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ABSTRACT

The depth of a seismic event is an essential feature to discriminate
natural earthquakes from events induced or created by humans.
However, estimating the depth of a seismic event with a sparse set
of seismic stations is a daunting task, and there is no globally us-
able method. This paper focuses on developing a machine learning
model to accurately estimate the depth of arbitrary seismic events
directly from seismograms. Our proposed deep learning architec-
ture is not-so-deep compared to commonly found models in the
literature for related tasks, consisting of two loosely connected
levels of neural networks, associated with the seismic stations at
the higher level and the individual channels of a station at the lower
level. Thus, the model has significant advantages, including a re-
duced number of parameters for tuning and better interpretability
to geophysicists. We evaluate our solution on seismic data collected
from the SCEDC (Southern California Earthquake Data Center)
catalog for regional events in California. The model can learn wave-
form features specific to a set of stations, while it struggles to
generalize to completely novel sets of event sources and stations.
In a simplified setting of separating shallow events from deep ones,
the model achieved an 86.5% F1-score using the Southern California
stations.
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1 INTRODUCTION

Accurate depth estimation of seismic events is a critical procedure to
discriminate between man-made and natural events. While anthro-
pogenic seismic sources are overwhelmingly less than 1 km depth,
nearly all earthquakes nucleate below a 2 or 3 km depth. Most earth-
quakes considered shallow occur between a few and 70 kilometers
depth, while deep earthquakes can occur as deep as 700 kilometers
[24]. Distinguishing man-made events from natural events has sev-
eral applications, for example, in nuclear non-proliferation [6], and
seismic hazard monitoring.

Theoretically, the depth of a seismic event is estimated by in-
verting the travel time equations to individual observing stations.
However, the correctness of the estimation largely depends on the
locations and the number of observing stations. When stations are
far from an event (e.g., more than 100 km), and the number of sta-
tions observing the event is small (e.g., three or less), the uncertainty
in the estimated depth grows beyond tolerance. In contrast, the
depth is most accurately estimated when a seismic station is located
exactly above the event’s origin. Unfortunately, no single seismic
network can guarantee global coverage, leading to inaccurate depth
estimation for novel seismic hot spots.

This research considers estimating seismic depth directly from
the waveforms generated by the events (i.e., time series, or seis-
mograms) employing modern machine learning (ML) techniques.
Such an approach to evaluating ML methods and potentially re-
placing physics-based estimation methods is gaining significant
interest among geophysicists [6]. In this paper, we develop the first
hierarchical neural network model named Septor (Seismic depth
estimator) aimed to estimate the depth of seismic events from wave-
forms of multiple channels at multiple stations. Besides its novelty
in automated depth estimation, our model can potentially be a sup-
port tool to distinguish seismic events (i.e., man-made vs. natural),
and has several applications in automated seismic monitoring. We
train Septor using a set of 8,359 highly calibrated (by human ana-
lysts) events from the Southern California Earthquake Data Center
(SCEDC) spanning over forty years of monitoring data. We have
achieved an impressive root-mean-squared-error (RMSE) of 2.89
km in predicting the depth (with 70.1% correlation to actual depth)
of these events using only a few close-by stations from the same
network. We have also considered a binary classification problem to
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distinguish shallow from deep events. Our model achieves a 86.5%
F1-score in shallow-deep discrimination, promising a step closer
to fully automatic seismic monitoring. Even though the model can
learn waveform features from a specific network of station, we nei-
ther expect nor claim the model learning the underlying travel-time
inversion process. In an attempt to evaluate the generalizability,
we perform three experiments on disjoint train-test sets with no
common source and station. The model shows a gradual decrease in
performance as the distances between source-station pairs increase.

Septor architecture is not very deep compared to modern ML
models used in computer vision or speech processing. The reason
is the lack of labeled data to train a deeper network. The calibrated
events used to train Septor were labeled by well-trained analysts
working on daily shifts for years. Hence, we tailored the model to
fit our data instead of fitting a model to tailored data. Our network
architecture has two hierarchies, each consisting of Convolutional
Neural Network (CNN) layers followed by Long-Short Term Mem-
ory (LSTM) layers. Such simple architecture provides a great deal
of efficiency and interpretability for geophysicists. We demonstrate
that our model conforms to the general scientific understanding
of depth estimation and can be employed in at least two different
seismic regions.

