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ABSTRACT

Randomized search heuristics can sometimes be effective verifiers
for combinatorial conjectures. In this paper, we demonstrate how a
simple evolutionary algorithm can be used to confirm the antimagic
tree conjecture for all trees up to order 25. This conjecture, which
has been open for over thirty years, is that every tree except K»
has an antimagic labeling: a bijective edge labeling such that the
sum of labels assigned to edges incident to a vertex v is unique for
all vertices v € V. Moreover, we formally prove that that simple
evolutionary algorithms are guaranteed to find antimagic labelings
in expected polynomial time on trees of any order for certain re-
stricted classes (paths, combs, uniform caterpillars, uniform spiders
and perfect binary trees).
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1 INTRODUCTION

Computational verification of conjectures is an important applica-
tion in combinatorial optimization [7]. In some cases, this work can
be done effectively by randomized search heuristics [2, 5, 11, 15, 21],
especially when the underlying search space is relatively smooth.

Let G = (V,E) be an undirected graph with |V| = n vertices
and |E| = m edges. An edge labeling of G is a bijection ¢: E —
{1,2,...,m}. For v € V, denote as E(v) the set of edges incident to
v. An edge labeling ¢ induces the following weight sequence on the
vertices of G.

h0)= ) t(e).
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An antimagic labeling of G is an edge labeling ¢ in which ¢, (u) #
¢e(v) for any two distinct u, 0 € V. See Figure 1 for an example.

Figure 1: Antimagic labeling of the Petersen graph.

Many classes of graphs are known to have antimagic labelings,
for example, all paths and complete graphs with n > 2, all cycles
and wheels [13], caterpillars [19], regular graphs [8], graphs with
maximum degree at least n — 2 [3], all complete partite graphs
(except K3) [3], and many others [4, 12].

Despite this, the following conjecture has remained open for
over thirty years.

CONJECTURE 1.1 (HARTSFIELD AND RINGEL [13]). Every tree other
than K is antimagic.

The goal of this paper is to take a computational perspective for
investigating this conjecture using relatively simple evolutionary
algorithms. We first formally prove that for certain restricted classes
of trees: paths, combs, uniform caterpillars and spiders, and perfect
binary trees, a simple evolutionary algorithm augmented with a
“guide” function always finds antimagic labelings in expected poly-
nomial time. This guide function serves the purpose of imposing
extra structure on the intricate labeling search landscape in order to
support our proofs. However, we conjecture that the guide function
is not required for polynomial runtime on these instances.

We then experimentally demonstrate that simple evolutionary
search performs remarkably well for finding antimagic labelings
of general trees up to a finite order. We employ this to confirm
Conjecture 1.1 for every tree up to order n = 25. We empirically
investigate a number of different mutation operations and observe
efficient scaling behavior on all trees.
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1.1 Background

Verification of the related graceful tree conjecture on trees up to
order n = 27 was carried out by Aldred and McKay [2] who used
an algorithm of Wright et al. [25] to systematically generate every
tree of a particular order, and then applied local search on label
permutations of each tree using a swap operator and tabu list to
optimize an objective based on the number of conflicts. Later, Hor-
ton [15] and Fang [11] extended this verification to trees of up to
29 and 35 vertices, respectively, using combinations of greedy back-
tracking, parallelization, and stochastic local search with a tabu list
and Metropolis-like acceptance condition.

Other randomized search heuristics such as ant colony optimiza-
tion [20] and genetic algorithms [10] have also been investigated in
the context of graceful labelings. Recently, Branson and Sutton [6]
proved polynomial runtime guarantees for the (1+1) EA finding
graceful labelings for all paths, stars and complete bipartite graphs
Kc,n where ¢ = O(1). The problem of determining whether a graph
is antimagic is in some sense much less constrained than finding
a graceful labeling, and therefore we would expect it to be more
amenable to randomized search heuristic methods.

Antimagic labelings of graphs are important in graph theory,
but also have real-world applications in networks and telecommu-
nication [1], scheduling, and unbalanced loading problems [9].

2 EVOLVING ANTIMAGIC LABELINGS

Let T = (V,E) be a tree on |V| = n vertices. We impose an ar-
bitrary ordering on the edges {ej, 2, ..., e,—1} and represent an
edge labeling of T as a permutation x of (1,2,...,n—1), where x[i]
corresponds to the label assigned to edge e;. Given a labeling x, let

d(x) == {w | 3o € V s.t. ¢x(v) = w}| (1)

be the size of the partition of vertex weights induced by x and
define the fitness function to be

f(x) =n-dx). @
A labeling x is an antimagic labeling of T if and only if f(x) = 0.
Therefore, we reduce the problem of finding an antimagic labeling
of T to the problem of minimizing f over permutations of length
n—1

To minimize f, we consider the sequence-based (1+1) EA intro-
duced by Scharnow, Tinnefeld and Wegener [22]. Given a tree T
on n vertices, the (1+1) EA, shown in Algorithm 1, is initialized
with a random permutation of (1,2,...,n— 1) and in each iteration
produces an offspring by a permutation mutation operation. If the
fitness value of the offspring is no worse than the current point, it
replaces the current point.

