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ABSTRACT

Location privacy has long been studied, in order to protect users’
location data from untrusted servers. While existing research ana-
lyzed location privacy methods with generic utility measures, the
lack of application-oriented perspectives imposes challenges for
adopting location privacy. This study fills the gap by putting ap-
plication utility front and center, studying the impacts of location
privacy in two concrete case studies. We conduct empirical evalua-
tions with real-world datasets from two large cities, and provide
in-depth analysis on the obtained results. Furthermore, we examine
the relationship between generic utility and application utility as
well as the trade-off between privacy and utility in specific appli-
cation settings. Our results point out interesting behaviors of the
studied privacy methods and can help applications with location
privacy decision-making.

CCS CONCEPTS

« Security and privacy — Data anonymization and sanitiza-
tion; - Human-centered computing — Ubiquitous and mobile
computing design and evaluation methods; « Information systems
— Location based services.
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1 INTRODUCTION

In the last decades, a number of location privacy methods have
been developed to hide a user’s real location from untrusted servers.
For instance, a recent survey [17] reviewed more than 60 location
privacy methods. Our recent work [5, 6] open-sourced location

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

LocalRec °22, November 1, 2022, Seattle, WA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9540-3/22/11...$15.00
https://doi.org/10.1145/3557992.3565991

Julius Marinak, Ashley Bang
jmarinak@uncc.edu
sbang6é@uncc.edu
UNC Charlotte
Charlotte, North Carolina, USA

privacy methods and conducted a comparative analysis using real-
world trajectory datasets, with the goal of facilitating the adoption
of location privacy. However, challenges remain for applications to
adopt location privacy methods, especially in understanding their
impacts on utility.

Existing location privacy methods are often evaluated using
generic data quality measures, such as the distance between input
and output locations. Unfortunately, such distances may not directly
reflect the utility loss in specific applications. For example, our prior
work [5] showed that a small distortion in each location record may
lead to large errors in trace-level mobility patterns. Furthermore,
generic measures do not take into account of the input context.
For example, the same amount of distance distortion may incur
different amounts of utility loss, in different spatial contexts (e.g.,
cities).

In this paper, we study the application utility of location pri-
vacy via two concrete case studies, which not only represent but
also enable a wide range of human mobility analyses. Both studies
utilize users’ GPS trajectories, one detecting user pairs that co-
locate with each other and the other measuring the exposure to air
pollution as a user moves about the city. We conduct evaluations
with real-world trajectory data and air pollution data in two large
cities, to understand the practical impacts of location privacy. In
addition, using the case studies, we present a correlation analy-
sis between generic utility and application utility for the studied
location privacy methods. Last but not least, we showcase how
to choose location privacy methods for a specific application, by
conducting a trade-off analysis between privacy and utility.

Related Work. Recently, the authors of [17] surveyed existing loca-
tion privacy methods and categorized the existing methods, e.g., by
architecture (i.e., trusted third party, non-trusted third party, peer-
to-peer, and local) and use case (i.e., online and offline). However,
the survey study on location privacy does not conduct any empirical
or quantitative analysis. Our prior work [5] empirically evaluated
a set of local, online privacy methods regarding utility and privacy,
with real-world trajectory datasets. We considered a range of util-
ity metrics, including distance metrics and mobility metrics, and
designed two empirical privacy risk measures, i.e., re-identification
and inference attacks. This study differs from our prior work [5]
by focusing on the application utility for two concrete use cases,
i.e., co-location and air pollution exposure. Furthermore, this study
examines the relationship between generic utility (e.g., distance
metrics) and application utility, as well as the tradeoff between
privacy and utility, in specific application settings.
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The rest of the paper is organized as follows: Section 2 reviews
the location privacy methods considered in this paper and intro-
duces two case studies on human mobility; Section 3 introduces
our evaluation methodology and presents an in-depth discussion
on the results; Section 4 concludes the paper and discusses future
work directions.

