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COMPACTIFICATIONS OF MODULI OF ELLIPTIC
K3 SURFACES: STABLE PAIR AND TOROIDAL

VALERY ALEXEEV, ADRIAN BRUNYATE, AND PHILIP ENGEL

ABSTRACT. We describe two geometrically meaningful compactifications of the
moduli space of elliptic K3 surfaces via stable slc pairs, for two different choices
of a polarizing divisor, and show that their normalizations are two different
toroidal compactifications of the moduli space, one for the ramification divisor
and another for the rational curve divisor.

In the course of the proof, we further develop the theory of integral affine
spheres with 24 singularities. We also construct moduli of rational (general-
ized) elliptic stable slc surfaces of types An (n > 1), Cn (n > 0) and En
(n>0).
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1. INTRODUCTION

It is well known [Mum?72, Nam76, AN99, Ale02] that there exists a functorial,
geometrically meaningful compactification of the moduli space of principally po-
larized abelian varieties A, via stable pairs whose normalization is a distinguished
toroidal compactification Zzor for the 2nd Voronoi fan. Finding analogous com-
pactifications for moduli spaces of K3 surfaces is a major problem that guided and
motivated a lot of research in the last twenty years. Here, we solve this problem in
the case of elliptic K3 surfaces, and in two different ways.

The moduli space of stable pairs provides a geometrically meaningful compacti-
fication ﬁgdm for the moduli space Psq,, of pairs (X, eR), where X is a K3 surface
with ADE singularities, L a primitive ample polarization of degree L? = 2d, and
R € |nL| an effective divisor. We recall this construction in Section 2B.

Let F' be a moduli space of K3 surfaces with lattice polarization M C Pic X.
The most common example is the moduli space Fyy of primitively polarized K3
surfaces (X, L) of degree L? = 2d; here M = Zh with h? = 2d. The main subject of
this paper is F' = Fgj, the moduli space of K3 surfaces polarized by the standard
rank 2 even unimodular lattice H = II; ;, with a choice of vectors s, f such that
s2=-2, f2=0, s- f = 1. Choosing the marking appropriately, these are elliptic
surfaces X — P! with a section s and fiber f.
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Pick a vector h € M with h?2 = 2d > 0 representing an ample line bundle L on
a generic surface in F'. Next, if possible, make a canonical choice of an effective
divisor R € |nL]| for all the surfaces in F'. This gives an embedding F' < Ps4.,,. Let

1
¢ be the closure of F in Pgd n, taken with the reduced scheme structure. This

is a projective variety. We are interested in whether this compactification can be
described explicitly, and which stable pairs (X, eR) appear over the boundary.
Since F' = D/G is an arithmetic quotient of a Hermitian symmetric domain of

type IV, it is natural to ask if ™' is related to a toroidal compactification Wtor
of [AMRT75] for some choices of admissible fans at the 0-cusps of the Baily-Borel
compactification. For F' = Fgy there is only one 0-cusp. So the combinatorial data
is a [-invariant fan: a rational polyhedral decomposition of the rational closure Cg
of the positive cone in IT; ;7®R which is invariant under the group I' = O* (II; 17) of
isometries of the even unimodular lattice of signature (1, 17). There is a very natural
choice of fan because I' contains an index 2 subgroup generated by reflections and
we may take the fan to be the I'-orbit of the Coxeter chamber.

There are many natural choices of a polarizing divisor for F'. One comes from
the embedding of F' into F3 as the unigonal divisor. Every K3 surface of degree 2
comes with a canonical involution. For a generic surface the quotient X/Zs is
P2, The surfaces X in the unigonal divisor have an A; singularity, which upon
being resolved becomes the section s of an elliptic fibration, and the double cover
X — P(1,1,4) is the elliptic involution. Thus the ramification divisor R is the
trisection of nontrivial 2-torsion points on the fiber. It is absolutely canonical
and one checks that R E [3(s + 2f)|. We denote the corresponding stable pair
compactification by F™™ . In Section 6 we derive the description of F™™ and the
surfaces appearing on the boundary from [AET19], where we solved the analogous

—slc
problem for the larger space Fy .

Theorem 1.1. The normalization of ™™ is the toroidal compactification associ-
ated to the T'-orbit of one chamber, formed from the union of 4 Coxeter chambers.

Another natural choice of polarizing divisor is R = s + mzfil fi, where s is
the section and f; are the 24 singular fibers of the elliptic fibration, counted with
multiplicities. Here, any m > 1 gives the same result. We denote the stable pair
compactification for this choice by T where “r¢” stands for “rational curves”.

The reason for this notation is the following. It was observed by Sean Keel about
15 years ago that for a generic K3 surface (X, L) with a primitive polarization the
sum R = ) C; of the singular rational curves C; € |L;|, counted with appropriate
multiplicities, is a canonical polarizing divisor. Their number ny is given by the
Yau-Zaslow formula. Our space F' embeds into each Fy; with the class of L equal
to s+ (d+ 1) f. On such an elliptic K3 surface, each curve C; specializes to a sum
of the section s and d + 1 singular fibers f;, cf. [BLO00]. It follows that

24
d+1
R=ny (s + i Z fl which is proportional to s + mz fi-

i=1

Stable surfaces appearing on the boundary of F"° were described in [Brul5], its nor-
malization was conjectured to be toroidal, and the hypothetical fan was described.
We prove this conjecture:



Theorem 1.2. The normalization offrC is the toroidal compactification associated
to the T'-orbit of a subdivision of the Cozeter chamber into 9 sub-chambers.

Modular compactifications of elliptic surfaces have attracted a lot of attention
recently. The papers of Ascher-Bejleri [AB17, AB19b, ABI17], using twisted stable
maps, construct compactifications for the moduli spaces of elliptic fibration pairs
(X = C,s+4 > aig;), where g; are some fibers, both singular and nonsingular,
and 0 < a; < 1. The paper [AB19a] considers the case when X is an elliptic K3
and shows that the moduli space for (X, s + Z?il efi), where f; are the singular
fibers, is isomorphic to the normalization of our F although the stable pairs are
different, as we consider the divisor es + me Z?i1 fi. Inchiostro [Inc20] considers
pairs with arbitrary coefficients (X, ags + > a;g;), where g; are some fibers, and it
includes the case of small ag, a;. We not that when ag is not small, the underlying
surface X may be only quasi-elliptic, with the contracted section. The connection
to toroidal compactifications was not considered in the above papers.

We also note an interesting recent preprint [Oda20] that appeared after our
paper, where our classification of degenerations of elliptic surfaces into unions of
ACE surfaces is explored from a differential geometric viewpoint.

The general approach of this paper continues the program developed in [Engl8,
EF21, AET19] to understand degenerations of (log) Calabi-Yau surfaces via integral-
affine structures on the two-sphere. It complements the works of Kontsevich-
Soibelman [KS06] and Gross, Siebert, Hacking, Keel [GS03, GHK15a, GHKS16]
which discovered the relevance of integral-affine structures to understanding mirror
symmetry for Calabi-Yau degenerations.

The main new technical tool is explained in Section 3, where we give a general
criterion for when the normalization of a stable pair compactification of K3 moduli
is toroidal.

The fans of Theorems 1.1 and 1.2 are described in Section 4. Background on
integral-affine structures and degenerations of K3 surfaces is given in Section 5.
The main theorems are proved in Sections 6 and 7. Throughout, we work over C.

Acknowledgements. The first author was partially supported by NSF under
DMS-1902157 and the second author under DMS-1503062.

2. BASIC NOTIONS

We use [AET19] as a general reference for many of the basic definitions and
results, including the definition of semi log canonical (slc) singularities, and define
here the most important notions.

2A. Models for degenerations of K3 surfaces. We review several models for
degenerations of K3 surfaces and name them. For a family 7: X — S and two line
bundles L1, Lo on X, we write L1 ~g Lo if L1 ® L;l = 7*F for some line bundle
on S. Below, C' is a smooth curve with a point 0, and C* = C'\ 0.

Definition 2.1. Let X* — C* be a flat family in which every fiber is a smooth

K3 surface. A Kulikov model is a proper analytic completion X — C such that X

is smooth, the central fiber X is a reduced normal crossing divisor, and Kx ~¢ 0.

We say that the Kulikov model is Type I, II, or III depending on whether Xj is

smooth, has double curves but no triple points, or has triple points, respectively.
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Definition 2.2. In addition, assume that we have a relatively nef and big line
bundle L* on X*. A nef model is a Kulikov model X — C with a relatively nef
line bundle L extending L*.

Definition 2.3. Assume that we additionally have an effective divisor R* € |L*|
not containing any fibers. A divisor model is a nef model with an effective divisor
R € |L] extending R*, such that R does not contain any strata of Xj.

Given X* — C*, a Kulikov model exists by Kulikov [Kul77] and Persson-
Pinkham [PP81], possibly after a finite ramified base change (C’,0) — (C,0).
Given L*, a nef model exists by Shepherd-Barron [SB83]. Given R*, a divisor
model exists by [Laz16, Thm.2.11, Rem.2.12] and [AET19, Claim 3.13].

Shepherd-Barron also proved that for any n > 4 the sheaf L™ is globally gener-
ated. Thus, the linear system |L"| for n > 0 defines a contraction f: X — X to a
normal variety over C' such that L = f*(L) for a relatively ample line bundle L on
X. Denote R = f(R). This is a Cartier divisor, and R = f*(R). We call the pair
(X, R) the stable model of the divisor model (X, R). This gives the following:

Theorem 2.4. Let (Y*,ﬁ*) — C* be a family of K3 surfaces with ADE singular-
ities together with an ample Cartier divisor. Then possibly after a finite ramified
base change there exists a completion f: (X, R) — C such that
(1) The morphism f is Gorenstein and wy ~c O.
(2) R is an effective relative Cartier divisor.
(3) For the central fiber (Xo, Ry), the surface X¢ is a reduced Gorenstein sur-
face with wx, >~ O, which has slc singularities.
(4) The divisor Ry does not contain the log centers of X o, and the pair (X s, €Ry)
is slc for any 0 < e < 1 and all s € C.

This completion is unique. On each fiber one has H (X4, Ls) =0 fori > 0.

Proof. After a finite base change (C’,0) — (C,0), there is a simultaneous resolution
of singularities X* — X", so that X* — C* is a family of smooth K3s (denoting
the new curve C’ again by C to simplify the notation). By [AET19, 3.13] possibly
after a further finite change there exists a divisor model. As above, we take (X, R)
to be its stable model. It satisfies conditions (1-4) and outside the central fiber
recovers the original family.

Uniqueness is a general well known property of families of stable slc pairs since it
is the relative log canonical model for any completion. The proof of H* (X, L) = 0
for i > 0 can be found in [SB83, p.155] in the proof of Theorem 2W. O

We use the terms “stable pair” or “stable slc pair” interchangeably to refer to
a pair (X, eR,) with slc singularities and K+ + eR, ample. Some literature uses
the term “KSBA pair.”

We also note the following lemma for more general families of divisor models:

Lemma 2.5. Let w: (X,R) — S be a flat family of divisor models over a locally
Noetherian scheme, L = Ox(R). Then L™ for n > 4 is relatively globally generated
over S and L™ for n > 0 defines a contraction f: X — X — S to a flat family of
stable models (X, eR) over S, L = f*L and R = f*R.

Proof. By [SB83, Lemma 2.17] for every fiber X one has H* (X, L") =0 for n > 0
and ¢ > 0. Thus by Cohomology and Base Change [Har77, I111.12.11] for any s € S
5



the morphism 7, L" ® k(s) — H°(X,, L™) is an isomorphism. Hence, for n >> 0 the
sheaf L™ defines a contraction whose restriction to each fiber X is the contraction
given by |L?|, to the stable model. O

2B. Complete moduli via stable slc pairs. [AET19] constructed the stable pair
compactification of the moduli space of K3 surfaces (X, eR) with ADE singularities
together with an effective ample divisor. For reader’s convenience, we provide more
details of this construction in Theorem 2.8. They are well known to experts but
scattered throughout the literature. Also, our case is significantly easier than the
case of general stable pairs, see Remark 2.10.

Definition 2.6. For a positive integer e, a stable K-trivial pair of degree e over
an algebraically closed field of characteristic 0 is a pair (Y, eB) such that

(1) Y is a reduced connected projective Gorenstein surface with wy ~ Oy,

(2) B is an effective ample Cartier divisor on Y with B2 = e.

(3) Denoting L = Oy (B), the Hilbert polynomial h(n) is x(L®") = fen® + 2.

(4) Y has slc singularities and B does not contain any log centers of Y. Equiv-
alently, the pair (Y, eB) is slc for any 0 < e < 1.

Definition 2.7. Let S be a locally Noetherian scheme over C. A family of stable K-
trivial pairs of degree e over S is a proper flat Gorenstein morphism f: (Y, B) — S
such that wy,s ~ Oy locally on S, the divisor B is an effective relative Cartier
divisor and such that every geometric fiber is a stable K-trivial pair of degree e.

The moduli functor M, is the contravariant functor from the category of locally
Noetherian schemes over C to the category of sets associating to a scheme S the
set M, (S) of such families modulo isomorphisms over S.

The moduli stack M, associates to a scheme S the groupoid of sets M.(S) of
such families, in which arrows are isomorphisms of families over S.

Theorem 2.8. The stack M. is a Deligne-Mumford stack with finite stabilizer
which has a coarse moduli space M, an algebraic space of finite type over C. FEach
proper subspace of M, 1is projective.

Proof. Following a standard procedure, one has to check that the functor M, is
bounded, locally closed or at least constructible, separated, and has finite automor-
phisms. Then the first half of the theorem is proved by showing that the stack M.
is the quotient stack of an appropriate subscheme of a Hilbert scheme by a group
action and applying [KM97]. The projectivity of proper subspaces is the result of
[KP17, Fuj18] following the earlier work [Kol90].

(1) Boundedness. By [Kol85, Thm. 2.1.2] the family of polarized surfaces with
a fixed Hilbert polynomial is bounded. Thus, there exists an m such that for any
polarized surface (Y, L) with the Hilbert polynomial h(n) = fen?+2 and any k > m
one has that L* is very ample, H'(Y,L*) = 0 for i > 0, and H°(Y, L*) generates
the graded algebra R(Y, L*) = @450 H° (X, L¥).

(2) Local closedness. Let f: (Y,L) — S be a proper flat morphism with a rela-
tively ample line bundle and a closed subscheme B given by a compatible collection
of sections s; of L on Y xg U; for an open cover S = UU;. We claim that there
exists a locally closed subscheme T < S such that for any S’ — S the base changed
family f': (Y, B) xg 8" — S’ is a family of stable K-trivial pairs of degree e iff the
morphism S’ — S factors through 7.



First of all, the locus in S where the geometric fibers are reduced, equidimen-
sional, and Cohen-Macaulay is open in S by [Gro66, IV3, 12.2]. Since the function
h%(Ox) is upper semi continuous, the subset of S where fibers are connected is
also open. We shrink S to this open subset. Since the fibers are reduced and
Cohen-Macaulay, the condition that B is a relative Cartier divisor is equivalent to
the condition that the fibers of B — S are equidimensional. Again, this is an open
condition by ibid.

Because formation of the relative dualizing sheaf commutes with base changes,
the Gorenstein property is also open on S. Further, the property that the two
invertible sheaves wy,s and Oy differ by a line bundle from the base is represented
by a locally closed subscheme by [Vie95, Lem. 1.19]. The property of having at
worst nodal singularities in codimension 1 is open as well.

For families satisfying the above conditions, the property of fibers Y to have slc
singularities is open, cf. [Kar00, 2.6] and [KSB88, 5.5]. One checks it on 1-parameter
deformations, i.e. on base changes C' — S with (C, 0) a regular pointed curve. First,
assume that the general fiber of Z =Y xg C — C is normal. By Serre’s criterion
of normality, Z is normal in an open neighborhood of Z;. By shrinking C' we
can assume that Z is normal. Assume that Zj is sle. By Inversion of Adjunction
[Kaw07] the pair (Z, Zp) is log canonical. Let m: Z — Z be a log resolution of
singularities with exceptional divisors F;. One has K 7 =1 Kz + > a;E; with
a; > —1. By shrinking C' we can assume that the the images of each E; are either
C or 0 and that for ¢ # 0 the map Z; — Z; is a log resolution of singularities. Then
for t # 0 one has Kz = ™Kz, + Y, aiEi|Zg7 so Zg has log canonical singularities.
When the general fiber of Z is not normal, one considers the normalization (Z¥,D)
together with the preimage D of the double locus. Repeating the same argument,
the fibers (Z¥, Dy) are log canonical. One concludes that Zs are slc by gluing back
(Z¥, Dy) and applying [Kol13, 5.38].