A given sequence is mutated by performing a number of local
permutation operations. In this paper, we consider the exchange
and reverse [22] operations. In particular, exchange; j(x) exchanges
the elements at positions i and j in x, while reverse; j(x) reverses
the subsequence between i and j in x. Mutation is performed in
lines 5-8 in Algorithm 1, which uses the local permutation opera-
tion provided as input to the algorithm. The mutation is global in
the sense that there is a nonzero probability to escape local optima.
This is achieved by applying several random operations in each
iteration, the number of which is drawn from a Poisson distribution
with A = 1. The justification for this is that the number of local
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Algorithm 1: (1+1) EA
input:A tree T = (V,E) on n vertices and a local
permutation operation M
1x<— (L,2,...,n-1)
2 Randomly shuffle x
3 while f(x) > 0 do

4 Y e—x
5 Choose s from a Poisson distribution with A = 1
6 repeat s times

n — 1} uniformly at random

7 Choose i, j € {1,...,
Apply operation M; j (y)

s | if f(y) < f(x) thenx <y

operations is asymptotically distributed the same as the number
of individual bits flipped during the mutation step of the binary
(1+1) EA [22].
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Figure 2: Antimagic labeling for a tree of order 25 found by
the (1+1) EA using exchange mutation.

3 CLASSES OF TREES WITH POLYNOMIAL
TIME GUARANTEES

To get a better idea of the runtime behavior of evolutionary algo-
rithms on trees, we focus in this section on several subclasses of
trees that are known to be antimagic, and prove that a simple EA
can find an antimagic labeling in expected polynomial time.

3.1 Paths

Define P, = (V,E) as the path graph on n vertices, ie, V =
{v1,v2,...,0n} where E = {v;uj4+1 | 1 < i < n}. Every path has
an antimagic labeling [13].
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local optima

n  reverse exchange  global optima total points
3 0 0 1 2

4 0 0 2 6

5 0 0 5 24

6 2 2 16 120

7 4 4 91 720

8 56 186 352 5040

9 112 1022 1909 40320

10 1168 7642 10892 362880

11 4536 50608 72243 3628800

12 34876 407210 518168 39916800
13 196990 3337240 4087887 479001600
14 1508118 30023582 34742636 6227020800

15 10615628 284168846 319233359 87178291200

Table 1: Exhaustive count of local and global optima on P,
for n < 15 for reverse and exchange operators.

3.1.1  Local Optima. Initial experiments with the (1+1) EA on paths
exhibited surprisingly fast convergence to optimal solutions, which
suggested that local optima are sparse and/or easy to escape. Here
we define a reverse (respectively, exchange) local optimum as a
sequence x for which f(x) > 0, and for all 1 < i < j < n, every
y constructed by reversing the segment from i to j (respectively,
exchanging the positions i and j) does not improve the fitness, i.e.
f(y) = f(x). Figure 3 illustrates some local optima for the reverse
operator. A global optimum is any point x where f(x) = 0, as this
would correspond to an antimagic labeling.

For small paths, it is possible to exhaustively enumerate the entire
search space in order to examine the structure of the landscape.
Table 1 presents the exhaustive enumeration of local optima for
both the reverse and exchange operator on all paths P, with n < 15.
A few interesting characteristics worth noting is that, though the
count of local optima is increasing very fast with n, it is also true
that, for these small paths, there are more global optima than local
optima, suggesting that the local optima may not in general pose a
significant problem for local methods like the (1+1) EA. Empirically,
the density of global optima is shrinking with n and the density
of exchange optima seems to increase to approach the density of
global optima, while the density of reverse local optima remains
relatively low. This is illustrated in Figure 4.

3.1.2  Local optima in a restricted neighborhood. The structure of
the neighborhoods that arise from the reverse and exchange mu-
tation operators on this problem poses a challenge to existence
proofs of local optima. Restricting the mutation operation to only
exchange or reverse adjacent elements in the permutation yields a
reduced neighborhood. This coincides to the mutation operations
reverse(i,i + 1) or exchange (i,i + 1) fori € {1,...,m — 1}. This
operator has been called adjacent pairwise exchange or swap [23]. It
has been investigated in terms of minimal transformation distance
for permutations [17] and corresponds to the basic exchange oper-
ation used in bubble sort [18]. For this restricted neighborhood, we
prove the existence of local optima as follows.
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LEMMA 3.1. On P, wheren > 9 (m > 8)isodd and | | =[],
the sequence

L 3
xi=(1,m, 241,220 42,3, 243, 2 3 My mo1, 2

is a (nonstrict) local optimum if only adjacent positions are selected
to do the reverse (exchange) operation.