2 CASE STUDIES FOR LOCATION PRIVACY

Location privacy methods are often evaluated using generic data
quality measures, such as the distance between input and output
locations. However, generic measures may not directly reflect the
utility loss in specific applications. In this section, we describe two
concrete case studies on human mobility, i.e., users’ GPS trajectories.
Our work investigates the application utility of location privacy
regarding those case studies.

2.1 Location Privacy Methods

In this work, we consider a set of existing location privacy meth-
ods which can be deployed with the local architecture for online
use. We adopt the categorization of location privacy methods as
in [17] and the advantages of local and online privacy methods
include their strong privacy protection and the compatibility with
real-time applications. Our study considers three types of location
privacy methods, i.e., generalization based (Rounding/Spatial Cloak-
ing), perturbation based (Noise/VHC/Laplace), and dummy based
(SpotME/MN). The implementation for all methods evaluated in
the study is publicly available!.

Generalization based methods hide exact location with coarse
data. For example, Rounding [10, 13] snaps the input GPS coordi-
nates to a fixed square grid with spacing s; Spatial Cloaking [10]
hides a sensitive location (e.g., user’s home location) inside a circu-
lar region with radius R, centered at a random location. Perturba-
tion based methods protect user location data via modification. In
this category, Noise [10] adds a random 2-D noise, the magnitude
of which is drawn from a Normal distribution with variance var;
VHC [16] applies space partitioning and Hilbert filling curve to
the spatial domain, and perturbs the partition of the input loca-
tion by drawing uniform noise from [—o, o]; Laplace [1] satisfies
e-geo-indistinguishability and higher € indicates lower perturba-
tion. Dummy based methods hide real locations among fake ones,
i.e., dummies. SpotME [18] reports each location in the domain as
the user’s location with probability p; MN [9] reports multiple real-
istic dummy trajectories, in which adjacent locations do not deviate
by more than m in latitude and longitude. Interested readers may
refer to our prior work [5] for in-depth description and contrast of
those methods.

2.2 Co-location

One important use case of users’ location data is to detect co-
locating users, i.e., individuals that are present in the same place at
the same time. Users’ co-locating information can benefit a wide
range of applications, including digital contact tracing [21], encour-
aging social interaction [14], and friendship discovery [15].

In this study, we are interested in understanding the impacts
of location privacy on detecting co-location. In fact, as location

Ihttps://github.com/fan-group/geopriv4j
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Figure 1: Air Pollution in Beijing - Interpolation from 35 Samples

privacy methods may modify users’ location data, the accuracy
of co-location detection may be reduced. Specifically, we perform
co-location detection on each user pair across all timestamps, using
real data vs. sanitized data. Our empirical evaluation reports three
accuracy measures: (1) false negative error - which is the total
number of undetected co-locations between a pair of users; (2) false
positive error - which is the total number of falsely detected co-
locations between a pair of users; (3) false negative user pairs -
which is the count of user pairs that have a non-zero false negative
error. Note that in addition to quantifying the impacts of location
privacy, those accuracy measures bear important implications to
real applications. For example, a larger number of false negative
user pairs may limit the efficacy of digital contact tracing during a
pandemic; a high false positive error may incur high computational
overheads, e.g., providing services to users who do not co-locate at
the time.

2.3 Air Pollution Exposure

It is well demonstrated that exposure to air pollutants, such as
PM3 5 and NOg, is associated with a range of health effects on the
respiratory and other human systems [8]. As air quality varies in
space and time, many research studies adopted GPS trajectories to
reliably estimate the pollution levels that an individual is exposed
to [2].

In our work, we aim to investigate the feasibility of adopting
location privacy methods in estimating an individual’s air pollution
exposure, which will help address participant privacy concerns
in those research studies while maintaining estimation accuracy.
Specifically, we compute the absolute error in air pollutant concen-
trations (e.g., PM2 5 and NO3) using the user’s real location data
vs. sanitized location data, and report the average error (i.e., mean
absolute error) across all timestamps. Beyond air pollution expo-
sure, our results may shed light on other research studies which
also rely on participant GPS trajectories. For example, researchers
may utilize participant real-time GPS data to track an individual’s
exposure to neighborhood disorder and poverty, in order to predict
drug cravings [4].

