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Abstract. In this article, we study energy decay of the damped wave equa-
tion on compact Riemannian manifolds where the damping coefficient is
anisotropic and modeled by a pseudodifferential operator of order zero.
We prove that the energy of solutions decays at an exponential rate if
and only if the damping coefficient satisfies an anisotropic analogue of
the classical geometric control condition, along with a unique continu-
ation hypothesis. Furthermore, we compute an explicit formula for the
optimal decay rate in terms of the spectral abscissa and the long-time
averages of the principal symbol of the damping over geodesics, in analogy
to the work of Lebeau for the isotropic case. We also construct genuinely
anisotropic dampings which satisfy our hypotheses on the flat torus.

1. Introduction

Let (M, g) be a smooth, compact Riemannian manifold without boundary and
let Δg be the associated Laplace–Beltrami operator (taken with the convention
that Δg � 0). Suppose W : L2(M) → L2(M) is bounded and nonnegative. We
consider the generalized damped wave equation given by{

∂2
t u − Δgu + 2W∂tu = 0

(u, ∂tu)|t=0 = (u0, u1),
(1.1)

for (u0, u1)T ∈ H := H1(M) ⊕ L2(M), where H is taken with the natural
norm

‖(u0, u1)T ‖2H = ‖(1 − Δg)
1
2 u0‖2L2(M) + ‖u1‖2L2(M).

We study the asymptotic properties of the energy of solutions to (1.1) as
t → ∞. Here, the energy is defined by

E(u, t) =
1
2

∫
M

|∇gu(t, x)|2 + |∂tu(t, x)|2 dvg(x), (1.2)
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where dvg is the Riemannian volume form on M. It is straightforward to
compute that

d

dt
E(u, t) = −2Re 〈W∂tu, ∂tu〉 � 0, (1.3)

where 〈·, ·〉 denotes the inner product on L2(M, g). Thus, the assumption that
W is a nonnegative operator guarantees that the energy of solutions to (1.1)
experiences dissipation, but (1.3) does not indicate how quickly the energy
decays as t → ∞. The most straightforward type of decay is uniform stabi-
lization, i.e., when there exists a constant C > 0 and a real-valued function
t 
→ r(t) with r(t) → 0 as t → ∞ such that

E(u, t) � Cr(t)E(u, 0). (1.4)

It is worth noting that if (1.4) is satisfied, standard semigroup theory implies
that the decay rate r(t) must be exponential.

In the case where W acts via multiplication by a bounded, nonnegative
function b, a great deal is known about energy decay rates. Perhaps the most
well-known result states that solutions to (1.1) experience uniform stabilization
if and only if W satisfies the geometric control condition (GCC) [26,28]. The
GCC is satisfied if there exists some T > 0 such that every geodesic with
length at least T intersects the set where b is bounded below by some positive
constant. In the setting where the GCC is not satisfied, many other works have
proved weaker decay rates with respect to higher regularity initial data (c.f.
[2–7,21,23]). With more restrictive assumptions on W and M , one can show
that some of these weaker decay rates are in fact sharp (c.f. [1,10,11,14,18,19,
22,30,32]).

A distinct shortcoming of the multiplicative case is that the damping
force is sensitive only to positional information and not to the direction in
which the solution propagates. For this reason, one can classify multiplicative
damping as an isotropic force, but many physical systems which experience
anisotropic damping forces are studied in materials science, physics, and
engineering [8,15,16]. However, a general analysis of the damped wave
equation in the anisotropic case has not yet been done. This article aims to
address this gap in the literature by studying the case where the anisotropic
damping force is modeled by a pseudodifferential operator.

It is common in analysis of the generalized damped wave Eq. (1.1) to
assume that W takes the form of a square, i.e., W = B∗B for some bounded
operator B (c.f. [1]). This guarantees that W is nonnegative and enables the
use of certain techniques from spectral theory. We allow for a slightly more
general assumption here, namely that W takes the form

W =
N∑

j=1

B∗
j Bj

for some finite collection {Bj}N
j=1 ⊂ Ψ0

c�(M), where Ψ0
cl(M) denotes the space

of classical pseudodifferential operators on M of order zero with polyhomoge-
neous symbol expansions (c.f. [33, Ch. 7]). The corresponding space of symbols
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is denoted S0
c�(T

∗M). We note that allowing W to take the form of a sum of
squares is indeed a generalization, as it is not generically possible to write∑N

j=1 B∗
j Bj as B∗B for some B ∈ Ψ0

c�(M), since the pseudodifferential cal-
culus only allows for the computation of square roots modulo a smoothing
remainder. Indeed, even at the level of symbols it is in general not possible
to take a smooth square root of a sum of squares of smooth functions. We
denote by w ∈ S0

c�(T
∗M) the principal symbol of W , taken to be positively

fiber-homogeneous of degree 0 outside a small neighborhood of the zero section
in T ∗M. That is, w(x, sξ) = w(x, ξ) for all s � 1 and all |ξ| � c for some c > 0
which can be chosen to be arbitrarily small. This homogeneity allows us to
treat w as a function on the co-sphere bundle

S∗M := {(x, ξ) ∈ T ∗M : |ξ|g = 1}.

We now state the required assumptions for the main theorem. The first is
an anisotropic analogue of the classical geometric control condition, given in
terms of the long-time averages of w over lifted geodesics.

Assumption 1 (Anisotropic Geometric Control Condition). Let ϕt denote the
lift of the geodesic flow to T ∗M . Assume that there exists a compact neigh-
borhood K of the zero section in T ∗M and constants T0, c > 0 such that for
every (x0, ξ0) ∈ T ∗M\K,

1
T

T∫
0

w(ϕt(x0, ξ0)) dt � c, for T � T0.

That is, the long-time averages of w over geodesics are uniformly bounded be-
low. In this case, we say W satisfies the anisotropic geometric control condition
(AGCC).

Remark 1.1. One can equivalently state the AGCC as requiring that every
lifted geodesic intersects the elliptic set of W in time T < T0, but the above
characterization is more useful for our purposes. Also, note that in the case
of multiplicative damping, Assumption 1 is equivalent to classical geometric
control condition stated in [28].

The second key assumption requires that the kernel of W contain no
nontrivial eigenfunctions of Δg.

Assumption 2. If v ∈ L2(M) satisfies −Δgv = λ2v with λ �= 0, then Wv �= 0.

In the case where W = b(x), Assumption 2 is satisfied when b is supported
on any open set, since eigenfunctions of Δg cannot vanish on open sets by the
unique continuation principle (c.f. [28]). It is for this reason that we sometimes
refer to Assumption 2 as a “unique continuation hypothesis.”

With these assumptions stated, we then have the following equivalence.

Theorem 1. All solutions u to (1.1) with W ∈ Ψ0
c�(M) satisfy

E(u, t) � Ce−βtE(u, 0) (1.5)
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for some C, β > 0 and for all t � 0 if and only if W satisfies Assumptions 1
and 2.

In other words, solutions experience uniform stabilization if and only if W
satisfies Assumptions 1 and 2.

The existing literature on anisotropic damping coefficients is quite lim-
ited. In the context of pseudodifferential W , Sjöstrand [29] studied the as-
ymptotic distribution of eigenvalues of the stationary damped wave equation.
Christianson, Schenck, Vasy, and Wunsch [9] showed that a polynomial resol-
vent estimate for a related complex absorbing potential problem gives another
polynomial resolvent estimate of the same order for the stationary damped
wave equation. However, these results do not consider anisotropic damping in a
time-dependent setting and so do not provide energy decay results. Theorem 1
addresses this gap in the literature by providing conditions which guarantee
exponential uniform stabilization, in analogy to the classical result of Rauch
and Taylor [28].

Since Theorem 1 only claims the existence of some exponential decay
rate β, a natural question is to determine the optimal rate of decay for a given
damping coefficient. Given a fixed W ∈ Ψ0

c�(M), we define the best exponential
decay rate as in [21] via

α := sup{β ∈ R : ∃C > 0 such that E(u, t) � Ce−βtE(u, 0) ∀u which solve (1.1)}.

(1.6)

Our next result shows that α can be expressed in terms of two fundamental
quantities: the spectral abscissa and the long-time averages of w over lifted
geodesics. The spectral abscissa is defined with respect to the operator

AW :=
(

0 Id
Δg −2W

)
,

which is the infinitesimal generator of the solution semigroup for (1.1). For
each R > 0, we set

D(R) = sup{Re (λ) : |λ| > R, λ ∈ Spec(AW )}.

We then define the spectral abscissa as

D0 = lim
R→0+

D(R). (1.7)

We also define for t ∈ R the time-average of the damping along geodesics

L(t) = inf
(x,ξ)∈S∗M

1
t

t∫
0

w(ϕs(x, ξ)) ds,

and the long-time limit

L∞ = lim
t→∞ L(t). (1.8)

We can then characterize α as follows.
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Theorem 2. The best exponential decay rate for solutions to (1.1) with W ∈
Ψ0

c�(M) is

α = 2min{−D0, L∞},

where D0 and L∞ are defined by (1.7) and (1.8), respectively.

Remark 1.2. It is noteworthy that the optimal decay rate here is an exact
analogy of the multiplicative case studied by Lebeau (c.f. [21, Theorem 2]).
While the broad structure of our proof is similar, there are portions of the
analysis which diverge greatly, particularly in Sect. 2 where we investigate the
action of pseudodifferential operators on Gaussian beams.

Remark 1.3. Theorem 2 is significantly stronger than Theorem 1, although
this is not immediately obvious. The main portion of this article is dedicated
to the proof of Theorem 2. We then show that Theorem 2 implies Theorem 1
in Sect. 5.

Theorems 1 and 2 fit into a broad range of existing results which attempt
to reproduce the equivalence of the GCC and exponential decay under modi-
fied hypotheses on the damping. It is not uncommon for such statements to be
somewhat inconclusive. For example, when the damping is allowed to be time
dependent, [24] showed that for time periodic damping, the GCC indeed guar-
antees exponential decay. In recent work, [20] showed that a generalization of
the GCC implies exponential energy decay for non-periodic, time-dependent
damping, but the converse is not known in either the periodic or non-periodic
case. In the setting where the damping is allowed to take negative values (com-
monly called “indefinite damping”), the state of the art is similarly mixed. If
M is an open domain in R

n with C2 boundary, [25] proves an exponential
decay rate provided that the damping is positive in a neighborhood of ∂M
(which implies the GCC) and infx∈M W (x) is not too negative. However, it is
currently not known if an appropriate generalization of the GCC is equivalent
to exponential stability in the indefinite case. The limitations of these results
illustrate that seemingly simple changes to hypotheses on the damping coef-
ficient can create substantial barriers to reproducing the classical equivalence
theorem. So, the fact that Theorem 1 provides a direct analogy of the GCC for
pseudodifferential damping which is equivalent to exponential decay is some-
what exceptional. Note also that these other generalizations do not possess an
analogy of Theorem 2. To the authors knowledge, there are no results provid-
ing explicit exponential decay rates for general time-dependent damping on
manifolds, and although [25] provides a rate for the exponential decay in the
indefinite case, it is not shown to be sharp.

