. Our
technique for this is inspired by the method of Gaussian beams introduced by
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Ralston [26,27]. Using Gaussian beams, one can produce quasimodes for the
wave equation with energy strongly localized near a single geodesic. Intuitively,
solutions to (1.1) should decay only when they interact with the damping
coefficient. Motivated by this, we modify the Gaussian beam construction to
obtain solutions whose energy decays at a rate proportional to strength of the
damping along that geodesic, in analogy to [17,21].

To begin, we recall Ralston’s original Gaussian beam construction on
R™ with a Riemannian metric g. Let A(t) be an n x n symmetric matrix-
valued function with positive definite imaginary part. Let ¢ — (x4, &) denote
a geodesic trajectory and set

1
Pz, t) = (& x — ) + i(A(t)(a: — T4), T — Ty).
Let b € C*°(R x R™). Then, we define
u(z,t) = k=11 4p(t, )tV (@), (3.1)

The work of [27] guarantees that there exist appropriate choices of b and A(t)
so that uy, is a quasimode of the undamped wave equation with positive energy,
which is concentrated along the geodesic (x4, &;). We summarize some notable
facts from [27] in the following Lemma.

Lemma 3.1 ([27]). Fiz T > 0 and (xo,&) € S*M. For pi(x0,&0) = (24,&),
there ezists a b € C° (R xR™) and an n x n symmetric matriz-valued function
t— A(t) so that if uy is given by (3.1), we have

sup [|02up (-, t) — Agug ()| L2@ny < Ck™% for k > 1. (3.2)
te[0,T)

Furthermore, for all t € [0,T],
lim E(ug,t) >0, (3.3)

k—o0

and the limit is always finite and independent of t.

Remark 3.2. By (3.3), we may assume without loss of generality that klirn
E(ug,t) =1 for all ¢t € [0, T].

Remark 3.3. Using coordinate charts and a partition of unity, we can extend
this construction to the case of manifolds, which results in a sequence {uy} C
C®(R* x M) such that limg_, . E(ug,t) = 1 and the appropriate analogue of
(3.2) holds.

Next, we modify {uy} to obtain a sequence of quasimodes for the damped
wave equation as follows. For each (z,&) € S*M, we define G(z,&) to be the
solution of the initial value problem

{Gw,a =1
ﬁth(x, 5) = 711)(@,5(%, g))Gt(x’ g)a



Vol. 24 (2023) Sharp exponential decay rates... 1579

which has solution
t

Gyl €) = exp | — / w(ipa(2,€)) ds |. (3.4)
0

In [17,21], an analogue of G; in the multiplicative case is constructed as
the propagator for defect measures associated with the damped wave equation.
We note that it is possible to derive G; in the anisotropic case following this
argument with little modification. However, our argument does not rely on the
nature of the construction, and so we simply define G; to have the appropriate
form.

It is clear from the definition that G(z,&) decays exponentially along
any geodesic which intersects the damping region. Motivated by this, we fix
(x0,&) € S*M and set

vk (t, x) = Gi(wo, §o)ur(t, ).
We now show that for any & > 0, vy, is an O(k~27¢) quasimode of (1.1).
Proposition 3.4. Given (z¢,&) € S*M, let ui(t,z) be as specified in Remark

3.8 and set vg(t,x) = Gi(xo,&o)ur(t, ). For any T > 0 and e > 0, there exists
a constant Ce 7 > 0 so that

S[up ] 102 — Ay + 2W ) o (t, )| 2(ary < Cork™ 27 (3.5)
tel0,T

Proof. By direct computation, we have

(0F — Ay 4 2W) v, = Ge(8F — Ag)ug + 28:GiOrup, + (87 Ge)ug + 2W 8 (Gruy,)
= Gt(@f — Ag)ug — 2w(xy, & )GeOrur, — Op(w(ze, &) Ge)uk
+ 2W G 0rug — 2w(mt, .f;"t)WGtuk
= Gt(af — Ag)uk + 2(W — w(wt,&))Gt&uk
+ (w(xt7§t)2 — 2w($t,£t)w — 815’11)(331575,5)) Gtuk.
By the construction of u; and the boundedness of G, we have
sup [|G1(9F — Ag)ur(t, |z < Ok~ 2).
t€[0,T]
Since W is order zero, and therefore bounded on L?(M), we obtain
sup H(w(xtagt)g —2w(xs, &)W — atw(ﬂftyft))GtUkHLz(M)
te[0,T]
< C sup |ug(t, )2 = OK™),

te[0,T]

where the final equality follows from the fact that fRn k% eklyl® dy is uniformly
bounded in k.