3 RESULTS AND DISCUSSIONS
3.1 Experiment Settings

Trajectories We adopt two real-world trajectory datasets, namely
GeolLife [22] and RioBuses [3], and summarize the characteristics
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Figure 2: Air Pollution in Rio de Janeiro - Interpolation from 124
Samples

of two datasets in Table 1. The GeoLife dataset records GPS data of
182 users in Beijing between 2007 and 2012. The trajectories were
recorded at a variety of sampling rates, and the majority of data
was logged every 1 to 5 seconds. The RioBuses dataset includes
trajectories of 14149 buses in Rio de Janeiro from October 2010.
The real-time GPS data was updated every minute. We select 200
buses (also referred to as users) randomly for the evaluate. Note
that in both datasets, users may contribute different numbers of
trajectories recorded on different dates.

Air Pollution Data. For the case study on air pollution, we are
interested in understanding the effects of location privacy as in-
dividuals travel between different neighborhoods. Therefore, we
consider fine grained station and neighborhood-level air quality
datasets for Beijing and Rio de Janeiro, in order to incorporate spa-
tial variability of air quality. Specifically, we adopt the observed
air pollutant concentration at 35 stations in Beijing in 2014 [19],
and the estimated annual average exposure data for 124 neighbor-
hoods in Rio de Janeiro for 2001-2010 [20] and 1996-2012 [7]. Note
that temporal variability of air quality is not incorporated in our
experiments due to unavailability of data. In these datasets, PM3 5
concentration is reported in micrograms per cubic meter (ug/m3)
and NOy, is in parts per billion (ppb).

Pre-processing. For trajectory datasets, we discretize the map
range of each dataset and subsample raw trajectories at 5-minute
intervals. We set the user’s home as the most frequent location at
02:00, 06:00 and 20:30 in GeoLife and as the Central bus station in
RioBuses. For air pollution data, we perform kriging interpolation
with the Gaussian semi-variogram to estimate the air pollutant con-
centrations continuously in the 2-D space from discrete samples,
i.e., observations at stations. Figures 1 and 2 illustrate the interpo-
lation results given the samples (i.e., dots in each figure) of each
dataset.
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Table 1: Dataset Characteristics

Dataset #Users | Frequency | Resolution | Avg. # Traj’s | Avg. # Loc’s
GeoLife[22] 182 1 to 5 seconds 182x182 54 15640
RioBuses[3] | 14149 | every minute 170%x170 9 2661

Table 2: Default Parameter Values
Privacy Method | Parameter || Privacy Method | Parameter
Laplace €=0.02 MN m=10"
SpotME p=10" VHC o =50
Rounding s =200 Spatial Cloaking | R = 1000
Noise var = 5000
140
Il Laplace MN
120/ W SpotME . VHC
EEE Noise Spatial Cloaking
5 100/ == Rounding
fr
2 80
®
g
g 60
ki
5 40
20
© E83111888888LLL,2888388
TScAS2S38NNSA32ITTSAS
L T O T T N T B Y ST
wwaooo o wEEE o ll
© © o
>>m
>
(a) GeoLife
9
B Laplace MN
8 EEN SpotME W VHC
7 HEE Noise Spatial Cloaking
5 EEm Rounding
] 6
v
= 5
®
g 4
=z
8 3
g I
ol NN _NENE I |
C82L11888888LLLR88888
T O O0OOo o oo
ToSaA2338G3NSARSITNSRs
wa e L Ly e U Utgts
wwaaal LY WEEE ol
o
> >

var:

(b) RioBuses

Figure 3: Average False Negative Co-location Error per User Pair

Privacy Settings All location privacy methods are implemented
in Java [6]. The default parameter values are reported in Table 2.