PRrROOF. Letvy,vy,...,0y, denote the sequence of adjacent vertices
in Pp. The vertex weights produced by the local optimum x are
given by the sequence

3m m
+4,....mm+1,...,— -1, —.
2 2
Since m > 8,it holds that 2 +3 <m+1 < 37'" — 1. Note that all
induced vertex weights are unique except for m + 1, which appears
twice.

We show that no single swap between adjacent positions can
create a sequence y such that f(y) < f(%). First of all, we note that
the fitness of X does not decrease while the positions of edge labels
{1,m, 3Tm, % +1} do not change. Therefore, four possible cases exist
for the operation on those positions discussed below, obtaining an
offspring y of %.

Case (1). Changing the position of the edge label 1. As the edge
label 1 is in the first position, it can only be swapped with the
second position with the edge label m. However, the vertex weight
m + 1 is still in the second position of the induced vertex sequence
and appears twice.

Case (2). Changing the position of the edge label m. When it is
swapped with the edge label 1, the vertex weight m + 1 still appears
twice as the discussion in Case (1). Now we consider swapping
it with its adjacent edge label Z! + 1. After the operation, the new
vertex weights produced by the offspring are given by the sequence

3m m m
IL,m+1,—+1,—+3 —
2 2 2

m 3m m m 3m m
L,—+2,—+1m+2, —+3, —+4,...,— -1, —.
2 2 2 2 2 2
Since m > 8, it yields that F +3 < m+2 < 37’" — 1. Therefore, the
vertex weight m + 2 appears twice.

Case (3). Changing the position of the edge label ST'”, We notice
that the vertex weight m+1 still appears twice when it was swapped
with the edge label 2 + 1. Then the edge label 7 is considered.
After the operation, it has new vertex weights induced by y, which
is given as

3m m 3 m 3m m
1,m+1, —+1, —+3,....m—-2, ——-1,m, —+1,m+2,..., ——1, —.
2 2 2 2 2 2
Clearly, the vertex weight 37’" — 1 appears twice.

Case (4). Changing the position of the edge label ! + 1. As
mentioned in Case (3), the vertex weight m + 1 still appears twice
while it was swapped with the edge label 3Tm. Now, we consider
the edge label 3Tm + 1. After the operation, the new vertex weights
are

3m m 3m m
I, m+1, —+1, —+3,...,.m, —+1,m+2, —+3,m+4, ..., — -1, —.
2 2 2 2 2 2
We can find that the vertex weight 37'" + 3 appears twice. O
LEMMA 3.2. On P, wheren > 8 (m > 7) is even, the sequence

%= (’"T“,l,mT“+1,2,...,mT‘3—1,m—2,m,”‘T‘3,m—1,’"T‘1)
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Figure 3: Various path local optima for reverse neighborhood.
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Figure 4: Density of optima on small path problems n < 15.

is a (nonstrict) local optimum if only adjacent positions are selected
to do the reverse (exchange) operation.

PROOF. Letoy,vy,...,uv, denote the sequence of adjacent vertices
in Pp,. The vertex weights of P, induced by the local optimum X are
given by the sequence

m+1 m+3 3m-9 3m-3 3m-5 3m-3 m-1
, »2m =2, ; , ; .
2 2 2 2 2 2 2
Since m > 7, it holds that 2%=2 > ™t We note that only the
3m-3

vertex weight 5= appears twice.

As discussed in Lemma 3.1, the fitness of x does not decrease
while the positions of edge label {m, mT_3,m -1, mT_l} do not
change. Therefore, four possible cases exist for those edge labels
discussed below, obtaining an offspring y of X by the adjacent oper-
ation.

Case (1). Changing the position of the edge label m. First, we
consider swapping it with the edge label m — 2. After swapping, the
sequence of the vertex weights of y becomes

m+1 m+3 3m -5 3m—-7 3m—-5 3m—-3 m-—1
> seees >, 4 — 2, > > > .
2 2 2 2 2 2 2
The induced vertex weight 3”‘2_5 appears twice exactly. Then, if it

is swapped with edge label mT_3 the vertex weight % will still

appear twice.

Case (2). Changing the position of the edge label mT_3 As we
discussed in Case (1), the vertex weight 3”’2_3 still appears twice
while it is swapped with the edge label m. Now, we consider the

next adjacent edge label m — 1. We obtain the new vertex weight
sequence produced by y is

m+1 m+3 3m -9 3m -5 m-—1
s 2m—2,2m — 1, ,m—2, ——.
2 2 2 2 2
Since m > 7, it yields mT” <m-2< %.Therefore, the vertex

weight m — 2 appears twice.

Case (3). Changing the position of the edge label m — 1. In the
previous case, we demonstrated that the vertex weight m — 2 occurs
twice upon being exchanged with the edge label '"773 Additionally,

the vertex weight 3’"2_3

persists in appearing twice even when it is
swapped with m771

Case (4). Changing the position of the edge label mT_l Given
that the edge label m771 is situated in the final position, it can solely
be interchanged with its adjacent edge label m — 1 by the operation.

