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ABSTRACT

We present the first parameterized analysis of a standard (1+1)
Evolutionary Algorithm on a distribution of vertex cover problems.
We show that if the planted cover is at most logarithmic, restarting
the (1+1) EA every O(nlogn) steps will find a cover at least as
small as the planted cover in polynomial time for sufficiently dense
random graphs p > 0.71. For superlogarithmic planted covers, we
prove that the (1+1) EA finds a solution in fixed-parameter tractable
time in expectation.

We complement these theoretical investigations with a number
of computational experiments that highlight the interplay between
planted cover size, graph density and runtime.
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1 INTRODUCTION

Combinatorial problems with planted solutions have been an im-
portant subject of study on a wide range of settings. In this scenario,
a fixed solution is hidden within a large random structure such as a
graph. The canonical example of this is the planted clique problem
where a fixed complete subgraph of size k is placed within a large
Erdés-Rényi random graph on n > k vertices. The task is to either
recover the hidden solution [2] or one of size at least k [12]. These
problems have important applications in cryptography [13] for ex-
ample. In the context of randomized search heuristics, Storch [21]
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investigated the planted clique problem for random local search
(RLS) and the (1+1) EA. More recently, Doerr et al. [7] consid-
ered randomly generated propositional satisfiability problems with
planted assignments and proved that the (1+1) EA requires at most
O(nlogn) time to solve this problem provided that the constraint
density is high enough.

Planted vertex covers have recently been studied in the context
of systematically incomplete data [4] in networks. In this view, true
node interactions can only be observed among some core set C,
whereas a potentially much larger set of fringe nodes lies outside
this sphere of observability. This may occur, for example, in social
networks and communication data sets [20] where a company only
knows about links within the company and between an employee
and the outside world, but not about links between external entities.
This translates to a planted vertex cover problem on a graph G =
(V,E). An adversary knows of a subset C C V which is a vertex
cover, and the task is to identify a set as close to C as possible.

In the G(n, k, p) model, a graph G = (V,E) is constructed on
a set V of n vertices by taking a size-k subset C C V to be the
core. An edge appears in G with probability p unless it connects
two vertices in V' \ C, in which it occurs with probability zero.
Therefore, G is guaranteed to have a k-vertex cover. Note that a
graph can be constructed from this model by drawing a standard
Erdés-Rényi graph and subsequently deleting all edges that connect
fringe vertices.

This model is a special case of the stochastic block model of
random graphs from network theory [10] in which the vertex set is
partitioned into r disjoint communities and edge probabilities are
specified by a symmetric r Xr matrix P where a vertex in community
i is connected to a vertex in community j with probability P;;. The
stochastic block model allows for the generation of graphs from
which the community subgraphs might be recovered partially or in
full from the graph data [1]. This models the detection of community
structure in networks, which is a fundamental problem in computer
science. The G (n, k, p) model we study in this work is a stochastic
block model with r = 2 and probability matrix

_|P P
" [ p 0 ] '

In this paper, we are interested in the performance of simple
randomized search heuristics on planted vertex cover problems
in the context of parameterized complexity. We prove that, for
sufficiently “dense” graphs (i.e., large enough p), the (1+1) EA is
with high probability a fixed-parameter tractable heuristic for the
k-vertex cover problem where k is the size of the planted solution.
More precisely, if k is at most logarithmic, we prove there is a
threshold on p such that above this threshold the (1+1) EA is very
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likely to find a k-cover in almost linear time. For larger values of k,
we show that the (1+1) EA runs in O(f(k, p)nlogn)) time where f
is a function of k and p (but not n).

The first parameterized result on vertex cover is due to Kratsch
and Neumann [16] who demonstrated that Global SEMO using
instance-specific mutation operators has expected optimization
time O(OPT - n* +n - 20PT2+OPT) on any graph G where OPT is
the size of the optimal vertex cover of G. This result can be tight-
ened to O(n? logn + OPT - n® + 49PTn) by incorporating the cost
of an optimal fractional vertex cover provided by an LP solver into
the fitness function. A recent study by Baguley et al. [3] extended
these multi-objective approaches to the W-separator problem. Us-
ing a special focused jump-and-repair mechanism, Branson and
Sutton [5] showed that evolutionary algorithms can solve the vertex
cover problem in expected time O(29°T n? log n) by probabilisti-
cally simulating an iterative compression routine.

