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THE FLEX DIVISOR OF A K3 SURFACE

VALERY ALEXEEV AND PHILIP ENGEL

Abstract. The flex divisor Rflex of a primitively polarized K3 surface (X,L)
is, generically, the set of all points x ∈ X for which there exists a pencil V ⊂ |L|
whose base locus is {x}. We show that if L2 = 2d then Rflex ∈ |ndL| with

nd =
(2d)!(2d + 1)!

d!2(d + 1)!2
= (2d + 1)C(d)2 ,

where C(d) is the Catalan number. We also show that there is a well-defined
notion of flex divisor over the whole moduli space F2d of polarized K3 surfaces.

1. Introduction

Let (X,L) be a primitively polarized K3 surface of degree 2d. Recent work of the
authors on compactification of the moduli space F2d of such surfaces has highlighted
the importance of a canonical choice of polarizing divisor: An algebraically varying
choice of divisor R ∈ |nL| on the generic polarized K3 surface. If this choice of
divisor extends over all of F2d then it gives rise to a modular compactification

F2d ↪→ F
R
2d.

The compactification is constructed by taking the closure of the space of pairs
(X, εR) in the moduli space of stable slc pairs, for some small ε > 0.

By the main theorem of [AE21], the normalization of F
R
2d is semitoroidal when-

ever R satisfies a property called recognizability. Thus, the search for modular
toroidal compactifications of F2d is intimately related to finding canonical choices
of polarizing divisor, and verifying that those choices are recognizable.

One infinite series of divisors, ranging over all degrees 2d, is the rational curve
divisor. On a generic K3 surface (X,L) it can be defined as

Rrc :=
∑

C∈|L|
rational

C

and was proven to be recognizable in [AE21]. By the famous Yau-Zaslow formula
[YZ96, Bea99], Rrc ∈ |ndL| where nd = [qd+1]

∏

n≥1(1− qn)−24.
Claire Voisin suggested to the authors a second series of divisors, which we call

here the flex divisor Rflex. It was first considered by Welters [Wel81] for a quartic
K3 surface, who called it the curve of hyperflexes. On the generic (X,L) it is
defined as the set of all points x ∈ X for which there exists a pencil V ∈ |L|
whose set-thereotic base locus is {x}. When |L| defines an embedding X ↪→ Pg

with g = d + 1, which is the case for generic (X,L) ∈ F2d when d ≥ 2, the flex
divisor can be concretely thought of as the set of points x ∈ X ⊂ Pg for which
there exists a flex space: A codimension 2 linear subspace of Pg intersecting X at
only the point x.
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2 VALERY ALEXEEV AND PHILIP ENGEL

Our first result hints towards a positive answer on the question of whether Rflex

is recognizable. Concretely, we show:

Theorem 1.1. There is a canonical choice of divisor Rflex varying algebraically
over all of F2d and giving the flex divisor on the generic K3 surface (X,L).

The theorem is not obvious, because it is not clear if the flex points form a
subvariety of X of the expected dimension, which is one. Additionally, the flex
divisor may have multiple components and one must determine their multiplicities.
Perhaps most importantly, sometimes points in Rflex as in Theorem 1.1 are not flex
under the naive definition! This occurs on a quartic surface containing a line—
the points on the line are not flex according to the naive definition because the
relevant pencil V contains the whole line as a base curve. But the line appears as
a component of the flex divisor, see Example 3.14.

The flex divisor is notably an example of a constant cycle curve [Huy14]: One
whose points all have the same class in the Chow group of zero-cycles CH0(X).
The method of proof of Theorem 1.1 suggests strongly:

Conjecture 1.2. Let R be a canonical choice of polarizing divisor for F2d. If R is
a constant cycle curve, then it is recognizable.

A resolution of this conjecture would unify various results about recognizable
divisors, such as [AET19], [ABE20], [AE21], and [AEH21].

Our second result is an analogue of the Yau-Zaslow formula. That is, we deter-
mine in what multiple of the polarization the flex divisor lives, generalizing known
results in the cases d = 1, 2.

Theorem 1.3. Let (X,L) be a K3 surface of degree 2d. Then Rflex ∈ |ndL| with

nd =
(2d)!(2d+ 1)!

d!2(d+ 1)!2
= (2d+ 1)C(d)2,

where C(d) is the Catalan number.

d 1 2 3 4 5 6 7 8 9
nd 3 20 175 1764 19404 226512 2760615 34763300 449141836

Table 1. Flex divisor classes

Table 1 tabulates the first nine values of nd. The value n1 = 3 is well-known,
see Example 3.13, while the value n2 = 20 has been computed by various authors
[Huy14, Prop. 8.8], [Wit14, Cor. 2.4.6].