The same argument shows that the union of the log centers of the fibers is a
closed subset of Y. Then the property that the divisor By does not contain a log
center of Y is open on the base. This concludes the proof of local closedness.

(3) Separatedness. Each family of K-trivial stable pairs over a punctured curve
C'\ 0 has at most one completion to a family over C. In a very standard way, this
follows from the uniqueness of the relative canonical model over C'.

(4) Finite automorphisms. Again, it is very well known that stable slc pairs have
finite automorphisms.

We now give the actual construction. Let m be as in (1). Let H be the Hilbert

scheme and
Yy C H x ]P)h('m)fl % IP)h(n’H*l)fl
be the universal family parameterizing closed subschemes of P(m)—1 x ph(m+1
embedded by Segre into Pmh(m+1)=1 yging O(1,1), with the Hilbert polynomial
our surfaces would have under such embedding. There is an open subset U C H
parameterizing subschemes that map isomorphically under both projections py, p2
to Pm)—1 and PM(m+1)-1 and such that the projections have Hilbert polynomials
h(mn), resp. h((m 4+ 1)n). Over U, we have two line bundles L,, = p;O(1) and
Liy1 = p5O(1). Let U’ — U be the locally closed subscheme representing the
property L7+l ~ Ly locally over the base, it exists by [Vie95, Lem. 1.19]. Let
L= Lyy1®Lt Then Ly, ~ L™ and Ly,4+1 ~ L™ Thus, L is a relatively
ample line bundle with Hilbert polynomial h(n).
7
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Let V C U’ be the open subset over which the fibers satisfy H*(Y,L) = 0 for
i > 0, using the upper semi continuity of H*(Y, L) in flat families. Let 7: Yy, — V
be the restricted family. By Cohomology and Base Change 7. L is a locally free
sheaf on V of rank h(n). Over W = Py (w.L) we have a family (Y, By) = W of
pairs as in (2). By local closedness there exists a locally closed subscheme T — W
whose fibers are K-trivial stable pairs of degree e and all such pairs occur.

The family (Y, Br) — T is the fine moduli space for the families f: (Y, B) — S,
L = Oy (B) of K-trivial stable pairs of degree e with two additional pieces of data:
nondegenerate embeddings i,,: Y € S x PM"™ =1 and i,,,,1: Y C § x PRmAD-1
with i, O(1) ~p L™, resp. i}, 1 O(1) ~p L™*1. Vice versa, any family of K-trivial
stable pairs admits such extra data isomorphisms locally in Zariski topology over S.
It follows that the stack M, is the quotient stack [T': (PGLy () X PGLyy41)]. We
complete the proof by applying [KM97, 1.1, 1.3]. O

Corollary 2.9. Fix e > 0. Then there exists g > 0 such that for any € € Qg
with € < ¢y and any family f: (Y, B) — S of K-trivial stable pairs of degree e the
geometric fibers (Y, eB) have slc singularities and ample Q-divisor Ky + eB. Thus
the family f: (Y,eB) — S is a family of stable slc pairs.

Proof. This follows from boundedness of the moduli functor by Noetherian induc-
tion. Indeed, the scheme T above is of finite type over C. ([

Remark 2.10. Ours is a fortunate situation where the morphisms Y — S are
Gorenstein and the divisors B are relative Cartier divisors. In the case of more
general stable pairs, where Ky + B is only Q-Cartier, there are significant compli-
cations that we are able to avoid completely:

(1) Boundedness is a highly nontrivial result. For surfaces, it was done in [Ale94]
and for higher dimensional pairs in [HMX18].

(2) Even in the case of varieties Y with B = 0, for general families formation of
the sheaves wgf - (w%")** does not commute with base change. As a consequence,
the definition of the moduli functor becomes highly nontrivial, and there are several
choices for it. To prove that a chosen moduli functor is constructible, one applies
the theory of [Kol08].

(3) For a completed 1-parameter degeneration (Y,B) — (C,0) the Minimal
Model Program only guarantees that the divisor Ky + B is Q-Cartier. If B is
not Q-Cartier then the closed subscheme By C Yy may have embedded compo-
nents. One then needs to have an appropriate theory in order to be able to work
with families (Y, B) with divisors B rather than closed subschemes B.

Discussing this more general case is beyond the scope of this paper.

Remark 2.11. Since below we are only interested in the closure, with reduced
scheme structure, of the locus of ADE K3 surfaces, an alternative way is to work
over reduced bases S only and to use the moduli functor of pairs defined in [KP17].

We chose to work with families over not necessarily reduced bases but the re-
sulting coarse moduli space M, is perhaps not proper. If one proved an analogue
of Theorem 2.4 for log Calabi-Yau pairs (X, A + €R), crucially with a Cartier di-
visor R, that would imply that the entire connected component containing a point
corresponding to a normal K3 surface is proper.

Now let F' be the moduli space of ADE elliptic K3 surfaces 7: X — P! such that
every fiber of 7 is irreducible, with a section s and a fiber class f. Such fibrations
8



have a unique Weierstrass model. F' is an 18-dimensional quasiprojective variety.
Suppose that for each such K3 surface we have chosen in some canonical way an
ample divisor R € |L| for L a polarization in Zs® Zf. We will call R the polarizing
divisor. Then the pairs (X, eR) are automatically K-trivial stable slc pairs. There
exists €y such that for any 0 < € < 1 the pairs (X, eR) are stable slc pairs.

Suppose that L = n(s+ (d+ 1) f) for some positive integers n, d, as is always the
case in this paper. Let Paq, C M. be the projective bundle over Fy4 of sections of
n times the primitive polarization; here e = 2dn?. We claim that the morphism

F— P2d,n (Y,’/T,S,f) = (y7 EE)

is a closed immersion: First, note that the morphism F' — Fy; is set-theoretically
injective because s can be reconstructed as the base locus of |s+ (d+1) f|, and thus
so can f and m = |f|. Since F — Fy, is a Heegner divisor, locally cut out in period
coordinates by a hyperplane, the set-theoretic injectivity implies that F' — Fb, is an
immersion. Then, the choice of R is a section of the projective bundle Py | o F
and hence defines an immersion F < P2d7n| P Py p.

Definition 2.12. For a choice of polarizing divisor R, denote by ™ the closure
of F' in the moduli M, of stable slc pairs, taken with the reduced scheme structure.

'1 —
¢ is projective because I’ embeds in Paq,, and Paq, C M, is projective by
Theorems 2.4 and 2.8.

Definition 2.13. The compactification for the polarizing divisor R = s+m Z?il fi
for a fixed m > 1, where s is the section and f; are the singular fibers, which may
coincide, is denoted by F' - Any m > 1 gives the same result.

Another natural choice is given by the ramification divisor of the elliptic involu-
tion. If X — P! is a Weierstrass fibration with section s, the ramification divisor of
the elliptic involution is a disjoint union of s and the trisection R of 2-torsion points.
One has s2 = —2, so the ramification divisor is not nef. But after contracting the
section, one obtains a nodal surface X that is a double cover of Y = P(1,1,4), and
the image R of R is ample. On the resolutions the class of R is 3(s + 2f) and the
morphism to Y is given by the linear system |s + 2f].

Since (s + 2f)? = 2 these contracted, pseudoelliptic surfaces are K3 surfaces
with degree 2 polarization and ADE singularities. They are distinguished among
generic degree 2 K3 surfaces because s is contracted. Their moduli F' forms the
unigonal divisor in the moduli space F». The K3 surfaces outside of this divisor
maintain an involution, but are instead double covers X — P? ramified in a sextic.
The description of the compactification for the pairs (X, eR) in this case follows

from that of the compactification Fy° considered in [AET19)].

Definition 2.14. Let . Frim denote the compactification of the moduli space of
pseudoelliptic pairs (X,eR) for the chgce of polarizing divisor R equal to the
ramification divisor of the double cover X — P(1,1,4).

2C. Toroidal compactifications of F. Let Il 15 = H? & (—Es)? be the unique
even unimodular lattice of signature (2,18). Let O(Il3 1) be its isometry group.
Define the period domain

D={r Pl ;3®C)|2*=0,z-7 >0}
9



It consists of two isomorphic connected components, each a bounded Hermitian
symmetric domain of Type IV, naturally interchanged by complex conjugation. By
the Torelli theorem [PSS71], the quotient D/O(Ily 15) is F. It is connected and
so we may as well replace D with one of its connected components, and instead
quotient by the subgroup O (Ily,15) preserving this component.

The space F has the Baily-Borel [BB66] compactification FBB in which the
boundary consists of a unique 0-cusp, a point, and two 1-cusps, which are curves.
The 0- and 1-cusps are in bijection with O (Il 15)-orbits of primitive isotropic
lattices of ranks 1 and 2 respectively. Let 0 € IIs 13 be a primitive vector with
62 = 0. Then (5L/(5 ~ 117 =H® E2 is the unique even unimodular lattice of
signature (1,17).

Let C denote a connected component of the positive norm vectors of 6+ /5 @ R
and let Cg be its rational closure, obtained by adding the rational isotropic rays on
the boundary of C. Let I' = Stabs/Us = O™ (I 17) be the quotient of the stabilizer
Stabs C O (Il2,18) by its unipotent subgroup Us. It follows from the general theory

[AMRTY75] that a toroidal compactification F” is defined by a I'-invariant fan F
with support equal to Cy and finitely many orbits of cones.

The toroidal compactification is described in a neighborhood of the 0-cusp by
the quotient X (F)/T". By the nilpotent orbit theorem [Sch73, FS86], one-parameter
arcs approaching the 0-cusp are approximated by translates of co-characters of the
algebraic torus 6% /J ® C* = Hom(d+ /6, C*) modulo I'. These co-characters are
of the form A ® C* for some A € C'Nd+/§ mod I', with A2 > 0. Similarly, one-
parameter arcs approaching a 1-cusp are approximated by a co-character associated
to a vector A € Cg N6+ /§ satisfying A2 = 0.

Definition 2.15. We say A is the monodromy invariant of an elliptic K3 degener-
ation X* — C* if a translate of the co-character A ® C* approximates the degener-
ation of the period map C* — 6+/§ ® C*.

3. PROOF METHOD FOR THEOREM 1.2

We describe a general method for proving the existence of a morphism

Ty — Foy
from a toroidal compactification to an slc compactification of the moduli space of
M-lattice polarized K3 surfaces for some choice of fan F and polarizing divisor
R. Under suitable circumstances this map is the normalization. The method was
developed in [AET19)] in the case of moduli of degree 2 K3 surfaces F», but was not
phrased as a general theorem.

Consider a moduli space of M-lattice polarized K3 surfaces. See [AE21, Def. 2.33]
for a precise definition. There is an isomorphism of coarse spaces Fiyy = Dy /Gy
[AE21, Thm. 2.34] with a Type IV arithmetic quotient. Suppose that on a generic
K3 surface in this moduli we have chosen, in some canonical way, an effective

divisor R in some ample class h € M. The space FR;IC is defined the same way as in
Def. 2.12, by taking a closure of Fyy C M, for e = R2.

For example, for ordinary primitively polarized K3 surfaces (X, L), L? = 2d, this
means a choice R € [nL| in some fixed multiple h = nL of the generator.
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Theorem 3.1. Let Fyy = Dy/Gum be a moduli space of M-lattice polarized K3
surfaces, and let R be a canonical choice of polarizing divisor. Suppose we are
given the following inputs:

(div) Some divisor model (X (X), R) with possibly imprimitive monodromy invari-
ant X, for all projective classes [\ of rational lines in Cq N6+ /5, and all
G-orbits of primitive isotropic vectors §.

(d-ss) A theorem proving that all d-semistable (cf. Definition 7.16) deformations
of Xo(A\) which keep the classes in M Cartier also admit a deformation of
the divisor R, so that the deformed pair is also a divisor model.

(fan) A fan F such that the combinatorial type of the stable model (Xo()),€R)
is constant for all \ in the interiors of the cones of F.

(qaff) A proof that the Type III strata offslvlﬂc are quasiaffine.

—F —sl
Then there is a morphism Fy — FTMIC from the toroidal compactification to the
stable pair compactification for the divisor R, mapping strata to strata.

. . . . . . . —=F —slc
Proof. Since the interiors are isomorphic, we have a birational map ¢: Fy --» Fiy

between the two moduli spaces. Eliminate indeterminacy by

—slc

F§<—Z—>F‘M.

Let Z, be the fiber of the left-hand map over p € Fg:ﬂ. Since F& is normal, if ¢ is

not regular then there exists a p such that the map 7, — FSNIHC is non-constant.

Let (C,0) — Z be an arbitrary one-parameter family such that 0 +— Z,. The
curve (C,0) defines some monodromy invariant A € Cp(8)/T" depending on how it
approaches the boundary. Here I' = Stabs/Us where Stabs C G is the stabilizer
of 6. Either A2 > 0 and ZJ corresponds to the 0O-cusp that (C,0) approaches or
A2 = 0 and Z\ @ Z§ corresponds to the 1-cusp that (C,0) approaches. Such arcs
are respectively given by Type III or Type II degenerations.

Let Fy; be the toroidal extension of the moduli space whose only cones are rays

in the directions of I'\. Then F{\\ﬂ is the union M with a single divisor A on the
boundary. When A? > 0, the boundary divisor A is isomorphic to the Staby-
quotient of a torus of dimension 19 — rkM. When A% = 0 it is a finite quotient
of a family of abelian varieties isogenous to £¥7¥M the self-fiber product of the
universal family over some modular curve. Let V) be an analytic neighborhood of

the boundary divisor A C F&I and let Uy — V) be a cover branched along A of
order the imprimitivity of .

Input (div) implies that there is some possibly imprimitive A representing [A]
which is the monodromy invariant of some divisor model (X (), R). When rkM =
1, an important result of Friedman-Scattone [FS86, 5.5, 5.6] implies that there is a
family X, — U extending the universal family over the d-semistable deformation
space of Xo(A) which keep the classes in M Cartier—here Uy is a some etale cover
of Uy. The same proof applies to higher rank polarization.

Input (d-ss) implies that not just the line bundles in M, but also the divisor
models, extend to produce a family (X, R) — Us.

Since C* — Fyy is approximated by the cocharacter A, it follows that the period
map extends to a morphism (C,0) — F@I. Lifting this arc to the cover Uy and
restricting (X, ) we get a divisor model (X, R) — (C,0). By Lemma 2.5 the stable
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model of (X, eR) is (X, eR). Note the choice of lift of the arc doesn’t ultimately
affect the resulting stable model.

Following [AET19, Thm. 10.5], consider an arc in Fy limiting a point in Z,.
While p does not determine the monodromy invariant A\ of this arc, we necessarily
have that A lies in the interior of the cone corresponding to the boundary stratum
of FI@ containing p.

Input (fan) allows us to conclude: For all arcs (C,0) approaching a point in Z,
the stable model (X, eR) — (C,0) has a fixed combinatorial type.

Thus, the image of the morphism Z, — FSNIJIC lies in a fixed boundary stratum of
the stable pair compactification. By (qaff), for Type IIT degenerations, these strata
are quasiaffine. Since Z, is proper, we conclude that this morphism is constant if
p lies in the Type III locus. This is a contradiction, so ¢ is regular at p.

Finally, it remains to show that there is no indeterminacy in the Type II locus.
Any fan F contains the Type II isotropic rays as one-dimensional cones, and F@H -
F@ is an open subset. Consider again the family (X, R) — Uy. Taking the relative
proj of nR gives a family of stable models (Xy,eR) — Uy and the classifying
morphism U N — Flsvlﬂc must factor through V) because the fibers of U A — V) lying
the smooth locus give the smooth K3 surface with divisor. The theorem follows. [

Corollary 3.2. Suppose that in addition,
(dim) Any stratum in Fl\fﬂ and its image in F;,lﬂc have the same dimension.
Then F@ is the normalization of Flsvlﬂc.