Why is depth estimation from waveforms challenging?
(i) Physics-based depth estimation suffers from uncertainty due to
noise in the signal and the lack of nearby stations. For example, in
the SCEDC original catalog [1, 19], the mean quantified uncertainty
is 6.89 km. Such uncertain labels in training data hardly lead to
accurate models, making seismologists skeptical about ML-based
systems for depth estimation. However, we consider the highly
calibrated SCEDC catalog [11] for training our model with a very
low uncertainty of 0.357 km (due to high station density in the
network). Thus, the uncertainty in training labels cannot accumu-
late into the validation error. (ii) Physics-based estimated depth for
the same earthquake event can be different in different earthquake
catalogs. For example, the root-mean-squared difference of depths
between the SCEDC original catalog and the SCEDC highly cali-
brated catalog is 3.81 km for the same set of earthquakes. Moreover,
different algorithms may calculate the depth from different refer-
ence points. For example, in Northern California, NCSN uses depth
relative to the geoid (essentially sea level)[4], whereas the double-
difference catalog uses depth from the surface[28]. Therefore, ambi-
guity among data sources makes it hard to evaluate learned models
on new catalogs. We contribute experiments to test our model
in multiple geographic regions to demonstrate equivalent perfor-
mance; (iii) Only experts in geophysics and seismology can produce
confident labeled information. Unfortunately, it is very difficult (or
even impossible) for a non-expert to spot any pattern in raw wave-
forms or other visual data representation. To better illustrate this
difficulty, consider the Continuous Wavelet Transform (CWT) rep-
resentation of a deep earthquake captured by different stations at
varying distances illustrated in Figure 1 (a) and a shallow earth-
quake shown in Figure 1 (b). Therefore, crowd-sourced annotations
are not feasible for this application, ruling out the option to train
deep models on a large-scale labeled dataset. For this reason, we
propose a model based on a small two-hierarchy network, just
enough to learn from the set of available well-calibrated events.
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(b) Shallow Event (Depth: 0.6 km)

Figure (1) CWT images from the 5 closest stations for a
deep (top) and a shallow (bottom) earthquake. For the same
earthquake, CWT images are ordered ascending according
to the epicenter to station distance from top to bottom.

The remainder of this paper is organized as follows. Section 2
introduces essential concepts of seismology related to the task of
depth prediction. Section 3 discusses related work. We describe
Septor in Section 4. Data description and preprocessing are dis-
cussed in Section 5. The experimental setup and our evaluations
considering regression and classification settings are presented in
Section 6 and Section 7. The use of Septor at a different region is
discussed in Section 8. Finally, our conclusions are presented in
Section 9.

2 BACKGROUND

In this section, we discuss the main steps of a typical seismic data
processing pipeline illustrated in Figure 2. This pipeline refers to
the process of transforming a set if seismic signals into a bulletin
of seismic events. (i.e earthquakes, explosions, etc). The data pro-
cessing starts when a network of stations detects a seismic signal
that could be from a man-made or a natural event.

Signal Detection: This step consists of monitoring a continuous
waveform obtained by seismometers to detect events. Typically, a
seismometer captures ground motion in multiple directions (up-
down, north-south, and east-west) to obtain a three-dimensional
ensemble. Any seismic event must excite at least one dimension
or channel (e.g., BHZ, BHN, and BHE) of a seismometer. When
all channels simultaneously show signals, one can be confident
about the arrival of a seismic wave at the station. Once an event is
detected, the remaining steps are executed in sequence.

Phase Identification: Any movement of earth materials gener-
ates multiple types of waves and each wave is affected differently
by the unique velocity structure along it’s own propagation path.
Common phase types are compressional (P) and shear (S) waves,
which travel through the earth; and surface waves, which travel
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Figure (2) Seismic data processing pipeline. We perform this task of depth prediction in the "Event Characterization" step

without the human supervision.

along the earth’s surface. A phase picker detects different types of
signals and labels them as P, S, or other types of waves, as illustrated
in Figure 3. For example, when an earthquake or underground ex-
plosion occurs, seismic waves propagate away from the source.
The scattered energy immediately following the P and S waves
is called coda. Characteristics of each part of the waveform carry
information about the source, including about its depth. Accurate
phase picking is essential to obtain parameters that can constrain
location, depth, and event type.

— | <+——coda wave ——>

Figure (3) A 230 second long seismic waveform shows the P
wave arrives first for an earthquake, followed by the S wave.
From 30 seconds before the P arrival time to 200 seconds
after is sufficient to capture the entire earthquake.

S wave
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o

Phase Association: Association of phases across multiple sta-
tions is done by a phase associator. Phase associators aggregate
multiple waveforms generated from the same earthquake and tri-
angulate to compute the epicenter! and depth of the earthquake.
Phase associators work on multiple stations’ data and may generate
other meta information such as an initial location of the earthquake.