The summary of the paper is as follows: Section 2 shows that the flex divisor
is well-defined and extends to a divisor over all of F2d and Section 3 computes
the multiple nd of the primitive polarization in which the flex divisor lives, using
intersection theory on the Hilbert scheme X [2d] of the K3 surface.

2. Well-definedness

Definition 2.1. We say (X,L) is a polarized K3 surface of degree 2d if X is a
K3 surface with ADE singularities, and L → X is a primitive, ample line bundle
satisfying L2 = 2d.

Let F2d denote the moduli stack of polarized K3 surfaces over C. It is a smooth,
irreducible, Deligne-Mumford stack of dimension 19.
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Definition 2.2. A point x ∈ X is flex if there exists a pencil V ⊂ |L| whose base
locus is the singleton {x}.

Let LK3 denote the unique even, unimodular lattice of signature (3, 19) and fix
a primitive vector v ∈ LK3 of norm v2 = 2d. Define

D := P{x ∈ v⊥ ⊗ C
∣
∣ x · x = 0, x · x > 0} and

Γ := {γ ∈ O(LK3)
∣
∣ γ(v) = v}.

By the Torelli theorem, the coarse space of F2d is the arithmetic quotient D/Γ.

Definition 2.3. A Heegner divisor in D/Γ is the image of a hyperplane section
w⊥ ∩ D for some vector w ∈ LK3 \ Zv.

Proposition 2.4. Let S ⊂ F2d denote the polarized K3 surfaces (X,L) for which
there exists a pencil V ⊂ |L| containing a base curve. Then S is contained in a
finite union of Heegner divisors.

Proof. The condition that |L| contain a pencil with a base curve is an algebraic
condition, which is easily seen to be closed on F2d.

Let C be the base curve of a pencil V ⊂ |L|. Fix H ∈ V and note H = C +D
for some non-empty effective divisor D. Since L is ample, we have 0 < L · C < 2d.
Thus [C] /∈ ZL. By the primitivity of L, the rank of Pic(X) is least 2. Hence any
point of S lies in some Heegner divisor. Since S is algebraic, we conclude that S is
contained in a finite union of Heegner divisors. !

Lemma 2.5. Let (X,L) be a polarized K3 surface. The flex points {x ∈ X
∣
∣x flex}

form a constructible subset of X of dimension at most 1.

Proof. Constructibility is elementary. To show the second statement, it suffices to
make the following observation: Any flex point x ∈ X lies in the Beauville-Voisin
class [x] = cX ∈ CH0(X), defined in [BV04] as the class of any point on a rational
curve in X . This follows because:

(1) 2d[x] = H1 ·H2 for hyperplane sections H1, H2 spanning the pencil V ,
(2) the intersection of two curves is some multiple of cX [BV04, Thm. 1], and
(3) CH0(X) is torsion-free [Roj80].

If a Zariski-open subset of points of X were flex, we would have that CH0(X) =
Z, contradicting Mumford’s theorem [Mum69] on the uncountability of the Chow
group. So the constructible set of flex points has dimension at most 1. !

Given a smooth surface X , denote by X [k] the Hilbert scheme of k points on
X . Let F sing

2d denote the substack of F2d parameterizing singular ADE K3 surfaces,
which is also a finite union of Heegner divisors.

Definition 2.6. Define the Zariski open subset T := F2d \ (S ∪F sing
2d ). We assume

for the remainder of the text that (X,L) ∈ T , unless otherwise stated.

Let G := Gr(g − 1, g + 1) be the Grassmannian of codimension 2 linear spaces
in H0(X,L)∗, or equivalently pencils in |L|. Consider the map

i : G → X [2d], V )→ PV ∩X

sending a codimension 2 linear space to its scheme-theoretic intersection with X ,
or equivalently sending a pencil to its scheme-theoretic basic locus.
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Proposition 2.7. The mapping i : G → X [2d] is a closed immersion.

Proof. First, we show that i is a set-theoretic embedding. Suppose, for the sake of
contradiction, that two pencils PV1 ∩X = PV2 ∩X intersect at the same length 2d
subscheme Z ⊂ X . Consider the set of codimension 2 linear spaces

P := {V ∈ G
∣
∣V ⊃ V1 ∩ V2}.

We necessarily have that PV ∩X = Z for all V ∈ P because Z ⊂ PV1 ∩ PV2 ∩X .
Hence i(P) consists of a single point. Since P contains a curve, we conclude that i
contracts a curve. But any morphism from a Grassmannian to a projective variety
contracting a curve must be constant. So i is constant, which is absurd.

