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Abstract—Sharing image data benefits a wide range of applica-
tions, including social media, medical imaging, and intelligent
systems. Image data often contain sensitive information, the
sharing of which may inflict individual privacy concerns.
Traditional image privacy techniques, such as pixelization and
blurring, do not provide effective protection. In this paper,
we discuss privacy challenges and solutions for image data
sharing. Specifically, we review existing solutions based on
cryptography and federated learning, and discuss recent results
on differential privacy in image domain. While differential pri-
vacy provides provable guarantees, we identify specific privacy
challenges for image data and point out several considerations
for future research.

1. Introduction

Large amounts of image data are captured nowadays
by smartphones, medical imaging equipment, and body-
worn and surveillance cameras. Sharing image data would
benefit various research communities and applications, ad-
vancing machine learning, training and education, as well
as intelligent and sustainable systems. While sharing the
image data is beneficial, individual privacy concerns would
explicitly arise.In fact, traffic cameras capture the vehicle
make, model, and license plate. Surveillance and body-
worn cameras may archive persons and activities. Research
research has shown that medical imaging data may leak
sensitive information about patients.

The protection of private content in image data has
been studied in computer vision and image processing.
Traditional privacy enhancing techniques obscure the image
by detecting and obfuscating the region of interest (ROI).
However, such approaches cannot guarantee privacy. Recent
studies [1], [2] have shown that deterministic obfuscation,
such as pixelization and blurring, does not provide sufficient
protection against inference attacks. Therefore, it is impera-
tive to provide a rigorous guarantee of privacy when sharing
image data with untrusted parties.

In this paper, we will review existing privacy solutions
for image data sharing, discuss recent results in differential
privacy, and identify challenges and future work directions.

2. Background

2.1. Private Image Computation

Computational solutions based on cryptography and fed-
erated learning have been developed to involve untrusted
parties for image storage, sharing, and analysis. Those so-
lutions have enabled private image sharing with intended
recipients [3], private image retrieval [4], and training ma-
chine learning models [5], [6]. The key advantage of those
solutions is that they do not directly share input image
data with untrusted parties. However, they often result in
computation and communication overheads. Furthermore,
the computation results, such as intermediate updates and
model predictions, can be used by adversaries to launch
inference attacks [7], [8], [9].

2.2. Differential Privacy for Databases

Differential privacy has become the state-of-the-art pri-
vacy paradigm for quantifying privacy leakage in statistical
databases. It assumes a trusted data curator is responsible
for data aggregation and guarantees that an adversary is not
able to decide whether a particular record is included or not
in the input database, regardless of the amount of additional
information available to the adversary. More formally, given
any neighboring databases D and D′ that differ by at most
one record, a randomized mechanism M satisfies (ϵ, δ)-
differential privacy if for any Z ⊂ range(M),

Pr[M(D) ∈ Z] ≤ eϵ · Pr[M(D′) ∈ Z] + δ. (1)

The parameters ϵ and δ specify the degree of privacy pro-
vided by the mechanism. Smaller ϵ and δ values indicate
stronger privacy protection, and vice versa. A plethora of
studies have applied differential privacy to data sharing,
most notably in databases and data mining applications.

3. Differential Privacy for Image Data Sharing

To provide rigorous privacy in image data sharing, it
is important to quantify the information leakage. In this
section, we review recent results in differential privacy for
image data and discuss their strengths and weaknesses.



3.1. Recent Results in Differential Privacy

Machine Learning. Deep learning methods have shown to
achieve state-of-the-art results on computer vision problems.
To achieve privacy in this setting, [10] proposed DP-SGD,
which provides differential privacy guarantees to image
samples used to train deep learning models. Specifically,
the authors proposed sanitizing the gradients during neural
network optimization, which ultimately limits the overall
influence of any training example on the model. Privacy
accountants [10], [11] have been proposed to account for
differential privacy across training epochs, which provides
stronger estimates of privacy loss compared to other com-
position theorems [12]. DP-SGD has been applied to image
classification and medical segmentation tasks.
Individual-level Data Sharing. Another school of privacy
solutions aim to enable individual-level data sharing, without
a trusted data curator. Recently proposed solutions in this
setting work to enhance image obfuscation, providing differ-
ential privacy guarantees to content within an input image.
To provide a few examples, [13] was the first approach
to adapt the notion of neighboring databases to the image
domain and developed a differentially private pixelization
method to protect m pixels simultaneously in the input im-
age. [14] provides weaker differential privacy guarantees and
protects individual pixels. [15] provides indistinguishability
for SVD features. Such solutions have been validated with
face and eye image data [16], [17] as well as in cloud-based
machine learning tasks [18].