3.2 Co-location Results

To study co-location, we report the false negative and false positive
errors per user pair, averaged among all user pairs, in Figures 3 and
4. In Figure 3, we observe that all but one location privacy methods
yield undetected co-locations between user pairs. The magnitude
of the false negative error increases as we increase the privacy level
for each privacy method. The Rounding method does not lead to
false negatives, as it always reports truthful but coarser data. The
MN method leads to high false negative errors in both datasets
and the parameter m does not lead to significant changes, which
illustrates the utility loss incurred by dummy trajectories. When
comparing the two datasets, larger errors are observed in GeoLife
(Figure 3a), especially for Spatial Cloaking. Intuitively, human users
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Figure 4: Average False Positive Co-location Error per User Pair

are mostly active near home, hence users from the same residential
area often co-locate. In contrast, bus users are largely active away
from home (set as the central station in Rio de Janeiro), and a pair
of buses tend to have fewer co-locations as they move frequently.
As a result, location privacy methods have a higher impact on
human trajectories, and Spatial Cloaking, which deletes data near
the user’s home, inflicts larger false negative errors than other
privacy methods in GeoLife.

In Figure 4, we observe low false positive errors, i.e., false co-
locations, for most location privacy methods. For Laplace, SpotME,
and Noise, the random perturbation mechanisms are unlikely to
introduce a large number of false co-locations due to the sparsity
of the geospatial data. Small false positive errors are observed for
Spatial Cloaking due to the common practice of imputation, which
uses the last known location to impute missing/deleted records.
For Rounding, a large amount of false positives are observed to
achieve a high privacy level, i.e., s = 1000, illustrating the trade-off
between privacy and computational overheads. On the other hand,
increasing the privacy level for VHC reduces the magnitude of false
positive errors, as VHC utilizes a space partitioning structure to
group user locations and the random perturbation (with o param)
eliminates some false positive co-locations caused by grouping.

In addition to studying the average co-location error per user
pair, it is crucial to understand the number of user pairs which have
undetected co-locations, disregarding how many co-locations are
undetected. We refer to such user pairs as “false negative pairs”
and report the results in Figure 5. As expected, Rounding does not
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1000
W Laplace MN

BN SpotME . VHC
800 | W Noise Spatial Cloaking
s Rounding

False Negative Pairs
N B (=)}
o o o
o o o o
0.01 [
5000
10000 G
1
1
1
50
100
300

1000

- 11
S8 LE 2338111 SS8
fooaa2 NS SSS Sng
wim a3 hsy el ites
wwaaao o wEEE ol
© © o
>>0©
>
(a) GeoLife
3600
B Laplace MN
3200 mm SpotME  EEE VHC
Il Noise Spatial Cloaking
2800
e I Rounding
& 2400
g
2 2000
<3
@ 1600
=
3 1200
©
I
800
400
S i831,11888888LLL,288888
§5533SS8g8NmSe 333 1—"meng
Wil T n g eSS Ly el tagsg
R ool Il
wwaaao o wEEE o ll
© © o
> >

var:

(b) RioBuses

Figure 5: False Negative User Pairs for Co-location

lead to any false negative user pairs. Interestingly, other privacy
methods have more comparable results to each other and Spatial
Cloaking yields much lower numbers of false negative user pairs
in GeoLife. Contrasting Figure 3 and Figure 5, the results confirm
that a small number of GeoLife users have large numbers of co-
locations and a large number of RioBuses users have small numbers
of co-locations.

3.3 Air Pollution Exposure Results

In the case of air pollution exposure, we report the MAE (mean
absolute error) in exposure per time interval, averaged among all
users, in Figures 6 and 7. For each method, as we increase the
privacy level, larger errors are resulted. The MN method inflicts high
MAE errors despite the change in the privacy parameter, similar to
the generic utility results in our prior work [5], due to reporting
randomly generated dummy trajectories. We observe that Laplace
(with € = 0.1) and Noise (with var = 1000) lead to the lowest errors
in both air pollutants and both datasets. Spatial Cloaking (with
R=10000) leads to the highest errors in all cases, showcasing high
impacts of data deletion in this case study. For the GeoLife dataset
(Figure 6), the errors for NO2 exposure are higher than those of
PM3 5 exposure, due to larger variations in NOy concentration in
the dense city center (see Figure 1b).