To estimate (W — w(wx¢,&;)) Gropug(t,-) we will apply Proposition 2.1
with m = 0 and ¢ = 1. Note that W — w(ay,&;) is an order zero pseudodif-
ferential operator whose symbol vanishes to first order at (z,&), and so it
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satisfies the hypotheses of Proposition 2.1. Furthermore
Oyup(x,t) = k=1 E9,b(t, )@Y 4 ik b(t, )00 (x, )V @)

and for fixed ¢, both of these terms take the form of a coherent state hy as
defined by (2.1) (the fact that the first has an extra factor of k~! is irrelevant,
as it only improves the estimate). Since all quantities depend on ¢ in a C'*°
fashion, we have that for any € > 0,

sup |12(W — w(w, &))Grdur(t, )| g2 (ary < C(R712F9). (3.6)
te[0,T)
By the triangle inequality, we obtain (3.5), which completes the proof. 0

The next step in the proof of the upper bound for « is to produce from a
given point (xg, &) € S*M a sequence of exact solutions to (1.1) whose energy
approaches |Gy(xg, &)|%.

Proposition 3.5. Given any T > 0, any € > 0, and any (xo,&y) € S*M, there
exists an exact solution u of the generalized damped wave equation (1.1) with

|E(u,0) — 1] <e
and
|E(u, T) — |Gr(x0,&0)*| <e. (3.7)
Proof. Let uj and vy be as defined previously. Then, define wy, as the unique so-

lution of the damped wave equation with initial conditions wg(z,0) = vy (z,0)
and Oywg(x,0) = dpvg(x,0). It is immediate that

E(wg,0) = E(vg,0) = E(u,0) — 1, as k — oo.
To see (3.7), first note by the triangle inequality
|E(wg, )7 — E(vy,1)2] < E(wy, — vg, 1)2. (3.8)
Thus, it suffices to prove that limg_. E(vg,t) = |Gi(z0,&)|* and that klin;@
E(wy, — vg,t) = 0. To see that limg . E(vg,t) = |G¢(z0,&0)|?, note that by

the definition of vy and properties of G,

E(vg,t) = %/\Gt(xo,fo)atuk(m,t) —w(xs, &) Ge(x0, &0 )up(z, 1)
M
+ |G (20, &0) V gui (, 1) dug ().

Now since w(x¢, &) and G; are bounded

/ (@, &)Gi(wo, &o)ur(z, t)|* dvg(@) < Clug(t,)|[7. < C'k2,
M

for some C, ¢’ > 0. Thus,
1

Jim (v, 1) = lim L / G (0, €0) etk (z, |2 + |G (o, £0) Vguk (. )| dug ()
M

= |Gi(zo, o) Jim E(ug,t)
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= |Gi(xo, ), (3.9)
where in the final equality we used that lerr;O E(ug,t) = 1.
To control E(wy, — vg,t), let fr = (02 — A + 2W;)vy. Then
(07 = A+ 2W ;) (v — wi) = fi-
By Proposition 3.4, for any e,7 > 0 there exists a C. 7 > 0 such that

sup vt i) < Cerk ™+ (3.10)

tel0,T
By direct computation, we have
atE( — Vg, ) /(82 )(wk - vk)(“)t(wk — ’Uk)
M
+ (07 — A) (Wi — v) O (wi, — ) dvy ()

= 2Re /[f;C — 2W O (wi, — k)]0 (wi — vg) dug(z)
M

—2Re [ fi- ifor — o) duy () — ARe (W04 — v,

Ot (wr — V&) L2(M) -

Note that the second term on the right-hand side above is nonpositive, since
W is a nonnegative operator. Also, note that

Hat(wk — Uk)”LZ(M) < E(wk,t) + E(’Uk,t) < E(wk,O) + E('Uk,()) = 2E(uk,0),

which is uniformly bounded by a constant since E(uy,0) — 1. Combining this
with (3.10), we know that there exists C 7 > 0 such that

sup |2Re /fk&g wi, — vg) dvg(z)| < 2| fx(t, )| L2110 (wr — vi) (L, ) || 2
te[0,7]