Our final result concerns Assumption 2, which is necessary in order to
obtain Theorem 1. To see this, suppose that v satisfies −Δgv = λ2v with λ �= 0
and Wv = 0. Then, the function

u(t, x) = eitλv(x),
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solves (1.1) with initial data (v, iλv)T , but has energy E(u, t) = λ2‖v‖2L2(M)

for all t. As previously mentioned, when W is a multiplication operator sup-
ported on any open set, unique continuation results guarantee that W does
not annihilate any eigenfunctions of Δg, making Assumption 2 unnecessary.
However, in the pseudodifferential setting, verifying this assumption is more
difficult.

A special case in which Assumption 2 is easy to check is when W is
constructed from functions of Δg. Suppose W = B∗B with B = f(−Δg),
where f : R → R satisfies a “symbol-type” estimate of the form

|∂k
s f | � C(1 + |s|)−k

for any k. The functional calculus of Strichartz [31] shows that W is pseudodif-
ferential of order 0 when constructed in this way. The calculus also immediately
implies that Assumption 2 holds as long as f does not vanish on the spectrum
of −Δg, since for any eigenfunction v with eigenvalue λ, we have Wv = f(λ)2v.
However, damping coefficients constructed in this fashion are somewhat un-
interesting in the sense that the principal symbol is a function of |ξ|2g, and
therefore independent of direction. Thus, examples of this type are not truly
anisotropic. In general, it is not obvious that one can always construct non-
trivial anisotropic examples satisfying Assumption 2, although we expect that
a rich class of examples do indeed exist. The following theorem demonstrates
that one can always produce such examples when (M, g) is real analytic.

Theorem 3. If (M, g) is compact and real analytic, then there exists W ∈
Ψ0

cl(M) of the form W =
∑N

j=1 B∗
j Bj, such that for each x ∈ M , the principal

symbol of W vanishes on an open cone in T ∗
x M , and for any eigenfunction v

of Δg, we have Wv �= 0.

The fact that the principal symbol vanishes in an open cone of directions at
each point implies that the W in this theorem is not built from functions
of Δg, which rules out the trivial case discussed above. Using the machinery
developed in the proof of Theorem 3, we are able to produce explicit examples
on the flat 2-torus of operators W ∈ Ψ0

cl which satisfy both Assumptions 1
and 2. This construction is presented in Sect. 6.

Remark 1.4. As mentioned previously, Assumption 2 follows directly from the
geometric control condition in the multiplicative case. One might hope that
this could be generalized to the scenario where W is pseudodifferential, but this
problem is exceedingly difficult in general. In fact, there is no result known to
the authors which addresses this question fully. One scenario in which there is
some progress is manifolds with Anosov geodesic flow. In this setting, Dyatlov,
Jin and Nonnenmacher were able to show a semiclassical lower bound on ‖Avh‖
for A ∈ Ψ0

h(M) and v ∈ ker(h2Δg − 1) when the principal symbol of A does
not vanish identically on S∗M [10]. However, even this result only proves
unique continuation in the high-frequency limit. One still cannot exclude the
possibility that a low-frequency eigenfunction is annihilated by the damping
term. Furthermore, even in this specialized setting, the proof involves highly
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sophisticated techniques. An analysis of the general case is an open problem,
and we suspect that it would be a significant undertaking.

1.1. Outline of the Article

The majority of this article is devoted to the proof of Theorem 2, which spans
Sects. 2, 3, and 4. We begin in Sect. 2 with a detailed study of the action
of certain pseudodifferential operators on coherent states, which is a critical
component of constructing quasimodes for (1.1). This analysis is a key point
where the pseudodifferential case becomes significantly more difficult than the
multiplicative setting. In Sect. 3, we then use the result of Sect. 2 to produce
quasimodes for the damped wave equation whose energy is strongly localized
near a fixed geodesic. The analysis of these quasimodes allows us to prove
that α � 2min{−D0, L∞}. The proof of Theorem 2 is completed in Sect. 4,
where we prove the lower bound α � 2min{−D0, L∞}. This section primarily
utilizes spectral theory arguments and follows in close analogy to [21], so we
omit some of the more technical details.

In Sect. 5, we show that Theorem 2 implies Theorem 1. This follows
directly from spectral theory analysis.

Finally, in Sect. 6, we restrict to the case of real analytic manifolds to
produce some examples. We provide a fairly generic condition on pseudodif-
ferential operators which guarantees that they satisfy Assumption 2. We also
show that one can always produce examples which fall into this category, thus
proving Theorem 3. We then conclude by constructing some explicit examples
on the flat torus which satisfy both Assumptions 1 and 2.

2. Pseudodifferential Operators Acting on Coherent States

A key component of the proof of Theorem 2 is to build quasimodes for (1.1)
using Gaussian beams, which are strongly localized along a given geodesic. In
this section, we obtain precise estimates for pseudodifferential operators acting
on slightly simpler objects, namely coherent states. A coherent state on R

n is
a sequence of smooth functions {hk} taking the form

hk(x) = k
n
4 eik〈x−x0,ξ0〉e

ik
2 〈A(x−x0),(x−x0)〉b(x) (2.1)

for some fixed (x0, ξ0) ∈ S∗
R

n, where b ∈ C∞
c (Rn) and A ∈ C

n×n has posi-
tive definite imaginary part. Heuristically, one thinks of hk as being strongly
microlocalized near (x0, ξ0). The objective of this section is to show that
if a symbol a ∈ Sm

c� (R
2n) vanishes to some finite order at (x0, ξ0), then

‖Op(a)hk‖L2(Rn) satisfies a bound which depends on the symbol order m and
on the order of vanishing. Here, Op(a) denotes the standard quantization given
by

Op(a)f(x) =
1

(2π)n

∫
R2n

ei〈x−y,ξ〉a(x, ξ)f(y) dy dξ. (2.2)

Proposition 2.1. Fix (x0, ξ0) ∈ S∗
R

n, b ∈ C∞
c (Rn), and a matrix A ∈ C

n×n,
with positive definite imaginary part. Then, for any k � 1, let hk be given by
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(2.1). Let a ∈ Sm
c� (R

2n) have compact support in x and a polyhomogeneous
expansion given by

a ∼
∑
j�0

am−j ,

where each am−j ∈ Sm−j
c� (R2n). Suppose there exists an 	 ∈ N such that am−j

vanishes to order 	 − 2j at (x0, ξ0) for all j � �
2 . Then, for each ε > 0, there

exists a C > 0, depending on ε, m, and 	, so that

‖Op(a)hk‖L2(Rn) � Ckm− �
2+ε. (2.3)

Remark 2.2. In the subsequent sections, we only strictly need Proposition 2.1
in the case where m = 0 and 	 = 1. However, the proof in the general case is
not much more difficult, and so we believe it to be worthwhile to state the full
strength of the estimate.

Proof. By the polyhomogeneity of a, for any N0 � 0 there exists rN0 ∈ Sm−N0
c�

such that

a =
N0−1∑
j=0

am−j + rN0 . (2.4)

We begin with the following lemma, which handles the remainder term in this
expansion.

Lemma 2.3. Let r ∈ S−s
c� (R2n) with s � 0. Then, there exists a C > 0 such

that

‖Op(r)hk‖L2(Rn) � Ck− s
2 . (2.5)

Proof. By the quantization formula (2.2), we have

‖Op(r)hk‖2L2(Rn) =
∫
Rn

∣∣∣∣∣∣
∫

R2n

ei〈x−y,ξ〉r(x, ξ)hk(y) dy dξ

∣∣∣∣∣∣
2

dx.

Assume without loss of generality that x0 = 0. We then change variables via
x 
→ k− 1

2 x, y 
→ k− 1
2 y, and ξ 
→ k

1
2 ξ. Recalling the definition of hk, we obtain

‖Op(r)hk‖2L2(Rn)

=
∫
Rn

∣∣∣∣∣∣
∫

R2n

ei〈x−y,ξ〉r(k− 1
2 x, k

1
2 ξ)eik

1
2 〈y,ξ0〉e

i
2 〈Ay,y〉b(k− 1

2 y) dy dξ

∣∣∣∣∣∣
2

dx.

(2.6)

For notational convenience, we define gA(y) = e
i
2 〈Ay,y〉 and let τs : C∞(Rn) →

C∞(Rn) denote dilation by s > 0. That is, τsf(y) = f(sy). Then, usingˆ to
denote the standard Fourier transform, we define

Fk(ξ) :=
∫
Rn

e−i〈y,ξ〉gA(y)b(k−1/2y)dy = kn/2
[
ĝA ∗ τ

k
1
2
b̂
]
(ξ). (2.7)
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Thus, we can rewrite (2.6) as

‖Op(r)hk‖2L2(Rn) =
∫
Rn

∣∣∣∣∣∣
∫
Rn

ei〈x,ξ〉r(k− 1
2 x, k

1
2 ξ)Fk(ξ − k

1
2 ξ0)dξ

∣∣∣∣∣∣
2

dx. (2.8)

We claim that for any N ∈ N and any multi-index β, there exists a constant
CN,β > 0 which is independent of k, such that∣∣∣∂β

ξ Fk(ξ)
∣∣∣ � CN,β(1 + |ξ|)−N for all k ∈ N. (2.9)

To see this, consider the case where |β| = 0 and note that∣∣∣(1 + |ξ|)Nkn/2[ĝA ∗ τ
k

1
2
b̂](ξ)

∣∣∣
� CNkn/2

∫
Rn

(1 + |ξ − η|)N (1 + |η|)N |ĝA(ξ − η)| |̂b(k 1
2 η)|dη

� CNkn/2

∫
Rn

(1 + |η|)N |̂b(k 1
2 η)|dη,

where the last inequality follows from the fact that ĝA is Schwartz class, since
A has positive definite imaginary part. Now, observe that

kn/2

∫
Rn

(1 + |η|)N |̂b(k 1
2 η) dη| � kn/2

∫
Rn

(1 + k
1
2 |η|)N+n+1

(1 + k
1
2 |η|)n+1

|̂b(k 1
2 η)|dη

� CNkn/2

∫
Rn

(1 + k
1
2 |η|)−n−1 dη,

for some new CN > 0, since b̂ is Schwartz class. Changing variables via η 
→
k− 1

2 η, we obtain that∣∣∣(1 + |ξ|)Nkn/2[ĝA ∗ τ
k

1
2
b̂](ξ)

∣∣∣ � CN

after potentially increasing CN . Dividing through by (1 + |ξ|)N completes the
proof of (2.9) for |β| = 0. To obtain the estimate when |β| �= 0, simply repeat
the above proof with ĝA replaced by ∂β

ξ ĝA.