Event Characterization: Typically, the depth estimate of an
event may be refined in this stage of the pipeline. Depth can be
estimated by minimizing the propagation time residuals relative to
some prediction across all the observing stations. However, con-
sidering the complexity of the earth’s structure, depth estimation
involves many geophysical priors, including local, regional, and
global velocity models. Misassociated phases are common in au-
tomated associators and at the very least can bias depth estimates
(and even lead to false events being formed), so human supervision
of output is necessary. In this work, we propose to perform the
depth estimation after the initial event formation to refine the initial
depth estimate. The goal is to estimate and exploit the depth of an
event automatically without human supervision. After the event
characterization step, an event, with its location, depth, magnitude,
etc. are listed in the earthquake catalog.

!The epicenter is the location of an earthquake on the earth surface. The epicenter
does not provide information about depth.
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3 RELATED WORK

State-of-the-art seismic event depth prediction techniques require
considerable manual oversight in data annotation and expertise in
data analysis. Depths are determined using 3D earth models and
seismic wave travel-times. They can be refined by consideration of
travel times relative to other seismic events, providing extremely
accurate relative locations, which can in turn improve absolute
locations. The range of uncertainty associated with the estimated
depth though often makes it hard to consider them as “ground
truth”. For these reasons, the number of examples used to train and
test predicting models found in the literature has been limited to
less than one thousand. Such a limited number of examples make
the use of modern machine learning models, such as deep learning,
challenging. Besides, those works consider the information from a
single station for prediction, as described further below.
Seismologists have used physics based approaches to identify
waveform features that indicate source depth, and have applied met-
rics based on those features to estimate depth. Kafka [14] used the
existence of higher frequency fundamental mode Rayleigh waves,
or Rg, as an indication of shallow source depth, typically less than
3 or 4 km. Rg detectors are useful tools for identifying shallow
seismic sources in some areas, but especially in tectonically active
areas such as southern California, Rg may only propagate 10 km
before it is attenuated to below background levels of the S wave
coda, which arrives at the same time. The ratio of the S wave peak
amplitude to the duration of the S wave coda also is affected by
and can be used to roughly estimate the source depth, with longer
coda durations occurring for shallow sources [15]. This may be due
to trapping of high frequency shear waves in shallow low veloc-
ity waveguides, where they propagate more slowly, so extend the
wavetrain. Alternately, scattering of Rg at or near the surface can
also extend the wavetrain. Both mechanisms may be important,
but the physical basis of this observation is still not fully settled.
The ratio of P to S wave energy is often also indicative of depth, as
S waves are more likely to be trapped in highly attenuative near
surface waveguides than are P waves, thus increasing the ratio of P
to S wave energy for shallow events relative to deeper ones [10].
While the accuracy and broad applicability of these methods are
limited, we are encouraged that there are such features in seismic
waveforms that ML methods can learn, and optimize the use of to
improve estimations. Further, we expect that other features may
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exist that we haven’t discovered using physics-based approaches,
but that algorithms can learn with sufficient training data.

Ochoa et al. [18] proposed to use Support Vector Regression
(SVR) for depth estimation of events collected by a single station at
Bogota, Colombia. The original catalog has 2,164 events observed
between 1998 and 2008. However, events with a lower magnitude
and possibly related to man-made events were discarded in the ex-
perimental evaluation, leaving only 863 events. A set of 25 features
related to the magnitude, epicenter distance, and source location
were extracted from data for training the SVR model.

Recently, Yang et al. [29] compared the performance of conven-
tional feature-based classification models (e.g., Support Vector Ma-
chine, Random Forest, Naive Bayes, and k-Nearest Neighbors) with
a 10 layer convolutional neural network using CWT representation
for distinguishing between deep and shallow seismic events. The
comparisons were performed using 444 micro-earthquake events
associated with an underground collapse of a cavern in South
Louisiana. The signals were sampled at 200 Hz by 8 broad-band
three-component monitoring devices, and the hypocenter depths
ranged from 1 km to 2 km for deeper events and depths between
40 m and 400 m for shallow events.

From a machine learning perspective, classification of deep and
shallow earthquakes from waveforms can be described as a Time
Series Classification problem (TSC) [2, 3, 7], in which the goal is to
predict a discrete label for a series from a finite set of categories. In
the past decade, TSC problems have been of great interest among
data mining researchers, and have been applied in many different
domains. In seismology, TSC has been used in the context of phase
detection and identification [6, 17, 20]. However, there is a lack
of solutions for depth prediction as a regression of seismic events
using waveforms from multiple stations, as proposed in this paper.

Depth estimation from seismic waveform falls under the category
of Time Series Extrinsic Regression (TSER) [25] where a single scalar
continuous value is predicted based on the whole time series. Unlike
Time Series Forecasting [13], where the prediction mostly depends
on recent values, TSER considers the whole time series equally
for prediction. Although TSER has been used in a wide range of
domains [8, 25], it has not been employed in seismology. In this
paper, we compare our solution with Rocket [8], a state-of-the-art
TSER method.