Next, we show that the differential di is injective. Recall that the tangent space
TV G = Hom(V, H0(X,L)∗/V ) whereas T[Z]X

[2d] = Hom(IZ/I2Z , OZ). We may
write PV = {x ∈ Pg

∣
∣ s1(x) = s2(x) = 0} for two sections s1, s2 ∈ H0(X,L). A

tangent vector TV G can be represented as the vanishing locus of (s1+ εt1, s2+ εt2),
where t1, t2 ∈ H0(X,L)/Cs1 ⊕ Cs2. Then di maps it to (s1 )→ t1|Z , s2 )→ t2|Z),
which uniquely determines an element of Hom(IZ/I2Z , OZ) because IZ = (s1, s2).

Supposing some nonzero φ ∈ TV G satisfies di(φ) = 0, at least one of t1, t2 ∈
H0(X,L)/Cs1 ⊕ Cs2 is nonzero and satisfies ti

∣
∣
Z

= 0. So Z is contained in the

codimension 3 linear space {x ∈ Pg
∣
∣ s1(x) = s2(x) = ti(x) = 0}. But then the

argument of the first paragraph applies to show i is constant. Contradiction. !

Consider the Hilbert-Chow morphism HC : X [2d] → X(2d). Let ∆ ⊂ X(2d) be
the small diagonal of effective zero cycles of the form 2d[x] for some x ∈ X . Define
a subscheme P2d ⊂ X [2d] as the scheme-theoretic fiber P2d := HC−1(∆). Let

supp: P2d → X

be the support morphism, sending a scheme to the point at which it is supported.
Finally, let i(G) ⊂ X [2d] denote the image of the Grassannian G = Gr(g − 1, g+ 1)
under the morphism i, endowed with its natural structure of a reduced, smooth
subscheme. Finally, we may now describe the flex divisor, at least generically.

Definition 2.8. The flex divisor on a K3 surface (X,L) ∈ T is the algebraic cycle

Rflex := supp∗[P2d ∩ i(G)].

Here supp∗ denotes the proper pushforward of algebraic cycles, and the brackets [·]
denote the effective algebraic cycle underlying a subscheme.

Note that the cycle class is being taken in P2d to make supp∗ sensical.

Lemma 2.9. The subschemes P2d and i(G) intersect properly in X [2d], i.e. their
intersection has pure dimension 1. Furthermore, [P2d] · [i(G)] = [P2d ∩ i(G)]X[2d] .

Proof. We have that i(G) ⊂ X [2d] is a smooth subscheme of dimension 2d. By
a result of Haiman [Hai98, Prop. 2.10], P2d ⊂ X [2d] is a reduced and irreducible
Cohen-Macaulay scheme of dimension 2d + 1. Hence, each component of their
intersection has dimension at least 1. We claim additionally that each component
has dimension at most 1. Note supp(P2d ∩ i(G)) ! X by Lemma 2.5.

The restriction of supp to P2d ∩ i(G) contracts no curves becuase no flex point
x ∈ X has a curve-worth of flex spaces: If x ∈ X supported a curve-worth of flex
spaces, the morphism HC ◦ i : G → X(2d) would contract a curve and hence, as
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before, G would collapse to a point in X(2d). This is absurd. So supp
∣
∣
P2d∩i(G)

is

finite onto its image in X , which has dimension at most 1.
Hence, each component of P2d ∩ i(G) has dimension exactly 1, that is, P2d and

i(G) intersect properly. Since i(G) is smooth and P2d is Cohen-Macaulay, [Ful16,
Prop. 7.1] gives the second statement. !

Remark 2.10. The proof of Lemma 2.9 implies that every component of the
scheme P2d ∩ i(G) contributes nontrivially to Rflex. Hence, for (X,L) ∈ T , Rflex is,
as a set, exactly the set of flex points.

Proposition 2.11. Let u : X → T be the restriction of the universal family of
polarized K3 surfaces. Then the flex divisors Rflex ⊂ X form a flat subfamily of
curves, specializing to Rflex on any fiber X = Xt.

Proof. It suffices to relativize the construction of Rflex and check flatness of the
resulting family of algebraic cycles.

Let G be the relative Grassmannian of codimension 2 linear subspaces of P(u∗L)∗

where L → X is the universal polarization. Let X[2d] be the relative Hilbert scheme
of 2d points, and let P2d be the subfamily of the relative Hilbert scheme consisting
of schemes supported at a single point of the fiber and i the relative inclusion
G ↪→ X[2d]. Let supp : P2d → X be the relative support morphism. Consider the
algebraic cycle

Rflex := supp∗[P2d ∩ i(G)] ⊂ X.