Now, in order to estimate (2.8) we introduce a smooth cutoff function χ
which is identically one in a neighborhood of x = 0. We then write

‖Op(r)hk‖2L2(Rn) = I + II,

where I is defined by

I =
∫
Rn

∣∣∣∣∣∣
∫
Rn

ei〈x,ξ〉χ(x)r(k− 1
2 x, k

1
2 ξ)Fk(ξ − k

1
2 ξ0)dξ

∣∣∣∣∣∣
2

dx,

and II is defined analogously with χ(x) replaced by 1 − χ(x). To estimate I,
we note that when |ξ| � 1,

|r(k− 1
2 x, k

1
2 ξ)Fk(ξ − k

1
2 ξ0)| � CN (1 + |ξ − k

1
2 ξ0|)−N � C ′

Nk−N/2,
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for some CN , C ′
N > 0 and any N , by (2.9) and the fact that r has nonpositive

order and is therefore uniformly bounded. Thus,

I =
∫
Rn

∣∣∣∣∣∣∣
∫

|ξ|�1

ei〈x,ξ〉χ(x)r(k− 1
2 x, k

1
2 ξ)Fk(ξ − k

1
2 ξ0)dξ

∣∣∣∣∣∣∣
2

dx + O(k−∞).

(2.10)

Now, when |ξ| � 1,

|r(k− 1
2 x, k

1
2 ξ)| � C(1 + k

1
2 |ξ|)−s � Ck− s

2 .

Combining this with (2.10), we have

I � Ck−s‖Fk‖2L1(Rn) � C ′k−s, (2.11)

where the final inequality follows from (2.9).
Now, consider II. Since 1 − χ vanishes in a neighborhood of x = 0, we

may integrate by parts arbitrarily many times in ξ using the operator 〈x,∇ξ〉
i|x|2 ,

which preserves ei〈x,ξ〉. That is, for any ν � 0, we have

II =
∫
Rn

∣∣∣∣∣∣
∫
Rn

ei〈x,ξ〉 (1 − χ(x))
(

i〈x,∇ξ〉
|x|2

)ν (
r(k− 1

2 x, k
1
2 ξ)Fk(ξ − k

1
2 ξ0)

)
dξ

∣∣∣∣∣∣
2

dx.

By (2.9) and the fact that r ∈ S−s
c� , we have for any multi-index β and any N ,∣∣∣∂β

ξ

(
r(k− 1

2 x, k
1
2 ξ)Fk(ξ − k

1
2 ξ0)

)∣∣∣
�
∑

|γ|�|β|
Cγ,Nk

|γ|
2 (1 + k

1
2 |ξ|)−s−|γ|(1 + |ξ − k

1
2 ξ0|)−N .

In the region where |ξ| � 1, the above is bounded by CNk− s
2 (1+ |ξ−k

1
2 ξ0|)−N

for some CN > 0. Alternatively, when |ξ| � 1, we have a bound of the form
CNk−N/2, since 1 + |ξ − k

1
2 ξ0| � Ck

1
2 . Combining these facts, we have

∫
Rn

∣∣∣∣∣∣
∫
Rn

ei〈x,ξ〉 (1 − χ(x))
(

i〈x,∇ξ〉
|x|2

)ν (
r(k− 1

2 x, k
1
2 ξ)Fk(ξ − k

1
2 ξ0)

)
dξ

∣∣∣∣∣∣
2

dx

� CNk−s,

for some CN > 0, provided ν > n+1
2 so that the integral in x is convergent.

Therefore,

II � CNk−s.

Combining this with (2.11) and taking square roots of both sides completes
the proof. �
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We now return to the proof of Proposition 2.1. We aim to estimate each
of the terms in the sum in (2.4) separately. For each j � N0 − 1, we have

‖Op(am−j)hk‖2L2(Rn) =
∫
Rn

∣∣∣∣∣∣
∫

R2n

ei〈x−y,ξ〉am−j(x, ξ)hk(y)dydξ

∣∣∣∣∣∣
2

dx.

As before, we change variables via x 
→ k− 1
2 x, y 
→ k− 1

2 y, and ξ 
→ k
1
2 ξ. This

gives

‖Op(am−j)hk‖2L2(Rn) =
∫
Rn

∣∣∣∣∣∣
∫
Rn

ei〈x,ξ〉am−j(k− 1
2 x, k

1
2 ξ)Fk(ξ − k

1
2 ξ0)dξ

∣∣∣∣∣∣
2

dx,

where Fk is given by (2.7). Now, let χ(x, ξ) = χ(ξ) be a smooth function
which is identically one for |ξ| � 1

2 and supported where |ξ| � 1. Then, for any
0 < δ < 1/2 and any k > 0, define

χk,δ(ξ) = χ(k−δ(ξ − k
1
2 ξ0)),

so that χk,δ is identically one on the ball of radius 1
2kδ centered at k

1
2 ξ0 and

zero outside the corresponding ball of radius kδ. Since |ξ| > 2 on the support
of χk,δ for sufficiently large k, the homogeneity of am−j implies that

χk,δ(ξ)am−j(k− 1
2 x, k

1
2 ξ) = k

m−j
2 χk,δ(ξ)am−j(k− 1

2 x, ξ). (2.12)

Recall that am−j vanishes to order 	j := 	 − 2j at (x0 = 0, ξ0) for all j � �
2 ,

so we can Taylor expand to write

am−j(x, ξ) =
∑

|γ|=�j

xγfm−j,γ(x, ξ) +
(

ξ

|ξ| − ξ0

)γ

gm−j,γ(x, ξ)

where fm−j,γ , gm−j,γ ∈ Sm−j
c� (R2n) have compact support in x for each multi-

index γ. Combining this with (2.12), we have

χk,δ(ξ)am−j(k
− 1

2 x, k
1
2 ξ)

= k
m−j

2 χk,δ(ξ)
∑

|γ|=�j

(
k− �j

2 xγfm−j,γ(k− 1
2 x, ξ) +

(
ξ

|ξ| − ξ0

)γ

gm−j,γ(k− 1
2 x, ξ)

)
.

Then, we define

Aj,1(x) = k
m−j−�j

2

∑
|γ|=�j

∫
Rn

ei〈x,ξ〉χk,δ(ξ)x
�j fm−j,γ(k

− 1
2 x, ξ)Fk(ξ − k

1
2 ξ0)dξ,

(2.13)

Aj,2(x) = k
m−j

2

∑
|γ|=�j

∫
Rn

ei〈x,ξ〉χk,δ(ξ)

(
ξ

|ξ| − ξ0

)γ

gm−j,γ(k
− 1

2 x, ξ)Fk(ξ − k
1
2 ξ0)dξ.

(2.14)

and

Rj(x) =
∫
Rn

ei〈x,ξ〉 (1 − χk,δ(ξ)) am−j(k− 1
2 , k

1
2 ξ)Fk(ξ − k

1
2 ξ) dξ, (2.15)
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so that

Op(am−j)hk = Aj,1 + Aj,2 + Rj .

We claim that Rj is negligible for large k. Since Fk(ξ − k
1
2 ξ0) is a Gaussian

centered at k
1
2 ξ0 and 1 − χk,δ is supported at least kδ away from that center,

we are able to show that Rj is controlled by an arbitrarily large negative power
of k.

Lemma 2.4. For any N ′ ∈ N there exists CN ′ > 0 such that

‖Rj‖L2(Rn) � CN ′k−N ′
. (2.16)

Proof. To begin, note that for any multi-index β

∂β
ξ χk,δ(ξ) = k−δ|β|(∂β

ξ χ)(k−δ(ξ − k
1
2 ξ0)). (2.17)

Combining (2.17) with (2.9) shows that for any N ∈ N and any multi-index
β, there exists CN,β > 0 such that

∂β
ξ [(1 − χk,δ)Fk(ξ)] � CN,β1supp (1−χk,δ)(ξ)(1 + |ξ − k

1
2 ξ0|)−N ,

where for any set E ⊂ R
n, 1E denotes the indicator function of E.

Now, when |x| � 1, for ν � 0 we may integrate by parts in (2.15) as in
the proof of Lemma 2.3 to obtain

Rj(x) =
∫
Rn

ei〈x,ξ〉
(

i〈x,∇ξ〉
|x|2

)ν [
(1 − χk,δ(ξ))am−j(k− 1

2 x, k
1
2 ξ)Fk(ξ)

]
dξ.

Since am−j ∈ Sm−j
c� (R2n), we have that for any multi-index β,

|∂β
ξ am−j(k− 1

2 x, k
1
2 ξ)| � Ck

|β|
2 (1 + k

1
2 |ξ|)m−j−|β| � Ck

|β|
2 (1 + k

1
2 |ξ|)m

Thus, for any N ∈ N, there exists a constant CN such that whenever |x| � 1,

|Rj(x)| � CN sup
|β|�ν

1

|x|ν
∫
Rn

1supp (1−χk,δ)(ξ)(1 + |ξ − k
1
2 ξ0|)−Nk

|β|
2 (1 + k

1
2 |ξ|)m dξ.

Recall that |ξ0| = 1, and so by the triangle inequality

1 + k
1
2 |ξ| � 1 + k + k

1
2 |ξ − k

1
2 ξ0| � Ck(1 + |ξ − k

1
2 ξ0|).

Thus, when |x| � 1,

|Rj(x)| � CN
1

|x|ν
∫
Rn

1supp (1−χk,δ)(ξ)(1 + |ξ − k
1
2 ξ0|)−N+mkm+ ν

2 dξ.

(2.18)

Using polar coordinates ξ − k
1
2 ξ0 = rω with r ∈ R

+, ω ∈ S
n−1, we compute

∫
Rn

1supp (1−χk,δ)(ξ)(1 + |ξ − k
1
2 ξ0|)−N+m dξ �

∫
Sn−1

∞∫
kδ/2

(1 + r)−N+mrn−1 dr dω

� Ckδ(m+n−N).
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Combining this with (2.18), we have

|Rj(x)| � CN |x|−νkδ(m+n−N)+m+ ν
2 , if |x| � 1.

Since ν and N were both arbitrary, given any N ′ � 0 we can choose ν � n+1
2

and N sufficiently large so that

|Rj(x)| � CN ′k−N ′ |x|− n+1
2 , if |x| � 1.

By an analogous argument when |x| � 1, except without integration by parts,
we have

|Rj(x)| � CN ′k−N ′
if |x| � 1.

Combining these inequalities and taking the L2 norm completes the proof of
(2.16). �

It remains to estimate Aj,1 and Aj,2. It is here that we take advantage
of the compatibility of the vanishing of am−j with the particular form of the
coherent state hk. We first consider Aj,1.

Lemma 2.5. For any j � 0, there exists Cj > 0 such that

‖Aj,1‖L2(Rn) � Cjk
m−j− �j

2 . (2.19)

Proof. Let χk,δ be as in the proof of Lemma 2.4, and observe that on the
support of χk,δ

k
1
2 − kδ � |ξ| � k

1
2 + kδ.