< Cpk3%
Thus, for any € > 0

sup |9, E(wy, — g, t)| < CL ok~ 3 te.
te[0,T7] ’

Since E (v — wg,0) = 0, integrating in ¢ gives

sup E(vy — wp,t) < CL Tk 2e.
te[0,T ’
Combining the above with (3.8) and (3.9) yields (3.7). O

For the penultimate step in the proof of the upper bound for o, we show
that ¢ — ¢L(t) is superadditive. That is, for r,¢ > 0, we claim that

(t+7r)L(t+r) = tL(t) +rL(r).
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Recall that the time averaging function ¢ — L(t) is defined by

¢
1
L(t) = - inf w(xs, &) ds
() t (xo,ﬁo)eS*M/ (@2:8)
0
To see that tL(t) is superadditive, observe that
r+t

t+r)L(t+7)=  inf / o E)d
t4niten= it [ ug)ds

t t+r
= inf /w Zs,Es)ds + / w(zs,&s)ds
zo,fo €S*
0 t

t+r

> inf / (zs,&5)ds + inf / (zs,&5)d
(zo,£0)ES* M (z0,€0)ES* M

= inf / (zs,&5)ds + inf / (zs,&5)d
(10,50 GS*M :Do,fo GS*M

=tL(t) +rL(r )
Then, by Fekete’s lemma, Lo, := hm L(t)= sup L(t), and thus L(t) < Lo

t—00 te[0,00)
for all ¢. That the supremum is not infinite follows from the fact that w(z, &)
is uniformly bounded on T* M.
We are now ready to show that a@ < 2L.,. Assume for the sake of contra-
diction that o = 2L, + 3n for some 1 > 0. Then since 2(Lo, + 1) < «, there
exists a C' > 0 such that for all ¢ > 0 and all solutions u of (1.1),

E(u,t) < CE(u,0)e™ 2 Eetm), (3.11)

For the next step, it is convenient to remove the factor of C. To accomplish
this, choose T' > 0 large enough so that max(C, 1) < e¢’”. Then

Ce 2T (Loctn)  o=T(2Leotn),
Since L(t) < Ly for all ¢, we obtain
Ce—2T(Loo+?7) < 6—2TL00—T77 < e—2TL(T)—T77. (312)

Note that L(T') can be rewritten in terms of G as
1
LT)=-7 suw In(Gr(zf).
(z,£)eS*M
Thus, there exists a point (xg, &) € S*M such that In Gp(xg, &) > —TL(T)—
%Tn. Therefore,
e 2TEID=T < |G (0, &0) -
So by (3.12) there exists a § > 0 such that

Ce 2T (Lootn) ‘GT(xng())P — 0.
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Now, by Proposition 3.5, there exists an exact solution u of (1.1) such that

1) 1)
1> E(u,0) — B and  E(u,T) > |Gr(xo,&)|* — 7
Thus,
E(u,T)> E(u,T) (E )
0 0
(|GT 0, &0)[* — 2) - iE(u,T)
0 1)
> E(u,0) ( |Gr(zo,%)> — 5) §E(u,0)
—EuO (|GT $0,€0 —6)
Therefore,

E(u,T) > E(u,0)(IGr(z0,&)[* = 8) > CE(u,0)e™ TPt

but this contradicts (3.11). Thus, we must have o < 2L. Combining this
with the discussion at the beginning of this section, we have proved the upper
bound

a < 2min{—Dy, L }.

We complete the proof of Theorem 2 in the next section by proving the corre-
sponding lower bound for a.

4. The Lower Bound for «
In this section, we prove that the best exponential decay rate satisfies
a > 2min{—Dg, L}, (4.1)

which is the final component of the proof of Theorem 2. In contrast to the
proof of the upper bound, this section proceeds in direct analogy to the work
of Lebeau, and so we omit many of the details which can be found in [17,21].
While the proofs presented here are not new, we include them to introduce
notation that is used later in Sect. 5, where we use Theorem 2 to prove Theo-
rem 1.

We begin with the following energy inequality, which for the multiplica-
tive case is presented as Lemma 3.1 in [21].