The above results hold for all graphs G with vertex cover size
OPT. In this paper, we sacrifice the generality of the problem
slightly in order to investigate a more general algorithm, i.e., the
(1+1) EA. To our knowledge, we present here the first parameter-
ized complexity result on vertex cover problems for a standard
evolutionary algorithm that does not rely on any special mutation
operators.

Our results. For random planted graph models with n vertices,
edge density p and planted cover size k, we show that if k < Inn,

thenif p > 4/ # for any constant § € (1/e, 1), a restart frame-

work for the (1+1) EA finds a k-cover in n®*! log n, where c is a
constant. If k > In n, then we show for any 0 < p < 1, the expected

. . 4k<1+l) .
time of the (1+1) EA is O(k ?/nlogn|,ie., the (1+1) EA runs

in FPT time parameterized by k and p.

We also provide the results of computational experiments that
investigate regimes that our theorem does not cover, for example
when both p and k are small. These results elucidate the relationship
between k and p and the runtime of the (1+1) EA, and hint at new
interesting directions for future theoretical study.

2 PRELIMINARIES

Given a graph G = (V, E) on n vertices, we encode subsets of V as
elements of {0, 1}" in the usual way. For x € {0, 1}", denote as |x|
as the number of bits set to 1 in x (i.e., the cardinality of the set
to which it corresponds). The fitness function typically employed
by evolutionary algorithms on the minimum vertex cover problem
first penalizes infeasible sets (sets that do not cover all edges in E),
then penalizes larger feasible covers:

f(x):|x|+n~H(u,u) € E: x[u] = x[o] =0H. )

This fitness function is quite natural for searching for a minimal
cover, and was originally designed by Khuri and Back [15]. It has
been studied extensively both empirically and theoretically [8, 15,
19].

We point out that this is a so-called vertex-based representa-
tion for which there are currently no bounds on the approxima-
tion ratio for the (1+1) EA. It is possible to obtain a guaranteed
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2-approximation with the (1+1) EA by using edge-based representa-
tions instead [11]. This is rather notable, as minimum vertex cover
is likely hard to approximate below a (2 — €) factor [14].

Algorithm 1: (1+1) EA

Input: A fitness function f: {0,1}" - R
1 Choose x uniformly at random from {0, 1}";

2 while termination criteria not met do
3 Create y by flipping each bit of x with probability 1/n;
if f(y) < f(x) then x « y;

5 return x;

Many of our theoretical results make use of multiplicative drift
with tail bounds, which we state in the following theorem for refer-
ence.

THEOREM 1 (MULTIPLICATIVE DRIFT [6, 17]). Let (X¢)sen be a
stochastic process over R, xpyin > 0 and let T := min{t : X; < Xpin}-
Suppose that Xo > Xmin and, for all t < T, it holds that X; > 0,
and there exists some & > 0 such that, forallt < T, E[X; — Xt41 |
Xo, ..., Xt] = 86Xy, then,

(1) E[T | Xo] < M and
() Pr (T > w) <ot

The fitness function in Equation (1) ensures that Algorithm 1
quickly finds a feasible cover, which is captured in Theorem 2,
which was proved asymptotically in [8, Theorem 1]. We restate this
result here with a simple upper bound with leading constants using

drift.

THEOREM 2. The expected time until the (1+1) EA finds a feasible
cover for any graph on n vertices is at most %(en Inn +en).

ProoF. Let (X;)ren be the stochastic process that counts the
number of edges uncovered by the candidate solution in iteration
t of the (1+1) EA. For any vertex u, denote as d;(u) the count of
uncovered edges incident to u in iteration ¢. Since any vertex u
is flipped with probability (1 — 1/n)""'(1/n) > (en)”!, and an
increase in uncovered edges is never accepted, we may bound the
drift of (X;) as

di(u) _ 2X;

E[X: - X Xi] >
Xe =X | X 2 ) =0 = 20

since each of the X; uncovered edges is counted twice in the sum
over d;. The claim follows by Theorem 1. O

DEerFINITION 1. Letn,k € N and p € (0,1). The G(n, k, p) model
of random planted graphs is a distribution of random graphs on n
vertices defined by construction as follows.

Let V be a set of n (labeled) vertices. Choose a k-subset C C V
uniformly at random, and for each u,v € V, if {u,0} N C # 0, add
edge uv to E with probability p.