Proof. The condition implies that the morphism from Theorem 3.1 is finite. Since

—F . o . L
Fy; is normal, we conclude by Zariski’s main theorem that the morphism is the
normalization. O

4. THREE TOROIDAL COMPACTIFICATIONS

We now define three fans Fram, Feox, Fre- Each successively refines the pre-
vious. They are named the ramification fan, Coxeter fan, and rational curve fan
respectively. These fans give three toroidal compactifications of F' and our main
theorem is that the outer two are the normalizations of the compactifications I
and F'° via stable slc pairs for the ramification divisor and the rational curve (i.e.

s+m Z?il fi) divisor, respectively. The Coxeter fan is auxiliary.

4A. The Coxeter fan. The group I' = O™ (Il; 17) contains the Weyl group W
generated by reflections in the roots, the (—2)-vectors a € II; ;7. The Coxeter
diagram Gy of W is well known and given in Fig. 1. The nodes correspond to a
choice of simple roots aj,...,a19, so that a fundamental domain for W-action is
the positive chamber P = {\ € Cg | A - o; > 0} with 19 facets.

Qaq Q19
Q2 a3 Q4 Q5 Qg Q7 Qg Q9 qjp (1 Q12 (3 Q14 Q15 Qg 17 Qs

FI1GURE 1. Coxeter diagram Geox of II 17
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One has a? = —2, o; - aj = 1 if the corresponding nodes of the Coxeter diagram
are connected by an edge and 0 otherwise. Since II; ;7 has rank 18 there is a unique
linear relation amongst the 19 roots ay:

16
(4.1) 3aq + 20 + das + 2(10 — k)ay — 4aiy — 2015 — 3a1g = 0
k=4

Definition 4.1. The Coxeter fan Feoy is defined by cutting the cone Cg by the
mirrors ot to the roots.

Since W is a reflection group, the (orbits of) cones F.ox/W are in a bijection
with faces of P. The group I is an extension of W by Aut G.ox = Zs. Thus, the
cones in Feox/I" are in a bijection with faces of P modulo the left-right symmetry.

By [Vin75, Thm.3.3], the nonzero faces of P are of two types. Type II rays
corresponding to maximal parabolic subdiagrams of Geox: maximal disjoint unions
of the affine Dynkin diagrams. Type III cones of dimension 18 — 7 correspond to
elliptic subdiagrams of Gox: disjoint unions of Dynkin diagrams with 0 < r < 17
vertices. A subset I C Gox of vertices corresponds to the face N;e Iaf- nP.

__ The two type Il rays correspond to the maximal parabolic subdiagrams EsFs and
D1g. Similarly, one can count the 80 type III rays and count the higher-dimensional
faces. In our special case, however, there is an easier way.

Lemma 4.2. Suppose that an 18-dimensional cone P is defined by 19 inequalities
a; > 0 and that the linear forms a; satisfy a unique linear relation E?:l n;a; =
Ziu msa;, with n; > 0, m; > 0. Then the faces of P are in a bijection with
arbitrary subsets I C {1,...,19} satisfying a single condition: {1,...,9} C I <
{11,...,19} C I. A subset I corresponds to the face Nicr{a; = 0} N P. For I not
containing {1,...,9} codim F = |I|, for those that do codim F = |I| — 1.

Proof. A face of P is obtained by intersecting P with some hyperplanes a; = 0.
Each point of P gives a decomposition I U ¢ = {1,...,19} with a; =0 for i € I
and a; > 0 for 7 € I¢. Obviously, I must satisfy the above condition and, vice
versa, for any such I there exists a solution (ay,...,a19). O

Corollary 4.3. In Feox /W there are 2-9 + 1 = 19 facets and 9% + 1 = 82 rays.
In Feox T there are 9 +1 = 10 facets and % + 1 =46 rays. The total number of
cones in Feox/W is 2N? + 2 and in F<*/T it is N> + N + 2, where N =29 — 1.

Proof. For Feox /W, this follows from counting subsets I satisfying the condition of
Lemma 4.2. The cones in Fox/I" biject with involution orbits of such subsets. O

4B. The ramification fan.

Definition 4.4. The ramification fan F,,, is defined as a coarsening of F.ox. The
unique 18-dimensional cone is a union of four chambers Pram = Ugew, g(P) of Feox,
where W; = Zo @ Zs is the subgroup of W generated by reflections in the roots
a1, a19. The other maximal cones of Fray are the images g(Pram) for g € W.

ram

The corresponding toroidal compactification of F is denoted F .

This is a special case of a generalized Coxeter semifan defined in [AET19, Sec.
10C], where its main properties are described. The data for a generalized Coxeter
semifan is a subdivision I U J of the nodes of Gox into relevant and irrelevant

13



roots. The maximal cones are the unions of the chambers g(P) with g € W, the
subgroup generated by the reflections in the irrelevant roots, in this case ay, aig.
In general, the subgroup W; may be infinite and the resulting cones may not be
finitely generated. In the present case the group W is finite, and so Fiam is an
ordinary fan.

The cones of Fram /W are in a bijection with the subdiagrams of Gy which do
not have connected components consisting of the irrelevant nodes a; and aj9. The
cones in Fram /I are in a bijection with orbits of these under Aut Geox = Zs. In
Fram/W there are 17 facets and 63 rays, and in Fr,m /T 9 facets and 35 rays.

4C. The rational curve fan. Define the vectors

Br = a3z + 20 — oy, YL = a3 — aq, Br = a7 + 2a18 — a1g, YR = Q17 — Q9.

The fan F,. is a refinement of the Coxeter fan, obtained by subdividing the cham-
ber P by the hyperplanes 81, 7, ﬁfg, ﬁg into 3 - 3 = 9 maximal-dimensional sub-
cones o g with left and right ends L, R € {1,2,3}. The other maximal-dimensional
cones of F;. are the W-reflections of these cones. The involution in Aut Gox acts
by exchanging L and R. Thus, modulo I' there are 6 maximal cones o011, 012, 013,
022, 023, 033.

The subdivisions on the left and right sides work the same way and independently
of each other. So we only explain the left side, writing simply 3,y for 8,y . Since
v=p08—2as and as > 0 on P, < 0 implies v < 0, and v > 0 implies 8 > 0.
Thus, the hyperplanes 5+ and v divide P into three maximal cones. Fig. 2 gives a
pictorial description of the subdivision and the vectors involved. One has 3% = —8
and 72 = —4. The number of edges indicate the intersection numbers, and negative
numbers are shown by dashed lines. In addition, not shown is 8- a; = 2.

ay

FIGURE 2. Subdivision of Coxeter chamber for the fan F,.

These three maximal cones have 19 facets and the vectors defining the facets
satisfy a unique linear relation:

L=1: ->0 3(=8) + 8az + Taz + =0
(42) L=2: B>0,—y>0 B+ A=y + Taz + =0
L=3: v>0 200+ 4y + Tay + =0

Here, the rest of each relation is 6y + 5as + - - -, the same as in equation (4.1)

for the Coxeter chamber. Similarly, we have a subdivision into 3 cones using the
hyperplanes ﬂjts and ’yf.ts. Each of the resulting 9 cones o g has 19 facets, with the
14



supporting linear functions satisfying a unique linear relation. For every cone the
relation has the same pattern of signs. One concludes that each of the 9 cones is
Q-linearly equivalent to the Coxeter chamber, and Lemma 4.2 gives a description
of its faces.

For convenience define o7, = Uge(1,2,30LRr, Which specifies only the left-end
behavior. The cones o5 and o3 are related by a reflection w in the (—4)-vector
v. Indeed, w(B) = 2as, w(as) = a1, and w(w;) = «a; for i > 4. However, this
reflection does not preserve the lattice II; ;7. For example, 3 is primitive and 20
is 2-divisible.

There are 14547+ 3 = 16 cones of dimension 0 < d < 3 in Fig. 2. Therefore, in
Fre/W there are 32 = 9 maximal cones, 2(7 +6) + 1 = 27 facets, (5+6)%+1 = 122
rays, and a total of 2N2 + 2 cones, N = 16 - 25 — 1. In F,./T there are 32%4 =6
maximal cones, 7+ 6 + 1 = 14 facets, % +1 = 67 rays, and N2 + N + 2 cones.
Definition 4.5. The toroidal compactification corresponding to the fan F. is
denoted F~ ™.

Since the fan F,. is very important for this paper, we describe it in more detail
and give each cone a unique ADE label. First, to each maximal cone o, we associate
a Coxeter diagram whose vertices correspond to the facets v with v > 0 on op.
Then a face F of oy, is described by a subdiagram of black vertices for the vectors
v such that F' C v*. In Table 1 we list several cones of codimension 0, 1,2, 3. For a
cone lying in more than one of the maximal cones o1, 02,03, we can choose either
of them to describe F', and we indicate our choice in bold in the first column.

For each cone, we also indicate which other linear functions «y, 8, vanish on it.
Namely, on the cone o5 N o3 = 'yl one has a; = a3 and 8/2 = aw, so once one of
them vanishes then so does the other.

The lower-dimensional cones are obtained from these cones by intersecting with
some a; for i > 4. The diagram is then obtained by marking these nodes black.
Adding to the Dy and E3 diagrams adjacent vertices makes it into larger D,,, E,
diagrams. Marking some of the vertices that are not adjacent to the end D and F
diagrams adds some A,, inside the chain ay, ..., ag.

Remark 4.6. The reason for the ADFE notation is as follows: Starting with Dy
and FEj3, the cone is already a cone of the Coxeter fan F.ox, S0 we use a subdiagram
of the Coxeter diagram of Fig. 1 to label it. Note that for an E,, diagram one gets
a nonzero cone only if n <9. For n < 8 this is an elliptic subdiagram of Fig. 1, i.e.
a type III cone; for n = 9 the cone Na;- N Cg is the Type I EgEy ray.

We chose the labels Ey, E1, Ej, Ea, Dy, D}, D1 by analogy with the larger £
and D diagrams. This will be further explained in Section 7.

Notation 4.7. To make the resulting ADE label unique, we add the symbol Ag to
denote adjacent unmarked vertices. By a convention, explained further Section 7,
we assign each label a charge: Q(4,) =n+1, Q(D,) =n+4, Q(E,) =n+ 3,
and we require the sum of charges to be 24. With these notations, a string of
four white vertices is denoted by A3 and adding black vertices to the interior two
vertices produces diagrams A1 Ag, AgA1, As.

We summarize this discussion as follows:
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Cone Symbol Diagram
ol Ey [(——0C O O
_5 (65) a3 Qg
B/2 —v o3
o9 D6 Oo—CO—0—0O
Oy
o3 DO O —() O
Q2 vy aq Oy
B/2 - a3
oo Moy E1 e— ——0O0—O
Qy
o3Nay E] e ——0O O
(%) y (65} Qg
g/2 —v 03
oo MNos Dy O——0—O
a2 Y aq Qg
g/2 —v o3
oy NozNoy Ey &—€—0—O
[e%) Y (03} Qg
g/2 —v o3
o2 Moy Nad Dy O—@—0—0
(6%} Y (631 Oy
6/2 - Qs
0'200'300100&% E3 e—é—e O
(&%) Y a Oy

TABLE 1. Basic type III cones in Fi¢

Lemma 4.8. In the fan F.. there are 9 mazximal cones oy;, 1 < 1,5 < 3 modulo
W (I1; 17) with the Dynkin labels, where (Do|D}) denotes either Dy or Dj:

EoAg*Eo, EoAg" (Do|Dy), (Do|Dy)Ay" Eo, (Do|Dy)Ag*(Do| Dy),
All type III cones are in a bijection with the labels
(Eno |E1 |Dﬂo |D6)An1 et Ank (Enk+1 |E1|an+1 |D6)
with some n; > 0, and with n; < 8 for the E,, diagrams, of total charge 24.

Next, we list the type II rays of F,.. They are the rays of the rational closure Cg
of the cone {v? > 0}, so they are the same as for the Coxeter fan. In the fan Fy,
the EgES ray is contained in each of the 9 cones o;;, and the 516 ray is contained
in o fori=2,3, j=2,3.

We conclude this section with a result which goes a long way towards explaining
some peculiar features of the fan F,. which otherwise may seem quite mysterious.

Recall: Let F be a fan in a lattice N defining a toric variety X (F). A cone 7 € F
defines a torus orbit O(7) whose closure is X (7) C X(F). Denote N, = N N Rr.
Then X(7) is a toric variety for the fan Star(7) in the lattice N/N-.
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Br/2 ag arr Br/2
—9—0 0 90 0 0 0 0 O 0 0 0 0 0 0 ¢ °
Qg yp Q1 Q4 Q5 Qg Q7 Qg Qg Q19 (1 Q12 13 14 Q15 Q16 Q19 Yrp Qa8
;gL/Z Qg Q7 61?/2
oO—& 4—O

Qz yp Q1 Qg Q5 Q Q7 Qg Q9 Q1o Q11 Q12 Q13 Q14 Q15 Q1 X19 Yrp (18

FIGURE 3. Type II cones in F: ESE'S and 1516, shown in o33

Also recall that the root lattices C,, and D,, are the same but their Weyl groups
are different: W(D,,) C W(C,,) is a subgroup of index 2.

Lemma 4.9. Let A = {aj,a3,a4,5...} be a D, subdiagram in the Cozeter
graph of Fig. 1 and T € Feox be the corresponding cone. Then Star(r) in Feox is
the Coxeter fan for W(D,,) but Star(7) in Fy is the Cozeter fan for W(Cy,).

Proof. Note first that replacing either a; or ag by the (—4)-vector v = as — a3
transforms A into a C,, Dynkin diagram. Also note that by (7.57) the A root
sublattice of II; ;7 is saturated.

The statement for Star(7) in Feoy is standard. The hyperplane v+ divides the
fundamental chamber for W (D,,) into two halves, each a fundamental chamber for
W(C,,). The reflection in + is not defined on N = II; ;7 but it is well defined on
N/N, which is the dual of the root lattice D,,, the same as for C,. [l

Remark 4.10. We will see in Section 7 that the moduli of the corresponding stable
surfaces are described by T(C,,)/W(C},), where T(C,,) is the torus Hom(C,,, C*).
The map T'(D,)/W(D,) — T(C,)/W(C,) is 2 : 1. This leads to an involution
on a part of the fan F.. and to the two cones Dy, D{, mapping to a unique stable
surface of type Cy. This D/C dichotomy appears to be the main reason for the
refinement Fr. of Feox.

5. DEGENERATIONS OF K3 SURFACES AND INTEGRAL-AFFINE SPHERES

To prove that 7 coincides with a toroidal compactification, we extend the
method developed in [AET19]. Central to this method is the notion of an integral
affine pair (IASQ, Rya) consisting of a singular integral-affine sphere and an effective
integral affine divisor on it. From a nef model of a type III one-parameter degen-
eration, we construct a pair (IAS?, Ra). Vice versa, given a pair (IAS?, Ria) we
construct a combinatorial type of nef model.

Definition 5.1. An integral-affine structure on an oriented real surface B is a
collection of charts to R? whose transition functions lie in SLa(Z) x R2.

On the sphere, such structures must have singularities. We review some unpub-
lished material from [EF18] on these singularities. Let SLo(R) — SLa(R) be the
universal cover. This restricts to an exact sequence

0 — Z — SLy(Z) — SLy(Z) — 0.

Since SLy(R) acts on R2 \ {0}, its universal cover and the subgroup SLa(Z) act on

R2\ 0, which admits natural polar coordinates (r,0) € RT x R. A generator of the
kernel Z acts by the deck transformation (r, ) — (r,0 + 2m).
17



Definition 5.2. A naive singular integral-affine structure on B is an integral-
affine structure on the complement B\{pi,...,p,} of a finite set such that each
point p; has a punctured neighborhood U; \ {p;} modeled by an integral-affine cone
singularity: The result of gluing a circular sector

(6, <0 <) CR2\0
along its two edges 6 = 01,605 by an element of §I:2(Z).

Definition 5.3. Let (B, p) be an integral-affine cone singularity. We may assume
that 01, 0> have rational slopes. Decompose 61 < 6 < 65 into standard affine cones,
i.e. regions SLo(Z)-equivalent to the positive quadrant. Let {€1,...,&,} denote the
successive primitive integral vectors pointing along the one-dimensional rays of this
decomposition. Define integers d; by the formula

€i—1 + €ip1 = di€;
using the gluing to define dy. Then the charge is
Q(B.p) =12+ (d; - 3)

and does not depend on the choice of decomposition into standard affine cones.