This cycle is a divisor in the smooth DM stack X. Any fiber X = Xt ↪→ X intersects
Rflex properly by Lemma 2.9. Hence Rflex forms a flat family of divisors in X.

It remains to show that Rflex specializes to Rflex as defined above on a fiber X =
Xt. The pushforward supp∗ of algebraic cycles and the cycle class map [·] commute
with taking fibers over t because the fibers X [2d] ↪→ X[2d] are smoothly immersed
and properly intersecting the cycles G and P2d. Hence, (Rflex)t = Rflex. !

Question 2.12. For a sufficiently generic (X,L) ∈ F2d is Rflex an irreducible
divisor? What is its geometric genus, generically?

Remark 2.13. Based off [Wel81], Huybrechts [Huy14, Prop. 8.8] shows that when
L2 = 4, Rflex ∈ |20L| is generically irreducible of geometric genus 201. Strangely,
this is the genus of a smooth element of |10L|. This is not an error: Rflex is
generically singular for a quartic surface.

We recall now the notion of a constant cycle curve:

Definition 2.14. Let X be a smooth K3 surface, and let R ⊂ X be a curve. We
say that R is a constant cycle curve if every point p ∈ R represents the same class
in CH0(X). This definition extends to curves R ⊂ X in an ADE K3 surface by
taking the inverse image of R in the minimal resolution of X .

It is known that if R is constant cycle, then [p] = cX ∈ CH0(X) for all p ∈ R.

Lemma 2.15. For (X,L) ∈ T , the divisor Rflex is a constant cycle curve.

Proof. This follows immediately from Remark 2.10 and items (1), (2), (3) in the
proof of Lemma 2.5. !

Lemma 2.16. Let X → (C, 0) be a family of polarized K3 surfaces and let R ⊂ X
be a flat family of curves over C. Suppose that Rt is a constant cycle curve for all
t -= 0. Then R0 ⊂ X0 is also a constant cycle curve.
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Proof. Replacing X with a finite base change, there is a simultaneous resolution
of singularities which is the minimal resolution on any fiber. So we may assume
X → (C, 0) is smooth. Any two points p, q ∈ R0 can be realized as specializations
of points over a finite extension of C(C). The lemma follows because the specializa-
tions of rationally equivalent cycles are rationally equivalent [Ful16, Cor. 20.3]. !

Theorem 2.17. Let u : X → F2d be the universal K3 surface, T ⊂ F2d a Zariski
open subset, and let R∗ ⊂ X∗ := X

∣
∣
T
be a flat family of divisors, which is a constant

cycle curve R = Rt on every fiber X = Xt. Then R∗ extends to a flat family of
divisors R over the universal K3 surface X → F2d.

Proof. Let L be an extension of OX∗(R∗) to X and define the projective bundle
P(u∗L) → F2d. By assumption, we have a section of P(u∗L) over the open subset
T defined by R∗. Let 0 ∈ F2d \ T . Given any arc (C, 0) ⊂ F2d with C \ {0} ⊂ T ,
there is a unique flat family of curves R ⊂ X

∣
∣
C

extending R∗
∣
∣
C\{0}.

By Lemma 2.16, the central fiber R0 is constant cycle. As noted in [Huy14,
Sec. 2.3], Mumford’s theorem [Mum69] implies constant cycle curves are rigid. So
the flat limit R0 doesn’t deform as the arc (C, 0) deforms. Since F2d is smooth, in
particular normal, we conclude by a well-known argument [AET19, Lem. 3.16] that
the section of P(u∗L) over T extends, as a morphism, over 0. The result follows. !

Corollary 2.18. Rflex extends to a flat family of divisors in the universal K3
surface over F2d.

3. Degree of the Flex Divisor

In this section, we compute the degree of the flex divisor. We follow [EG00] as
a general reference on the cohomology of Hilbert schemes.

Definition 3.1. Let n > 0 be a positive integer and let α ∈ H∗(X) be a cohomology
class of pure degree. Define

L :=
⊕

m, k≥0

Hm(X [k]).