3.4 Generic Utility vs. Application Utility

Our study investigates whether generic utility measures of location
privacy can be good indicators for application utility. As a proof of
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Figure 6: Errors in Air Pollution Exposure - GeoLife Figure 7: Errors in Air Pollution Exposure - RioBuses
100
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s2. In Table 3, we observe that the air pollution exposure error is N;‘n Re_idenﬁﬁfge Users (in %) 100
positively correlated with the Haversine distance, indicating that
Haversine is a better utility indicator for air pollution exposure
than the Hamming distance. Furthermore, the strength of correla-
tion varies from one dataset to another, indicating that the spatial
context for the input is very important, e.g., the same Haversine

distance may lead to different exposure errors in different cities.

Figure 8: Trade-off between Privacy and Utility with GeoLife and
PM; 5 Exposure Errors

its empirical privacy protection (x-axis) and application utility (y-
axis). For brevity, we consider the utility in reporting users’ PM3 5
exposure for the GeoLife dataset, as reported in Figure 6a. To contex-
tualize the privacy protection provided by each method-parameter
setting, we consider the percentage of non re-identifiable users in
the sanitized dataset, as reported in our prior work [5] (“NRI” in
Figures 8 and 10). This measure indicates the level of privacy protec-
tion against a strong adversary, which may have prior knowledge
about all locations visited by the target user. Higher percentages
indicate stronger privacy protection, and vice versa.

As shown in Figure 8, we identify three competitive methods
which achieve low utility loss while providing strong privacy, namely,
Laplace (red), Noise (blue), and VHC (maroon). Specifically, for any

3.5 Privacy and Utility

It is important to understand that for a given application, which
privacy method(s) would provide the best utility and privacy pro-
tection. To that end, we conduct a trade-off analysis as depicted in
Figure 8, where each method-parameter setting is plotted based on

ZNote that we do not correlate generic utility with co-location errors. Generic utility
measures only depend on individual-level data, whereas co-location errors also depend
on dataset-level information, e.g., the co-locating behaviors of user pairs.
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given privacy protection level (e.g., x% in NRI), the method that
achieves the lowest MAE while providing equal or stronger privacy
(> x%) is one of the three consistently. Furthermore, we observe
that VHC provides the strongest privacy protection (almost 100% in
non re-identifiable users), and tuning its parameter value does not
degrade its privacy protection or incur significantly higher utility
loss. On the contrary, tuning the parameters of Laplace and Noise
does provide a smooth trade-off between privacy and utility. For
example, Laplace and Noise in low noise settings lead to the lowest
utility loss, e.g., < 0.0001 in MAE.

4 CONCLUSION

We have presented two use cases of location privacy, i.e., co-location
and air pollution exposure, with the goal of understanding the use-
fulness of location privacy in specific applications. We adopted
real-world trajectory and air pollution data for two cities to con-
duct our empirical analysis. Our results in the co-location study
showcase the trade-off between critical errors (i.e., undetected co-
locations) and computational overheads (i.e., false positive errors).
Our results in the air pollution exposure study highlight the rela-
tionship between generic utility and application utility: in this case,
they are largely aligned but the alignment depends on the contexts.
Furthermore, we conducted a tradeoff analysis between privacy
protection and application utility, identifying three competitive
location privacy methods for the specific application setting.

We consider the following directions for future work. Firstly, ex-
perimenting with different levels of spatial and temporal granularity
in processing the GPS data may provide new results. For example,
increasing the spatial grid resolution (thus leading to smaller cells)
and estimating GPS location in 15-minute intervals may impose
stronger requirements for co-location, hence resulting in different
errors or behaviors in location privacy methods. Secondly, in or-
der to incorporate temporal variability in air pollution exposure,
it is possible to simulate air pollution concentrations with known
diurnal and seasonal trends using Monte-Carlo simulation [11, 12].
Thirdly, it is interesting to investigate different air pollution expo-
sure metrics, i.e., functions of concentration, used in environmental
health literature. For example, our study adopted instantaneous
exposure, i.e., the exposure at an instant in time, whereas other
metrics include time-integrated and time-average exposures [2].
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