Also, recall that fm−j,γ ∈ Sm−j
c� (R2n) has compact support in x, so

|∂β
ξ fm−j,γ(x, ξ)| � Cβ |ξ|m−j−|β| for all x ∈ R

n.

Therefore,

sup
x∈Rn

|∂β
ξ fm−j,γ(x, ξ)| � Cβk

m−j−|β|
2 , for all ξ ∈ suppχk,δ. (2.20)

Now, when |x| � 1, we may integrate by parts as before to obtain that for any
ν � 0 and any N sufficiently large,

|Aj,1(x)| � k
m−j−�j

2

∑
|γ|=�j

∣∣∣∣∣∣
∫
Rn

ei〈x,ξ〉χk,δ(ξ)x
γfm−j,γ(k

− 1
2 x, ξ)Fk(ξ − k

1
2 ξ0)dξ

∣∣∣∣∣∣
� k

m−j−�j

2 |x|�j

∫
Rn

∣∣∣∣
(

i〈x, ∇ξ〉
|x|2

)ν [
χk,δ(ξ)fm−j,γ(k

− 1
2 x, ξ)Fk(ξ − k

1
2 ξ0)

]∣∣∣∣ dξ

� Cν,Nkm−j− �j

2 |x|�j−ν

∫
Rn

(1 + |ξ − k
1
2 ξ0|)−N dξ

� C′
ν,Nkm−j− �j

2 |x|�j−ν ,

where the second-to-last inequality follows from (2.9), (2.17) and (2.20). When
|x| � 1, by the same argument with ν = 0, we obtain

|Aj,1(x)| � Ckm−j− �j
2
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for some C > 0. Thus, for each ν � 0, there exists a constant Cν > 0 so that

|Aj,1(x)| � Cνkm−j− �
2 (1 + |x|)�j−ν for all x ∈ R

n.

Choosing ν so that 	j − ν � −n+1
2 and taking the L2 norm gives the desired

inequality. �

Finally, we turn our attention to Aj,2. The estimation of this term is
the most subtle of the three, and requires some very technical analysis of the
relationship between the vanishing factor

(
ξ

|ξ| − ξ0

)
and the structure of the

support of χk,δ.

Lemma 2.6. For any j � 0, there exists Cj > 0 such that

‖Aj,2‖L2(Rn) � Cjk
m−j+(δ− 1

2 )�j . (2.21)

Proof. Once again, we let χk,δ be as in the proof of Lemma 2.4. We first
consider the case where |x| � 1, and the case |x| � 1 follows from an analogous
argument. When |x| � 1, we may again use integration by parts to see that
for any ν � 0 and any N sufficiently large,

|Aj,2(x)|�k
m−j

2

∑
|γ|=�j

∣∣∣∣∣∣
∫
Rn

ei〈x,ξ〉
(

i〈x,∇ξ〉
|x|2

)ν

×
[
χk,δ(ξ)

(
ξ

|ξ| − ξ0

)γ

gm−j,γ(k− 1
2 x, ξ)Fk(ξ − k

1
2 ξ0)

]
dξ

∣∣∣∣ .
Recall that on suppχk,δ, k

1
2 − kδ � |ξ| � k

1
2 + kδ, and so |∂β

ξ gm−j,γ | �
Ck

m−j−|β|
2 � Ck

m−j
2 . Combining this with (2.9) gives

|Aj,2(x)| � Ckm−j |x|−ν
∑
β�ν

∑
|γ|=�j

∫
Rn

∣∣∣∣∂β
ξ

(
χk,δ(ξ)

(
ξ

|ξ| − ξ0

)γ)∣∣∣∣ (1 + |ξ − k
1
2 ξ0|)−N dξ,

(2.22)

when |x| � 1. Therefore, it is sufficient to show that for any multi-indices β, γ
with |β| � ν and |γ| = 	j , there exists C > 0 such that∣∣∣∣∂β

ξ

(
χk,δ(ξ)

(
ξ

|ξ| − ξ0

)γ)∣∣∣∣ � Ck(δ− 1
2 )�j . (2.23)

To show this, it is convenient to choose coordinates on R
n so that ξ0 =

(1, 0, . . . , 0). Writing ξ = (ξ1, ξ2, . . . , ξn), we have that on the support of χk,δ,

|ξ − k1/2ξ0| =
√

(ξ1 − k1/2)2 + ξ22 + · · · + ξ2n � kδ,

by the definition of χk,δ. Thus,

|ξr| � kδ for r �= 1 and |ξ| � k1/2 − kδ for all ξ ∈ suppχk,δ. (2.24)

Also, note that ξ1 > 0 on suppχk,δ for k large enough, and so we can write

|ξ| − ξ1 = (|ξ| + ξ1)−1(ξ22 + · · · + ξ2n).
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Combining these facts, we have that for large k,

|ξ| − ξ1 =
ξ22 + · · · + ξ2n

|ξ| + ξ1
� (n − 1)k2δ

k1/2 − kδ
� Ck2δ− 1

2 .

We can now show (2.23) for β = 0. Recalling that γ = (γ1, γ2, . . . , γn) ∈ N
n is

a multi-index with |γ| = γ1+· · ·+γn = 	j , we make use of the above inequality
and (2.24) to obtain∣∣∣∣

(
ξ

|ξ| − ξ0

)γ∣∣∣∣ = |ξ1 − |ξ||γ1 |ξ2|γ2 · · · |ξn|γn

|ξ|�j

� Ck(2δ− 1
2 )γ1 · kδγ2 · · · kδγn

k
�j
2

= Ck(δ− 1
2 )�j+(δ− 1

2 )γ1

� Ck(δ− 1
2 )�j ,

since δ < 1
2 , which proves (2.23) in the case where |β| = 0. To handle the case

where β �= 0 we let β(1), β(2), . . . , β(n) be multi-indices which partition β, and
expand via the product rule to obtain
∣∣∣∣∂β

ξ

(
ξ

|ξ| − ξ0

)γ∣∣∣∣
�

∑
|β(1)+β(2)+···+β(n)|=β

Cβj

∣∣∣∣∂β(1)

ξ

(
ξ1 − |ξ|

|ξ|
)γ1

∂β(2)

ξ

(
ξ2
|ξ|
)γ2

· · · ∂β(n)

ξ

(
ξn

|ξ|
)γn

∣∣∣∣ . (2.25)

Since ξ1−|ξ|
|ξ| and ξj

|ξ| are homogeneous of degree zero, we have that for any
multi-index θ,∣∣∣∣∂θ

ξ

(
ξ1 − |ξ|

|ξ|
)∣∣∣∣ � C

|ξ||θ| , and
∣∣∣∣∂θ

ξ

(
ξr

|ξ|
)∣∣∣∣ � C

|ξ||θ| if r �= 1.

Furthermore, we recall that |ξ| � k
1
2 − kδ � Ck

1
2 on suppχk,δ, and so∣∣∣∣χk,δ(ξ)∂θ

ξ

(
ξ1 − |ξ|

|ξ|
)∣∣∣∣ � Ck− |θ|

2 , and
∣∣∣χk,δ(ξ)∂θ

ξ

(
ξr

|ξ|
)∣∣∣ � Ck− |θ|

2 , r �= 1.

(2.26)

Now consider ∂β(r)

ξ

(
ξr

|ξ|
)γr

. Expanding via the product rule, we can rewrite
this as a linear combination of terms of the form(

ξr

|ξ|
)tr

∂σ(1)

ξ

(
ξr

|ξ|
)

· · · ∂σ(q)

ξ

(
ξr

|ξ|
)

,

where each σ(i) is a multi-index with |σ(i)| � 1, σ(1) + · · · + σ(q) = β(r), and
tr+q = γr. That is, there are tr factors of ξr

|ξ| which do not have any derivatives,
and the remaining γr − tr factors each have at least 1 derivative applied to
them. Note then that tr � max(0, γr − |β(r)|). By (2.24) each factor with no
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derivatives is bounded by kδ− 1
2 . The homogeneous estimate (2.26) controls the

factors with derivatives, giving∣∣∣∣∣χk,δ(ξ)
(

ξr

|ξ|
)tr

∂σ(1)

ξ

(
ξr

|ξ|
)

· · · ∂σ(q)

ξ

(
ξr

|ξ|
)∣∣∣∣∣ � k(δ− 1

2 )trk− |σ(1)|
2 · · · k− |σ(q)|

2

� Ck(δ− 1
2 )tr− |β(r)|

2 .

Thus, by the triangle inequality, we have∣∣∣∣χk,δ(ξ)∂
β(r)

ξ

(
ξr

|ξ|
)γr
∣∣∣∣ � Ck(δ− 1

2 )tr− |β(r)|
2 .

When γr − |β(r)| > 0, we have

k(δ− 1
2 )trk− |β(r)|

2 � k(δ− 1
2 )(γr−|β(r)|)k− |β(r)|

2 � Ck(δ− 1
2 )γr ,

since tr � γr − |β(r)| > 0 and δ − 1
2 < 0. On the other hand, when γr � |β(r)|,

we still have tr � 0 and so

k(δ− 1
2 )trk− |β(r)|

2 � Ck− |β(r)|
2 � Ck− γr

2 � Ck(δ− 1
2 )γr ,

since δ > 0. Thus, there exists a Cβ > 0 so that∣∣∣∣χk,δ(ξ)∂
β(r)

ξ

(
ξr

|ξ|
)γr
∣∣∣∣ � Cβk(δ− 1

2 )γr . (2.27)

An analogous argument shows∣∣∣∣χk,δ(ξ)∂
β(1)

ξ

(
ξ1 − |ξ|

|ξ|
)γ1
∣∣∣∣ � Cβk(δ− 1

2 )γ1 , (2.28)

for some potentially different Cβ > 0. Combining (2.27) and (2.28) with (2.17)
and (2.25) yields∣∣∣∣∂β

ξ

(
χk,δ(ξ)

(
ξ

|ξ| − ξ0

)γ)∣∣∣∣ � Cβk(δ− 1
2 )(γ1+γ2+···+γn)

= Cβk(δ− 1
2 )|γ|

= Cβk(δ− 1
2 )�j .

We have therefore proved (2.23).
Combining (2.22) and (2.23), we have that for any ν � 0 and any N large

enough, there exists Cν , C ′
ν > 0 so that

|Aj,2(x)| � Cν |x|−νk
m−j

2 +(δ− 1
2 )�j

∑
|γ|=�j

k
m−j

2

∫
Rn

(1 + |ξ − k
1
2 ξ0|)−Ndξ

� C ′
ν |x|−νkm−j+(δ− 1

2 )�j .