4 SEPTOR: HIERARCHICAL NETWORK

Convolutional Neural Networks (CNN) and Long-Short Term Mem-
ory (LSTM) networks are the building blocks of our model Septor.
A CNN is a class of deep neural networks widely employed on im-
age mining problems. CNNs perform convolutions on images with
multiple fixed-sized kernels. A convolution operation can be seen
as sliding the kernel over the image and computing the dot product
at each step. Each convolution extracts different higher-order rep-
resentations from the feature map. A convolutional layer is usually
followed by a nonlinear activation function (such as ReLU) and a
max-pooling function.

Long Short-Term Memory (LSTM) networks are an improved
variant of traditional Recurrent Neural Networks (RNNs) [12]. RNNs
can model temporal dependencies in the data by feedback connec-
tions considering both the input at the current time step as well
as the output of the last time step’s hidden state. However, vanilla
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RNNs suffer from the vanishing gradient problem, which prevents
the model from learning long range dependencies. LSTM tackles
this problem by introducing three gating mechanisms to update
the memory cell ¢; and hidden state h; at each step t based on
the current time step input x; and the previous time step’s hidden
state output h;—;. The input gate i;, forget gate f;, output gate
ot, memory cell ¢; and hidden state h; at step t are computed as
follows:

i =0(W; - [he—1, %]+ b;

fr=c(Wpr - [he-1,x:] + by

or =0 (Wo - [Ar-1,x:] + bo

¢t = fr ©Oce—1 + i O tanh(We - [hy—1, x¢ ] + be)
h; =0, O tanh(c;)

(e
@)
®)
(©)
©)
Here, o is the logistic sigmoid function, tanh is the hyperbolic
tangent function, and © denotes the element wise multiplication.
Each LSTM unit is composed of a memory cell and three main
gates: input, output and forget. By this architecture, the LSTM
manages to create a controlled information flow by deciding which
information it must forget and which information to remember. To
understand the mechanism behind the architecture, we can view f;
as the function that controls to what extent the information from
the old memory cell is going to be thrown away, i; controls how
much new information is going to be stored in the current memory
cell, and o; controls what to output based on the memory cell c;.

4.1 Architecture of Septor

Septor consists of two loosely connected hierarchies, as illustrated
in Figure 4: (1) the waveform aggregator, and (2) the station aggre-
gator. The waveform aggregator (Figure 5) is a CNN-LSTM based
network and receives a 3 dimensional linearly spaced Continuous
Wavelet Transform (CWT) image for a single station and outputs a
2D feature array. Multiple output from the waveform aggregator is
fed into the station aggregator (Figure 6). The station aggregator
receives the features from the waveform aggregator in a distance
(distance from the epicenter of the earthquake to the station) pre-
serving ordering. The station aggregator is another CNN-LSTM
based network which finally predicts the depth of the earthquake.

[Fom]— 1

— I

Figure (4) General view of Septor architecture.

Station Aggregator

Distance preserved ordering

Our waveform aggregator consists of four CNN layers followed
by two LSTM layers followed by three fully connected (FC) layers.
Each of the CNN layers is followed by a batch normalization layer
and a ReLU activation layer. 30% dropout is applied after ReLU
activation layers to prevent overfitting the model. We used 8, 16, 32
and 64 size kernels of size 3X3 for the convolution layers. The output
from the fourth CNN layer is fed to the two stacked LSTM layers
after a time preserving transformation. Extracted features from
the LSTM layers are then passed through three FCN layers. After
each FCN layer, batch normalization and ReLU activation is applied.
Figure 5 contains the major parts of the waveform aggregator.
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The station aggregator consists of one CNN layer, one LSTM
layer, and a stack of three FCN layers. The CNN layer in the station
aggregator has 16 kernels of 3x3 size and is followed by a ReLU
activation and a max pooling layer. Output from the CNN layer
is fed into the LSTM layer which has 32 hidden units. The station
aggregator hierarchy ends with FCN layers with 64, 32 and 1 output
units. Figure 6 contains the details of the station aggregator. For
both the waveform and station aggregator, we define the number
of layers according to preliminary results on training sets.

5 DATA DESCRIPTION

We carry out our experimental evaluation with a highly calibrated
earthquake catalog from Southern California [11]. This catalog used
either single station locations with a 3D velocity model [16] or a
multiple event location method, GrowClust [26] for depth calcula-
tion, both of which are more accurate than the baseline Southern
California Earthquake Data Center (SCEDC) depth calculation. The
catalog includes uncertainty bounds for the depths. The reported
median vertical uncertainty is 0.4 km, which is considered very
good for many seismic monitoring tasks. Therefore, this dataset
is a close-to-ideal candidate for our experimental evaluation. We
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collected more than 650,000 multi-channel waveforms that are as-
sociated with earthquakes having magnitude 2.0 to 4.0, recorded by
423 densely located seismic stations in Southern California region.