In the resulting graph G = (V, E), we refer to C as the core, and
each v € C as a core vertex. We refer to vertices in V \ C as fringe
vertices.
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3 SMALL k

In this section we consider G(n, k, p) where k < Inn. Our results
rely heavily on the following property of planted vertex cover
graphs, which we call §-heaviness.

DEFINITION 2. LetG = (V, E) be a graph drawn from the G(n, k, p)
model. For a constant 0 < § < 1, we say G is 5-heavy if for every
subset S ¢ V \ C where |S| = 8|V \ C|, every core vertex in C is
adjacent to at least Inn vertices in S.

LemMA 1. Let G = (V,E) be a graph drawn from the G(n, k, p)

model. Let 8, p € (0,1) be constants. If p > ,[#, then G is 8-

heavy with probability 1 — e~ Q)

Proor. Fix an arbitrary v € C and an arbitrary §(n — k)-sized
subset S € V' \ C. We first bound the probability that v is adjacent
to no more than Inn vertices in S. Let X be the random variable
that counts the edges between v and vertices in S. Each edge from
v to a vertex in S appears independently with probability p, so X is
the sum of |S| independent Bernoulli random variables, each with
success probability p so E[X] = p|S|. By Hoeffding’s inequality [9],
forany t > 0,Pr(X < E[X] —1) < e’2'2/|5|, thus the probability
that v is adjacent to at most In n vertices in S can be estimated by

Pr(X <Inn) =Pr(X <E[X] - (E[X] —1nn))
< ¢~ 2(pIS|-Inn)?/|S|
= exp (—2 (p2|S| + lT%ln - 2plnn))
< exp (—25p2(n —k)+4pln n) .
We have assumed k < Inn, so this probability is at most
exp (—25p2(n —Inn)+4pln n) < exp (—25p2n +6pln n) .

Note that we have used here the fact that § < 1 and p? < p. Taking
a union bound over all k vertices v € C, the probability that any
core vertex is adjacent to fewer than In n vertices in S is at most

exp (—25p2n +6plnn+ln k) .

A final union bound over all subsets S of size 5|V \ C| = §(n — k)

shows the probability that G is not §-heavy is at most

( " ) exp (—2§p2n +6plnn+In k)
on

e5n n(Sn
S —_—
( 5n)5”

= exp (—25p2n +6plnn+Ink+dn ln(e/5))

exp (—25p2n +6plnn+1In k)

< exp (—5n(2p2 —1In(e/8)) + (6p+1)In n) .

Since p > 1/#, and p and § are taken to be positive constants,
we have 2p% — In(e/8) = Q(1), and the probability that G is not
-Q(n)

d-heavy ise , which completes the proof. O

THEOREM 3. Consider the G(n, k, p) model with k < Inn and

p > ‘I# for some constant & € (1]e,1). Then for all but an
exponentially-fast vanishing fraction of all graphs G sampled from
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G(n,k,p), if T is the runtime for the (1+1) EA to find a k-cover on G,
we have

Pr(T < 2enlnn+ [en(1 - 8)]) = Q(n~ (¢(179) In(Ze)4in2))

Proor. Since p is sufficiently large, by Lemma 1, all but an
e~ (") _fraction of graphs drawn from G(n, k, p) are §-heavy. Thus,
we assume for the remainder of the proof that G is §-heavy.

Let & be the event that after exactly |en(1 — 9)] iterations of the
(1+1) EA, the following conditions hold:

(1) The core vertices C belong to the current solution of the
(1+1) EA,

(2) There are at least n fringe vertices that are not part of the
current solution of the (1+1) EA.

This is a rather fortunate event for the (1+1) EA, because such a
candidate solution is already a feasible vertex cover (as all vertices
in C are present), so after this point no infeasible covers would
be accepted. Moreover, since G is d-heavy, every core vertex is
adjacent to at least In n uncovered edges (by condition (2) above).
Thus in order to remove a core vertex v from the cover, a single
mutation operation would need to change at least In n neighbors
of v to remain feasible. In contrast, it is always possible to remove
any fringe vertex from the current cover. Thus if there are i fringe
vertices in the current solution, the probability to improve the
fitness is at least i/(en). Furthermore, the probability of flipping at
least In n vertices in a single mutation is n~@),

Let {X} } s denote the stochastic process that tracks the number
of fringe vertices in the cover at time . The drift of {X; } conditioned
on & and starting at iteration | en(1—-J)] is at least Xt/en—n_w(l) =
Q(X;/n). By Theorem 1,

Pr(T < 2enlnn+|en(1-98)] | &) =1-0(1)

It remains to bound the probability of &. Let &1 be the event that
the initial solution to the (1+1) EA contains every vertex in C and let
&, be the event that the core vertices in C are not mutated during
the first [en(1 — §)] iterations of the (1+1) EA. Conditioning on
&1 N Ey, the (1+1) EA already starts with a feasible solution and
does not remove any core vertices during the first [ en(1—9)] steps.