By [EF18, KS06], a naive singular integral-affine structure on a compact oriented
surface B of genus g satisfies Y Q(B,p;) = 12(2 — 2g). As we are interested in the
sphere, the sum of the charges of singularities is 24. This formula was first proven
by [FM83, Prop. 3.7] in the context of the dual complex of a Kulikov degeneration,
see Thm. 5.16. For application to degenerations of K3 surfaces, we need a more
refined notion of integral-affine singularity.

Definition 5.4. An anticanonical pair (Y, D) is a smooth rational surface ¥ and
an anticanonical cycle D = Dy + --- 4+ D,, € | — Ky| of rational curves. Define
di = —D?.

Definition 5.5. The naive pseudo-fan F(Y, D) of an anticanonical pair is a integral-
affine cone singularity constructed as follows: For each node D; N D;y; take a
standard affine cone R>¢{€&;,€+1} and glue these cones by elements of SL2(Z) so
that €;_1 + €;4+1 = d;€;.

Remark 5.6. Note that the cone singularity itself does not keep track of the rays.
For instance, blowing up the node D; N D;;; produces a new anticanonical pair
(Y', D) — (Y, D) whose naive pseudo-fan §(Y”, D) is identified with F(Y, D). The
standard affine cone R>o{&;, €41} is subdivided in two. The charge Q(Y,D) :=
Q(F(Y, D)) is invariant under such a corner blow-up.

Definition 5.7. The c.b.e.c. (corner blow-up equivalence class) of (Y, D) is the
equivalence class of anticanonical pairs which can be reached from (Y, D) by corner
blow-ups and blow-downs.

Remark 5.6 implies that §(Y, D) depends only on the c.b.e.c. of (Y, D).

Definition 5.8. A toric model of a c.b.e.c. is a choice of representative (Y, D) and
an exceptional collection: A sequence of Q(Y, D) successively contractible (—1)-
curves which are not components of D. The blowdown (Y, D) is a toric pair, i.e. a
toric surface with its toric boundary. We call these internal blow-ups.
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Definition 5.9. An integral-affine singularity is an integral-affine cone singularity
isomorphic to §(Y, D) for some anticanonical pair (Y, D), with a multiset of rays
{€;} corresponding to the components D; C D meeting an exceptional collection.
The pseudo-fan F(Y, D) is the naive pseudo-fan, equipped with this data.

Note that the components D; C D meeting an exceptional collection uniquely
determine the deformation type of the anticanonical pair (Y, D).

Definition 5.10. Let ¢: F(Y, D) — §F(Y’, D) be an isomorphism of integral-affine
cone singularities. We say that ¢ is an isomorphism of integral-affine singularities
if the two multisets of rays {¢(€;)} and {&,} determine the same deformation type.

Equivalently, after making corner blow-ups on (Y’, D’) until the rays ¢(¢&;) all
form edges of the decomposition of F(Y’, D’) into standard affine cones, the pair
(Y', D’) admits an exceptional collection meeting the components corresponding to
¢(€;). From the definitions, integral-affine singularities, up to isomorphism, are in
bijection with c¢.b.e.c.s of deformation types of anticanonical pairs (Y, D). We are
now equipped to remove the word “naive” in Definition 5.2.

Definition 5.11. An integral-affine sphere, or IAS? for short, is an integral-affine
structure on the sphere with integral-affine singularities as in Definition 5.9.

In particular, there is a forgetful map from IAS? to naive IAS? which forgets the
data of the multisets of outgoing rays from each singularity.

Definition 5.12. Let (71, ..., 7)) be a counterclockwise-ordered sequence of primi-
tive integral vectors in R? and let n; be positive integers. We define an integral-affine
singularity (B,p) = I(nit4,...,n,0) by declaring (B,p) = F(Y, D) where (Y, D)
is a blow-up of a smooth toric surface (Y, D) whose fan contains the rays R>o%; at
n; points on the component D; corresponding to ¥;.

Every c.b.e.c. admits some toric model and hence can be presented in the form
I(n1@y,...,nk0k). Since Q(I(n17y,...,nE0k)) = >_n; > 0, an integral-affine sur-
face with singularities, as defined, is either a non-singular 2-torus, or the 2-sphere.

Definition 5.13. Define the Ij; singularity as I(k€). It has charge k.

Remark 5.14. If an TAS? has all I; singularities there are 24 such. There is only
one integral-affine singularity which underlies the naive cone singularity of I(é),
corresponding to either marking the ray € or —e. Hence in the case where all 24
charges are distinct, there is no difference between a naive IAS? and an IAS%.

Definition 5.15. An IAS? is generic if it has 24 distinct I; singularities.
The relevance of these definitions lies in the following:

Theorem 5.16. Let X — C be a Type III Kulikov model. The dual complez I'(Xo)
has the structure of an IAS?, triangulated into lattice triangles of lattice volume 1.
Conversely, such a triangulated TAS? with singularities at vertices determines a
Type III central fiber Xy uniquely up to topologically trivial deformations.

Proof. See [Engl8] or [GHK15a, Rem1.11v1] for the forward direction. Roughly,

one glues together unit volume lattice triangles by integral-affine maps, in such

a way that the vertex v; corresponding to a component V; C X, has integral-

affine singularity §(V;, D;). Here D; = ) ; Dij and D;; := V; NV are the double
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curves lying on V;. For the reverse direction, one glues together the anticanonical
pairs (V;, D;) whose pseudo-fans model the vertices of the triangulated IAS?. The
gluings are ambiguous, but all such gluings give homeomorphic surfaces Xy which
are related by topologically trivial deformations. [

Definition 5.17. Let B be an IAS?. An integral-affine divisor Ria on B consists
of two pieces of data:

(1) A weighted graph Rja C B with vertices v;, rational slope line segments as
edges v;;, and integer labels n;; on each edge.

(2) Let v; € R be a vertex and (V;, D;) be an anticanonical pair such that
§(Vi, D;) models v; and contains all edges of v;; coming into v;. We require
the data of a line bundle L; € Pic(V;) such that deg Li|Di,» = n;; for the
components D;; of D; corresponding to edges v;; and L; has degree zero
on all other components of D;.

Definition 5.18. A divisor Ripn C B is polarizing if each line bundle L; is nef and
at least one L; is big. The self-intersection is R, := >, L? € Zsy.

Definition 5.19. Given an nef model L — X, we get an integral-affine divisor
Ria C B =T(Xp) by simply restricting L to each component. Since L is nef, the
divisor Rpa is effective i.e. n;; > 0.

Remark 5.20. When v; € Ry is non-singular, the pair (V;, D;) is toric, and the
labels 1;; uniquely determine L;. They must satisfy a balancing condition. If €;; are
the primitive integral vectors in the directions v;; then one must have ) n;;é;; =0
for such a line bundle L; to exist.

Similarly, if Iy = §(V;, D;) = I(€) i.e. (V;, D;) is a single internal blow-up of a
toric pair, the n;; determine a unique line bundle L; so long as > n;j€;; € Ze. This
condition is well-defined: the €;; are well-defined up to shears in the € direction.

Let B be a lattice triangulated TAS? or equivalently, B = T'(Xp) is the dual
complex of a Type III degeneration. When B is generic, an integral-affine divi-
sor Ripa C B is uniquely specified by a weighted graph satisfying the balancing
conditions of Remark 5.20, so the extra data (2) of Definition 5.17 is unnecessary.

Definition 5.21. An integral-affine divisor Rjs C B is compatible with a triangu-
lation if every edge of Ry is formed from edges of the triangulation.

If B comes with a triangulation, we assume that an integral-affine divisor is
compatible with it.

6. COMPACTIFICATION FOR THE RAMIFICATION DIVISOR

Theorem 6.1. The normalization of the stable pair compactification F™ is the

ram

. , . =A
toroidal compactification F .

Proof. Let Il319 > h be the K3 lattice and a vector with h? = 2. Denote by
Ny the lattice ht = 11y ; @ 11 17 @ (—2). of signature (2,19) and by Dy be the
corresponding Type IV domain. It is well known that the moduli space of polarized
K3 surfaces (X, L) of degree 2 with ADFE singularities is the arithmetic quotient
Fy = O*(N2)\Dy, for a finite subgroup O*(Nz) C O(N2).

There are two O*(Ny)-orbits of vectors v € Ny with v? = —2, with representa-
tives v1 and vy of divisibility 1, resp. 2 in Nj. They define two hyperplanes v,i- in
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Dy and two Heegner divisors in Fb, for the nodal and unigonal K3 surfaces. The
second hyperplane D = v5- is the Type IV domain for the lattice Noy = II5 18 C Na,
and its arithmetic quotient is our space F' = Fyy.

There are single orbits of primitive square 0 vectors in Ny and in Ngj. Let us

. . . . —=BB
a choose a representative e € Ngy C Na. Baily-Borel compactifications F'y ~ and

FEF both have a single O-cusp. A toroidal compactification of Fs, resp. Fyp, is
described by a single fan supported on the light cone Cg for the lattice et /e, where
et is taken in Ny, resp. Ngj. One has et /e = IT4 17 ® (—2), resp. et/e= II; 17. In
particular, the Coxeter fans F2 _, resp. Feox = Feo, is defined by intersecting Cg
by the hyperplanes a- orthogonal to the roots in et /e. It follows that the toroidal
__ell 2
2

cox cox

compactification Fj>* is the closure of Fy in the toroidal compactification F'

The fundamental domain in FZ2 _ is described by the Coxeter diagram with 24
vertices (fundamental roots) «; pictured in [AET19, Fig. 4.1]. The roots of divisi-
bility 2 are a1, aige, o3. Let us take vo = ao3. Then the hyperplane aj- intersects
vﬁ- iff |aag - ;| < 2. Thus, the Coxeter diagram for Ny is obtained from that for Ny
by removing the nodes a1, aiag, vz, and the result is precisely the Coxeter diagram
of Fig. 1 for lattice IIy ;7.

It is shown in [AET19] that the normalization of the stable pair compactification
F,™" for the ramification divisor is a semitoric compactification for the semifan F2,
that is the coarsening of the Coxeter fan F2 _ obtained by reflecting the fundamental
domain by the Weyl group W generated by reflections in the six “irrelevant” roots
Qis,...,a3. This group is infinite, and so F2,, is a semifan and not a fan; the
maximal-dimensional cones are not finitely generated.

It follows that F:ﬁm is the closure of Fey in F;am and its normalization is the
semitoric compactification for the fan Fell = F2 Nwy. Thus, it is the semifan
obtained by reflecting the fundamental domain of F&! by the Weyl group Wey
generated by reflections in “irrelevant” roots s, ..., ass that are not asy, ags, as
and ao3 = vy itself. In Fig. 1 these are the two roots denoted oy and aj9. Since

the two vertices 1 and 19 are disjoint, one has Wy = Zy @ Zs, the semifan }"f;lm is

. . . . . —Fram . .
in fact a fan, and the semitoric compactification F';;"" is toroidal. O

FIGURE 4. (IASQ, Rya) for the ramification polarization divisor

Remark 6.2. In [AET19] the degenerations of degree 2 K3 pairs (X, eR) are de-

scribed by the integral-affine pairs (IAS?, Rya) of [AET19, Fig.9.1]. Following the

proof of the above theorem, the pairs for F™™ are obtained by setting azs = 0, i.e.
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closing the gap in the second presentation of loc. cit. We give the result in Fig. 4.
The picture shows the upper hemisphere, and the entire sphere is glued from two
copies like a taco or a pelmeni (a dumpling). The polarizing divisor is the equator;
it is drawn in blue.

The divisor models and stable models can be read off from the pair (IAS?, Rya):
The divisor R is the fixed locus of an involution on the Kulikov model which acts
on the dual complex by switching the two hemispheres. Irreducible components of
the stable model correspond to the vertices of Rys. Fig. 4 gives a stable model with
the maximal possible number 18 of irreducible components.

7. COMPACTIFICATION FOR THE RATIONAL CURVE DIVISOR

7A. Kulikov models of type III degenerations. Let L, R € {1,2,3}. Consider

the following 19 vectors in (37Z)?

q (0,1) ifL=2,3
9) ifL=1
ifi=2,...,18

. [ (0,-1) fR=23
97 (1,-9) ifR=1

Let £ = ({1,...,l19) € ZL% be non-negative integers, satisfying the condition that
> 4;U; is a horizontal vector.

Form a polygon Ppr(¢) whose edges are the vectors ¢;7; put end-to-end in the
plane, together with a segment on the z-axis. For instance P; 2(2,...,2,9) is shown
in Fig. 5. Let Qrr(¥) be the lattice polygon which results from taking the union of
Ppr(¢) with its reflection across the z-axis.

FIGURE 5. (IAS? Rya) for the rational curve polarization divisor.
End behaviors: L =1, R =2 or 3.

Definition 7.1. Define By (f), a naive singular IAS?, as follows: Glue each edge
0;7; of Qrr(f) to its reflected edge by an element of SLy(Z) x R? which preserves
vertical lines. This uniquely specifies the gluings, except when ¢1,¢19 > 0 and
L, R € {2,3} respectively. For these edges, we must specify the gluing to be —A*
where A(z,y) = (z +y,y) is a unit vertical shear.
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Remark 7.2. As naive IAS?, we have that By (¢) are isomorphic when we inter-
change the end behaviors 2 <» 3. It is only when we impose the extra data as in
Definition 5.9 that we can distinguish them.

From Definition 7.1, we determine the SLy(Z)-monodromy of the naive TAS?.
Assume for convenience that all ¢; > 0. Let g; € m(BLr(¢) \ {pi}, *) for i =
1,...,20 be simple counterclockwise loops based at a point * in the interior of
Qrr(¢), which successively enclose the singularities of By r(¢) from left to right.
Then the SLy(Z)-monodromies are:

plgr) =AYt L=1, p(g1) = p(ga) = —A*if L =2,3
plg0) = A if R=1, p(gi9) = p(ga0) = —A* if R=2,3
p(gi) = A" for all remaining i.
When some ¢; = 0, the monodromy of the resulting cone singularity is the product.

Remark 7.3. The image of the SL2(Z)-monodromy representation of By, r(¢) lands
in the abelian group =A4%. This is related to the existence of a broken elliptic fibra-
tion on the corresponding Kulikov models. When all 24 singularities are distinct,
the monodromy of an TAS? is never abelian, because the sphere would then admit
a non-vanishing vector field. Here, we always have some singularity of charge > 2.

Next, we enhance Brz(f) from a naive TAS? to an IAS?:

Definition 7.4. The multisets of rays (cf. Definition 5.9) giving toric models of the
anticanonical pairs whose pseudo-fans model each singularity are listed in Table 2.
The rays are chosen with respect to the open chart Qrr(¢) on Brr(¢). The marked
rays for right end R are analogous, but reflected across the y-axis.

When an end is an isolated point, the symbol X is used. When the left end
is a vertical segment the symbols Y are used for the so-called inner and outer
singularities at the points p; and po, respectively. The same applies to psg and pig
at the right end. For instance, in Fig. 5, there is one left-most singularity, labeled
X3. There are two right-most singularities. Both are labeled Y3 and the upper
right-most singularity in the figure is the “outer singularity.” The lower right-most
singularity is the “inner singularity.” Intermediate singularities are labeled I and
in Fig. 5, specifically I;.

The singularities notated Y and Yy are abstractly isomorphic, but the prime is
necessary to distinguish how the marked rays sit on the sphere By r(¢) at the outer
singularity. This is distinguishes Ends 2 and 3, respectively.