We then have

|Aj,2(x)| � Cν |x|−νkm−j+(δ− 1
2 )�j , for all |x| � 1, (2.29)

for some Cν > 0.
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To estimate Aj,2(x) when |x| � 1, we repeat the above argument without
integrating by parts. From this, we obtain

|Aj,2(x)| � Ckm−j+(δ− 1
2 )�j , for all |x| � 1 (2.30)

for some C > 0. Choosing ν > n−1
2 , we can combine (2.29) with (2.30), then

take L2 norms to obtain (2.21) as desired. �

Recalling the definitions of Rj ,Aj,1, and Aj,2, we combine Lemmas 2.4,
2.5, and 2.6 to obtain that for each 0 � j � N0 − 1,

‖Op(am−j)hk‖L2(Rn) � ‖Aj,1‖L2(Rn) + ‖Aj,2‖L2(Rn) + ‖Rj‖L2(Rn)

� Cjk
m−j+(δ− 1

2 )�j , (2.31)

for some Cj > 0. Since 	j = 	 − 2j, (2.5) and (2.31) imply that for any fixed
N0 � m, there exist C1, C2 > 0 so that

||Op(a)hk||L2 �
N0−1∑
j=0

||Op(am−j)hk||L2 + ||Op(rN0)hk||L2

�
N0−1∑
j=0

C1k
m−j+(δ− 1

2 )�j + C2k
m−N0

2

=
N0−1∑
j=0

C1k
m− �

2+(�−2j)δ + C2k
m−N0

2

� C1k
m− �

2+�δ + C2k
m−N0

2 .

Choosing N0 � 	 − m − 2ε and δ � ε
� completes the proof of Proposition 2.1.

�

3. The Upper Bound for α

In this section, we show that α � 2min{−D0, L∞}, where D0 and L∞ are
defined as in Sect. 1. That −2D0 is an upper bound is straightforward to show.
To see this, let λj ∈ Spec(AW )\{0}. Then, there exists u = (u0, u1)T �= 0 such
that AW u = λju, where we recall

AW =
(

0 Id
Δg −2W

)
.

It is then immediate that u(x) = etλj u0(x) solves the damped wave equation
with initial data (u0, u1)T , and

E(u, t) = e2tRe (λj)E(u, 0).

Since E(u, 0) �= 0, we have that α � −2Re (λj) for all j. Furthermore, by the
definition of D0, there must either exist some λj0 with Re (λj0) = D0, or a
sequence of λj with Re (λj) → D0. In either case, we must have α � −2D0.

Showing that 2L∞ is also an upper bound is more complicated. Our
technique for this is inspired by the method of Gaussian beams introduced by
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Ralston [26,27]. Using Gaussian beams, one can produce quasimodes for the
wave equation with energy strongly localized near a single geodesic. Intuitively,
solutions to (1.1) should decay only when they interact with the damping
coefficient. Motivated by this, we modify the Gaussian beam construction to
obtain solutions whose energy decays at a rate proportional to strength of the
damping along that geodesic, in analogy to [17,21].

To begin, we recall Ralston’s original Gaussian beam construction on
R

n with a Riemannian metric g. Let A(t) be an n × n symmetric matrix-
valued function with positive definite imaginary part. Let t 
→ (xt, ξt) denote
a geodesic trajectory and set

ψ(x, t) = 〈ξt, x − xt〉 +
1
2
〈A(t)(x − xt), x − xt〉.

Let b ∈ C∞(R × R
n). Then, we define

uk(x, t) = k−1+n/4b(t, x)eikψ(x,t). (3.1)

The work of [27] guarantees that there exist appropriate choices of b and A(t)
so that uk is a quasimode of the undamped wave equation with positive energy,
which is concentrated along the geodesic (xt, ξt). We summarize some notable
facts from [27] in the following Lemma.

Lemma 3.1 ([27]). Fix T > 0 and (x0, ξ0) ∈ S∗M . For ϕt(x0, ξ0) = (xt, ξt),
there exists a b ∈ C∞(R×R

n) and an n×n symmetric matrix-valued function
t 
→ A(t) so that if uk is given by (3.1), we have

sup
t∈[0,T ]

‖∂2
t uk(·, t) − Δguk(·, t)‖L2(Rn) � Ck− 1

2 for k � 1. (3.2)

Furthermore, for all t ∈ [0, T ],

lim
k→∞

E(uk, t) > 0, (3.3)

and the limit is always finite and independent of t.

Remark 3.2. By (3.3), we may assume without loss of generality that lim
k→∞

E(uk, t) = 1 for all t ∈ [0, T ].

Remark 3.3. Using coordinate charts and a partition of unity, we can extend
this construction to the case of manifolds, which results in a sequence {uk} ⊂
C∞(R+ × M) such that limk→∞ E(uk, t) = 1 and the appropriate analogue of
(3.2) holds.

Next, we modify {uk} to obtain a sequence of quasimodes for the damped
wave equation as follows. For each (x, ξ) ∈ S∗M , we define Gt(x, ξ) to be the
solution of the initial value problem{

G+
0 (x, ξ) = 1

∂tGt(x, ξ) = −w(ϕt(x, ξ))Gt(x, ξ),
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which has solution

Gt(x, ξ) = exp

⎛
⎝−

t∫
0

w(ϕs(x, ξ)) ds

⎞
⎠. (3.4)

In [17,21], an analogue of Gt in the multiplicative case is constructed as
the propagator for defect measures associated with the damped wave equation.
We note that it is possible to derive Gt in the anisotropic case following this
argument with little modification. However, our argument does not rely on the
nature of the construction, and so we simply define Gt to have the appropriate
form.

It is clear from the definition that Gt(x, ξ) decays exponentially along
any geodesic which intersects the damping region. Motivated by this, we fix
(x0, ξ0) ∈ S∗M and set

vk(t, x) = Gt(x0, ξ0)uk(t, x).

We now show that for any ε > 0, vk is an O(k− 1
2+ε) quasimode of (1.1).

Proposition 3.4. Given (x0, ξ0) ∈ S∗M , let uk(t, x) be as specified in Remark
3.3 and set vk(t, x) = Gt(x0, ξ0)uk(t, x). For any T > 0 and ε > 0, there exists
a constant Cε,T > 0 so that

sup
t∈[0,T ]

‖(∂2
t − Δg + 2W∂t)vk(t, ·)‖L2(M) � Cε,T k− 1

2+ε. (3.5)

Proof. By direct computation, we have

(∂2
t − Δg + 2W∂t)vk = Gt(∂

2
t − Δg)uk + 2∂tGt∂tuk + (∂2

t Gt)uk + 2W∂t(Gtuk)

= Gt(∂
2
t − Δg)uk − 2w(xt, ξt)Gt∂tuk − ∂t(w(xt, ξt)Gt)uk

+ 2WGt∂tuk − 2w(xt, ξt)WGtuk

= Gt(∂
2
t − Δg)uk + 2(W − w(xt, ξt))Gt∂tuk

+
(
w(xt, ξt)

2 − 2w(xt, ξt)W − ∂tw(xt, ξt)
)

Gtuk.

By the construction of uk and the boundedness of Gt, we have

sup
t∈[0,T ]

‖Gt(∂2
t − Δg)uk(t, ·)‖L2(M) � O(k− 1

2 ).

Since W is order zero, and therefore bounded on L2(M), we obtain

sup
t∈[0,T ]

∣∣∣∣(w(xt, ξt)2 − 2w(xt, ξt)W − ∂tw(xt, ξt))Gtuk

∣∣∣∣
L2(M)

� C sup
t∈[0,T ]

||uk(t, ·)||L2 = O(k−1),

where the final equality follows from the fact that
∫
Rn k

n
2 e−k|y|2 dy is uniformly

bounded in k.
To estimate (W − w(xt, ξt)) Gt∂tuk(t, ·) we will apply Proposition 2.1

with m = 0 and 	 = 1. Note that W − w(xt, ξt) is an order zero pseudodif-
ferential operator whose symbol vanishes to first order at (xt, ξt), and so it
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satisfies the hypotheses of Proposition 2.1. Furthermore

∂tuk(x, t) = k−1+n
4 ∂tb(t, x)eikψ(x,t) + ik

n
4 b(t, x)∂tψ(x, t)eikψ(x,t),

and for fixed t, both of these terms take the form of a coherent state hk as
defined by (2.1) (the fact that the first has an extra factor of k−1 is irrelevant,
as it only improves the estimate). Since all quantities depend on t in a C∞

fashion, we have that for any ε > 0,

sup
t∈[0,T ]

||2(W − w(xt, ξt))Gt∂tuk(t, ·)||L2(M) � C(k−1/2+ε). (3.6)

By the triangle inequality, we obtain (3.5), which completes the proof. �

The next step in the proof of the upper bound for α is to produce from a
given point (x0, ξ0) ∈ S∗M a sequence of exact solutions to (1.1) whose energy
approaches |Gt(x0, ξ0)|2.
Proposition 3.5. Given any T > 0, any ε > 0, and any (x0, ξ0) ∈ S∗M , there
exists an exact solution u of the generalized damped wave equation (1.1) with

|E(u, 0) − 1| < ε

and ∣∣E(u, T ) − |GT (x0, ξ0)|2
∣∣ < ε. (3.7)

Proof. Let uk and vk be as defined previously. Then, define ωk as the unique so-
lution of the damped wave equation with initial conditions ωk(x, 0) = vk(x, 0)
and ∂tωk(x, 0) = ∂tvk(x, 0). It is immediate that

E(ωk, 0) = E(vk, 0) = E(uk, 0) → 1, as k → ∞.

To see (3.7), first note by the triangle inequality

|E(ωk, t)
1
2 − E(vk, t)

1
2 | � E(ωk − vk, t)

1
2 . (3.8)

Thus, it suffices to prove that limk→∞ E(vk, t) = |Gt(x0, ξ0)|2 and that lim
k→∞

E(ωk − vk, t) = 0. To see that limk→∞ E(vk, t) = |Gt(x0, ξ0)|2, note that by
the definition of vk and properties of Gt

E(vk, t) =
1
2

∫
M

|Gt(x0, ξ0)∂tuk(x, t) − w(xt, ξt)Gt(x0, ξ0)uk(x, t)|2

+ |Gt(x0, ξ0)∇guk(x, t)|2 dvg(x).

Now since w(xt, ξt) and Gt are bounded∫
M

|w(xt, ξt)Gt(x0, ξ0)uk(x, t)|2 dvg(x) � C ||uk(t, ·)||2L2 � C ′k−2,

for some C, C ′ > 0. Thus,

lim
k→∞

E(vk, t) = lim
k→∞

1

2

∫
M

|Gt(x0, ξ0)∂tuk(x, t)|2 + |Gt(x0, ξ0)∇guk(x, t)|2 dvg(x)

= |Gt(x0, ξ0)|2 lim
k→∞

E(uk, t)
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= |Gt(x0, ξ0)|2 , (3.9)

where in the final equality we used that lim
k→∞

E(uk, t) = 1.

To control E(ωk − vk, t), let fk = (∂2
t − Δ + 2W∂t)vk. Then

(∂2
t − Δ + 2W∂t)(vk − ωk) = fk.