Let T1 be the random variable that measures the number of
iterations until the first time the number of fringe vertices in the
cover drops below a §-fraction. Again applying tail bounds on

multiplicative drift, and noting that 1+In (ﬁ) > 1-4 for constant

0 < § < 1, under the condition &1 N &y, the (1+1) EA has reduced
the number of fringe vertices in the cover from at most n — k to at
most §(n — k) with probability at least 1 — 1/e. Applying the law of
total probability we have

Pr(&) 2 Pr(E | E1NER) Pr(E1 N E2)
=Pr(E | E NEQ)Pr(Ey | E1) Pr(&q)

( l) ( 1)k len(1-6) ]
>1-—=]-[|{1--
e n

(1/2)*
> (1-1/e) - (2¢)"¢k(19) .7k

> (1 _ l/e) . n—(e(l—é) ln(28)+ln2)’

where we have used k < Inn in the final inequality. O
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Algorithm 2: (1+1) EA with cold restarts

Input: A fitness function f: {0,1}" — R and a run length ¢
1t 0;

2 while termination criteria not met do

3 if t = 0 then

4 L Choose x uniformly at random from {0, 1}";

5 Create y by flipping each bit of x with probability 1/n;
6 if f(y) < f(x) then x « y;

7 t « (t+1) mod ¢

8 return x;

Theorem 3 provides a lower bound on the probability that a
run of length at least 2enlnn + |en(1 — §)] finds a k-cover of a
random graph with sufficient density. This bound vanishes with n,
but slowly enough that a simple cold-restart strategy (periodically
starting over from a randomly generated cover) is guaranteed to be
efficient. This is captured by the following corollary.

COROLLARY 1 (TO THEOREM 3). Consider the G(n, k, p) model
withk < Inn and 0.71 < p < 1. Running the (1+1) EA with cold
restarts (Algorithm 2) with £ = 3enlnn finds a k-cover on all but
an exponentially-fast vanishing fraction of graphs in O(n°*1 log n)
fitness evaluations where 0.73 < ¢ < e(1+1n2) -1 < 3.6l isa
constant depending on p.

PROOF. Let § = e!=2P" Since p > 0.71, we have § € (1/e, 1).
Thus the conditions for Theorem 3 are satisfied, and the success
probability for an independent run of length 3en In n of the (1+1) EA
is Q(n~(e(1-9)In(2e)+In2) ynder this condition, the number of
independent runs until a success is geometrically distributed with
e(1-8) In(2e)+n2 _ ne(l—el‘ZPz)(Hln 2)+ln 2

expectation n ,and c can
be chosen appropriately. O
4 LARGEk

We now consider G (n, k, p) in which k > In n. We will make use of
the following probabilistic bound on the size of independent sets
in the core.

LEMMA 2. Suppose G is drawn from the G(n, k, p) model with
k = w(1). Then with probability 1 — 0(1), the largest independent set
in C has size at most (1+2/p)Ink + 1.

ProOF. Set £ := [(1+2/p) Ink + 1]. There are (I;) size-£ vertex

sets in C. We label these sets from 1 to (];) and consider a sequence
Xi,... ,X(k) of indicator random variables over G(n, k, p) where
t

_J1 if the i-th size-¢ subset of C is an independent set in G,
"7 lo otherwise.

Consider the sum X = Xy + - - - + Xk, and note that X = 0 if and

t
only if there are no independent sets of size ¢ or larger in G. By
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Markov’s inequality,
13 t
Pr(X 2 1) <E[X] = (];)(1 _p)(z) <Kkt ((1 _p)(t‘—l)/Z)

< (exp(Ink — p(¢ - 1)/2))¢, since 1 -p<e®P,
= exp (— [(1 + g)lnk+ %)] lnk)
< e—lnzk,

since p > 0. m]

THEOREM 4. Consider a graph G drawn from the G(n, k, p) model
with k > In n. Then with probability 1 — o(1) (taken over the model),
the expected runtime of the (1+1) EA to find a cover of size at most k

1
onG is O(k4k(1+P)n log n).