Notation 7.5. Table 2 allows for very succinct notation for the types of TAS? that
appear in our construction. For instance, if (L, R) = (3,2) and ¢; # 0 for exactly
i =2,5,6,16,19 then we say that Brr(¢) is of combinatorial type X}I311110Y,Y>
indicating the sequence of singularities one sees traveling along the vectors ¢;v;.
The subscripts denote the charges, so they always add to 24. As another example,
Fig. 5 has an TAS? of combinatorial type X3I17Y, Y5 assuming that R = 2. If R = 3,
the combinatorial type is instead X3I17Y;Y5. Generally, all allowable combinatorial
types can be formed by concatenating symbols as in Table 3 in an arbitrary manner,
choosing one symbol out of each column, in such a way that the sum of all indices
is 24, and ensuring that no X-symbol has an index of 12 or more.
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TABLE 2. Pseudofans modeling each singularity, for the left end

type L
L Singularity Marked rays Notation
1 {1 # 0, end singularity (1,-3),(1,0),(1,3) X3
1,2 | 6=0,0,#0 (1,-2),(1,0),(1,1),(1,3) | X4
3 l1=0,0#0 (1,-2),(1,0),(1,2),(1,4) X}
1,2,3|¢;=0fori<k, k>2 All choices equivalent Xkas
2,3 | £1 # 0, inner singularity (1,0),(1,2) Y,
2 £1,€5 # 0, outer singularity (1,1),(1,3) Y,
3 £1,€5 # 0, outer singularity (1,2),(1,4) Yy
2,3 |£1#£0,4;,=0for2<i<k All choices equivalent Yit1
liy; =0,1<j <k in interior | (0, —1), multiplicity k I,
TABLE 3. All allowable combinatorial types of TAS?
L Symbol(s) | Intermediate Symbols | R Symbol(s)
L=1 X3 Iiyny o Iigng, ng 20 X3 R=1
L=2 Yo Ys Y2Ys R=2
L=3 Y2Y5 or X Y,Ys or X R=3
L=1,2 X, X, R=1,2
L=23 | YoYosn,n>1 YoVorn,n>1| R=23
L=1,2,3| Xoin,n>2 Xowm,n>2 | R=1,2,3

Lemma 7.6. The types of the IAS? defined above are in a bijection with the types
1II cones in the fan Fi. of Lemma 4.8 via the correspondence of symbols E,, = X,+3,
E{ =X}, D, =Y2Yoy,, Dj =YYy, and A, = L,,41.

Proof. We have defined 9 maximal dimensional cones in F,. modulo W and 9
types of TAS®, with the Dynkin labels (Eo|Do|D}) AT (Eo|Do| D)) and with
combinatorial types (X3|Y2Y2|Y2Y2’)I}8|17|16(X3|Y2Y2|Y2’Y2), respectively. For each
type, an TAS? is defined by the collection of positive numbers ¢; satisfying a single
linear relation, that the height difference from the left end to the right end is zero.
This linear relation between the ¢; has 9 positive coefficients, 1 zero coefficient, and
9 negative coefficients.

On the other hand, a point A in a maximal cone is defined by a collection of
19 nonnegative numbers, the intersection numbers between A and the 19 vectors
among «;, Br, Y., Br, Yr that give the facets of this cone. These intersection
numbers satisfy the relations given in equation (4.2) with the same sign pattern.
In fact, one checks that the formulas given in Cor. 7.33 give an explicit bijection
between lattice points in the interiors of the 9 maximal cones of F,. and IAS?
of the corresponding combinatorial type with all ¢; > 0. This bijection extends
to the faces the maximal cones, by allowing some ¢; = 0, and giving the symbol
substitution rules described in the lemma. |

We now decompose Brr({) into unit width vertical strips (in fact these are
integral-affine cylinders). Cut these cylinders by the horizontal line along the base of
Ppr(¢) joining the left to the right end, to form a collection of unit width trapezoids,
and triangulate each trapezoid completely into unit lattice triangles.
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Remark 7.7. If ¢; is odd for some odd 4, the singularities of Brr(¢) may not lie
at integral points. In these cases, we can adjust the location of the singularity by
moving it vertically half a unit. This destroys the involution symmetry of B g(¢),
but the singularities of Bpr(¢) will be vertices of the triangulation. Alternatively,
we could just triangulate Bpr(2¢) in the same manner, but our current approach
allows for a wider range of valid ¢ values.

Definition 7.8. Define Xy 1z(¢) to be the unique deformation type of Type III
Kulikov surface associated to the triangulated Bpg(¢) by Theorem 5.16.

Shifting singularities and replacing ¢ — 2¢ as in Remark 7.7 has the effect [EF21,
Sec. 4] of birational modifications and an order 2 base change to the Kulikov model
in Definition 7.8, neither of which ultimately affect the stable model.

Example 7.9. The deformation type of an anticanonical pair (V, D) forming a
component of Xy rr(¢) can be quickly read off from Table 2. For instance, the
singularity X is the result of gluing the circular sector R>o{(1, —4),(1,4)} by
A8(z,y) = (x,8z+y) and has the rays (1, —2), (1,0), (1, 2), (1,4) marked. To realize
this singularity as a pseudo-fan we should further decompose the circular sector
into standard affine cones so that the one-dimensional rays are &, = (1,n) for n =
—4,...,4. By the formula €;_1 +¢€;11 = —D?€; we have that the anticanonical cycle
of (Y, D) consists of eight (—2)-curves—computing —D? requires taking indices mod
8 and performing the gluing.

The marked rays indicate that four disjoint exceptional curves meet D_o, Dy, Do,
Dy. Blowing these down gives the unique toric surface whose anticanonical cycle
has self-intersections (—1,—-2,—1,—2,—1, -2, —1, —2), which is itself the blow-up
of P! x P! at the four corners of an anticanonical square.

7B. Nef and divisor models of degenerations. We assume henceforth that our
polarizing divisor is R = s+ Y f;. The case R = s+ m_ f; is treated similarly,
by simply adding factors of m to anything vertical.

Define a polarizing divisor Rya on every IAS? of the form By, r(?) as follows: The
underlying weighted graph of Rra is the union of the following straight lines:

(1) the horizontal line joining the two ends, with label n;; = 1, and
(2) the vertical line through any singularity, with label n;; = Q, where @ is
the total charge of the singularities on the vertical line.

See Figure 5, where the graph is shown in blue (note that a copy is reflected across
the z-axis). In the example, the label of the right-hand vertical blue segment is 4.

To give a complete definition of Rys as in Definition 5.17 requires choosing
various line bundles. It is simpler to directly specify the divisor model by giving
a divisor R; on each component of V; C Xy rr(¢) with appropriate intersection
numbers with the double curves, i.e. R;-D;; = n;;. These are listed in Table 4 and
require some explanation.

Xk+s (k> 0), X} : The end component (V, D) is an anticanonical pair with D a
cycle of (—2)-curves of length 9 — k. Thus, (V, D) is in the deformation type of an
elliptic rational surface with D a fiber of Kodaira type Iy_;. We assume that (V, D)
is in fact elliptic. The f; in Table 4 are the Q(V, D) = k + 3 singular elliptic fibers
not equal to D and s is a section. When @ = 4, the two cases X, and X are the
two different deformation types of pairs (V, D) with a cycle of eight (—2)-curves.
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TABLE 4. Divisors on each anticanonical pair

Singularity R, CV, C Xo,Lr(¥)
Xy, X s+ > fi
inner Y5 8+2f1+2f2+2?:_14f{
outer Ya, Yy 2f1+2f2
Yk+2, k>0 2f1+2f2+2?:1 fz/
k
I, izt fi
non-singular point at End 2,3 4f) +4fs + Zf:f(f{ + 1)
non-singular intersection point of Rya s+ 2?:1 fi

non-singular point on vertical line of Ryp Z?Zl fi
non-singular point not on Rya empty

In the X/ case, ®ZD; is an imprimitive sublattice of H?(Y,Z); in the X, case it is
a primitive sublattice.

Inner Y3: Taking (1,0),(0,1) to be the rays of the pseudo-fan with polarization
degrees 1 and Q respectively, we get a pair (Fy, D1 + Dy) with D? = 0 and D3 = 4.
Note Dy is a bisection of the ruling on F; with fiber class D;. Then s is the (—1)-
section and f1 and fo are the two fibers in the class of Dy tangent to the bisection
Ds. The fibers f/ are () — 4 other fibers in the same class as, but not equal to D;.
Here @ is the total charge at the end.

Outer Y, and Y3: Taking (0,—1),(1,4) to be the rays of the pseudo-fan with
polarization degrees 4 and 0 respectively, we get Yo = §(Fy, Dy 4+ Ds) and Yy =
§(Fo, D1 + D3) with D? = 4 and D3 = 0 in both cases. Then f; and f, are the two
fibers in the class of D5 tangent to the bisection D;. Our notation with the prime
indicates that Y5 represents the “primitive” case, and Yy the “imprimitive” case.

Yiio (k> 0): Take (0,—1),(1,4 — k) to be the rays of the pseudo-fan. This
anticanonical pair (V, D7 + Ds) has self-intersections D} = 4 — k and D3 = 0
respectively. It is the result of blowing up either of the previous two cases at k
points on D;. These cases coincide once k > 0. Then f; and f> are the pullbacks
of the original two fibers tangent to the bisection, and the f/ are pullbacks of fibers
which go through the points blown up on D;.

Ij, : Take (0,—1), (0,1) and two rays pointing left and right to be the rays of the
pseudo-fan. Then (V, D) is the blow-up of some Hirzebruch surface F at k points
on a section. The f; are the pullbacks of fibers going through blown up points.

Non-singular surfaces: All non-singular surfaces V; are toric and ruled over either
of the double curves corresponding to the vertical direction. The f; are fibers of
this ruling. The total count of fibers is @ where @ is the total charge on the vertical
line through the vertex v; € Brgr(¢). At intersection points where the horizontal
and vertical lines of R;4 meet, we include a section of the vertical fibration. At an
end of type 2 or 3, two of the fibers f; and fy are quadrupled.

Definition 7.10. We say that Xo rr(¢) is fibered if

(1) The end surfaces (for X-type ends) are elliptically fibered, and
(2) A connected chain of fibers of the vertical rulings glue to a closed cycle.
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Then Xy r(¢) admits a fibration of arithmetic genus 1 curves over a chain of
rational curves. We say it is furthermore elliptically fibered if sections s on the
components connecting the left and right ends glue to a section of this fibration.

Remark 7.11. We henceforth assume that Xo rz(¢) is glued in such a way as to
be elliptically fibered.

Remark 7.12. When the left end L € {2,3} and ¢; > 0, the chain of fibers in
Definition 7.10 consists of one fiber on the components corresponding to the inner
and outer singularity, and a sum of two fibers on the intermediate surfaces. Thus,
the genus 1 curve loops through each intermediate component twice: On its way
up, and on its way down.

The number of nodes of the chain over which Xo pr(¢) is fibered is the a-
component of ¢19; + --- + f19¥19 or alternatively the lattice length of the base
of Ppr(¢). The induced map of dual complexes is the projection of Brr(¢) onto
the base of Prr(¢), decomposed into unit intervals.

Definition 7.13. To define the divisor model of Xo rr(£): Assume that Xo pr(¢)
is elliptically fibered. Choose divisors R; C V; as prescribed by Table 4 which glue
to a Cartier divisor R on X r(¢) and so that the vertical components of R are
elliptic fibers.

Definition 7.14. Let X rr(¢) be elliptically fibered. We call the vertical compo-
nents of R the very singular fibers.

Example 7.15. Consider Boj (¢) with ¢ = 2, £g = {15 = 1, and all other £; = 0. In
Notation 7.5, the combinatorial type is Y2YsIgs Xg. The polygon Q21 (¢) is shown in
Figure 6 and is decomposed into lattice triangles with black edges. The decomposi-
tion refines the vertical unit strips. The black circles indicate non-singular vertices
and the red triangles are the four (once glued) singular vertices Ya, Ys, Is, Xs.
The intersection complex of X 21(¢) is overlaid on the dual complex, with or-

ange edges for double curves D;; and blue vertices for triple points. The self-

ij“z/. are written in dark green and satisfy the triple point formula

D;; |‘2/ +D;; }3/ = —2 which is necessary for being a Kulikov model. The neon green
i J

intersections D

indicates the section s and the hot pink indicates the very singular fibers, with x NV
indicating that there are N such vertical components of R and 2(x2) indicating
that there are two such vertical components, each doubled.

7C. Moduli of d-semistable divisor models. In this section we understand the
condition of d-semistability on our elliptically fibered surfaces Xo rr(¢). Let Xo
denote a Kulikov surface, that is, a topologically trivial deformation of the central
fiber of a Kulikov model X — (C,0). For example, Xo rr(f) is a Kulikov surface.

Definition 7.16. We say X, is d-semistable if Ext' (%, Ox,) = O(xg)uin -

By [Fri83], Xy is the central fiber of a Kulikov model if and only if it is d-
semistable. We recall some basic statements about d-semistable Kulikov surfaces
from [FS86, Laz08, GHK15b]. Let Xy be a Type III Kulikov surface with irre-
ducible components V; and double curves D;; = V; N V. One defines the lattice of
“numerical Cartier divisors”

L = ker ( D; PICV; — @i<j Pic D”)
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FIGURE 6. A divisor model of type Y5Yglg Xg.

with the homomorphism given by restricting line bundles and applying +1 signs.
The map is surjective over Q by [FS86, Prop. 7.2]. The set of isomorphism classes
of not necessarily d-semistable Type III Kulikov surfaces of the combinatorial type
X is isogenous to Hom(L, C*).

The period point [FS86, Sec. 3] associated to X is an element 1) € Hom(L,C*). It
inputs a collection of line bundles L; € Pic V; whose degrees agree on double curves
L;-D;; = L;-Dj; and measures an obstruction in C* to their gluing together to form
a line bundle on Xj. In particular, the Picard group of the surface X is ker(¢). The
surface is d-semistable iff the following divisors are Cartier: §; = > j D;;—Dj; € L.
Note that ), & = 0. Thus, the d-semistable surfaces correspond to the points of
multiplicative group Hom(IL, C*), where

BiL&i
(&)
There is a symmetric bilinear form on L defined by (R;)? := Y R? which descends to

L because = is null (in fact it generates the null space over Q). Define L := IL/(tors).

Definition 7.17. Call a surface X, with ¢ =1 € Hom(L, C*) a standard surface.

—_
=
[l

L = coker(E — L).

Proposition 7.18. Let X r({) be an elliptically fibered divisor model as in Def-
inition 7.13. The classes of the fibers of the fibration

XO,LR(é) —Pty..-UP!

reduce to the same class in L.
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Proof. Let f; be a fiber of the fibration over a non-nodal point on the ith P'. Define
o= jes; &; where S; denotes the set of components which fiber over a P! with
index less than 4. Then [f;] — [f1] = 0;. Hence [f;] and [f1] define the same class in
L for all ¢, which we denote by f. O

Lemma 7.19. A standard surface Xo Lr(£) is elliptically fibered.

Proof. Consider a vertical chain of rational curves as in Definition 7.10 on Xo rr(¢),
which is not, a priori, elliptically fibered. This vertical chain defines a class f; € L
and it is easy to check that #(f;) is the element of C* which makes the two ends
of the chain match on the appropriate double curve. Since ¥(f;) = 1, the chain
fi closes into a cycle. Since the standard surface is d-semistable, Proposition 7.18
implies all vertical strips of Xy rr(¢) are fibered.

Similarly, there is a unique way to successively glue the components of the section
s into a chain from left to right, except possibly that the section at the right end
doesn’t match up. The mismatch is an element of C* equal to ¥(s). Hence s glues
to a section on the standard surface. O

Proposition 7.20. The moduli space of d-semistable elliptically fibered surfaces
Xo.Lr(?) is isogenous to the torus Hom(L/Zf & Zs,C*) = (C*)'7. In particular,
all deformations which keep f and s Cartier are elliptically fibered.

Proof. By Proposition 7.19, a d-semistable elliptically fibered surface exists. Given
one, the d-semistable topologically trivial deformations are locally parameterized
by the 19-dimensional torus Hom(LL, C*). Those that keep s and f Cartier are thus
identified with the 17-dimensional subtorus for which ¢(f) = ¥(s) = 1. Starting
with the elliptically fibered standard surface Xo rr(¢), the arguments in Lemma
7.19 imply that keeping s and f Cartier preserves the condition of being elliptically
fibered. The converse is also true, so the proposition follows. O

The space of d-semistable deformations of X 1 r(¢) which keep f and s Cartier is
18-dimensional and smooth and the 17-dimensional subspace of topologically trivial
deformations is a smooth divisor.

