DISEASE NOTE

First report of *Puccinia crepidis-japonicae* in Puerto Rico, causing rust disease in oriental false hawksbeard

Kyryll Savchenko¹ · Tara Poindexter¹

Received: 7 July 2022 / Accepted: 16 December 2022 © The Author(s) under exclusive licence to Società Italiana di Patologia Vegetale (S.I.Pa.V.) 2023

Keywords Youngia · Puccinia · Rust disease · Biocontrol

Youngia japonica (Asteraceae) is an annual, cosmopolitan herb, commonly known as oriental false hawksbeard, that inhabits disturbed areas. It is native to eastern Asia (China and Japan), and is considered invasive in Africa, the Americas, and Australia-Oceania. Leaves are used as a remedy of cold, sore throat, and diarrhea in China. Puccinia crepidisjaponicae was reported on this host from Asia, the Americas, and Oceania (Farr and Rossman 2021). In May 2022, rust disease caused by a *Puccinia* species was observed on leaves of Y. japonica near the summit of Cerro de Punta, Puerto Rico. Roughly 60% of observed plants were infected. The specimens were examined microscopically and compared with type specimen descriptions in published literature. The uredinia were amphigenous, rounded, naked, scattered, less than 0.5 mm in diameter, brownish. Urediniospores were globose to ellipsoid, yellow-brown, 19.9-21.9 × 22-25 µm (n=20), echinulate, cell walls around 2 μm, dark yellow brown, with two to three germ pores. No telia were seen. DNA was extracted from a single rust sorus using EZNA Plant DNA kit by Omega. The internal transcribed spacer (ITS), and large subunit (LSU) regions were amplified following the protocols of Demers et al. (2017) and Aime et al. (2018), respectively. Sequences were deposited in GenBank (accession Nos. ON938164, ON921007). A BLASTn search revealed that the sequences share 100% nucleotide similarities with the ITS (KY798395) and LSU (KY798360) sequences of *P. crepidis-japonicae* on *Y. japonica*. Phylogenetic analysis of the concatenated dataset using the Bayesian method performed on the Geneious Prime platform, further confirmed the species as *P. crepidis-japonicae*. To

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s42161-022-01300-1.

Acknowledgements This research work was supported by the National Science Foundation grant to Kyryll Savchenko (award number 2127293).

Statements and declarations

Conflict of interest The authors have no confict of interest to declare.

Informed consent The manuscript is new and not being considered elsewhere. All authors have approved the submission of this manuscript.

Research involving human participants and/or animals The authors declare that no human participants and animals were involved in this study.

References

Aime MC, Bell CD, Wilson AW (2018) Deconstructing the evolutionary complexity between rust fungi (Pucciniales) and their plant hosts. Stud Mycol 89:143–152. https://doi.org/10.1016/j.simyco.2018.02.002

Demers JE, Liu M, Hambleton S, Castlebury LA (2017) Rust fungi on Panicum. Mycologia 109:1–17. https://doi.org/10.1080/0027551 4.2016.1262656

Farr DF, Rossman AY (2021) Fungal Databases, U.S. National Fungus Collections, ARS, USDA. https://nt.ars-grin.gov/fungaldatabases/

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published online: 31 January 2023

our knowledge, this is the first report of *P. crepidis-japonicae* in Puerto Rico. Being a pathogen of weedy hosts, *P. crepidis-japonicae* may play a significant role as a biocontrol agent against *Youngia japonica*.

Kyryll Savchenko ksavchen@butler.edu

Department of Biological Sciences, Butler University, 4600 Sunset Ave, 46208 Indianapolis, IN, USA