Lemma 4.1. For every T > 0 and every e > 0, there exists a constant c(e,T) >
0 so that for every solution u of (1.1),

E(u,T) < (1+€)e XD E(w,0) + ele, T)|(wo, ) 3o g rss (4:2)

This inequality is proved using straightforward properties of the propagation
of the defect measure, so the proof from [21] goes through with no modifi-
cation. To obtain the desired lower bound on a we must further control the
| (w0, ur)|72 @ -1 on the right-hand side.
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Given Lemma 4.1, we proceed by introducing the adjoint Ay, =

( OA _QII/CIl/> of the semigroup generator Ay,. Note that the spectrum of
—A, —

Ajy is the conjugate of the spectrum of Ay,. We denote by Ey, and E}k\j the
generalized eigenspaces of Ay and A}, with associated eigenvalues A; and A;,
respectively. We note that by an exact analogy of the proof of [1, Lemma 4.2],
one can show that the spectrum of Ay, and hence Ay, contains only isolated
eigenvalues \; with Re ();) < 0. Thus, each ), and E’;\j is finite dimensional.
Recall that 2 = H'(M) @ L?(M), equipped with the natural norm. It is also
useful to introduce the # seminorm defined for elements of J# by

1(uo, ur)T11%, = [Vuollzs + lluall-.

For each N > 1, define the subspace

Hy=Sgpel: (p,h)r =0,V e P Ej,
N ISN

Our first observation is that Hy is invariant under the action of the semigroup

e!4w  To demonstrate this, let {1} be a basis of the finite-dimensional space
) E3, € D(Ajy). Now, since E  is invariant under Aj,, we can express

[XjI<N

each A}, ¢, as a finite linear combination of the {iy}. Thus, for each ¢ and

any ¢ € Hy, we have

(e 0, ) |,y = (€M 0, Afybi) e |,y = ZC@,M%%)%’ =0,

by the definition of Hy. Repeating this argument, we see that 87? (etAW o ahy) 1
|t:0 = 0 for all j. Observing that (e!AW ¢, 1) 4 is an analytic function of ¢,
we have (e!AW ¢ 1) » = 0 for all t € R. Therefore eWp € Hy.

Now, define #’ = L>®H ! and let y denote the norm of the embedding
of Hy in ##’, which is well defined since M is compact. Since W is bounded on
L2, it is compact as an operator from L? — H~!. Therefore A}, : # — H'

0 —1Id
“A, 0 ) Thus,
the family {E;J 720 is total in 2, and so limy oo Oy = 0 (c.f. [12, Ch. 5,
Theorem 10.1]).

We can now proceed with the proof of (4.1). Assume that 2min{—Dy,
Lo} > 0, otherwise the statement is trivial. Choose 7 > 0 small enough so that
B =2min{—Dy, Loc } —n > 0 and take T large enough so that 4| Lo —L(T)| < n
and e > 3. Then, by Lemma 4.1 with ¢ = 1, there exists a constant ¢(1,T)
such that for every solution u of (1.1)

E(u,t) < 2¢7 M B(u,0) + ¢(1, T)||(uo, ur) |3 (4.3)

Next, choose N large enough so that ¢(1, T)912v < e 2TL(T)  Then, for solutions
w of (1.1) with initial data (ug,u1)? € Hy

E(u,T) < 3¢ 2TED B(u,0).

is a compact perturbation of the skew-adjoint operator (
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Since Hy is invariant under evolution by e!4w
E(u,kT) < 38 2*TLID B(y,0), VE e N.
Then, we can use the fact that 4| Lo, — L(T)| < n and % > In 3 to obtain that
E(u, kT) < 3Fe 2k Lo/ (4, 0)
< (eln?,—%)k e~ TLes B(y, 0)

< e MPE(u,0),

where the final inequality follows from the fact that § < 2L, — 1 < 2L by
definition. Since the energy is nondecreasing, it follows that

E(u,t) < Ce P'B(u,0) VYt >0, (4.4)

for some constant C' > 0.
To extend (4.4) to all solutions of (1.1), let IT denote the orthogonal
projection from # onto € Ej,. Then for any v = (ug,u1)” € H, there
I\ I<N
is an orthogonal decomposition of the form v = ITv + (Id —IT)v. Since Ej;
and EY,  are orthogonal for \; # A, we have that (Id—Il)v € Hy, and

hence Hy = MQENEAJ. Since E), is invariant under e'4W and Hy; is finite
71X

dimensional, we have that there exists a C' > 0 so that for all solutions u of

(1.1) with initial data in Hy;,

E(u,t) < Ce?PE(u,0) < Ce P E(u,0), Vt > 0. (4.5)

Finally, since II and Id —II are continuous with respect to the A seminorm,
for some C' > 0

E(Mu,0) + E((Id —)u, 0) < CE(u,0).