Definition 7.21. Let X be any Kulikov model. Define for any component V; the
lattice A; := {D;;}* € H%(V;,Z). Then there is an inclusion ¢;: A; < L sending
A E 1~XZ to the numerically Cartier divisor which is A on V; and 0 on all other
components. Now suppose that Xo = Xo r(¢) is elliptically fibered. Define A; to
be the image of A; in L/Zf & Zs and let A := GA,.

Concretely, A; is zero unless Q(V;) > 0 and it maps isomorphically to A; unless
V; is an X-type end surface, in which case the map to A; quotients by Zf.

Remark 7.22. By Proposition 7.20, it is possible to realize any homomorphism
Hom(A, C*) as the restriction of the period map v of some d-semistable elliptically
fibered surface. Following [GHK15b], [Fril5] the period point of the anticanonical
pair (V;,3; Dij;) is the restriction homomorphism

it Ay = Pic(3; Dij) = C*

and this period map is compatible with the inclusion of A; into L in the sense that

1 ot; = ;. Thus, any period point of any component V; can be realized by some

d-semistable elliptically fibered surface, except for the case when V; is an X-type
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end, where the extra condition v;(f) = 1 ensures either of the equivalent conditions
that (1) v; descends to A; or (2) V; is elliptically fibered in class f.

7D. Limits of elliptic fibrations. We prove in this section that Xo r(¢) is a
limit of elliptically fibered K3 surfaces and that the very singular fibers (cf. Defi-
nition 7.14) are the limits of the correct number of singular fibers.

Proposition 7.23. Let X r({) — C be a smoothing of an elliptically fibered
Xo.Lr(£) which keeps f and s Cartier. Then the general fiber is an elliptic K3
surface, the very singular fibers are the limits of the singular fibers, and the section
s is the limit of the section.

Proof. Let f be some fiber. Since we keep s and f Cartier, there are line bundles
Ly and Ly on Xpg(¢) which when restricted to the central fiber are O(s) and
O(f) respectively. By constancy of the Euler characteristic, x(O(s)) = 1 and
x(O(f)) = 2. Since h°(O(s)) = 1, K°(O(f)) = 2 and h°(O(—s)) = h*(O(-f)) =0
on every fiber, it follows from Serre duality that h*(O(s)) = h*(O(f)) = 0 on every
fiber. By Cohomology and Base Change [Har77, I11.12.11] we conclude that H°(Ly)
and H°(L ) surject onto the corresponding spaces of sections on the central fiber.
Thus, we can ensure that s and f are flat limits of curves. Note that for any choice
of f, the line bundle Ly is the same on the general fiber, and so any f is the limit
of a section from the same linear system.

A local analytic model of the smoothing shows that any simple node of a fiber of
Xo.Lr(¢) = PU---UP! lying on a double curve gets smoothed. So any represen-
tative of f which is not very singular is the limit of a smooth genus 1 curve: Each
node lies on the double locus. Similarly, the nodes of s are necessarily smoothed
to give a smooth genus 0 curve. So the general fiber of Xg(¢) is an elliptic K3
surface with fiber and section classes f and s.

Thus, the only fibers which can be limits of singular fibers of the elliptic fibration
are the very singular fibers. If the ends are L, R = 1, the generic choice of Xo rr(¢)
has 24 distinct very singular fibers with only one node not lying on a double curve.
Hence they must be limits of at worst I; Kodaira fibers on a smoothing. By
counting, each very singular fiber is the flat limit of an I; fiber.

It remains to show that the when ¢; > 0 for end type L or R = 2,3 the two
non-reduced vertical components of R are each limits of two singular fibers. This
again follows from counting, along with a monodromy argument which shows these
two components of R must be limits of an equal number of singular fibers.

Finally when Xy 1,z(¢) is not generically chosen, is it a limit of such. This allows
us to determine the multiplicities in all cases. O

Remark 7.24. A consequence of Proposition 7.23 is that on any degeneration of
elliptic K3 surfaces, the limit of any individual fiber or the section in the divisor
or stable model is Cartier (though a priori, only the limit of s +m " f; need be
Cartier).

7E. The monodromy theorem. We begin with a well-known result on the mon-
odromy of Kulikov/nef models:

Theorem 7.25 ([FS86]). Let X — C be a Type II or III degeneration of M-lattice

polarized K3 surfaces. Then the logarithm of monodromy on H?(X;) of a simple

loop enclosing 0 € C' has the form v — (v-6)\—(y-A)J for d isotropic, 6-A = 0, and
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32 = #{triple points of Xo}. Furthermore \,0 € M*. There is a homomorphism
L — {6, A}/ which is an isometry and respects M.

To compute the monodromy invariant A of the degeneration Xpg(¢) requires
constructing an explicit basis of the lattice 5 /4, to coordinatize the cohomology.

Definition 7.26. Let B be a generic IAS%. A wisible surface is a 1-cycle valued
in the integral cotangent sheaf T); B. Concretely, it is a collection of paths «; with
constant covector fields «; along ; such that at the boundaries of the paths, the
vectors a; add to zero in 77 B. When the paths v; are incident to an I; singularity,
the covectors a; must sum to a covector vanishing on the monodromy-invariant
direction. Such a visible surface is notated v = {(y;, ;) }.

Example 7.27. The simplest example of a visible surface is a path connecting two
I; singularities with parallel monodromy-invariant lines (under parallel transport
along the path). Another example is an integral-affine divisor Rya: It is the special
case where the paths are straight lines e;; and the cotangent vector field is n;; times
the primitive integral covector vanishing along the corresponding edge.

Following [Sym03], if B is a generic IAS?, there is a symplectic four-manifold
(S,w) diffeomorphic to a K3 surface, together with u: (S,w) — B a Lagrangian
torus fibration over B that has 24 singular fibers over the I; singularities. From a
visible surface v one can build from cylinders a surface ¥, C S fibering over ~. Its
fundamental class is well-defined in F+/F, where F = [u~!(pt)] is the Lagrangian
fiber class. Its symplectic area can be computed as

Wl (5] = 3 [ astrice

and so in particular, for any integral-affine divisors Ris we have [w] - [Eg,,] = 0.
Furthermore, the symmetric bilinear form

yov={(via)} {8} = > (i -vy)pdet(ai, By
peEYNUV
agrees with the intersection number [X,] - [¥,] in FX/F. The relevance of the
symplectic geometry lies in the following theorem:

Theorem 7.28 (Monodromy Theorem). [EF21, Prop.3.14], [AET19, Thm.8.38]
Suppose that B = T'(Xy) is generic and the dual complex of a Type III Kulikov
model. There is a symplectic K3 manifold S with a Lagrangian torus fibration over
B, and a diffeomorphism ¢ : S — X; to a nearby smooth fiber such that

(1) ¢u[F] =0

(2) dulw] =A
Furthermore, if R is an integral-affine divisor, then R determines both an element
[R] € L and a visible surface g C S. The image of [R] under the map L —
{8, A} /5 from Theorem 7.25 is the same as ¢.[XR].

By choosing a collection of visible surfaces 7, we may produce coordinates on the
lattice 6+ /8 which allow us to determine how the classes A sit relative to various
classes. But, to employ this technique for general Xy we must first factor all
singularities with charge @@ > 1 into I; singularities, and only then apply the
Monodromy Theorem. We describe this process when all ¢; > 0 but the general
case follows from a limit argument.
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Consider Brr(¢). Let fia and sja be the integral-affine divisors corresponding
to the fiber f and section s of Xo rr(¢), respectively. We have described in Table 2
toric models for the Q = 2 and @ = 3 singularities. We may flop all the exceptional
(—1)-curves in these toric models in the smooth threefold X r(¢). This has the
effect of blowing down these (—1)-curves and blowing up the intersection point with
the double curve on the adjacent component. In particular, the left and right ends
of the section s are (—1)-curves which get flopped.

By first making a base change of X r(¢) — C and resolving to a new Kulikov
model, we may ensure that the (—1)-curves get flopped onto toric components. This
gives a new Kulikov model X ; r(¢) with 24 distinct [; singularities. The effect
of these modifications on the dual complex is to first refine the triangulation (the
base change), then factor each singularity into I singularities, moving each one
one unit of lattice length in its monodromy-invariant direction (the flops). These
I -factorization directions are listed for the various end singularities in Table 2.

Definition 7.29. We define 19 visible surfaces 7; € {sa, fIA}J- in the dual complex
['(X; r(f)) as follows: If £;; connects two I singularities, then 7; is the path along
the vector ¢;v; connecting them as in Example 7.27. For ¢ = 1,2,3 and all end
behaviors, the visible surfaces ; are uniquely defined by the following properties:
(1) v is supported on the edge ¢;¥; and the segments along which the I1-
factorization occurs of the singularities at the two ends of ¢;v;.
(2) The support of 77 does not contain the I-factorization direction corre-
sponding to the section s.
(3) ~; is integral, primitive, and [w] - ¥, is a positive integer multiple of ¢;.

Example 7.30. The visible surface y; has weights —1,0, 1 along the I factoriza-
tion directions (1,—3),(1,0), (1, 3) respectively of X3 and is balanced by a unique
choice of covector along the edge ¢1v,. Here the “weight” is the multiplicity of
the primitive covector vanishing on the monodromy-invariant direction of the Iy
singularity at the end of the segment. The covector that £17; carries ends up being
three times the primitive covector vanishing on the monodromy-invariant direction
at the endpoint of ¢1v7.

As we are henceforth concerned only with intersection numbers, we lighten the
notation by simply writing v for ¢.[3,].

Proposition 7.31. The classes A = ¢.[w] and ~; lie in {s, f}* and their intersec-
tion matrices for the three end behaviors are:

L=1|m v w1 L=2|m 7% 7 L=3|m 7
A 30 by As A 200 20y 3 A b 20, Us
Y1 —8 3 0 71 -8 2 0 71 -2 1 0
w | 3 —2 1 oo |2 —4 2 v |1 42
w01 =2 4 |0 2 -2 w0 2 2

We also have v; - vi—1 = 1, ’yf = =2, Ay, = ¥{; fori>4 until the right end.

Proof. Because the weight of the visible surface y; along the edge corresponding to

s1a is always zero, so we have 3., - ¥, = 0. The other ~; are also disjoint from

s1a. Furthermore, all y; are disjoint from some fiber fia and hence ., - Xy, = 0.

Because sia and fia are integral-affine divisors, we have [w] - X5, = [w]- X, =0.
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More generally, the formula wa w = [o;(7i(t)) dt allows us to compute [w]- 2.,
for all ¢. The other intersection numbers ¥, - ¥, can be computed via the defined
intersection form - v on visible surfaces. Applying ¢, to the aforementioned classes
preserves their intersection numbers, giving the tables above. O

Corollary 7.32. After an isometry in T, the classes v; € {s, f}* are:

L=1 v = —BL, v =« fori>2
L=2 T = BL, Y2 = =L, v =« fori>3
L=3 71 = Gy, Y2 = VL V3 = Qi, v =« fori > 4.

Proof. This follows directly from Proposition 7.31. When L = 1,3 the ; span a
lattice isomorphic to II; 17 and hence their intersection matrix determines them
uniquely up to isometry in I'. When L = 2, the lattice spanned by ~; is imprimitive
but after adding the integral visible surface %(71 + 72) it becomes all of II; 17 and
the same logic applies. Note 3 (31, — ) is also integral. O

Corollary 7.33. The monodromy invariant of Xpr(f) is the unique lattice point
A € opr whose coordinates a; = oy - A, by, = B - A\, ¢, = v+ A, bg = Br A,
cr =R A (c¢f. Section 4C) take the values

L End ‘ 61 162 63 ‘ e Zz R ‘ 617 618 619 ‘ R End
1 —bL/3 a9 as aiy aig —bR/3 1
2 br/2 —cr/2 a3z |-+ a; -+ | air —cr/2 br/2 2
3 as CL/Q al aig CR/2 aig 3

Proof. The monodromy invariant A = ¢,[w] is uniquely determined by the tabu-
lated values of A-~; in Proposition 7.31. The result follows from Corollary 7.32. [

Definition 7.34. Let X (\) — (C,0) be a divisor model of a degeneration of elliptic
K3 surfaces whose monodromy invariant is A € opg. That is, X(\) = Xpr(¢) for
an appropriate choice of £ by Proposition 7.23. From Corollary 7.33 such a model
exists whenever

br(A) =br(A) =0 (mod 6),
c(N) =cr(A) =0 (mod 2).
Let Xo(A) be the central fiber and B(\) := I'(Xo())) be the dual complex.

Remark 7.35. The divisor model X () is not combinatorially unique—various
choices were made in its construction, such as how to triangulate B(X). But these
choices play no role, since the function of X (\) in the paper is to apply Theorem
3.1. Tt verifies input (div) and serves an example on which input (d-ss) can be
checked.

7F. Type II models. We now describe Type II divisor models. These correspond
to when the TAS? on the dual complex degenerates to a segment. It can do so in
two ways.

If {L,R} € {2,3} and ¢5 = --- = {15 = 0, the sphere degenerates to a vertical
segment. Define a Type II Kulikov model, of combinatorial type 174}720, associated
to the Type II ray 516 of F;c as follows: B

It is a vertical chain of surfaces. The bottom (Y;) of the chain is Fo. It is
glued to the next component up along a genus 1 curve in the anticanonical class
2(s + 2f) with s the (—2)-section. Next, a sequence of elliptic ruled surfaces glued
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Cones of Fic ‘ Singularities of IAS? | Stable types

E, (0 <k <8)and E] Xi43 and X} Eyx and E}

Dy (0 <k <17) and D Y2Yo1 s and Yo Yy Cy and Cg
A (0< k< 17) Tni1 Ay
EEBES and 516 5(1125(,12 and ﬁi‘;go Esﬁg and 616

TABLE 5. Conversions between the three notations

successively along elliptic sections of the ruling, of self-intersections —8 and 8. At
the top of the chain (Ya() is the blow-up BligFs at 16 points on a genus 1 curve in
the class 2(s + 2f), glued along the strict transform of the curve.

We now give the structure of a divisor model. On the top of the chain, the
divisor R is the sum of the 16 reducible fibers of the ruling and four doubled fibers
tangential to the double curve. On the bottom it is four doubled fibers tangential
to the double curve, plus 16 fibers of the ruling, plus the (—2)-section. On the
intermediate surfaces, it is the sum of 16 fibers and 4 double fibers. The union of
fibers of the rulings on all components form the very singular fibers.

If{L,R} € {1,2,3} and ¢y = --- =g = {17 = - - - {19 = 0, the sphere degenerates
to a horizontal segment. Define a Type II Kulikov model, of combinatorial type
X12X12, associated to the Type Il ray FgFEg of F.. as follows:

The left end ()?12) is a rational elliptic surface. It is glued along a smooth
elliptic fiber to a chain of surfaces isomorphic to E x P! until the right end ()~(12)
is reached, which also rational elliptic. The divisor model is defined as follows:
The section is an exceptional curve at each end, and a section {e} x P! on the
intermediate components. The very singular fibers are the singular fibers of the
elliptic fibrations of the left and right ends.

7G. Stable models and their irreducible components. It remains to describe
the stable model resulting from the divisor model X(A). We describe here the
components which will appear in the stable model, and prove that in Type III their
moduli spaces are affine.

Definition 7.36. The stable type of a cone in F,. is gotten by the following trans-
formations on ADE type: Bold the symbols A,,, E,, E}, replace D,, by C,, and
Dy, D by Cp. Thus the stable type only fails to distinguish between Dy and Dy;
both of them have the stable type Cg. The conversions between the three notations
of the paper are summarized in Table 5.

Definition 7.37. For each possible symbol in the stable type, we define an irre-
ducible stable pair (X, A + eR) as follows:

E, (n > 0), E}: X is the contraction of an elliptically fibered rational surface
with an Ig_, fiber along all components of fibers not meeting a section s. In
particular an Ag_,, is contracted in the Iy_,, fiber to give the nodal curve A. The
divisor R is s plus the images of the singular fibers not equal to A. There is an
induced lattice embedding Ag_, C Es. For k = 1, the inclusion A; C Eg can be
either primitive (for the surface Eq) or imprimitive (for the surface E}).

A, (n>0): Let (X, A”) be the toric anticanonical pair (Fo, s1 + f1 + s2 + f2).
Then X is the result of gluing along the two sections s; and sy via the fibration
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|f1]. The boundary A is the sum of two glued fibers f; and fo and R is another
section s plus n + 1 other nodal fibers.