Proor. By Theorem 2, the (1+1) EA takes at most %(en Inn+en)
steps in expectation to find a feasible solution, after which the
(1+1) EA never accepts an infeasible solution.

Consider the potential function ¢(x) = max{0, f(x) — k} and
note that when ¢(x) = 0, x is a feasible cover of size at most k.
Moreover, ¢ cannot increase during the run of the (1+1) EA.

By Lemma 2, the largest independent set in the core of G contains
at most (1 + %) Ink + 1 vertices with probability 1 — o(1), and we
condition on this event for the remainder of the proof. Consider
the stochastic process (X;)sen, which corresponds to the potential
in the t-th iteration.

We seek to bound the drift of (X;) after finding a feasible solution.
Assume that the (1+1) EA has already found a feasible solution, and
let C be the core vertices of G. Let x be the current solution. We
make the following case distinction on x.

Case 1: CN {i: x[i] =0} = 0. In this case, all of the vertices
in C are in the cover described by x. Thus, any fringe vertex
can be removed from the current cover and the resulting set
is still a cover. A particular vertex is removed from the cover
with probability (1/n)(1 — 1/n)*~! and there are f(x) — k

fringe vertices, so the drift in this case is

n-1
E[Xy — Xp41 | X¢] = M(l—l) > &
n n en

Case2: CN{i : x[i] = 0} # 0. In this case, some of the
core vertices are not in the cover described by x. Let Z =
C N {x[i] = 0} be the set of core vertices that are not in
the current cover. Note that since x is feasible Z must be an
independent set in C (otherwise there would be an uncovered
edge in C).
Let Z’ be an arbitrary set of exactly |Z| fringe vertices that
belong to the current solution x, i.e., Z’ C {i : x[i] = 1} N
(V\ C) with |Z’| = |Z]. Such a Z’ must exist, otherwise we
would have f(x) < k. Let & denote the event that mutation
changes all of the zero-bits corresponding to Z into one-
bits, and all of the of one-bits corresponding to Z’ to zero.
Since each bit is mutated independently, we may invoke
the principle of deferred decisions [18] and assume that the
choices are first made for the bits in Z and Z’ to produce a
partially mutated offspring. Hence, we assume that & has
occurred, and consider the random choices on the remaining
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bits corresponding to V' \ (Z N Z’). There are f(x) — (k —
|Z]) = f(x) — k+|Z| fringe vertices in x, and after removing
|Z’| = | Z| fringe vertices, there are still f(x) — k = X; fringe
vertices that have not yet been considered for mutation, so
we may assume that we are in Case 1, now with exactly
f(x) — k = X; fringe vertices remaining in the cover. Since
X —Xt41 = 0, by the law of total expectation, we can bound
the drift from below as follows.

E[X: — Xt+1 | Xi] 2 E[Xy — Xp41 | X N E] Pr(E)
X,
n212l _t,
en
since Pr(&) = n~(ZIH1Z'D = 2121,
In either case, the drift is at least n—2lZ| %, but we have assumed via
Lemma 2 that |Z]| < (1+ ’%) Ink+1 < 2(1+1/p) Ink for sufficiently

large n (and hence k, as k > Inn). Therefore, by the multiplicative
drift theorem, the expected time until a k-cover is found is at most

>

O(nA (1P Inky 100 ) = O(k4(1#1/P) Iy 150 1)
=0 (k4k(1+1i’)nlog n),

since Inn < k. o

5 COMPUTATIONAL EXPERIMENTS

To fill in the gaps left open by the previous sections, we report here
on a number of experiments that investigate the relationship be-
tween the parameters of the planted vertex cover problem. For each
experiment, we sample from the G(n, k, p) model by constructing a
random graph on n vertices choosing each edge with probability p
as long as at least one incident vertex is in the set {1,..., k}. After
this, we run the standard (1+1) EA (Algorithm 1) until f(x) < k.
For each setting of n, k, p, we run the algorithm for 100 trials (but
sample a new graph from G(n, k, p) each time.

To better understand how the runtime depends on n on dense
graphs in which k is a small function of n, we plot the average
runtime, varying n = 100, ...,1000 and fixing p = 0.5. This is
plotted in Figure 1, where we observe a stable runtime varying
almost linearly with n. In Figure 2, we show the same data for runs
where p is also varied with n, i.e., p = 1/n. This corresponds to
much sparser graphs, and we see that the runtime has much higher
variability, especially for slower growing k.