Therefore, using the decomposition IT + (Id —II) on the initial data of any
solution u we can apply (4.4) and (4.5) to obtain

E(u,t) < Ce P E(u,0), Vt=>0, (4.6)

for some possibly larger C' > 0. By definition of the best possible decay rate,
a > f = 2min{—Dy, Lo} — 1. Since n can be taken arbitrarily small, this
proves (4.1). Combining this with the upper bound obtained in Sect. 3 com-
pletes the proof of Theorem 2.

5. Proof of Theorem 1

In this section, we show that Theorem 2 implies Theorem 1. First, we will
assume both Assumptions 1 and 2 are satisfied. We will show this implies
a > 0, which is equivalent to exponential energy decay. Note that Assumption 1
immediately implies that Lo, > ¢ > 0. Thus, we only need to show that Dy < 0.
For this, we introduce the quantity

D, = Rlim sup{Re (\) : |A] > R, A € Spec Ay }.
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We claim that Do, < — L. To show this, first recall the definitions of F); and
Hy from Sect. 4. Let u be a solution to (1.1) with initial data (ug,u;)? € Ey,
with [A;| > N. Then u = e (ug,uy)” = ' (ug,u1)”. Note that Ex, C Hy
whenever |A;| > N. Combining this with the proof of (4.4), we obtain

eQRC (>‘.7)t£;(u7 O) = E(u, t) < Ce_BtE(ua 0)7

X

for every 0 < 3 < 2Lo. Hence, 2Re ()\;) < —f whenever |\;| > N, and so
Re (Aj) < —L for such A;. It immediately follows that Dy, < —Lo < 0.

Recall also that the spectrum of Ay consists only of isolated eigenval-
ues, and Re(A) < 0 for all A € Spec(Aw ). Thus, in order to have Dy = 0,
either Do, = 0 or there exists a nonzero eigenvalue of Ay, on the imaginary
axis. Since we have already shown D, < 0, we need only rule out nonzero
imaginary eigenvalues. Suppose i\ € Spec(Aw ) with A € R and corresponding
eigenvector (vg,v1)?. Then v; = Avg, and

Agvo + )\2’1}0 — 2iA\Wwvg = 0. (51)

Taking the L? inner product of both sides with vy and then taking the imagi-
nary part gives

—2)\<W’U0, ’U0> =0.

If A = 0, the equation is trivially satisfied. However, if A # 0, then (Wwy, vg) =
0. Recalling that W =} B B; for some collection of operators B;, we must
have Wwg = 0. Then by (5.1) vy is an eigenfunction of A, with eigenvalue
—)% and vy € ker W. But by Assumption 2, this is impossible. Thus, the only
possible eigenvalue of Ay, on the imaginary axis is zero and we cannot have
Dy = 0. Combining this with the fact that L., > 0, we have shown that
Assumptions 1 and 2 imply « > 0, which in turn demonstrates that solutions
to (1.1) experience exponential energy decay.

We now prove the reverse implication in Theorem 1. For this, we assume
that (1.5) holds with some 3 > 0 for all solutions u and we want to see that
Assumptions 1 and 2 hold. By definition, o > 3 > 0, and hence both —Dj and
L are strictly positive. Because Lo, > /2 > 0 Assumption 1 holds. Similarly,
since Dy < 0, there cannot be any eigenvalues of Ay on the imaginary axis
except possibly at zero. Now suppose that v € L? satisfies —Agv = A2y with
A # 0 and Wo = 0. Then (v,i\v)T is an eigenvector of Ay with eigenvalue
iA # 0, which is a contradiction. Thus, Assumption 2 must also hold, which
completes the proof of Theorem 1.