Restricting to either s; or sy gives a weighted stable curve (P!, g1 + g2 + €Y. p;)
with two boundary points ¢1,¢2 and n + 1 other points p;. Stable degenerations
of A, surfaces are in a bijection with degenerations of such curve pairs and are
describe by the well known Losev-Manin space L,1; [LMO00]. Thus, the moduli of
A, surfaces are reduced to the moduli of curves.

Cn (n >0): Let XV = (Fy, A1 + Az) be an anticanonical pair with A? = 0 and
A% = 4. Then X is the result of gluing X" along the bisection Ay by the involution
switching the intersection points with the fibration of class A;. Here A is A; plus
the gluing of A and R is the (—1)-section s, plus the sum of k nodal glued fibers
not equal to A, plus twice the fibers tangent to As. These fibers become cuspidal
upon gluing.

Restricting to Ay gives a weighted stable curve (P!, g% + ¢~ +¢ Zle(pf +p;))
together with an involution ¢ exchanging ¢* and pf. The stable degenerations of
such curve pairs are the C, curves of Batyrev-Blume [BB11], and they are in a
bijection with stable degenerations of our surface pairs. Thus, as in the A, case,
the moduli of C,, surfaces are reduced to the moduli of curves. One should compare
this to Lemma 4.9.

616: The Hirzebruch surface Fo glued to itself along a smooth genus 1 bisection
of the ruling, in class 2(s + 2f). The divisor is the section, plus double the fibers
tangent to the bisection which get glued to cuspidal curves, plus 16 nodal fibers.
There is no boundary.

Es: A rational elliptic surface contracted along all components of fibers not
meeting a section s. The boundary A is an I fiber, i.e. a smooth elliptic curve
and the divisor R is s plus the sum of the singular fibers.

Given a stable type Sy ---Sn we define a stable surface as follows: For each
symbol S; take the corresponding irreducible stable pair listed above, and glue the
S; together along A such that the sections s glue.

Remark 7.38. The maximal number of irreducible components of a stable pair is
20, achieved for the F,. cone FyA®Ey or TAS? combinatorial type X3I1® X3, whose
stable type is EgA}®Eyp.

Warning 7.39. All of the above stable pairs are Weierstrass fibrations, normal
or non-normal. Thus, they have an elliptic involution ¢, and their moduli can be
analyzed from the perspective of their ¢ quotients, in a manner similar to [AT21].
But the ACE surfaces defined above for the rc polarizing divisor are different from
the ADE surfaces of [AT21]; the latter are adapted to the ramification polarizing
divisor.

Recall the definitions of the root lattices C,, (n > 1) and E,, (n = 6,7,8). The
C,, lattice is the same as the D,, lattice: the sublattice of Z"(—1) of vectors with
even sum of coordinates. The Weyl group W(C,,) is the group Z% x S, of signed
permutations, and W (D,,) is the index 2 subgroup Z4 ' x.S,, of signed permutations
with an even number of sign changes.

FE,, is the lattice K& C PicV for a smooth del Pezzo surface V' of Picard rank
p =n+1. Their Weyl groups are defined to be generated by reflections in the (—2)-
vectors. For some small n these definitions give root lattices Es = D5, By = Ay,
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FE3 = Ay A;. For lower n the definitions still make sense but may produce non-root
lattices. In addition, for p = 2 there are two del Pezzo surfaces surfaces F; and Fy,
giving F1 and E respectively. We list the lattices and their Weyl groups for these
special cases in Table 6.

TABLE 6. Lattices Eq, F{, E2 and their Weyl groups

Symbol Lattice Group Symbol Lattice Group

B (-8 1 E, (‘f _14) WAy
Bl (-2 W4y

Definition 7.40. For a Dynkin type A,,C,, E,, E], we denote by A the corre-
sponding root lattice, T'= Hom(A, C*) the torus with this character group, and by
W the Weyl group.

Theorem 7.41. The coarse moduli of stable pairs of type Ay, Cn, En, E} is T/W.
The moduli space of stable pairs of a fized stable type Sy ---Sn is the product of
the moduli spaces for the pairs of types Si, divided by the LR involution if the type
is left-right symmetric.

Proof. The easiest cases are A, and C,, since they are reduced to the curve case.
For A, the moduli of such choices is simply a choice of n+1 fibers not equal to either
component of A, up to the C*-action on the base. This gives C*\(C*)"*1/S, 1 =
Hom(A,,C*)/W(A,).

For C,, surfaces the moduli is given by choosing n fibers y1,...,y, € C not
equal to the irreducible fiber A at oo, modulo S, and the involution (y;) —
(—yi). Using the maps y; = z; + %, this is the same as choosing (z1,...,z,) €

Hom(Z™,C*)/(£) = Hom(C,,, C*) modulo S, x Z} = W(C,).
The minimal resolution of an E, or Ej surface is a rational elliptic surface Y
with a section s and anticanonical Ig_,, fiber D = Dy + -+ 4+ Dg_,,. One has

E,={D1,...,Dg_n}*/f ={s,Dy,...,Dg_p}.

Contracting s then successively contracting all but one component of D, we see
that E,, = (Ky)t on a del Pezzo surface V, so this is the same definition of E,, as
above. The period torus for the anticanonical pairs preserving the elliptic fibration
is Hom(E,,, C*). Deformations of such pairs always preserve the (—1)-section s.

The period point py € Hom(E,, C*) is given by the restriction map on line
bundles E, — Pic’(D) = C*. In the current setting, the Torelli theorem for
anticanonical pairs [GHK15b, Thm.1.8], [Fril5, Thm.8.7] implies that two such
surfaces Y with marked section s and fiber D are isomorphic if and only if there
is an element of the finite reflection group W (E,,) relating their period points ¢y .
Thus the moduli space is Hom(E,,C*)/W(E,,).

For a stable surfaces of type S7 - - - SN, the gluings of the components are unique
up to an isomorphism, since the components form a chain. So the moduli space is
the product of the moduli spaces for the irreducible components, modulo the LR
involution if the type is symmetric. U

Corollary 7.42. A type III stratum in Fe of a fized stable type is affine.
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Remark 7.43. For an IAS? with a Y2Y54,, or Y25, . end as in Table 2 and Nota-
tion 7.5, there is an irreducible component V of a divisor model defining singularity
Y42 or Yy, of the integral-affine structure. For Yo (resp. Y3, ), one begins
with an anticanonical pair (F1, A7 + Ag) (resp. (Fo, A; + Ag)), A2 =0, A3 =4
and blows up n points on Ay plus some corner blowups. For n = 0 these two
deformation types are distinct; but once n > 0 they coincide (which is why we do
not require the notation Yy, for n > 0).

For n > 0, the orthogonal complement {A;, Ay} C PicV to the boundary is the
D,,-lattice, and the group of admissible monodromies is W (D,,), so the moduli space
of anticanonical pairs is T'(D,,)/W(D,,). Exchanging a pair of points p1,ps € As
which are blown up to their involution partners ¢p;, tp2 gives an anticanonical pair
with the same period modulo W(D,,) but changing only one point p to tp changes
the period and the isomorphism type of the surface.

However, on the stable model this information is lost: exchanging any point p
to tp gives the same fiber. So the moduli space of stable pairs is T'(C,,)/W(C,,),
the quotient of T'(D,,)/W(D,) by an involution. For n = 0 there are two types
of anticanonical pairs but only one type of stable pairs, so the map to the stable
moduli is again 2 : 1.

Remark 7.44. Since the stable degenerations of the A,, and C,, surfaces are
compatible with the degenerations of the A, and C,, curves, their the moduli
spaces come with compactifications of the form T/W, where T is a toric variety
for the Coxeter fan of type A, resp. C. These are moduli spaces of Losev-Manin
curves [LM00] and Batyrev-Blume curves [BB11].

For the moduli of E, surfaces, taking the star of the corresponding cone in F;.
and the closure of T/W in e provides a stable slc pair compactification T /W,
where T is a toric variety for the fan obtained from the E,, Coxeter fan by subdiving
a Weyl chamber by the hyperplanes 8+, v+ as in Fig. 2. This is a very interesting
fan indeed which we investigate further in a forthcoming paper.

Notation 7.45. We now study the moduli stack of pairs of type S. To do so,
we introduce the following notations: Let G be a discrete group acting properly
discontinuously on an analytic space X. We notate the coarse space of the quotient
by X/G and we notate the stack (orbifold) quotient by [X : G].

For our purposes, we require a more refined notion. Suppose we are given a
reflection subgroup W C G corresponding to a root system R and for every root
a € R a divisor A(a) C X contained in the fixed locus of the reflection s,. For
any x € X consider the set of roots R, = {a | * € A(a)} and the subgroup
W(R;) C G in the stabilizer of x generated by the reflections s, with a € R,.
Assume that W(R,) is a normal subgroup of G, for all . Under these conditions,
we define [X :g G as follows.

For each point x € X, there is an open G,-invariant neighborhood U, > x where
the G -action is approximated by the linear action of G on the tangent space T,
and which satisfies following condition: for any y € U, one has G, C G, R, C Ry,
and W(R,)NG, = W(R,). This neighborhood is obtained by applying Luna’s slice
theorem and by successfully removing the closed subsets where the above conditions
fail. Now define

U, :r G] = [Us/W(Ry) : Gaf/W(Ry)].
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In words: we take the coarse quotient by W(R,) first, and then the stack quotient
by the remaining group G, /W (R,,).

At this point, we recall the theorem of Chevalley, Shephard and Todd [Che55,
ST54]: if G is a finite group acting linearly on a complex vector space then V/G is
smooth iff G is generated by pseudoreflections, i.e. linear transformations fixing a
hyperplane pointwise. For a Weyl group W pseudoreflections are reflections s,. In
particular, if U, is smooth then so is U, /W (R,).

For any y € U, we can choose an open neighborhood U, > y in the same way
as above. Since W(R,) N G, = W(R,), the map U,/W(R,) — U,/W(R,) is
unramified. Thus, the map [Uy :r G] = [U, :g G] is an open embedding, and the
stacks [U, :g G] patch together to define the stack [X :z GI.

The coarse moduli space of [X :p G] is X/G, same as for [X : G], but the stack
structure is different: the local reflection groups W (R, ) are not part of the inertia.

The reason for introducing this notation is that it concisely describes the types
of moduli stacks which occur in the presence of a Torelli type theorem, for a more
detailed discussion, see [AE21, Rem. 2.36, Thm. 8.12]. For instance, the moduli
stack of lattice-polarized ADE K3 surfaces is [D :g G| where D is the period
domain, G is the appropriate arithmetic subgroup of O(2,19), and the root system
R consists of the vectors o with a? = —2.

We also prove the following Lemma. Using the notations of [Bou02], let R be
a root system with a root lattice @), weight lattice P and Weyl group W. De-
note by pg the finite abelian group Hom(P/Q,C*). Then one has the following
commutative diagram

Hom(P,C*) —— Hom(P,C*)/W
(7.1) J{/HR J{/NR
Hom(Q,C*) —— Hom(Q,C*)/W

It is a basic result of the invariant theory of multiplicative type that one has
Hom(P,C*)/W = A", with the coordinates on A™ equal to the characters of the
fundamental weights, see e.g. [Bou05, Ch.8, §7, Thm.2].

For each root o € @, let Ag () be the kernel of the homomorphism Hom(Q, C*) —
Hom(Za,C*) = C*. Let Ap(«) be its preimage in Hom (P, C*). We use these divi-
sors Ag(a), Ap(a) to define the :p quotients as in Notation 7.45.

Lemma 7.46. One has [Hom(Q,C*) :gp W] = [Hom(P,C*)/W : ug] = [A™ : ug].

Proof. The ramification divisor of Hom(P, C*) — A™ is UscrAp(a), see e.g. [Ste65,
6.4, 6.8]. An easy direct computation shows that the fixed locus of the reflection
Sq on the weight lattice torus Hom(P,C*) is Ap(a).

For x € Hom(P,C*), let T, be the tangent space at z. Since the quotient
Hom(P,C*)/W = A™ is smooth, the quotient T,;/W, is smooth as well (this fol-
lows from a baby version of Luna’s slice theorem). By the theorem of Chevalley,
Shephard and Todd, T, /W, is smooth if and only if W, is generated by pseudo-
reflections. Alternatively, we can cite [Bou02], Exercise 7 to Ch.V §5. Pseudoreflec-
tions in W are reflections. So W, is generated by the reflections that it contains.
(We thank Michel Brion for this argument.)
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Now it follows that [Hom(P,C*) :g W] = Hom(P,C*)/W = A™ and that
[Hom(Q,C*) :g W] = [Hom(P,C*) :g (W x ur)] = [A" : ug].
([

Remark 7.47. For the action of W on the root lattice torus Hom(Q,C*) it is in
general not true that the stabilizer W,, coincides with W (R,,) for all z. For example,
for R = Ay and W = S5 there are two points with stabilizer W, = Z3 and trivial
W(R,). Also, an explicit computation shows that the fixed locus of a reflection s,
on Hom(@Q, C*) is Ag(a) if and only if « is primitive in the weight lattice P. This
holds for all irreducible root ADE lattices except for Ay, in which case Ag(«) is a
single point {1} while the fixed locus of the involution z — 27! is {+1}.

For a simply laced ADE root system one has @ = Hom(P,Z). For the C,, root
system one has P(C,) = Z™ and Q(C,,) the sublattice of vectors with even sums,
so that P/Q = Z. To simplify notation, we frequently denote the root lattice by
the same symbol as the root system, and write A,, etc. instead of Q(A4,,) etc.

Theorem 7.48. The moduli stack of irreducible pairs of type S is a pa-gerbe over:

S Stack Group action

An,n>0 [A":pny] acting as pr: (¢;) = (), &1 =1
Cn,n>0 [A™: o] (¢;) = (—¢i)

En,n>3 [A":pg_yn] acting as pgp = Hom(P/Q,G,,)

E2 Gm X Al

El Gm

E} (A pg]  for pa = (g), g(c) = —c
Eo [pt © 3]

Here, for the Ay pairs we fix the left-right orientation.

Proof. For A,,C, and for E, with n > 3 the result is the direct application of
Lemma 7.46. For smaller E,, we use the explicit normal forms of the surfaces.

For A,, Hom(P,C*) is the same as the choice of n + 1 points p; € C* with
[Ip: = 1, with a choice of the origin, and Hom(P,C*)/W = A" is the set of
coefficients (¢;) in the equation [J(z +p;) = 1+ c12x + ... + cpz™ + 2" which are
well defined up to rescaling to (¢;) — (£%c;).

The data for the surface C,, Hom(P,C*) = (C*)™ is the data for the n points
pi on the bisection By \ {0,00}. These points are well defined up to switching
p?‘ - p, = Lp;" and switching pj‘ — p;[ for ¢ # j. The quotient is A™ with
the coefficients (c;) giving the equation 2" + c;2"~! + -+ + ¢, of the fibers on
P\ {0,00} /0 = P\ o0.

Alternatively, Hom(Q,C*) is the choice of n points p; € C* defined up to
p — —p, and the moduli stack is [Hom(Q,C*) :g W], giving the same result by
Lemma 7.46.

The normal forms for Eg, Er, Eg were given in [AT21]. Here, we extend them to
E, with 0 < k£ <5 and E}. The quotient by the elliptic involution is X/ugs = Fa,
the double cover is branched in the (—2)-section and a trisection. After contracting
the (—2)-section we get P(1,1,2) and the equation of the trisection is a polynomial
f(z,y) of degree 6, where degz = 1 and degy = 2 so that f(x,y) is a cubic in y.
In affine coordinates X has the equation 22 + f(z,y) = 0.
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For a Weierstrass surface V' — P!, its minimal resolution V has an I,, Kodaira
fiber with n > 1 over zg € P! iff the equation f(zg,y) has a double and a single
roots in y, see e.g. [Mir89, IV.2.2]. Putting the double root at y = 0 and the single
root at y = i, we can assume that f(zo,y) = y> — y?/4. If the nodal fiber is at
xo = 00, this means that the degree 6 part of f(x,y) is y® — (2y)?/4. By making
substitutions  —  + a and y — y + bx + ¢ and completing the square, f(x,y) can
be put in the following form, unique up to rescaling z,y (cf. [AT21, Sec. 5]):

=y +ch?+cy— 1(zy — N2+ co + c1x + cox® 4 ez + cax? + csa”.