We filter out the earthquake events for which we did not find any
station with a distance less than 1.2 times the reported depth. Such
close proximity of an observing station ensures greater accuracy
of the depth estimate. After selecting events measured by at least
five stations and containing waveforms from all three broadband
channels (BHZ, BHN, BHE), we build a dataset with 8,359 earth-
quake events. In Figure 7, we show the SCEDC station map and
depth distribution of our collected earthquakes.

SCEDC station map Depth distribution
e

120

Frequency

Ear‘t?\quake :dsepth
Figure (7) (left) Distribution of Broadband stations in South-
ern California shows a dense seismic network [21]. (right)
Distribution of earthquake depth (in km.) of our dataset.
For each of the 3-channels, we collected 230 seconds of wave-
forms, starting 30 seconds prior to the first P arrival time and ending
at 200 seconds after the P arrival time. This time window is large
enough to capture seismic waves generated by any regional earth-
quake. Since the waverforms are sampled at 40Hz, the length of each
waveform is 9,200 data points. In summary, our dataset consists of:

e A total of 8,359 earthquake events;

e Each event is recorded at 40Hz by five observing stations;
e Each station records three broadband waveforms;

e Each waveform contains 9,200 numeric observations.

5.1 Waveform Preprocessing

Following conventional seismic signal preprocessing techniques,
we remove the instrument responses associated with the station
from the waveforms. Then we convert the vertical, and the two
horizontal (usually north-south and east-west) components (Z, N, E)
to horizontal, radial, and tangential components (Z, R, T). We pass
the waveforms through a 0.4Hz to 10Hz bandpass filter, detrend
each sample, and remove the mean. We max-normalize the data
across each channel, thus retaining the relative amplitudes among
components of a station. Afterward, we use a 64-scale CWT to
obtain a spectral-temporal representation, as previously illustrated
in Figure 1. The final RGB linearly spaced CWT image has 64x920x3
dimensions, where the vertical, radial and tangential components
are represented by red, green, and blue colors, respectively.

6 EXPERIMENTAL SETUP

In this work, depth prediction is a regression task from three di-
mensional spectral-temporal images. Several existing methods can
be used to produce depth estimates. We compare the results of
Septor against two classic ML-based models: CNN, LSTM; and two
state-of-the-art algorithms for time series regression: Rocket [8]
and XGBoost [5]. The algorithms are briefly described below.
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CNN based models have been widely used in image classification,
time series classification, and seismic data classification [9]. We use
linearly-spaced CWT images of waveforms as input to a simple
four layer CNN network to train towards actual depths.

LSTM based models can capture long-term temporal dependen-
cies, hence, it is very effective for time series classification and
regression [12]. We flatten the CWT images to feed into a two layer
LSTM network and train towards actual depth.

XGBoost (Extreme Gradient Boosting) is a decision-tree based
ensemble algorithm that uses boosting technique to sequentially
add new trees to the classification or regression model [5].

Rocket (Random Convolutional KErnel Transform) is originally
a classifier for time series that transforms the data using a large
number of random convolutional kernels that can capture basic
patterns or shapes from the series. Recently, Rocket was adapted
for extrinsic regression and achieves the highest overall accuracy
in a comprehensive experimental evaluation [25].

Rocket and XGBoost were trained using the vertical component
(Z-axis) of the waveforms in case of single-channel resolution;
by concatenating the three components (Z, R, T) waveforms into
a single vector in the case of multi-channel resolution; and by
concatenating the three-channel waveforms from five stations for
multi-station resolution. For Rocket, the number of kernels was set
to 10,000.

We consider Root-Mean-Square Error (RMSE) as a loss function
and Stochastic Gradient Descent (SGD) as the optimizer to train
our model. The learning rate is set to 0.01 with a 10% decay per
epoch. Both dropout ratio and recurrent dropout ratio for LSTM
were set to 0.3 for all models. These values were set based on
preliminary evaluations on training sets. In all experiments, we
consider a split of 80/10/10 for training, validation, and testing
after random shuffling. The results are the average of five separate
training sets using five-fold cross-validation of 300 epochs each.

In addition to RMSE to measure the predictions’ errors, we cal-
culate Pearson’s correlation coefficient to qualitatively show the
relationship between the predicted and actual depth. Note that,
Pearson’s correlation has no unit while RMSE is measured in km.
The two metrics complement each other to demonstrate the robust-
ness of performance evaluation.

Pearson’s correlation coefficient (p) is defined according to Equa-
tion 6, in which x; is the predicted depth and y; is the actual depth
(1 <i < number of test events). Whereas, y and X are the average
of predicted depth and average of actual depth respectively.