6. A Class of Examples on Analytic Manifolds

One of the key hypotheses of Theorem 1 was that the damping coefficient W
must not annihilate any eigenfunctions of A, associated with nonzero eigen-
values. In the case where W is a multiplication operator which satisfies the
classical geometric control condition, this is always satisfied by the unique con-
tinuation properties of elliptic operators [28]. However, when the damping is
pseudodifferential it is much more difficult to check this hypothesis.
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In this section, we produce a collection of operators on real analytic man-
ifolds which satisfy Assumption 2 and are neither multiplication operators nor
functions of A,. We also construct two examples of explicit pseudodifferential
damping coefficients on T? which satisfy Assumptions 1 and 2. The primary
tool in this discussion is the notion of the analytic wavefront set, and so we
begin by providing some background definitions for the reader’s convenience.
More details can be found in [13, §8.4-8.6].

Given a set X C R™ and a distribution u € D'(X), if u is real analytic
on an open neighborhood of xg, we write that u € C'* near xg € X. In analogy
with the relationship between the standard wavefront set and C*° singularities,
one can resolve C* singularities by defining the analytic wavefront set, written
WF 4(u) and defined as follows.

Definition 6.1. We say that a point (z9,&) € T*X\0 is not in WF 4 (u), if
there exists an open neighborhood U of z(, a conic neighborhood I" of £, and
a bounded sequence uy € £'(X), which are equal to u on U and which satisfy
N+1 > N

lan ()] < C <fl

(6.1)

for all € € T.

By [13, Prop. 8.4.2], we have that v € C® near z if and only if WF 4 (u)
contains no points of the form (g, ) with £ # 0.

We also introduce a set which we can be thought of as the analytically
invertible directions of w, denoted by T'4(u). Its complement is commonly
called the (analytic) characteristic set of u [13].

Definition 6.2. We say that & € R™\0 is in I'4(u) if there exists a complex
conic neighborhood V of & and a function ®, which is holomorphic in {§ €
V i €] > ¢} for some ¢ > 0, satisfying ®u = 1 in V N R"™ and there exists
C, N > 0 such that

[®(¢)] < CI¢I,
for ¢ e V.

The final preliminary we require is the notion of the normal set of a closed
region F' contained within a manifold M. For the purposes of this definition,
we only require that M be C2.

Definition 6.3. Let F' be a closed region in a C? manifold M. The exterior
normal set, N,(F), is defined as the set of all (xg,&)) € T*M\0 such that
zo € F and such that there exists a real-valued function f € C?*(M) with

df (zo) = §o # 0 and
fl@) < f(xg), x€F.

The interior normal set of F' is then defined by N;(F) = {(z,&) : (z,—§) €
N (F)} and the full normal set is defined as N(F) = N.(F)|J N;(F). We write
N(F) to denote the closure of the normal set of F.
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Note that the projection of N.(F) onto M is dense in OF but might not be
equal to OF [13, Prop. 8.5.8].

With these definitions in hand, we are able to describe a class of pseudo-
differential operators which do not annihilate any eigenfunctions of A,.

To produce the desired class of examples, let (M, g) be a compact, real
analytic manifold of dimension n. Suppose x, x € C2°(M) are cutoff functions
supported entirely within a single coordinate patch, with x not identically
zero and ¥ = 1 on an open neighborhood of the support of x. Let b € C*°(R")
be homogeneous of degree 0 outside a compact neighborhood of the origin,
and define B € W% (M) in local coordinates by Bu = YOp(b(¢))yu. Let b
denote the inverse Fourier transform of b and 75 : R™ x R™ — R" denote the
natural projection onto the fiber variables €. We show that any such B cannot
annihilate eigenfunctions of A, under the following condition on x and b.

Lemma 6.4. If mo(N(supp x)) N FA(B) # (0, then for any eigenfunction u of
Ay, we have Bu # 0.

Proof. We proceed by contradiction, so assume Bu = 0 for some eigenfunction
u of Ay. Thus WF 4 (Bu) = () and we aim to show there exists some (zq, &) €
WF 4(Bu). First, by [13, Thm 8.5.6’], we have

N (supp xu) € WF 4(xu). (6.2)
Since u is an eigenfunction, it cannot vanish identically on any open set. We
claim that this implies

d(supp x) C (supp xu). (6.3)

To see this, suppose = € d(supp x) and let V' be any open neighborhood of x.
Since x(x) = 0, we have that y(z)u(x) = 0, so it is enough to show that yu
is not identically zero on all of V. Without loss of generality, we may assume
that V lies entirely within the same coordinate patch containing supp . Since
x is a boundary point of the support, y does not vanish identically on V. By
the continuity of y, this implies the existence of a smaller open neighborhood
Vcv (not containing x) where x is never zero. Since v is an eigenfunction, it
cannot vanish identically on ‘7, and hence xu is not identically zero on VC Vv,
which proves (6.3).