Nevertheless, the vertex weight 3'"273

continues to occur twice. 0O

3.1.3  Polynomial time guarantee. We conjecture that the (1+1) EA
using the (unrestricted) reverse operation runs in expected polyno-
mial time on all P,. We base this conjecture on the observation (e.g.,
Figure 4) that local optima tend to be sparse and easy to escape.
Nevertheless, we are interested in obtaining a rigorous proof of
polynomial runtime. In order to facilitate this, we introduce the
following auxiliary fitness function that guides the EA out of local
optima.
n—1

9(x) = D Ixi = xial, 3)
i=1

where we define xy = 0. In effect, this function inscribes extra struc-
ture on the search space that facilitates proving runtime guarantees
on certain trees. Later, in Section 4.2, we empirically demonstrate
that the (1+1) EA often performs better than the version that uses
this auxiliary function, likely due to the fact that it would not be
slowed down by the extra structure.

This auxiliary function is only useful if it can be used to guide
us out of local optima. We will use the following definition.

Definition 3.3. Let G be a graph. We say that g is a guide for f
on G if the global minimum of g is either a global minimum of f or
is in the (symmetric) reverse neighborhood of a global minimum

for f.

Note that this property depends on how we associate the el-
ements of the permutation to the edges of the graph. This is a
shortcoming of our approach, however, we point out that in all our
proofs, the association is somewhat natural.

Using the auxiliary function defined in Equation (3), we modify
Algorithm 1 to maintain a population of size two: one that keeps the
best-so-far f-value as defined in Equation (2), and one that keeps
the best-so-far g-value as defined in Equation (3). In each iteration,
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an offspring is created by selecting one of the parents uniformly
at random for mutation. The parents are replaced by the offspring
only if the corresponding function is not worse. The modified EA
is listed in Algorithm 2.

Algorithm 2: (2+1) EAj_op;

input:A tree T = (V, E) on n vertices
1 x«—(L,2,...,n-1)
2 Randomly shuffle x
3 x —x
4 while f(x) > 0do
5 Select one of {x, x’} uniformly at random and store in y
6 mutate(y)
7 if f(y) < f(x) thenx <y
8 if g(y) < g(x’) thenx’ —y

Algorithm 2 can be interpreted as a simple bi-objective evolu-
tionary algorithm that only maintains a constant-size subset of the
Pareto front defined by the two objective functions.

We now prove that the expected time until (2+1) EA 4} finds an
antimagic labeling of Py, for any n > 2 is bounded by a polynomial.
We adopt the usual notational convention for integral intervals as
follows. For any a,b € N with a < b, denote as [a..b] = [a,b] NN
and [a] := [1..a]. The following two lemmas will be useful here
and in upcoming sections.

LEMMA 3.4. Let (x1,x2,...,Xp—1) be a permutation on the ele-
ments of [n — 1] not equivalent to the identity permutation. Consider
the extension (xg = 0,x1,X2,...,Xn—1), and leti := min{0 < i <

n—1| |xj — xj41| > 1}. Then at least one of the following must be
true.
(1) xp-1<n-1
(2) there must exist an x; with j > i+ 1 such that x; < xj <
Xi+1 < Xj+1-

Proor. If x,—1 < n — 1 then we are done. Otherwise, suppose
Xn—1 =n— 1. Define the sets A := [n— 1] \ ([xi] U [xi4+1..n—1])
and B == [n— 1]\ [xis1].

It is clear that the choice of i ensures that x;. = kforall0 < k < i.
Thus it holds that x; < xj1+1, and since |x; — xj+1] > 1, A must be
nonempty. Moreover, since x;4+1 < n— 1 (otherwise x is the identity
permutation), it holds that B is nonempty.

Since A and B partition the remaining labels, there must be a pair
of labels that are adjacent and one is in A one is in B. Furthermore,
since x,—1 = (n — 1) € B, there must be an adjacent pair xj, xj41
with x; € A and xj4; € B, which completes the proof of this
case. m|

LEmMA 3.5. If g is a guide (as in the sense of Definition 3.3) for
f in a graph G, then the (2+1) EA,.qp; (Algorithm 2) using the re-
verse operation finds an antimagic labeling of G in O(n*) time in
expectation.

PROOF. Let (F;);en and (F);en be the values of f(x) and g(x”)
in iteration ¢. The run time of the (2+1) EAp op; is thus T = min{t €
N | F; = 0}. If at least one of x and x’ is not a local optimum for
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f, then F;11 < F; with probability at least m. This is because
the probability to select a non-local optimum parent is at least 1/2,
the probability to perform a single reverse operation is 1/e, and the
probability of selecting an improving reverse neighbor is at least
2/(n(n - 1)). If both x and x” are local optima for f, then since g is
a guide for f, x” is not the minimum of ¢, which coincides with the
identity permutation.