This surface has an I,, fiber iff its discriminant satisfies mult,, A(z) = n. For
2o = oo this means that deg A(z) = 12 — n. Putting f(z,y) in the Weierstrass
form and computing the normalized discriminant A,,(z) = —24(44% + 27B?), we
find the following. One has deg A, (x) < 11 and the coefficient of 1! in A,, is cs.
Thus, the surface V is of type Eg, (i.e. with I fiber at 29 = o) iff ¢5 # 0, in which
case we can set c5 = 1. If ¢5 = 0 then coeff(z°,A,,) = ¢4. Thus V has type Ey
(i.e. with Iy fiber at zo = 00) iff ¢5 = 0 and ¢4 # 0, and we can set ¢4 = 1. This
argument continues for Eg, ..., Es.

For Ez, one must have c5 = - -+ = ¢y = 0 and then coeff(2®, A,,) = ¢;¢”. We can
normalize by setting ¢’/ = 1 and take any ¢j # 0.

For k = 1 one must have ¢j¢” = 0. Choosing ¢; = 0 gives coeff(z%, A,) =
ch(c”)2. We normalize by setting ¢’ = 1 and ¢} # 0 and call this E;. Choosing
¢’ = 0 gives coeff(z*, A,,) = (c})?. Normalizing ¢; = 1 gives E].

Finally, for £ = 0 one must have ¢} = ¢4, = 0, and then we normalize ¢/ = 1. We
call this case Eg. When ¢} = ¢’ = 0, one has A, (z) =0, so all fibers are singular.
This is a nonnormal surface of type Cp; one may call the fiber at infinity /..

TABLE 7. Normal forms of rational elliptic surfaces with I,, fiber

S I, |y ¢ ¢ e 1 3 ez ey ¢z a"y™ G
Es I, * *  * * * * * x 1 b 1
E; I, * *  x ok x x % 1 xt 12
E¢ I * * % x x % 1 a3 13
Es I, * * * *x x 1 x? m
Ey Is * * *  x 1 T us
E3 Iﬁ * * * 1 1 U6
E: Ir x #0 1 zy w3
E:i Is |#0 1 xy 13
El Is | » 1 Yy Ha
Eo Iy 1 xy M3
Co I | 1 y? fi2

We summarize the results in Table 7 and Fig. 7. The star means the coefficient is
arbitrary and we don’t write zeros. The normal forms of this table are unique up to
the subgroup G of (C*)? acting on x,y for which y3 +2%y? +2"y™ is semi-invariant.
The monomial £y and the group G are given the last two columns. Taking the
quotient of A™, resp. of G,, x A*~! by G gives the stacks in the statement of the
theorem. For Eo and E;, when a G, summand is present, the us-action is free.

O
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FIGURE 7. Normal forms of rational elliptic surfaces with I,, fiber

For the Type II strata in F™° we have the following:

Theorem 7.49. For the irreducible pairs the moduli stack of Zs-quotients of the
stable pairs by the elliptic involution are

Es : [Hom(Es, &) :g W(Es)], Cie : [Hom(Cis, &) :r W (Chs),

where € is the universal family of elliptic curves over their moduli j-stack. For the
stable pairs of these types the moduli stack is a Zs-gerbe over these.
For the surfaces of type EgEg the moduli stack is [Hom(E3, &) :r W(E3) x Za).

Proof. By Torelli theorem for anticanonical pairs [GHK15b, Fril5], for a fixed ellip-
tic curve E, the moduli of Es surfaces is the :r-quotient of Hom(D+/f, E) by the
group of admissible monodromies, where D ~ f is the boundary, a smooth elliptic
curve. We have an identification D+ /f = {D, s}* = Es, and the group is W (FEg).
A surface of type EsEs is glued from two such surfaces along the boundary D ~ FE,
so we get the product above. The additional Zs is the left-right symmetry. Varying
the elliptic curve, for the stack we get the same formulas with E replaced by the
universal elliptic curve over the moduli stack of elliptic curves.

A pair (X, eR) of type C16 is F with a smooth bisection D ~ 2s5+4f, an elliptic
curve E, plus 16 fibers. The data of the 16 fibers gives a point (x1,...,z16) € E'6
but defined only up to a 2-torsion (an element of F[2]), permuting the points, and
dividing by the elliptic involution. One has the exact sequences

0—Ci—2"% =7y -0 0— E[2] = E'®* = Hom(Cy6, E) — 0.

Therefore a point (z;) mod E[2] is an element of Hom(Cig, E), and we take the
:r-quotient of this space by Z1¢ x S16 = W (Ci¢). Varying the elliptic curve E gives
the same formulas with F replaced by the universal family £. (]

Remark 7.50. The commutative diagram (7.1) holds with C* replaced by an
elliptic curve E. However, it is no longer true in general that W, = W(R,), see
e.g. the example in [Loo76, 3.6]. The Chevalley-Shephard-Todd’s theorem implies
that one has W,, = W(R,) for all z iff the quotient Hom(P, E)/W is smooth. By
Looijenga [Loo76], Hom(P, E)/W is a weighted projective space with the weights
equal to the coefficients of highest root, and 1. It is frequently singular, e.g. for
R=D, (n>4)and E, (n =6,7,8). Then the coarse quotient Hom(P, E)/W is
singular but the stack [Hom(P, E) :r W] is smooth since it has an étale cover by
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the local quotients U, /W (R,) as in (7.45), which are smooth. Thus, in this case
the weighted projective spaces may be considered as smooth orbifolds instead of as
singular varieties.

For Eg, Hom(P, E)/W = P(1,22,32,4%,5,6) and for C, it is P(1%,2"~1). Thus,
the alternative description of the boundary divisors is as a family of stacky weighted
projective spaces over the j-stack of elliptic curves.

7TH. Proof of main theorem. In this section we assemble the inputs necessary
to apply Theorem 3.1. First, we must show:

Proposition 7.51. Let X(\) — (C,0) be a divisor model with monodromy invari-
ant \. The stable model X ()\) (cf. Definition 7.36) has stable type gotten from the
combinatorial type (cf. Notation 7.5) of the cone containing .

Furthermore, it is possible to vary X(\) — (C,0) so that any stable surface of
the given combinatorial type is realized as the stable model X ().

Proof. The first statement follows from seeing which curves are contracted by the
linear system of L, := n(s+m>_ f;) for n > 4 on Xo(A\). A curve Z C Xo())
is contracted iff L, - Z = 0. Thus the stable model X(\) is the result of: (1)
contracting the vertical ruling on all components V; not containing the section, then
(2) contracting the components V; containing the section but no marked fibers along
the horizontal ruling. The resulting surface X()\) has the stable type Sy ---Sn
associated to the cone containing .

‘We now prove the second statement. First observe that the lattice A of Definition
7.21 is exactly given by the direct sum

A=@;(Aor Dor E),,

corresponding to the components along the top edge of Prr({), i.e. the summands
A; of A are in fact the character lattices associated to the corresponding symbol S;
of the stable type, except for switching C with D, see Remark 7.43.

By Remark 7.22, there is an elliptically fibered d-semistable surface Xo(A) with
period map ¢ : L/Zf ® Zs — C* realizing any element ’(/J‘A € Hom(A,C*) and
hence any period point of the corresponding anticanonical pair (V;, Y j D;;), subject
to the condition that if V; is an X-type end, it is elliptically fibered.

The element ¢| , determines uniquely the locations of the very singular fibers of
Xo(A) in exactly the same manner that a point in the torus Hom(A;, C*) determines
the modulus of a stable surface: For the singularity v; = I,,4+1 the relative location
of two very singular fibers of X(\) containing the exceptional curves F; and F on
the component V; is ¢(E;— Es) € C* and hence w‘A‘ € Hom(A4,,, C*) determines the
relative locations of the very singular fibers interselcting V;. A similar computation
holds for type YoY21x and Y2Yy and Hom(D,,,C*). By definition, the period point
of an elliptically fibered anticanonical pair of type X3 lies in Hom(E,,C*). It
(inexplicitly) determines the location of the singular fibers.

Finally, by Proposition 7.23, the very singular fibers on Xy(\) are the limits of
singular fibers of the elliptic fibration on the general fiber. These curves contract to
the limits of the singular fibers on the stable model. So the restricted period point
1,[)| A € Hom(A,C*) is compatible with the computation of stable moduli made in
Theorem 7.41. (]

Lemma 7.52. The dimensions of a stratum of F and the dimension of the
corresponding moduli space of stable surfaces of fized type are equal. For Type III
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strata, the former is equal to 20 — (length of its combinatorial type), and the latter
to the sum of its Dynkin indices.

Proof. The dimension of a stratum of the toroidal compactification is the codimen-
sion of the corresponding cone. The dimensions of strata in F are computed in
Theorem 7.41. For type III cones the codimension of the cone and the dimension
of the corresponding stable stratum both equal to the sum of the indices n; in the
label (Ey,|E1|Dyy|Dy)An, - .. Any (Enyyy |[E1|Dhy o, |Dg), resp. with D replaced by
C and all letters bolded. _

For the Type II cones FgFEg and D the strata in 7 are divisors, and the
dimensions of their image strata ng]s, (~316 inF are8+8+1=16+1=17. O

MNk+1

Theorem 7.53. The normalization of the stable pair compactification F s the
toroidal compactification e

Proof. We apply Theorem 3.1 to the case at hand. Taking the divisor model X (\)
of Definition 7.34 gives input (div) for the integer n = 6. Proposition 7.20 implies
input (d-ss). Next, the first part of Proposition 7.51 gives input (fan). By (div)

and (d-ss), all strata of stable surfaces are been enumerated. Thus, input (qaff)
—=TrcC

reduces to Corollary 7.42. We conclude that there is a morphism e LT
Furthermore, this morphism sends toroidal strata to the strata of the correspond-
ing stable types. Thus, the additional condition (dim) follows from Lemma 7.52 if
we can prove that the morphisms on strata surject onto the moduli spaces of sta-
ble pairs. This follows from the second part of Proposition 7.51, as the restricted
period ¢|A encodes the image of 0 under the period map (C,0) — e Corollary
3.2 implies the theorem. [

Question 7.54. Having described the normalization of the stable pair compactifi-
cations for R™™ and R' it is natural to ask: Is the normalization of the compact-
ification for tR™™ + (1 — ¢)R' toroidal for all ¢ € [0,1]? At what values of ¢ does
the compactification change, and how?

71. The normalization map. Let S;---Sn be a Type III stable type. By
Thm. 7.41 the stratum in ' of stable pairs (X, eR) of this type is

(T/WACE) |Gy
where AACF = @1 | A; is the sum of the ACE lattices of Si-type, T' = Hom(A, C*)
is the corresponding torus, WAYF = @W (A;) is the Weyl group, and Grr = Zs if

the type is left-right symmetric and trivial otherwise.
Recall once again that the C,, = D,, as lattices but W(C,,)/W (D) = Zs.

Definition 7.55. For a stable type S1...Sn we have an embedding of the cor-
responding ADE lattice A C II; 17: the lattices A; are generated by the explicit
elements of II; 17, the roots o; and the vectors 8, Br, 7o, Yr- The generators of
the By and D lattices are 3 and ~ respectively. We denote by A2 the saturation
of A in I 17, and by 75" = Hom(A%**, C*) the corresponding torus.

Theorem 7.56. For the type III strata in F}—m and F'* the following holds:

(1) The only strata of Vs glued by the normalization morphism e LT
are the strata Do ---, D{--- (on either left and right ends) both mapping
to the Cq - -+ stratum of .
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(2) For a cone o of the fan F.. with stable type Sq ---SN, the corresponding
stratum in T is (T2t JWADPE) |G | where Gfg = 7o or 1 depending on
whether the cone o is left-right symmetric or not, i.e. o and o are in the
same W (11 17)-orbit for the involution v, O (11} 17)/W (11 17) = (1).

(3) The map of strata

(Tsat/WADE)/GfR SN (T/WACE)/GLR

is defined by the homomorphism of tori T5 — T, dual to the lattice em-
bedding A — A%®* and by the 2 : 1 map for each D,, — Cy type with n > 0.

Proof. (1) follows from Def. 7.36.

(2) The stratum in 7™ is the the torus orbit corresponding to o, which is 752"
as defined, modulo the stabilizer of o in O" (I 17), equal to the stabilizer of ¢ in
W(Ily,17) plus the involution ¢ if the cone o is symmetric. Stabyy (i, ,,)(0) is the
stabilizer of the minimal Coxeter cone containing it.

We observe that for each of the cones with the end behavior E;, Ei, Es the
stabilizer is the same as the Weyl group of the lattice for its stable type Eq, Ef,
E., as given in Table 6. For the cones Ey, Dy, D} with stable types Eg, Co the
stabilizers are trivial. The other cones of F,. are already Coxeter cones and for
them the stabilizer is obviously the corresponding Weyl group.

(3) As in the proof of Theorem 3.1, we pick a monodromy invariant A\ € ¢ in
the interior of the cone and consider a family of divisor models over the partial

. . L=A . —=A .
toroidal compactification F~ with a boundary divisor A. The space F" is an open

subset of the blowup of F}—m at the stratum corresponding to A. In terms of the
character groups this gives embeddings o+ — A+ — IT4 17.

On the other hand, as in Section 7C there is a period map A — Hom(IL, C*),
where L = ker ( ®; PicV; = @< Pic D;;) and L = coker(E — L). In terms of the
character lattices it corresponds to the homomorphism L — A*.

As in the proof of Prop. 7.51, the composition of this period map and the pro-
jection to the periods of the irreducible components of (Xg, Rg) is given by the
embedding of the character lattices A = ®A; — L. Putting this together, we have
homomorphisms

ot =M =T ,; and A =L — AL
For a one-parameter degeneration (X, R) — (5,0) of K3 surfaces the period

point of the central fiber Xy over A C F is determined by the limit mixed Hodge
structure. By [FS86, Prop. 3.4] the map A — Hom(L,C*) is defined by the mixed
Hodge structure of X. It follows that the map of strata is given by the map of tori
with the character groups A — ot N 11y 7.

By comparing the dimensions of the spaces, it follows that the image of A ® R
in A C ;17 ®Ris ot and so (im A)** = ot NIy 17 = AS2, O

It remains to find the saturation AS3. This is enough to do for the cones with
end behavior 1 and 3, since the strata for the end behaviors 2 and 3 are identified

—Fre = T
by the map F — F'°. For these cones, the description is given by the next

lemma (with a trivial proof), which we apply to the vectors —fr, as, a3 ..., resp.
2, YL, 01, ... that satisfy the linear relations (4.2).
Lemma 7.57. Suppose that vectors vi,...,vig generate 11y 17 with a single linear

relation 2;21 nv; =0, n; € Z, ged(ny, ..., n19) = 1. For a subset I C {1,...,19}
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let A = (v;, i € I). Then A***/A = Z/dZ, where d = ged(nj, j & I). We use the
convention that ged(0,...,0) = 1.

Finally, we give a description of the normalization map for the Type II strata.

Theorem 7.58. The EgEg~ stratum of 7l maps to the EgEg stratum of F -
isomorphically. For D¢ — Cig, the map of the strata has degree 8 and it is

[HOIH(DE;?(S‘) ‘R W(Dm)] — [HOHI(ClG,g) ‘R W(ClG)]

where & is the universal elliptic curve over the j-stack and Dy = Ilg 16.

Proof. The 1-cusps of the Baily-Borel compactification FBB correspond to the prim-
itive isotropic planes J C Il 5. One has Il3 15 ~ J & A @ J for the unimodular

lattice A = J+/J, and the respective stratum in Fﬁc is (the coarse moduli space
of) [Hom(A, &) : O(A)], cf. [AMRT?75, CDO7].

For E2 one has A = E2 and O(E3) = W (E2) x Zs, so we get the same strata in
T oand F° by Theorem 7.49. For D1 one has A = Dis =16, 2 2 : 1 extension

of Dyg, and O(D;;) = W(Djg), an index 2 subgroup of W (Cjg). So the map of
strata is a composition of quotients by £[2] and Zs and it has degree 4-2 =8. O
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