By Proposition 3.4, for any ε, T > 0 there exists a Cε,T > 0 such that

sup
t∈[0,T ]

‖fk(t, ·)‖L2(M) � Cε,T k− 1
2+ε. (3.10)

By direct computation, we have

∂tE(ωk − vk, t) =
∫
M

(∂2
t − Δg)(ωk − vk)∂t(ωk − vk)

+ (∂2
t − Δg)(ωk − vk)∂t(ωk − vk) dvg(x)

= 2Re
∫
M

[fk − 2W∂t(ωk − vk)]∂t(ωk − vk) dvg(x)

= 2Re
∫
M

fk · ∂t(ωk − vk) dvg(x) − 4Re 〈W∂t(ωk − vk),

∂t(ωk − vk)〉L2(M).

Note that the second term on the right-hand side above is nonpositive, since
W is a nonnegative operator. Also, note that

‖∂t(ωk − vk)‖L2(M) � E(ωk, t) + E(vk, t) � E(ωk, 0) + E(vk, 0) = 2E(uk, 0),

which is uniformly bounded by a constant since E(uk, 0) → 1. Combining this
with (3.10), we know that there exists C ′

ε,T > 0 such that

sup
t∈[0,T ]

∣∣∣∣∣∣2Re
∫
M

fk∂t(ωk − vk) dvg(x)

∣∣∣∣∣∣ � 2‖fk(t, ·)‖L2‖∂t(ωk − vk)(t, ·)‖L2

� C ′
ε,T k− 1

2+ε.

Thus, for any ε > 0

sup
t∈[0,T ]

|∂tE(ωk − vk, t)| � C ′
ε,T k− 1

2+ε.

Since E(vk − ωk, 0) = 0, integrating in t gives

sup
t∈[0,T ]

E(vk − ωk, t) � C ′
ε,T Tk− 1

2+ε.

Combining the above with (3.8) and (3.9) yields (3.7). �

For the penultimate step in the proof of the upper bound for α, we show
that t 
→ tL(t) is superadditive. That is, for r, t � 0, we claim that

(t + r)L(t + r) � tL(t) + rL(r).
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Recall that the time averaging function t 
→ L(t) is defined by

L(t) =
1
t

inf
(x0,ξ0)∈S∗M

t∫
0

w(xs, ξs) ds.

To see that tL(t) is superadditive, observe that

(t + r)L(t + r) = inf
(x0,ξ0)∈S∗M

r+t∫
0

w(xs, ξs)ds

= inf
(x0,ξ0)∈S∗M

⎛
⎝ t∫

0

w(xs, ξs)ds +

t+r∫
t

w(xs, ξs)ds

⎞
⎠

� inf
(x0,ξ0)∈S∗M

t∫
0

w(xs, ξs)ds + inf
(x0,ξ0)∈S∗M

t+r∫
t

w(xs, ξs)ds

= inf
(x0,ξ0)∈S∗M

t∫
0

w(xs, ξs)ds + inf
(x0,ξ0)∈S∗M

r∫
0

w(xs, ξs)ds

= tL(t) + rL(r).

Then, by Fekete’s lemma, L∞ := lim
t→∞ L(t) = sup

t∈[0,∞)

L(t), and thus L(t) � L∞

for all t. That the supremum is not infinite follows from the fact that w(x, ξ)
is uniformly bounded on T ∗M.

We are now ready to show that α � 2L∞. Assume for the sake of contra-
diction that α = 2L∞ + 3η for some η > 0. Then since 2(L∞ + η) < α, there
exists a C > 0 such that for all t � 0 and all solutions u of (1.1),

E(u, t) � CE(u, 0)e−2t(L∞+η). (3.11)

For the next step, it is convenient to remove the factor of C. To accomplish
this, choose T > 0 large enough so that max(C, 1) < eTη. Then

Ce−2T (L∞+η) < e−T (2L∞+η).

Since L(t) � L∞ for all t, we obtain

Ce−2T (L∞+η) < e−2TL∞−Tη � e−2TL(T )−Tη. (3.12)

Note that L(T ) can be rewritten in terms of GT as

L(T ) = − 1
T

sup
(x,ξ)∈S∗M

ln (GT (x, ξ)) .

Thus, there exists a point (x0, ξ0) ∈ S∗M such that ln GT (x0, ξ0) > −TL(T )−
1
2Tη. Therefore,

e−2TL(T )−Tη < |GT (x0, ξ0)|2.
So by (3.12) there exists a δ > 0 such that

Ce−2T (L∞+η) < |GT (x0, ξ0)|2 − δ.
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Now, by Proposition 3.5, there exists an exact solution u of (1.1) such that

1 > E(u, 0) − δ

2
and E(u, T ) > |GT (x0, ξ0)|2 − δ

2
.

Thus,

E(u, T ) > E(u, T )
(

E(u, 0) − δ

2

)

> E(u, 0)
(

|GT (x0, ξ0)|2 − δ

2

)
− δ

2
E(u, T )

> E(u, 0)
(

|GT (x0, ξ0)|2 − δ

2

)
− δ

2
E(u, 0)

= E(u, 0)
(|GT (x0, ξ0)|2 − δ

)
.

Therefore,

E(u, T ) > E(u, 0)(|GT (x0, ξ0)|2 − δ) > CE(u, 0)e−2T (L∞+η),

but this contradicts (3.11). Thus, we must have α � 2L∞. Combining this
with the discussion at the beginning of this section, we have proved the upper
bound

α � 2min{−D0, L∞}.

We complete the proof of Theorem 2 in the next section by proving the corre-
sponding lower bound for α.

4. The Lower Bound for α

In this section, we prove that the best exponential decay rate satisfies

α � 2min{−D0, L∞}, (4.1)

which is the final component of the proof of Theorem 2. In contrast to the
proof of the upper bound, this section proceeds in direct analogy to the work
of Lebeau, and so we omit many of the details which can be found in [17,21].
While the proofs presented here are not new, we include them to introduce
notation that is used later in Sect. 5, where we use Theorem 2 to prove Theo-
rem 1.

We begin with the following energy inequality, which for the multiplica-
tive case is presented as Lemma 3.1 in [21].

Lemma 4.1. For every T > 0 and every ε > 0, there exists a constant c(ε, T ) >
0 so that for every solution u of (1.1),

E(u, T ) � (1 + ε)e−2TL(T )E(u, 0) + c(ε, T )‖(u0, u1)‖2L2
⊕

H−1 , (4.2)

This inequality is proved using straightforward properties of the propagation
of the defect measure, so the proof from [21] goes through with no modifi-
cation. To obtain the desired lower bound on α we must further control the
‖(u0, u1)‖2L2

⊕
H−1 on the right-hand side.



1584 B. Keeler, P. Kleinhenz Ann. Henri Poincaré

Given Lemma 4.1, we proceed by introducing the adjoint A∗
W =(

0 − Id
−Δg −2W

)
of the semigroup generator AW . Note that the spectrum of

A∗
W is the conjugate of the spectrum of AW . We denote by Eλj

and E∗
λj

the
generalized eigenspaces of AW and A∗

W with associated eigenvalues λj and λj ,
respectively. We note that by an exact analogy of the proof of [1, Lemma 4.2],
one can show that the spectrum of AW , and hence A∗

W , contains only isolated
eigenvalues λj with Re (λj) � 0. Thus, each Eλj

and E∗
λj

is finite dimensional.
Recall that H = H1(M)⊕L2(M), equipped with the natural norm. It is also
useful to introduce the ˙H seminorm defined for elements of H by

‖(u0, u1)T ‖2 ˙H
= ‖∇u0‖2L2 + ‖u1‖2L2 .

For each N � 1, define the subspace

HN =

⎧⎨
⎩ϕ ∈ H : 〈ϕ,ψ〉H = 0, ∀ψ ∈

⊕
|λj |�N

E∗
λj

⎫⎬
⎭ .

Our first observation is that HN is invariant under the action of the semigroup
etAW . To demonstrate this, let {ψk} be a basis of the finite-dimensional space⊕
|λj |�N

E∗
λj

⊂ D(A∗
W ). Now, since E∗

λj
is invariant under A∗

W , we can express

each A∗
W ψ� as a finite linear combination of the {ψk}. Thus, for each 	 and

any ϕ ∈ HN , we have

∂t〈etAW ϕ,ψ�〉H
∣∣
t=0

= 〈etAW ϕ,A∗
W ψ�〉H

∣∣
t=0

=
∑

c�,k〈ϕ,ψk〉H = 0,

by the definition of HN . Repeating this argument, we see that ∂j
t 〈etAW ϕ,ψ�〉H∣∣

t=0
= 0 for all j. Observing that 〈etAW ϕ,ψ�〉H is an analytic function of t,

we have 〈etAW ϕ,ψ�〉H = 0 for all t ∈ R. Therefore etAW ϕ ∈ HN .
Now, define H ′ = L2⊕H−1 and let θN denote the norm of the embedding

of HN in H ′, which is well defined since M is compact. Since W is bounded on
L2, it is compact as an operator from L2 → H−1. Therefore A∗

W : H → H ′

is a compact perturbation of the skew-adjoint operator
(

0 − Id
−Δg 0

)
. Thus,

the family {E∗
λj

}∞
j=0 is total in H , and so limN→∞ θN = 0 (c.f. [12, Ch. 5,

Theorem 10.1]).
We can now proceed with the proof of (4.1). Assume that 2min{−D0,

L∞} > 0, otherwise the statement is trivial. Choose η > 0 small enough so that
β = 2min{−D0, L∞}−η > 0 and take T large enough so that 4|L∞−L(T )| < η

and e
ηT
2 > 3. Then, by Lemma 4.1 with ε = 1, there exists a constant c(1, T )

such that for every solution u of (1.1)

E(u, t) � 2e−2TL(T )E(u, 0) + c(1, T )‖(u0, u1)‖2H ′ . (4.3)

Next, choose N large enough so that c(1, T )θ2N � e−2TL(T ). Then, for solutions
u of (1.1) with initial data (u0, u1)T ∈ HN

E(u, T ) � 3e−2TL(T )E(u, 0).
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Since HN is invariant under evolution by etAW

E(u, kT ) � 3ke−2kTL(T )E(u, 0), ∀k ∈ N.