2(xi —%)(yi —y)

VE(x; = %)% (yi = Y)?

(©)

To demonstrate the performance of Septor as a binary classifier,
we modify the output layer of the station aggregator and use a
softmax activation function. We use the Adam optimizer instead of
SGD and binary cross-entropy as the loss function. In the evaluation,
we consider accuracy, precision, recall, and F1-score as measures.

We train Septor using a GPU server with four Nvidia RTX2080
GPUs (total of 44GB GPU memory), 256 GB of RAM, and a 32-
core CPU. Septor has 8.2 million trainable parameters and for 300
epochs, the server takes 1 hour and 48 minutes to train. All of our
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experiments are reproducible. The source code of data preprocess-
ing and model training, waveforms and meta-data, figures, and
additional results can be found in our supporting website [23].

7 EMPIRICAL EVALUATION

7.1 Regression performance

In Table 1, we compare the performance of Septor with different
rival methods and data resolution. The RMSE of Septor for depth
prediction is 2.89 km, which is lower than one standard deviation
(3.71 km) of depth values in the test data. Furthermore, we achieve
an impressive 70.1% Pearson’s correlation coefficient.

Table (1) Performance comparison of Septor with baseline
multiple methods.

Model Data resolution RMSE (km) Corr. (%)
CNN Multi-channel 3.26 56.0
LSTM Multi-channel 3.38 52.0
XGBoost  Single-channel 3.53 37.0
XGBoost  Multi-channel 3.58 36.0
XGBoost  Multi-station 3.39 44.3
Rocket  Single-channel 3.11 46.2
Rocket  Multi-channel 3.12 46.0
Rocket Multi-station 3.51 36.5
Septor  Multi-station 2.89 70.1

To confirm the statistical significance of our predictions, we run
a t-test where we represent predicted depth with variable X, true
depth with variable with Y, and our null hypothesis Hy is: there is
no significant linear correlation between X and Y. From the test, we
found a p-value lower than the threshold value (¢ = 0.05). Therefore,
we reject the null hypothesis Hy and conclude that the correlation
between X and Y is statistically significant and did not occur by
chance. Our model, Septor, significantly outperforms all other data-
driven methods in terms of RMSE and Pearson’s Correlation. In
Figure 8, the scatter plot shows the dots representing the predictions
close to the expected y = x line.

Scatter Plot of SCEDC Test Dataset

Num of train event: 7524
Num of test event: 835
Correlation: 70.1%
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Figure (8) Scatter plot shows 70.1% correlation between ac-
tual vs. predicted depth on SCEDC dataset. The blue straight
line represents y = x.

7.1.1  Sensitivity to the magnitudes of earthquakes. The observed
noise in seismic signals depends on the earthquake’s magnitude.
Given that all other factors are the same, high magnitude earth-
quakes produce better signals than low magnitude ones. For this
reason, we evaluate whether our model is sensitive to different
magnitudes range, which could potentially decrease its utility.

We evaluated our model considering depth values in two distinct
magnitude ranges: from 2 to 3 and from 3 to 4. The results are
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shown in Table 2. For both ranges, Pearson’s correlation coefficients
are more than 86% with negligible (<< 0.05) p-value. We achieve
an RMSE of 2.216 km for magnitude range 2-3 and 2.217 km for
magnitude 3-4, where the standard deviation is 3.831 km and 3.712
km, respectively. The relationship between actual and predicted
depths is shown in Figure 9. We conclude that the model is invariant
to magnitude ranges.

Table (2) Performance evaluation on earthquakes of two
magnitude ranges. RMSE and standard deviation are in km.

Magnitude Test event Std Dev. RMSE Corr. (%)
2-3 3.831 2.216 86.5
3-4 3.712 2.217 88.2

(a) Trained on Magnitude 2-3 Events

Correlation: 86.5%
RMSE: 2.216

(b) Trained on Magnitude 3-4 Events

Correlation: 88.2%
RMSE: 2.217
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Figure (9) Scatter plots of predicted and actual depths for
two magnitude ranges.

7.1.2  Sensitivity to origin location. Earth’s non-uniformity is the
greatest challenge to generalizable model development for seismic
monitoring applications. Southern California has numerous dra-
matic lateral variations in seismic velocity structure, for example,
with rapid transitions from the San Jacinto mountains with their
deep crustal roots, to the Salton Trough, with its very thin crust,
thick sediments, and high heat flow, and from areas where the crust
is being sheared, to areas where it is under compression. Because
of such geographic structural variability we evaluate our model on
smaller sets of sub-regional events. As a simple test we divide our
dataset into north and south sub-regions of Southern California
and train and test using these smaller subsets. This is intended to
test the performance of our model with earthquakes generated and
captured within regions with at least somewhat less variation in
earth structure. In Table 3, we show the performances on North and
South datasets. RMSE values are lower than those obtained using
the full dataset, and the correlation coefficients are higher for both
sub-regions (Figure 10). This indicates that geographic restrictions
help the model to perform better.