3.2. Strengths and Weaknesses of Differentially
Private Image Data Sharing

From a computational perspective, the majority of dif-
ferential privacy-based image data sharing solutions are
relatively lightweight. This holds both for training machine
learning models and for obfuscating individual-level images.
From the privacy perspective, the differential privacy guar-
antee is resistant to post-processing, which means differen-
tially private models and obfuscated images can be utilized
in other analyses without inflicting additional differential
privacy leakage. Empirically, recent results [18] show that
face images obfuscated by DP-Pix [13] are difficult to re-
identify even after denoising.

One important challenge in differentially private image
data sharing has to do with a basic assumption of differential
privacy: removing a record from the input database would
be sufficient to protect its privacy. This assumption may
hold in many database applications, e.g., where records are
i.i.d. samples from a population. However, we may observe
exceptions in many image applications. For example, many
face images of the same individual may be included in the
training set of a face recognition system. The differential
privacy guarantee provided for each training sample may not
equate to that of the participating individual. Furthermore,
pixels within each image may not be i.i.d. either, e.g.,
adjacent pixels having similar values. See Figure 1 for an
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Figure 1: Removing pixels from an input image may not protect
privacy: (a) input image where the pixel samples are taken from;
(b) the quantity of pixel samples is small and barely visible; (c)
post-processing the pixel samples reconstructs the input image with
high accuracy.

illustration. As a result, obfuscation approaches designed
with weaker privacy guarantees, such as [14], may be less
effective than intended.

In addition, the choice of privacy parameters remains a
big challenge in differentially private image data sharing.
On one hand, ϵ and δ values indicate the level of privacy
guarantees in differential privacy: the lower the better. On
the other hand, there is an intrinsic trade-off between privacy
protection and utility, where stronger privacy often leads to
poorer utility. That has also been observed in differentially
private image data sharing.

4. Considerations for Private Image Data
Sharing

It is thus natural to ask the following. How can we
improve differentially private image data sharing? Is differ-
ential privacy the key to privacy challenges in image data
sharing? Needless to say, those are difficult questions. Be-
low, we outline some first steps toward finding the answers.

4.1. Privacy and Utility

To overcome the challenges in privacy-protecting im-
age data sharing, it is essential to characterize the privacy
risks and the utility goals associated with the data and the
application. In the machine learning context, membership
inference [7] and model inversion [8] are highly relevant
and application-specific utility, such as medical imaging and
activities of daily living, should be evaluated. In the context
of image obfuscation, e.g., with eye data, iris authentication
is an appropriate risk measure and utility has been mea-
sured for pupil detection and gaze estimation [16]. Future
computer vision research may uncover new privacy risks
and develop more complex applications. In return, image
privacy solution should take into account those results in
the target image domain.

4.2. Usability

It is also important to take into account the usability
of image privacy solutions to facilitate their adoption and
future development. A large amount of image data shared
nowadays are mainly for human consumption, e.g., in social



media. However, image privacy solutions may adversely
affect viewers’ satisfaction, which may cause people to
avoid using them. Research studies that evaluate viewer
experience regarding image privacy techniques [19], [20]
may provide insights on enhancing viewers’ satisfaction. In
addition, future research should improve the experience of
institutional users, e.g., data curators.

4.3. Fairness and Robustness

There are other important considerations that should
be incorporated into the design of better image privacy
solutions. It is known that differential privacy may am-
plify the unfairness of non-private models, e.g., in image
classification [21], and could provide robustness against
adversarial examples [22]. However, the fairness and robust-
ness of other types of image privacy solutions, e.g., image
obfuscation, have not been sufficiently studied. Furthermore,
future research may consider addressing privacy, fairness,
and robustness simultaneously for a target image domain.
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