Then, we can use the fact that 4|L∞ −L(T )| < η and ηT
2 > ln 3 to obtain that

E(u, kT ) � 3ke−2kT (L∞−η/4)E(u, 0)

�
(
eln 3− ηT

2

)k

e−2kTL∞E(u, 0)

� e−kTβE(u, 0),

where the final inequality follows from the fact that β � 2L∞ − η < 2L∞ by
definition. Since the energy is nondecreasing, it follows that

E(u, t) � Ce−βtE(u, 0) ∀t � 0, (4.4)

for some constant C > 0.
To extend (4.4) to all solutions of (1.1), let Π denote the orthogonal

projection from H onto
⊕

|λj |�N

Eλj
. Then for any v = (u0, u1)T ∈ H , there

is an orthogonal decomposition of the form v = Πv + (Id−Π)v. Since Eλj

and E∗
λk

are orthogonal for λj �= λk, we have that (Id −Π)v ∈ HN , and
hence H⊥

N =
⊕

|λj |�N

Eλj
. Since Eλj

is invariant under etAW and H⊥
N is finite

dimensional, we have that there exists a C > 0 so that for all solutions u of
(1.1) with initial data in H⊥

N ,

E(u, t) � Ce2D0E(u, 0) � Ce−βtE(u, 0), ∀t � 0. (4.5)

Finally, since Π and Id−Π are continuous with respect to the ˙H seminorm,
for some C > 0

E(Πu, 0) + E((Id −Π)u, 0) � CE(u, 0).

Therefore, using the decomposition Π + (Id−Π) on the initial data of any
solution u we can apply (4.4) and (4.5) to obtain

E(u, t) � Ce−βtE(u, 0), ∀t � 0, (4.6)

for some possibly larger C > 0. By definition of the best possible decay rate,
α � β = 2min{−D0, L∞} − η. Since η can be taken arbitrarily small, this
proves (4.1). Combining this with the upper bound obtained in Sect. 3 com-
pletes the proof of Theorem 2.

5. Proof of Theorem 1

In this section, we show that Theorem 2 implies Theorem 1. First, we will
assume both Assumptions 1 and 2 are satisfied. We will show this implies
α > 0, which is equivalent to exponential energy decay. Note that Assumption 1
immediately implies that L∞ � c > 0. Thus, we only need to show that D0 < 0.
For this, we introduce the quantity

D∞ := lim
R→∞

sup{Re (λ) : |λ| > R, λ ∈ Spec AW }.
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We claim that D∞ � −L∞. To show this, first recall the definitions of Eλj
and

HN from Sect. 4. Let u be a solution to (1.1) with initial data (u0, u1)T ∈ Eλj

with |λj | > N . Then u = etAW (u0, u1)T = etλj (u0, u1)T . Note that Eλj
⊂ HN

whenever |λj | > N . Combining this with the proof of (4.4), we obtain

e2Re (λj)tE(u, 0) = E(u, t) � Ce−βtE(u, 0),

for every 0 < β < 2L∞. Hence, 2Re (λj) � −β whenever |λj | � N , and so
Re (λj) � −L∞ for such λj . It immediately follows that D∞ � −L∞ < 0.

Recall also that the spectrum of AW consists only of isolated eigenval-
ues, and Re (λ) � 0 for all λ ∈ Spec(AW ). Thus, in order to have D0 = 0,
either D∞ = 0 or there exists a nonzero eigenvalue of AW on the imaginary
axis. Since we have already shown D∞ < 0, we need only rule out nonzero
imaginary eigenvalues. Suppose iλ ∈ Spec(AW ) with λ ∈ R and corresponding
eigenvector (v0, v1)T . Then v1 = λv0, and

Δgv0 + λ2v0 − 2iλWv0 = 0. (5.1)

Taking the L2 inner product of both sides with v0 and then taking the imagi-
nary part gives

−2λ〈Wv0, v0〉 = 0.

If λ = 0, the equation is trivially satisfied. However, if λ �= 0, then 〈Wv0, v0〉 =
0. Recalling that W =

∑
B∗

j Bj for some collection of operators Bj , we must
have Wv0 = 0. Then by (5.1) v0 is an eigenfunction of Δg with eigenvalue
−λ2 and v0 ∈ ker W . But by Assumption 2, this is impossible. Thus, the only
possible eigenvalue of AW on the imaginary axis is zero and we cannot have
D0 = 0. Combining this with the fact that L∞ > 0, we have shown that
Assumptions 1 and 2 imply α > 0, which in turn demonstrates that solutions
to (1.1) experience exponential energy decay.

We now prove the reverse implication in Theorem 1. For this, we assume
that (1.5) holds with some β > 0 for all solutions u and we want to see that
Assumptions 1 and 2 hold. By definition, α � β > 0, and hence both −D0 and
L∞ are strictly positive. Because L∞ � α/2 > 0 Assumption 1 holds. Similarly,
since D0 < 0, there cannot be any eigenvalues of AW on the imaginary axis
except possibly at zero. Now suppose that v ∈ L2 satisfies −Δgv = λ2v with
λ �= 0 and Wv = 0. Then (v, iλv)T is an eigenvector of AW with eigenvalue
iλ �= 0, which is a contradiction. Thus, Assumption 2 must also hold, which
completes the proof of Theorem 1.

6. A Class of Examples on Analytic Manifolds

One of the key hypotheses of Theorem 1 was that the damping coefficient W
must not annihilate any eigenfunctions of Δg associated with nonzero eigen-
values. In the case where W is a multiplication operator which satisfies the
classical geometric control condition, this is always satisfied by the unique con-
tinuation properties of elliptic operators [28]. However, when the damping is
pseudodifferential it is much more difficult to check this hypothesis.
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In this section, we produce a collection of operators on real analytic man-
ifolds which satisfy Assumption 2 and are neither multiplication operators nor
functions of Δg. We also construct two examples of explicit pseudodifferential
damping coefficients on T

2 which satisfy Assumptions 1 and 2. The primary
tool in this discussion is the notion of the analytic wavefront set, and so we
begin by providing some background definitions for the reader’s convenience.
More details can be found in [13, §8.4-8.6].

Given a set X ⊆ R
n and a distribution u ∈ D′(X), if u is real analytic

on an open neighborhood of x0, we write that u ∈ Ca near x0 ∈ X. In analogy
with the relationship between the standard wavefront set and C∞ singularities,
one can resolve Ca singularities by defining the analytic wavefront set, written
WFA(u) and defined as follows.

Definition 6.1. We say that a point (x0, ξ0) ∈ T ∗X\0 is not in WFA(u), if
there exists an open neighborhood U of x0, a conic neighborhood Γ of ξ0 and
a bounded sequence uN ∈ E ′(X), which are equal to u on U and which satisfy

|ûN (ξ)| � C

(
N + 1

|ξ|
)N

, (6.1)

for all ξ ∈ Γ.

By [13, Prop. 8.4.2], we have that u ∈ Ca near x0 if and only if WFA(u)
contains no points of the form (x0, ξ) with ξ �= 0.

We also introduce a set which we can be thought of as the analytically
invertible directions of u, denoted by ΓA(u). Its complement is commonly
called the (analytic) characteristic set of u [13].

Definition 6.2. We say that ξ0 ∈ R
n\0 is in ΓA(u) if there exists a complex

conic neighborhood V of ξ0 and a function Φ, which is holomorphic in {ξ ∈
V : |ξ| > c} for some c > 0, satisfying Φû = 1 in V ∩ R

n and there exists
C,N > 0 such that

|Φ(ζ)| � C|ζ|N ,

for ζ ∈ V.

The final preliminary we require is the notion of the normal set of a closed
region F contained within a manifold M . For the purposes of this definition,
we only require that M be C2.

Definition 6.3. Let F be a closed region in a C2 manifold M. The exterior
normal set, Ne(F ), is defined as the set of all (x0, ξ0) ∈ T ∗M\0 such that
x0 ∈ F and such that there exists a real-valued function f ∈ C2(M) with
df(x0) = ξ0 �= 0 and

f(x) � f(x0), x ∈ F.

The interior normal set of F is then defined by Ni(F ) = {(x, ξ) : (x,−ξ) ∈
Ne(F )} and the full normal set is defined as N(F ) = Ne(F )

⋃
Ni(F ). We write

N(F ) to denote the closure of the normal set of F .
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Note that the projection of Ne(F ) onto M is dense in ∂F but might not be
equal to ∂F [13, Prop. 8.5.8].

With these definitions in hand, we are able to describe a class of pseudo-
differential operators which do not annihilate any eigenfunctions of Δg.

To produce the desired class of examples, let (M, g) be a compact, real
analytic manifold of dimension n. Suppose χ, χ̃ ∈ C∞

c (M) are cutoff functions
supported entirely within a single coordinate patch, with χ not identically
zero and χ̃ ≡ 1 on an open neighborhood of the support of χ. Let b ∈ C∞(Rn)
be homogeneous of degree 0 outside a compact neighborhood of the origin,
and define B ∈ Ψ0

cl(M) in local coordinates by Bu = χ̃Op(b(ξ))χu. Let qb
denote the inverse Fourier transform of b and π2 : Rn × R

n → R
n denote the

natural projection onto the fiber variables ξ. We show that any such B cannot
annihilate eigenfunctions of Δg under the following condition on χ and b.

Lemma 6.4. If π2(N(supp χ)) ∩ ΓA(qb) �= ∅, then for any eigenfunction u of
Δg, we have Bu �= 0.

Proof. We proceed by contradiction, so assume Bu = 0 for some eigenfunction
u of Δg. Thus WFA(Bu) = ∅ and we aim to show there exists some (x0, ξ0) ∈
WFA(Bu). First, by [13, Thm 8.5.6’], we have

N(supp χu) ⊆ WFA(χu). (6.2)

Since u is an eigenfunction, it cannot vanish identically on any open set. We
claim that this implies

∂(suppχ) ⊆ ∂(supp χu). (6.3)

To see this, suppose x ∈ ∂(supp χ) and let V be any open neighborhood of x.
Since χ(x) = 0, we have that χ(x)u(x) = 0, so it is enough to show that χu
is not identically zero on all of V . Without loss of generality, we may assume
that V lies entirely within the same coordinate patch containing suppχ. Since
x is a boundary point of the support, χ does not vanish identically on V . By
the continuity of χ, this implies the existence of a smaller open neighborhood
Ṽ ⊂ V (not containing x) where χ is never zero. Since u is an eigenfunction, it
cannot vanish identically on Ṽ , and hence χu is not identically zero on Ṽ ⊆ V ,
which proves (6.3).

Next, we want to show N(suppχ) ⊂ N(supp χu). Take (x0, ξ0) ∈ N
(supp χ), so x0 maximizes a function f on suppχ with df(x0) �= 0. Thus,
x0 ∈ ∂(suppχ) ⊆ ∂(supp χu). That is, x0 is not an interior point. Further-
more, since supp χ ⊇ suppχu and f is maximized at x0 in suppχ it must
also be maximized at x0 when restricted to the smaller set supp χu. There-
fore, N(supp χ) ⊆ N(supp χu), and hence N(supp χ) ⊆ N(suppχu). Thus, by
(6.2),

N(supp χ) ⊆ WFA(χu). (6.4)

Since the cutoff function χ is supported in a single coordinate patch, we
can treat χu and Op(b)χu as functions on R

n. Now, observe that qb ∗ χu =
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Op(b)χu, where ∗ denotes standard convolution. This, along with [13, Thm
8.6.15] gives

WFA(χu) ⊆ WFA(Op(b)χu) ∪ (Rn × ΓA(qb)c). (6.5)

Applying (6.4), we obtain

N(supp χ) ⊆ WFA(Op(b)χu) ∪ (Rn × ΓA(qb)c),

and therefore,

N(suppχ) ∩ (Rn × ΓA(qb)) ⊆ WFA(Op(b)χu).