This scaling behavior is not so surprising, as we expect that
random planted graphs are particularly easy for the (1+1) EA. Sim-
ilar to the case of random planted satisfiability [7], the relatively
uniform structure of the problem is likely to provide a good fitness
signal for hill-climbing type algorithms.

Random distributions of problems often undergo a so-called
phase transition as various system parameters are varied. Very
often, problems sampled near a critical density tend to be (empiri-
cally) harder to solve by different algorithms. For example, empirical
evidence suggests critically-constrained planted propositional sat-
isfiability formulas are difficult for the (1+1) EA when they are
sampled near a critical density [7]. To study the performance of the
(1+1) EA on G(n, k, p) as a function of graph density, we plot the
dependence of the average runtime on p in Figures 3 and 4, holding
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Figure 1: Runtime dependence on n dense regime (p = 0.5)
for k = Inn and k = vn. Error bars denote standard deviation.
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Figure 2: Runtime dependence on n sparse regime (p = 1/n)
for k = Inn and k = v/n. Error bars denote standard deviation.

n fixed and averaging over all values of k. We also see in this case
a dependence on graph density in which the (1+1) EA performs
worse in a band of not-too-sparse but not-too-dense graphs.
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Figure 3: Runtime dependence on p for fixed n = 1000 varying
k =10, ...,100. Error bars denote standard deviation.
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Figure 4: Runtime dependence on p for fixed n = 200 varying
k =10,...,100. Error bars denote standard deviation.

The dependence of runtime on k, however, is more uniform as
we can see in Figure 5. Here we have aggregated over all p values,
which likely explains the large variance, especially in the larger
n = 1000 problems.
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Figure 5: Runtime dependence on k (p aggregated). Error bars
denote standard deviation.

A more detailed picture is provided by Figures 6 and 7, where
we display two-dimensional color plots showing the runtime de-
pendence on both k and p simultaneously. On these plots one can
see how the density and the cover size influences the efficiency of
the (1+1) EA. We conjecture that there is a critical value (or range)
of p at which the (1+1) EA struggles to find a k-cover.

The (1+1) EA completes execution as soon as it finds a k-cover.
However, this is not necessarily guaranteed to be the k-cover that
was planted in the graph. Indeed, for smaller densities, we would
expect many other k-covers in the graph. To investigate this, in
Figure 8 we plot the proportion of runs in which the planted k-core
was recovered (as opposed to some different k-cover) as a function
of p. The dependence of this characteristic as a function of k is
plotted in Figure 9, and Figures 10 and 11 display this in a color
plot for both k and p simultaneously.

When the graph is relatively sparse, we would also expect the
(1+1) EA to “overshoot” k by finding an even smaller cover before
finding a k-cover. To understand better how this depends on k and
p, we plot the average difference between k and the best fitness
found as a function of p on sparse (p = 1/n) instances where n is
varied in Figure 12, and on fixed-n instances in Figures 13 and 14.

6 CONCLUSION

In this paper we have presented a parameterized analysis the (1+1) EA
on problems drawn from the G(n, p, k) random planted vertex cover
model. We showed that for dense graphs (p > 0.71) and small k,
there is sufficient signal in enough of the space so that the (1+1) EA
has a relatively good chance of finding a k-cover in a polynomial-
length run. When k is large, we showed that a feasible cover cannot
leave too much of the planted core uncovered, and therefore the
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Figure 6: Runtime dependence on both k and p for n = 200.
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Figure 7: Runtime dependence on both k and p for n = 1000.

(1+1) EA does not require a large effort to make progress. In the
end, this translates to a fixed-parameter tractable runtime for the
(1+1) EA with high probability over G(n, p, k).

To fill in the picture, we also reported a number of computa-
tional experiments that measure the runtime on graphs drawn from
G(n, p, k). These experiments point to a critical value for p at which
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Figure 8: Proportion of runs in which the k-core was recov-
ered as a function of p.
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Figure 9: Proportion of runs in which the k-core was recov-
ered as a function of k.

the (1+1) EA requires more time to find any k-cover, which suggest
an interesting direction for future theoretical work to understand
this phenomenon better.
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Figure 10: Proportion of runs in which the k-core was recov-
ered as a function of both k and p for n = 200.
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Figure 11: Proportion of runs in which the k-core was recov-
ered as a function of both k and p for n = 200.
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