Next, we want to show N(suppyx) C N(suppxu). Take (z0,&) € N
(supp x), so xp maximizes a function f on suppx with df(zg) # 0. Thus,
o € O(suppx) C O(supp xu). That is, xg is not an interior point. Further-
more, since suppy 2 supp xu and f is maximized at xy in supp x it must
also be maximized at xy when restricted to the smaller set supp xu. There-
fore, N (supp x) € N(supp xu), and hence N (supp x) C N (supp xu). Thus, by
(6.2),

N(supp x) € WF 4(xu). (6.4)

Since the cutoff function x is supported in a single coordinate patch, we
can treat yu and Op(b)xu as functions on R™. Now, observe that b Xu =
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Op(b)xu, where * denotes standard convolution. This, along with [13, Thm
8.6.15] gives

~

WF 4(xu) € WFE4(Op(b)xu) U (R™ x T 4(b)°). (6.5)
Applying (6.4), we obtain
N(supp x) € WF4(Op(b)xu) U (R" x T 4(b)°),

and therefore,

— ~

N(supp x) N (R" x T'a(b)) € WFA(Op(b)xu).
By hypothesis, there exists a point
(20, &) € N(supp x) N (R™ x T (b)) € WF 4(Op(b)xu).

In particular, zo € suppy, and since Y = 1 on a neighborhood of supp ¥,
we see that (zo, &) must also lie inside WF 4(xOp(b)xu) = WF 4(Bu). This
contradicts the assumption that Bu = 0, and thus the proposition is proved.

O

Remark 6.5. Tt is worth noting that the argument of this lemma works when
Ay is replaced by P, an elliptic second-order pseudodifferential operator, since
the eigenfunctions of such P have the unique continuation property.

Given Proposition 6.4, the proof of Theorem 3 is straightforward.

Proof of Theorem 3. Given a real analytic manifold (M,g), take y, X as in
the statement of Proposition 6.4. Let (zo,&y) € Ne(supp x) be an arbitrary
exterior normal. Then, take any b € C°°(R"™) which is identically one in a
conic neighborhood of &y, zero on the complement of a slightly larger conic
neighborhood, and homogeneous of degree 0 outside a compact neighborhood
of the origin. Then I' A(E) contains &y because b = 1 on a conic neighborhood
of &, and so one may take ® = 1 in the definition of I" 4. Proposition 6.4 then
guarantees that B = YOp(b)x does not annihilate any eigenfunctions of A,
and thus neither does W = B*B. One can repeat this process in any finite
number of coordinate patches to show that there exists W = Zjvzl B} Bj with
the same property.

We now construct a pseudodifferential damping coefficient on T? which
satisfies Assumptions 1 and 2.

Example 6.6. Let T? = R?/Z? denote the two-dimensional torus equipped
with the flat metric, and let A be the associated Laplace—Beltrami operator.
Let § > 0 and let x; € C2°(T?) be supported in the vertical strip {(z(}), 2(?)) €
T2 : % —6<zM L % + ¢} and equal to one on a smaller vertical strip. Define
X1 in a similar way, but with x; = 1 on the support of x1. Analogously, let
X2 € C2°(T?) be supported in the horizontal strip {(z"),2#) e T>: J -4 <
z®? < % + ¢} and equal to one on a smaller horizontal strip, and define X»
similarly with Y2 = 1 on the support of ys.
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F1GURE 1. The cone of directions containing the support of
b1 (IE(), ) in T;0T2

Now, let € > 0 and let b; € C°°(S') be supported in the set

T ™ 3m om
625 = (—Z —26,14‘28) U (Z —28,Z+26>
and equal to one on the smaller set ©.. Similarly, let bo € C°°(S') be nonzero
on O, + § and equal to one on O, + 5. Choose # € C°(R) to be supported
in [1,00) and equal to one on [£,00). Then define symbols b; € S%(T*T?) by

1
b;(€) = b;(0)B(r), j=1,2,
where ¢ = (r,0) in standard polar coordinates on T;T?. Figure 1 illustrates
the cone of directions in T;0T2 in which by is supported at some arbitrary
xo € supp x1. Now define B; = x;Op(b;)x;, and set the damping coefficient
W to be

W = B;B; + BiB,.