Thus, assume x” is not the identity permutation. By Lemma 3.4,
it holds that either x/ _, < n — 1, or there exists indices i < j such

n—1
that x < x}. <x{,; <x},,.Inthe first case, suppose that x; =n—1

i+1 S At
for some k < n — 1. Then the operation that reverses the segment

from k to n — 1 results in an offspring y with
9(y) =g(x") = Ixp_; — (n =D+ |x_; —x, 4] < g(x),

sincex/ . <n-—1.
n-1
Otherwise, suppose x;,_; = n — 1. Then the operation that re-
verses the segment from i + 1 to j in x’ results in an offspring y
with

9(9) = 9(x") = (I} = xfusl + I} = x|

(1] = ]+ [y = X

< g(x").

In either case, this operation occurs when x” is selected for mutation
with probability 1/2, and exactly the correct reverse operation is
. o 2
selected with probability FICEIE
We define the potential

0 if F; =0,
Ht = , .
Fy + F;, otherwise.

Since Hy < n+(3) = w and at least one of the events in {F;41 <
Fr} U{F},, < F/} occurs with probability Q(n~?), the hitting time

to zero of Hy, and thus, the running time of the (2+1) EAj op;, is at
most O(n?) by the Additive Drift Theorem [14]. o

THEOREM 3.6. The (2+1) EAy. opj (Algorithm 2) using the reverse
operation finds an antimagic labeling of P, forn > 2 in O(n*) time
in expectation.

Proor. It suffices to show that g is a guide for f on P,. Let z be
the identity permutation (1,2,...,n — 1). The vertex weights of the
edge labeling induced by z are

{¢z(vi) i€ [n]} ={2k-1]ke[n-1]}U{n-1}

If n is odd, then n — 1 is even, and these weights are distinct so
f(2) = 0.If nis even, then f(z) = 1since 2k — 1 = n — 1 when
k = n/2. Consider the permutation z’ obtained from exchanging
the elements in position n — 2 and n — 1 in z. The set of vertex
weights {¢,/ (v;) | i € [n]} of the edge labeling induced by 2’ is

(2k-1]ken-3]}u{2(n-2)}u{2(n-1) -1} U {n-2}.

The only even weights are 2(n — 2) and n — 2, and these are not
equal for n > 2. Therefore, the weights are distinct and f(z") = 0.
Since z’ can be reached from z by a reverse operation on the last
two indices, g is a guide for f on P and the claim follows from
Lemma 3.5. O
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3.2 Combs

We now show that the technique for proving a polynomial runtime
guarantee on paths used in Section 3.1 can be generalized to other
interesting classes of trees.

A comb is a graph on n = 2¢ vertices obtained by joining a single
pendant edge to each vertex of a path of length ¢ (see Figure 5).
A comb is a type of caterpillar tree: that is, a tree that results in
a path when all the leaves are deleted. Lozano et al. [19] proved
that all caterpillar trees (and hence combs) are antimagic. Formally,
we define the comb C,, for n even as the graph C,, = (V, E) with
V= {ul,vg,...,vn/z,ul,uz,...,un/z},E ={ovjvi+1 | 1 <i<n/2}U
{viui | 1 < i < n/2}. The v; vertices form a Py, subgraph, which
we call the spine, and each u; vertex has degree one.

Figure 5: A comb graph on n = 20 vertices.

We identify a permutation x of [n — 1] with the edges of C,, as
follows. For 1 < i < n/2, the element x; corresponds to the label of
the pendant edge v;u;. For n/2 < i < n, the element x; corresponds
to the label of the spine edge 0(;_p/2)0(i—n/2+1)-

THEOREM 3.7. The (2+1) EAy.opj (Algorithm 2) using the reverse
operation finds an antimagic labeling of a comb on n vertices in O(n*)
time in expectation.

ProoF. Similar to the proof of Theorem 3.6, we show that progress
is always possible in at least one of the objectives. Since g by itself
is invariant to the graph type, the arguments about g are the same,
and thus there is always a reverse operation that improves either f
or g (or both).

It remains to prove that the identity permutationz = (1,2,...,n—
1) is not a local optimum for f on Cp,. Let z’ be the permutation
obtained by applying the reverse operation on the subsequence of
z from index n/2 + 1 to n — 1, that is,

Z=(,2...,n/2n—-1,n-2,...,n/2+1)
We argue that f(z”) = 0. In particular, the weights for all u; under
z are {1,2,...,n/2}.
The vertex weights for 01 and v,,/, are n and n + 1, respectively.

The remaining vertex weights along the spine path are 2n — (k — 1)
for 1 < k < n/2. Thus the n vertices have weights

n/2-2
{00 i€ [nl} = (L2,....n/2)U(mn+ U | ] {1+ 3?" +k}

k=1
which must all be unique. Therefore f(z”) = 0. The run time bound
then follows from Lemma 3.5. O

3.3 p-Uniform Caterpillar Trees

A caterpillar tree is p-uniform if it is a path of length k to which
each vertex is joined p > 0 pendants (the comb graph is thus a
1-uniform caterpillar tree). Let Cp, g, = (V, E) be a caterpillar tree
where

V={vilielkl}U{uylielkljelpl}.
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Figure 6 illustrates an example for p = 3. For each i € [k — 1] and
each j € [p], we associate the edge label x(; 1), ; to the edge v;u;
and for each i € [k — 1] the edge label xg,; to the edge v;jvi41.

uz2 Ug,2 ue,2
uzi uz3 Ug1 Ug3 Ue,1 ue,3

Figure 6: A 3-uniform caterpillar tree.