Table (3) Performance evaluation after splitting the dataset
into two geographic locations. RMSE and standard deviation
are in km.

Location Test event Std Dev. RMSE Corr. (%)
North 3.065 1.907 85.4
South 3.804 2.264 85.9

7.1.3  Effects of different data preprocessing choices. In this exper-
iment, we evaluate the effects of our choices in the preprocess-
ing pipeline. First, we use spectrograms instead of linearly-spaced
CWTs, since this data representation is widely employed in seis-
mology. For the same SCEDC dataset, we observe a 5% decline in
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(a) Trained on North Sub-region Events

Correlation: 85.4%
RMSE: 1.907

(b) Trained on South Sub-region Events

Correlation: 85.9%
RMSE: 2.264

5 &

Predicted Depth (km)

Predicted Depth (km)

-
-
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Actual Depth (km

Figure (10) The model performs better for both North (left)
and South (right) splitted dataset than whole dataset.

5 10 15 15
Actual Depth (km) )

Pearson’s Correlation coefficient when using spectrograms. Second,
we use horizontal east-west, horizontal north-south components
(Z, N, E channels) instead of rotating into radial and transverse
components (Z, R, T channels). In this case, we observe Pearson’s
Correlation coefficient declines around 4% for the same set of earth-
quakes. Both results are shown in Figure 11. This empirical evalua-
tion confirms that our choices work better than the alternatives.

(a) Trained on Spectrograms

Correlation: 65.0%
RMSE: 3.017

(b) Trained on ZNE Components

Correlation: 66.8%
RMSE: 2.848

Predicted Depth (km)
Predicted Depth (km)

°
-

)

5 10 15 5 10 15
Actual Depth (km) Actual Depth (km)

Figure (11) (a) Using spectrograms instead of CWTs results
in a 5% performance decrease. (b) Using ZNE components
of seismograms instead of rotating into ZRT components
results in a 4% performance decrease.

7.1.4  Sensitivity to distance between stations and epicenters. The
performance of depth prediction depends on the distance between
the source event and observing stations. Information regarding
depth in a waveform may vary with distance from the epicenter to
the station. In this section, we demonstrate the performance of our
model based on stations that fall into a fixed distance range. For ex-
ample, if the distance range is 20-40 km, all the five stations for each
earthquake are between 20 km and 40 km from the epicenter. This
example is illustrated in Figure 12, in which we draw a doughnut
shape around each earthquake epicenter with an inner circle of 20
km and an outer circle of 40 km. Then, we use the stations that fall
within the doughnut-shaped region. Since Septor works after the
Phase Association step, we have the epicenter distance information
beforehand. Table 4 shows the performance in different distance
ranges. Performance improves with distance up to the 40 to 60 km
range, likely because the different seismic phases have a great deal
of overlap at short distances. Performance then generally decreases
with distance, possibly due to decreased signal-to-noise ratios and
the accumulation of propagation effects on the waveforms.

7.2 Classification performance

In this section, we evaluate the performance of our network to
classify deep and shallow earthquakes. Natural earthquakes can
originate anywhere from the surface up to 700 km deep into the
earth. United States Geological Survey (USGS) [27] defines three



KDD ’22, August 14-18, 2022, Washington, DC, USA

Table (4) Performance evaluation after separating stations
for train and test dataset. RMSE and standard deviation are
in km.

Distance band (km) Test event Std Dev. RMSE Corr. (%)
0-20 4.258 4.766 30.3
20 -40 3.977 4.506 14.1
40 - 60 3.889 3.665 38.8
60 - 80 4.014 4.600 36.1
80 - 100 3.882 4.088 8.5
100 - 120 3.803 5.969 18.1

Table (5) Performance of Septor as a binary classifier for
a subset of training data based on source to origin distance.
The results are shown in percentage (%).

Distance (km) Accuracy Precision Recall F1-score

0-20 88.4 91.8 89.3 90.5
20-40 75.1 85.2 89.6 87.3
40-60 74.1 92.0 74.4 82.3
60-80 73.1 84.4 92.6 88.3
80-100 70.6 91.0 88.6 89.8
100-120 73.7 89.3 93.3 91.3
>120 67.8 67.1 68.9 68.0
Full dataset 73.0 78.2 75.5 86.5

categories of earthquakes depending on depth: (i) Shallow earth-
quakes originate between 0 to 70 km; (ii) Earthquakes that occur
between 70 and 300 km are intermediate; (iii) Deep earthquakes
originate deeper than 300 km into the ground. However, the cutoff
depth to separate shallow and deep earthquakes can vary depend-
ing on the application. For most seismic monitoring purposes, it
is sufficient to find out whether the earthquake occurred on the
earth’s surface or not. Therefore, an earthquake with a depth of 10
km can be labeled as a deep earthquake as man-made earthquakes
(i.e., mining blasts, borehole shots, or nuclear explosions) can never
originate 10 km below the surface.