To see ker W contains no nontrivial eigenfunctions of A we apply Proposi-
tion 6.4. Note N (supp x1) contains all points of the form (z,¢) with z €
O(supp x1) and & = (r,0), where § = 0 or § = 7. Since by is constant in a conic
neighborhood of both of these cotangent directions, the hypotheses of Proposi-
tion 6.4 are satisfied. Thus, ker B; contains no eigenfunctions of the Laplacian.
An analogous argument holds for By, and since B} B; and Bj By are nonneg-
ative operators, W cannot annihilate any eigenfunctions of the Laplacian.
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FIGURE 2. The cones containing the supports of bs(xg, -) and
bz(71,-)

To show exponential energy decay with W as the damping coefficient, we
must also demonstrate that W satisfies the AGCC. For this, it is convenient
to observe that the AGCC is equivalent to the existence of some Ty > 0 and
¢ > 0 such that every trajectory ¢ — ¢¢(zg,&o) encounters the set

W = {(2,€) € T*T? : w(z,&) > ¢ > 0}

in time 7' < Tp. Recall that the geodesics on T? are the projections of straight
lines in R? under the quotient map. Thus, the geodesic flow on S*T? is given
by

(2,€) = ((z + t&)mod Z*,€).
Given an arbitrary point (z9,&) € S*T?, we will show that (y(t),7'(t)) =
((zo + t&)mod Z2, &) must intersect %, in some fixed time Ty > 0. Let us

write & € S as (cosfp,sinfl), and consider the case where 6, lies in O..
Suppose first that

™ ™
we(-ToaTe),

which implies b1 (£o) # 0. Then, if zg = (xél), :z:((f)), the horizontal coordinate
of y(t) is given by

(m(()l) + tcos fp)mod Z,

. Therefore,

. 1 . . 1 1
which must reach 5 in some time less than o0y < o /A7)

(v(t),7/(t)) intersects the region where b; is strictly positive in time less than
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m. The same argument holds if instead 6y € (25 — ¢, 2% +¢), and so

whenever 6y € O., we have that there exists a ¢ > 0 such that (y(¢),~/(¢))
intersects {b1(x,&§) > +/c} in finite time. Analogously, if §y € ©. + 7, then
the vertical component of ¥(t), given by (a:t()z) + tsin ) mod Z, must equal ;

in some time less than Therefore, (y(t),~'(t)) intersects {ba(x,&) >

1
sin(mw/4—e) "
V/¢} in finite time. Since

T2 x (@5 U (@E + g)) — 5*T2,

and since w(z, &) = b3 (x, &) + b3(x, ), we have that for every (xg, &) € S*T?,
the curve ¢ (o, &) intersects #, in some fixed time Ty > 0. We have therefore
shown that W as defined here satisfies both Assumptions 1 and 2. Thus by
Theorem 1, all solutions to the damped wave equation on T? with damping
coefficient W experience exponential energy decay.

Remark 6.7. In the previous example, one may notice that on the intersection
of the vertical and horizontal strips, the principal symbol of the damping
coefficient is supported in all directions & € T*T?\0. So in this region, W
behaves very much like a multiplication operator for frequencies away from
zero. A natural question is whether or not there must always be a point of
“full microsupport” if the hypotheses of Theorem 1 are to be satisfied. In fact,
there need not be such a point. To see this, we can modify our example above
as follows.

Define x1, X1, X2, X2 and by in a similar fashion to the previous example,
but now define by to be supported only in the directions with angle § € (§ —
2¢, 3% + 2¢) and identically one on (I —¢, 3T + ¢). Next, we introduce another
horizontal strip, disjoint from the first, with a corresponding pair of cutoff
functions x3, X3. Then, define b3 € C°°(S!) to be supported in (5{ —2¢, %UrQe)
and equal to one on (2% —¢, 7% +¢), and let b3(£) = b3(0)3(r), where £ = (r,0)
as before. This is illustrated in Fig. 2. Then, if we define Bz = X30p(b3)x3
and set W = 2?21 B} Bj, we can apply arguments similar to those above to
see that Assumptions 1 and 2 are still satisfied, but there does not exist any
point z € T? where w(x, £) is supported in all directions.
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