By hypothesis, there exists a point

(x0, ξ0) ∈ N(suppχ) ∩ (Rn × ΓA(qb)) ⊆ WFA(Op(b)χu).

In particular, x0 ∈ suppχ, and since χ̃ ≡ 1 on a neighborhood of suppχ,
we see that (x0, ξ0) must also lie inside WFA(χ̃Op(b)χu) = WFA(Bu). This
contradicts the assumption that Bu = 0, and thus the proposition is proved.

�

Remark 6.5. It is worth noting that the argument of this lemma works when
Δg is replaced by P , an elliptic second-order pseudodifferential operator, since
the eigenfunctions of such P have the unique continuation property.

Given Proposition 6.4, the proof of Theorem 3 is straightforward.

Proof of Theorem 3. Given a real analytic manifold (M, g), take χ, χ̃ as in
the statement of Proposition 6.4. Let (x0, ξ0) ∈ Ne(suppχ) be an arbitrary
exterior normal. Then, take any b ∈ C∞(Rn) which is identically one in a
conic neighborhood of ξ0, zero on the complement of a slightly larger conic
neighborhood, and homogeneous of degree 0 outside a compact neighborhood
of the origin. Then ΓA(qb) contains ξ0 because b ≡ 1 on a conic neighborhood
of ξ0, and so one may take Φ ≡ 1 in the definition of ΓA. Proposition 6.4 then
guarantees that B = χ̃Op(b)χ does not annihilate any eigenfunctions of Δg,
and thus neither does W = B∗B. One can repeat this process in any finite
number of coordinate patches to show that there exists W =

∑N
j=1 B∗

j Bj with
the same property. �

We now construct a pseudodifferential damping coefficient on T
2 which

satisfies Assumptions 1 and 2.

Example 6.6. Let T
2 = R

2/Z2 denote the two-dimensional torus equipped
with the flat metric, and let Δ be the associated Laplace–Beltrami operator.
Let δ > 0 and let χ1 ∈ C∞

c (T2) be supported in the vertical strip {(x(1), x(2)) ∈
T
2 : 1

2 − δ � x(1) � 1
2 + δ} and equal to one on a smaller vertical strip. Define

χ̃1 in a similar way, but with χ̃1 ≡ 1 on the support of χ1. Analogously, let
χ2 ∈ C∞

c (T2) be supported in the horizontal strip {(x(1), x(2)) ∈ T
2 : 1

2 − δ �
x(2) � 1

2 + δ} and equal to one on a smaller horizontal strip, and define χ̃2

similarly with χ̃2 ≡ 1 on the support of χ2.
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Figure 1. The cone of directions containing the support of
b1(x0, ·) in T ∗

x0
T
2

Now, let ε > 0 and let b1 ∈ C∞(S1) be supported in the set

Θ2ε =
(
−π

4
− 2ε,

π

4
+ 2ε

)
∪
(

3π

4
− 2ε,

5π

4
+ 2ε

)

and equal to one on the smaller set Θε. Similarly, let b2 ∈ C∞(S1) be nonzero
on Θ2ε + π

2 and equal to one on Θε + π
2 . Choose β ∈ C∞

c (R) to be supported
in [14 ,∞) and equal to one on [12 ,∞). Then define symbols bj ∈ S0

cl(T
∗
T
2) by

bj(ξ) = bj(θ)β(r), j = 1, 2,

where ξ = (r, θ) in standard polar coordinates on T ∗
xT

2. Figure 1 illustrates
the cone of directions in T ∗

x0
T
2 in which b1 is supported at some arbitrary

x0 ∈ suppχ1. Now define Bj = χ̃jOp(bj)χj , and set the damping coefficient
W to be

W = B∗
1B1 + B∗

2B2.

To see ker W contains no nontrivial eigenfunctions of Δ we apply Proposi-
tion 6.4. Note N (suppχ1) contains all points of the form (x, ξ) with x ∈
∂(supp χ1) and ξ = (r, θ), where θ = 0 or θ = π. Since b1 is constant in a conic
neighborhood of both of these cotangent directions, the hypotheses of Proposi-
tion 6.4 are satisfied. Thus, ker B1 contains no eigenfunctions of the Laplacian.
An analogous argument holds for B2, and since B∗

1B1 and B∗
2B2 are nonneg-

ative operators, W cannot annihilate any eigenfunctions of the Laplacian.
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Figure 2. The cones containing the supports of b2(x0, ·) and
b3(x1, ·)

To show exponential energy decay with W as the damping coefficient, we
must also demonstrate that W satisfies the AGCC. For this, it is convenient
to observe that the AGCC is equivalent to the existence of some T0 > 0 and
c > 0 such that every trajectory t 
→ ϕt(x0, ξ0) encounters the set

Wc = {(x, ξ) ∈ T ∗
T
2 : w(x, ξ) � c > 0}

in time T � T0. Recall that the geodesics on T
2 are the projections of straight

lines in R
2 under the quotient map. Thus, the geodesic flow on S∗

T
2 is given

by

(x, ξ) 
→ ((x + tξ)modZ
2, ξ).

Given an arbitrary point (x0, ξ0) ∈ S∗
T
2, we will show that (γ(t), γ′(t)) =

((x0 + tξ0)modZ
2, ξ0) must intersect Wc in some fixed time T0 > 0. Let us

write ξ0 ∈ S
1 as (cos θ0, sin θ0), and consider the case where θ0 lies in Θε.

Suppose first that

θ0 ∈
(
−π

4
− ε,

π

4
+ ε
)

,

which implies b1(ξ0) �= 0. Then, if x0 = (x(1)
0 , x

(2)
0 ), the horizontal coordinate

of γ(t) is given by

(x(1)
0 + t cos θ0)modZ,

which must reach 1
2 in some time less than 1

cos θ0
� 1

cos(π/4+ε) . Therefore,
(γ(t), γ′(t)) intersects the region where b1 is strictly positive in time less than
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1
cos(π/4+ε) . The same argument holds if instead θ0 ∈ ( 3π

4 − ε, 5π
4 + ε), and so

whenever θ0 ∈ Θε, we have that there exists a c > 0 such that (γ(t), γ′(t))
intersects {b1(x, ξ) � √

c} in finite time. Analogously, if θ0 ∈ Θε + π
2 , then

the vertical component of γ(t), given by (x(2)
0 + t sin θ0) mod Z, must equal 1

2

in some time less than 1
sin(π/4−ε) . Therefore, (γ(t), γ′(t)) intersects {b2(x, ξ) �√

c} in finite time. Since

T
2 ×

(
Θε ∪

(
Θε +

π

2

))
= S∗

T
2,

and since w(x, ξ) = b21(x, ξ) + b22(x, ξ), we have that for every (x0, ξ0) ∈ S∗
T
2,

the curve ϕt(x0, ξ0) intersects Wc in some fixed time T0 > 0. We have therefore
shown that W as defined here satisfies both Assumptions 1 and 2. Thus by
Theorem 1, all solutions to the damped wave equation on T

2 with damping
coefficient W experience exponential energy decay.

Remark 6.7. In the previous example, one may notice that on the intersection
of the vertical and horizontal strips, the principal symbol of the damping
coefficient is supported in all directions ξ ∈ T ∗

T
2\0. So in this region, W

behaves very much like a multiplication operator for frequencies away from
zero. A natural question is whether or not there must always be a point of
“full microsupport” if the hypotheses of Theorem 1 are to be satisfied. In fact,
there need not be such a point. To see this, we can modify our example above
as follows.

Define χ1, χ̃1, χ2, χ̃2 and b1 in a similar fashion to the previous example,
but now define b2 to be supported only in the directions with angle θ ∈ (π

4 −
2ε, 3π

4 +2ε) and identically one on (π
4 − ε, 3π

4 + ε). Next, we introduce another
horizontal strip, disjoint from the first, with a corresponding pair of cutoff
functions χ3, χ̃3. Then, define b3 ∈ C∞(S1) to be supported in (5π

4 −2ε, 7π
4 +2ε)

and equal to one on (5π
4 −ε, 7π

4 +ε), and let b3(ξ) = b3(θ)β(r), where ξ = (r, θ)
as before. This is illustrated in Fig. 2. Then, if we define B3 = χ̃3Op(b3)χ3

and set W =
∑3

j=1 B∗
j Bj , we can apply arguments similar to those above to

see that Assumptions 1 and 2 are still satisfied, but there does not exist any
point x ∈ T

2 where w(x, ξ) is supported in all directions.
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[1] Anantharaman, N., Léautaud, M.: Sharp polynomial decay rates for the damped
wave equation on the torus. Anal. PDE 7(1), 159–214 (2014). https://doi.org/
10.2140/apde.2014.7.159. With an appendix by St’ephane Nonnenmacher

[2] Burq, N., Christianson, H.: Imperfect geometric control and overdamping for
the damped wave equation. Communications in Mathematical Physics 336(1),
101–130 (2015)

[3] Burq, N., Hitrik, M.: Energy decay for damped wave equations on partially
rectangular domains. Mathematical Research Letters 14(1), 35–47 (2007)

[4] Burq, N.: Contrôle de l’équation des ondes dans des ouverts comportant des
coins. Bull. Soc. Math. France, 126(4):601–637, (1998). http://www.numdam.
org/item?id=BSMF 1998 126 4 601 0. Appendix B written in collaboration
with Jean-Marc Schlenker

[5] Burq, N., Zuily, C.: Concentration of laplace eigenfunctions and stabilization
of weakly damped wave equation. Communications in Mathematical Physics
345(3), 1055–1076 (2016)

[6] Christianson, H.: Semiclassical non-concentration near hyperbolic orbits. Jour-
nal of Functional Analysis 246(2), 145–195 (2007)

[7] Christianson, H.: Corrigendum to “semiclassical non-concentration near hyper-
bolic orbits” [j. funct. anal. 246(2) (2007) 145–195]. Journal of Functional Anal-
ysis, 258(3):1060–1065, 2010

[8] Craig, I.J.D.: Anisotropic viscous dissipation in compressible magnetic x-points.
Astrony & Astrophysics 487(3), 1155–1161 (2008). https://doi.org/10.1051/
0004-6361:200809960

[9] Christianson, H., Schenck, E., Vasy, A., Wunsch, J.: From resolvent estimates
to damped waves. J. Anal. Math. 121(1), 143–162 (2014)

[10] Dyatlov, S., Jin, L., Nonnenmacher, S.: Control of eigenfunctions on surfaces of
variable curvature. arXiv preprint arXiv:1906.08923, (2019)

[11] Datchev, K., Kleinhenz, P.: Sharp polynomial decay rates for the damped wave
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