THEOREM 3.8. The (2+1) EA, op; (Algorithm 2) using the reverse
operation finds an antimagic labeling of a p-uniform caterpillar tree
on n vertices in O(n4) time in expectation.

PRrROOF. Again we argue that progress is always possible in at
least one objective. If both x and x” are f-local optima, then as long
as x’ is not the identity permutation, x’ is not a g-local optimum
(by Lemma 3.4).

Now suppose x’ = z where z is the identity permutation. If
f(z) = 0, then we are done since x” was accepted, it also has
the lowest f-value, and no point x would have a larger f-value.
Otherwise, suppose f(z) > 0.

Consider the vertex weights under the edge labeling induced by
z. Then the following must be true.

(1) foralli, j, p-(uij) = (i—L)p+j<kp+p.

@) $o(01) = kp + 2B 11 < okp 4 B g

(3) foralli € [2..k—1], ¢, (v;) = 2kp+E L2 4 14(i=1)(p2+2)

(@) ¢z (o) =kp+ PB4 (k= 1) (p? +1)
Therefore, we have for all i, j that ¢, (u; j) < ¢-(v1) < ¢.(vx). Note
that ¢, (v2) — ¢, (v1) = p> +2+kp and for all i € [2..k — 2] we
have ¢, (vi+1) — ¢2(v;) = p? + 2. Thus for all i € [k — 2] it always
holds that

$2(vir1) = $2(v3) = p* +2.

As we assume f(z) > 1, there must be some i’ < k such that
¢2(vir) = ¢z (v). Solving for i/,

st -p+1)
= ="
pP+2

Since i’ must be unique, it follows that this is the only nonunique
weight pair. Consider the reverse operation that swaps neighboring
positions k(p + 1) — 2 and k(p + 1) — 1 to produce z’. This reduces
the weight of v;. by one and increases the weight of v;._, by one,
changing no other weights, i.e.,

¢Z(U) -1 ifo= Ok,
¢z (0) ={¢,(v) +1 ifo=0p_y,
¢2(v) otherwise.

Since the spine weights differ by at least p?+2, the resulting weights
must be unique and thus f(z”) = 0. O
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3.4 Uniform Spider Trees

A spider is a tree that has at most one vertex of degree greater than
two [12], which is called the center vertex. Every path from the
center vertex to a pendant vertex is called a leg of the spider. A
uniform spider is a spider with all legs the same length [24].

Let S(p, k) = (V, E) denote a uniform spider with p legs of length
k each, i.e.,

V=Ao}U{uijliec[pl.jelkl}]

where v is the center vertex and u; j is the jth vertex on the ith leg,
where u; 1 is an endpoint. The graph S(p, 1) is equivalent to the
p-star graph K p.

For eachi € [p] and each j € [k — 1] we associate the edge label
X(j-1)p+i to the edge uj ju; j41 and for each i € [p] the edge label
X(k—-1)p+i to the edge u; xv

Figure 7: The uniform spider tree S(7, 3).

THEOREM 3.9. When p > 1, the (2+1) EAy_op; (Algorithm 2) using
the reverse operation finds an antimagic labeling of a uniform spider
S(p,k) on n = pk vertices in O(n*) time in expectation.

ProoF. Similar to before we argue that there is always progress
in one of the objectives. If both x and x” are f-local optima and x’
is not the identity permuation, then x’ is not a g-local optimum (by
Lemma 3.4)

Now suppose x’ = z where z is the identity permuation. The
following must be true about the vertex weights under the edge
labeling induced by z.

(1) foralli € [p], Pz (ui1) =i

(2) foralli € [p] and j € [2..k], then ¢, (u; ;) = (2j — 3)p + 2i

(3) ¢=(0) = (k - 1p? + L

Therefore, for all i € [p] and j € [2..k] we have that ¢, (u;1) <
¢z (uij) < ¢2(v). Note that ¢, (v) is the sum of the p largest edge
labels, so this will never be equal to any other vertex weights for
p > 1. Also for any i # i’ and j < j* we have u; ; < uy j» and for
any i < i’ we have u;j < uy ;.

Therefore f(z) = 0 and we are done. O

3.5 Perfect Binary Trees

A perfect binary tree is a complete depth d binary tree on exactly
24+1 _ 1 vertices, i.e., all leaves are uniformly at distance d from
the root. We associate the edge labels as follows. The first 2d edges
correspond to the edges farthest from the root (incident to the
leaves) from left to right. The next 29-1in the next level up, and so

on (see Figure 8).
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Figure 8: A perfect binary tree of depth 3.