In our experiments, we divide our full dataset into two balanced
subsets of shallow and deep earthquake events considering the
median depth (8.73 km) as the cutoff depth for shallow and deep
earthquakes. We consider accuracy as a performance measure. The
results are shown in the last row of Table 5. The confusion matrix
is shown in Figure 13 (left).

7.2.1 Sensitivity to distance between station and epicenter. In this
section, we demonstrate the performance of our binary classifier
based on stations that fall into a fixed distance range.

20 km circle

/)\ stations

40 km circle
Figure (12) Example of the selection of earthquakes based
on distance radius.

Based on our full dataset, we take seven different subsets de-
pending on distance ranges. In Table 5, we show detailed results
of our binary classifier for various distance ranges. Our results in
Figure 13 (right) show that the accuracy for both deep and shallow
earthquakes drop as the distance increases.
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Figure (13) (left) Confusion matrix for binary classification
for deep and shallow earthquakes. (right) Accuracy of the
binary classifier drops with the source to origin distance of
training data.

8 CASE STUDY: NOVEL GEOGRAPHICAL
REGION
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Figure (14) Locations of ten clusters found by DBSCAN
based on epicenters of the events.

The ultimate goal of an ML-based depth estimator is to perform
at a new location with a new set of stations. We ask if Septor
can generalize to a novel geographical region without seeing any
training instance from that region. We perform three different tests
to evaluate generalizability of Septor.

8.0.1  No common source or station between train and test set. To
simulate novel source-station scenarios, we sample the events and
and stations in our dataset uniformly to create a test set, and use
the remaining events and stations for training. In Figure 15(a) we
show the scatter plot results for separated stations.

The results show a clear decrease in correlation to 44.8% from
70.1%, while the RMSE increases to 3.53 km. Although we create
disjoint training and test sets with no common station and event
source, the overall dataset is limited within the Southern California
region, resulting a positive correlation.

8.0.2 Spatial separation between train and test sets. We cluster the
events from SCEDC using the DBSCAN algorithm [22]. First, the
earthquake events are clustered into ten regions based on epicenter
(i.e., latitude and longitude), and then we perform a leave-one-out
test. The clusters are shown in Figure 14 on the Southern California
map.

In our test, we take each of these ten clusters in turn for testing,
and use the remaining clusters for training; excluding the clusters
adjacent to the test cluster. For example, if we take cluster 2 (green
dots in Figure 14) as our test cluster, we train on clusters 0, 1, 3, 4, 5,
7, and 9. We exclude clusters 6 and 8 from this experiment as they
are adjacent to our test cluster (2). The combined result for all test
clusters are shown in Figure 15(b). RMSE of actual and predicted
depth increases to 4.836 after spatial separation.
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Figure (15) (a) Scatter plot for the model trained and tested
on Southern California data after uniformly separating the
stations in training and testing datasets. (b) Scatter plot of
ten test cluster combined after spatial separation. (c) Scatter
plot for the model trained on Southern California dataset
and tested on Northern California dataset.

Actual Depth (km)

8.0.3 Test set from completely new region. We collected 1,777 natu-
ral earthquake events, each with seismograms from the five closest
stations from the Northern California (NCEDC) seismic data center.
We perform similar preprocessing to the seismograms and test our
original model trained using the events from the SCEDC. The results
are shown in Figure 15 (c). The model underperforms on this test
dataset achieving a RMSE of 3.602 km with Pearson’s Correlation
coefficient of 15.3%. This is not surprising since Southern California
and Northern California have different earth structures. Due to
geographical dissimilarity, SCEDC and NCEDC seismograms gen-
erate different feature spaces, leading to poor model transferability
across regions.

9 CONCLUSION

We present a two-level neural network model (Septor) to predict
the depth of a seismic event using the waveforms recorded at mul-
tiple nearby stations. Septor achieves an impressive RMSE of 2.89
km, suitable for discriminating man-made events from most earth-
quakes when calibrated for the region. We demonstrate Septor’s
effectiveness in predicting depths of low magnitude earthquakes,
which will enable fine-grained monitoring of underground events.
When working in a classification scenario, our model can identify
deep and shallow seismic events with an 86.5% F1-score.
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