THEOREM 3.10. The (2+1) EAy op; (Algorithm 2) using the reverse
operation finds an antimagic labeling of a perfect binary tree of depth
d > 0 and n = 29%1 — 1 vertices in O(n*) time in expectation.

Proor. Let T be a perfect binary tree of depth d. Every nonroot
internal node is incident to exactly three edges labeled by elements
Xk, Xk41 (Where k is odd) and x4, et The root is incident to the
two edges labeled by the elements x,4:1_5 and xya+1 _5. The leaves
are each incident to a single edge.

Letz = (1,2,.. .,2d+1 — 2) be the identity permutation on the
edges. The vertex weights of the leaves under this edge labeling is
the set {1,2,..., 2d} and are pairwise distinct. Let v be a nonroot
internal node. Since z; = k for all k € {1,...,n — 1}, we have

k+1 5k+3
¢z(v)=k+(k+1)+2d+T =294 T

Thus the vertex weights of nonroot internal nodes are all strictly

larger than the weights on the leaves, and also must be pairwise

distinct.

Finally, let r be the root of T. We have

po(r) =2% —3 428 _g——p 3.

Since the set of T — {r} have unique vertex weights, and the largest
leaf weight is 29 = (n+1)/2 < 2n—3, the only collision could occur
with the root r and some nonroot internal node v.

Suppose ¢ (r) = ¢, (v) for v # r. Then

n+1 5k+3

+
2 2

Solving for k, we find the left child edge of v must have index

3n/5 — 2. If n is not a multiple of 5, then v cannot exist (as k must

be an integer).

If n is a multiple of 5, then (24+1 — 1)/5is an integer, which is
only possible if d = 3 (mod 4).

Thus, if d is not congruent to 3 (mod 4), z is an antimagic label-
ing for T. Otherwise, there is exactly on repeated vertex weight: at
the root of T and in index 3n/5 — 2. The (adjacent) reverse operation
that exchanges 3n/5 — 1 and 3n/5 would change the vertex weights
on which it is incident by exactly one. The closest vertex weights

of nonroot internal vertices differ by w - SkTJrS = 5 so this
swap introduces no new violations, but removes the violation with

the root. The claim follows by Lemma 3.5. O

=2n-3.

4 COMPUTATIONAL RESULTS ON TREES

In order to confirm Conjecture 1.1 for all trees up to order 25, we
use the exhaustive unrooted tree generation procedure of Wright
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n avg. (sec) max. (sec) total (sec) # trees
3 0.00083 0.00289 0.00827 1
4 0.00064 0.00243 0.01284 2
5 0.00076 0.00229 0.02283 3
6 0.00082 0.00463 0.04938 [
7 0.00083 0.00578 0.09168 11
8 0.00094 0.00664 0.21534 23
9 0.00084 0.00639 0.39713 47
10 0.00088 0.00984 0.93479 106
11 0.00093 0.01492 2.19716 235
12 0.00096 0.00993 5.30864 551
13 0.00100 0.01159 13.02400 1301
14 0.00095 0.01119 29.99961 3159
15 0.00077 0.01370 59.96971 7741
16 0.00079 0.01401 152.40342 19320
17 0.00081 0.02418 392.47724 48629
18 0.00086 0.02501 1060.25184 123867
19 0.00088 0.02531 2811.65187 317955
20 0.00092 0.02520 7584.64095 823065
21 0.00096 0.03307 20628.32180 2144505
22 0.00101 0.02930 57012.50105 5623756
23 0.00121 0.03276 179885.20517 14828074
24 0.00108 0.14744 423725.30242 39299897
25 0.00109 0.22096 1137836.63134 104636890

Table 2: Wall-clock time statistics for all trees of order n < 25.

et al. [25]. For each n € {3,4,...,25}, we generated all 167,879,144
trees of order n and ran the (1+1) EA (Algorithm 1) using the ex-
change operator for mutation. We ran the (1+1) EA 10 times on each
tree, and the (1+1) EA successfully found an antimagic labeling in
every single run on every single tree!.

These results were generated on a heterogeneous high-performance
Linux cluster with 128 core AMD compute nodes. Table 2 reports
the average, maximum and total wall-clock time over all runs for
each n. A visual representation of this is illustrated on a logarithmic
plot in Figure 9d.

The (1+1) EA always finds an antimagic labeling in a fraction of
a second. The computational bottleneck comes from the number of
trees to check of each order, which is reported in the final column
of the table (see also [16]). The total computation time is roughly
509 CPU hours.

4.1 Superficial trees

For some trees, every valid edge labeling is already an antimagic
labeling. An obvious example is the star graph K1 ,—1: the bipartite
graph with a single hub node v connected to n — 1 spoke nodes
{vg,...,0n}, ie, E = {v10; | i € [2..n]}. In any edge labeling x
of K1 -1, the hub node has weight ¢x(v1) = n(n —1)/2, and the
weights at the n — 1 spoke vertices are {¢x(v;) | i € [2..n]} =
[n — 1]. Therefore, |[{¢x(v;) | i € [n]}| = n for all edge labelings x,
and we would expect at least one tree per order to require no search

!All antimagic tree labelings are available in an online database at https://doi.org/10.
5281/zenodo.8146165.
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n  # superficial #trees % superficial

3 1 1 100

4 1 2 50

5 1 3 33.33333

6 1 6 16.66667

7 2 11 18.18182

8 2 23 8.69565

9 4 47 8.51064
10 2 106  1.88679
11 4 235 1.70213
12 11 551 1.99637
13 7 1301 0.53805
14 16 3159 0.50649
15 12 7741  0.15502
16 14 19320 0.07246
17 30 48629 0.06169
18 45 123867 0.03633
19 61 317955 0.01919
20 99 823065 0.01203
21 134 2144505 0.00625
22 210 5623756 0.00373
23 313 14828074 0.00211

Table 3: Count of trees with an antimagic labeling already
in all ten initial iterations.

as the initial search point already corresponds to an antimagic
labeling. We call such trees superficial.

To explore how often this occurs in trees up to order 23, we re-
port the count of trees for which the initial labeling was antimagic
in all ten runs of the (1+1) EA in Table 3 together with the pro-
portion of trees with of each order for which we observed this
effect. Identifying these trees might be a good starting point for
determining what kinds of trees other than Kj ,_1 are superficial.

4.2 (1+1) EA vs. (2+1) EAy o5

In Section 3 we proved that the (2+1) EAy_op; has a polynomial-time
run time guarantee on certain classes of tree. We employed the
(2+1) EA; op;j to manage the problem of complicated local optima
in the space. Nevertheless, we conjecture that due to the sparsity
and tractability of escaping these optima, the running time of the
(1+1) EA is not generally worse than that of the (2+1) EA;_op;. More-
over, the polynomial bounds proved in Section 3 are likely far from
tight, as we pessimistically assume there is only one improving
move at any time. To better understand the true run time char-
acter of the (1+1) EA and (2+1) EAy_ opj, and also investigate the
difference between the reverse, exchange and adjacent exchange
operations, we measure the number of fitness evaluations required
to find antimagic labelings on the various tree classes introduced
in Section 3.

For these experiments, for each graph type and size, except where
otherwise noted we ran each algorithm for 100 trials and measured
the average and standard deviation of the runtime over these trials.
The runtime for path graphs of up to size n is plotted in Figure 10.
In Figure 11, we plot the runtime for combs of order 6 to 48.
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Figure 9: Run time results of the (1+1) EA on all trees of order n < 25.

Three interesting properties can be found in these figures. First,
the (1+1) EA tends to perform slightly better than the (2+1) EAp g,
suggesting that the auxiliary function introduced, though it effec-
tively eliminates local optima, also slows the optimization process
down. Second, the reverse operator performs best on paths, which
is not too surprising, but we find the opposite to be true on combs.
Third, the pairwise adjacent exchange operation exhibits slightly su-
perior performance compared to the exchange operation on combs,
but on paths, the opposite is true.

In Figure 12 we plot the data for 3-uniform caterpillars, varying

the path length from 3 to 49, yielding trees of order n = 12, 16, 20, . . ., 196.

For p-uniform spiders, we vary the leg length from 3 to 9. In Fig-
ure 13 we plot the results for 3-uniform spiders, resulting in tree
sizes of n = 10,13, 16, . . ., 28 and in Figure 14 we plot the data for
4-uniform spiders, resulting in tree size of n = 13,17, 21,...,37.

Finally, for perfect binary trees, we vary the depth from 1 to
8 resulting in tree sizes from n = 3,...,511. We note that due to
the larger n values required, we only ran 50 trials each for each
algorithm on each tree. The reverse mutation performs very poorly
compared to exchange in this case, most likely because the reverse
operation cannot exploit graph structure in the same way it can on
paths. The exchange operator performs exceptionally well for both
the (1+1) EA and the (2+1) EAy opj on perfect binary trees.

5 CONCLUSION

In this paper, we have investigated simple evolutionary search
strategies applied to quickly searching for antimagic labelings of
trees. Using this approach, we have confirmed the antimagic tree
conjecture up to trees of order 25. For certain tree classes with
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relatively elementary structure, we have proved rigorous run time
bounds that guarantee polynomial time efficiency in expectation.

There are many directions for future work that remain open. An
obvious direction is to continue to investigate the conjecture for
higher order trees. Similar to work on the related graceful tree con-
jecture, it might be reasonable to explore hybrid methods that per-
form more structured search on the trees in order to push the limit
to higher n. From a theoretical perspective, we would also antici-
pate tighter upper bounds on the running time of the (2+1) EAy_gp;
on paths, combs and caterpillar trees, as well as broadening the
results to other classes of tree.
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