The Nakajima (raising) operator q−n(α) : L → L is defined by the following cor-
respondence: Let a ≥ 0 and define b := a + n. Let X [a,b] be the incidence corre-
spondence of nested pairs of zero-dimensional subschemes Z1 ⊂ Z2 ⊂ X for which
lenZ1 = a and lenZ2 = b, and let πa and πb be the projections to X [a] and X [b].
Let S be the residual support morphism X [a,b] → X(n) sending

S : (Z1, Z2) )→ supp(Z2)− supp(Z1)

and let Wa,b ⊂ S−1(∆) be the irreducible component of S−1(∆) which is the Zariski
closure of the Z1 ⊂ Z2 for which supp(Z1) and supp(Z2) − supp(Z1) are disjoint.
Let s : Wa,b → ∆ ∼= X denote the restriction of S and let t : Wa,b → X [a,b] be the
inclusion. Then for any c ∈ Hr(X [a]) we define

q−n(α)(c) := (πb)∗(π
∗
ac · t∗s∗α) ∈ Hr+2n−2+degα(X [b]).

By definition, we declare H∗(X [0]) = C1 where 1 is called the vacuum element.

The bidegree of the operator q−n(α) is (2n− 2+degα, n), where the first degree
is cohomological degree, and the second is number of points.
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Remark 3.2. Definition 3.1 can be intuitively rephrased as follows: The operator
q−n(α) takes a family of subschemes of length a (i.e. a cycle in X [a]) and tacks on
a subscheme of length n supported at a single point lying on the cycle α.

Theorem 3.3 (Nakajima [Nak97], Grojnowski [Gro96]). Let {ei}24i=1 be a basis of
H∗(X). Then q−n1(ei1) · · · q−nk

(eik)1 (up to reordering operators) are a basis of L.

More precisely, these Nakajima operators extend to an action of the Heisenberg
algebra of H∗(X) on L, which becomes identified with the bosonic Fock space.

Remark 3.4. It follows directly from the definition of the Nakajima operators
that [P2d] = q−2d(1)1. Similarly, the schemes supported on a single point of a
hyperplane section H ⊂ X have class q−2d(h)1, with [H ] = h ∈ H2(X).

Lemma 3.5. The degree of the flex divisor is deg(i∗q−2d(h)1).

Proof. By push-pull formula,

deg(Rflex) = Rflex ·X H : = supp∗[P2d ∩ i(G)] ·X H = [P2d ∩ i(G)] ·P2d supp∗H

= i(G) ·X[2d] q−2d(h)1 = deg(i∗q−2d(h)1).

!

Let σi for i = 1, 2 denote the Schubert classes in H2i(G) consisting of linear
spaces meeting a line and a point in Pg, respectively.

Proposition 3.6. The degree of the flex divisor is σ1 · i∗q−2d(1)1.

Proof. The first step is to verify the intersection product

q−1(h)q−1(1)
2d−11 · q−2d(1)1 = 2dq−2d(h)1

on X [2d] and the second step is to verify that i∗(q−1(h)q−1(1)2d−11) = 2dσ1. Then
we can apply Lemma 3.5. The first step is set-theoretically clear; the intersec-
tion multiplicity 2d follows quickly from the description of the ring structure on
H∗(X [2d]) due to Lehn and Sorger [LS03, Thm. 1.1 and Prop. 2.13].

To verify the second step, note that q−1(h)q−1(1)2d−11 is represented by the
divisor DH ⊂ X [2d] of schemes whose support intersects H ⊂ X . Thus [i−1(DH)]
represents i∗(q−1(h)q−1(1)2d−11). But i−1(DH) is simply the locus of codimension
2 linear spaces passing through some point of H . Since [H ]Pg = 2d( where ( is the
line class in Pg, we conclude that [i−1(DH)] = 2dσ1. !

Let Z ⊂ X [2d]×X denote the universal subscheme of length 2d. Let ZG ⊂ G×X
denote the restriction of this subscheme to G (along the inclusion i). Let πX[2d] and
π denote the projections from X [2d]×X and G×X to the first factor, respectively.
The tautological bundle O[2d] → X [2d] is the pushforward (πX[2d])∗OZ and is a
vector bundle of rank 2d on X [2d]. Let

O[2d]
G := i∗O[2d] = π∗OZG

denote the restriction of this vector bundle to the Grassmannian G.

Proposition 3.7. We have i∗q−2d(1) = −2dc2d−1(O[2d]
G ).

Proof. Applying [EG00, Thm. 12.4] to the line bundle O gives the formula
∑

n

c(O[n]) = exp
(
∑

m≥1
(−1)m−1

m q−m(c(O))
)

.



8 VALERY ALEXEEV AND PHILIP ENGEL

Note c(O) = 1 and that q−m(1) has bidegree (2m− 2,m). So the only term on the
right-hand side landing in H2n−2(X [n]) is (−1)n−1n−1q−n(1). We conclude

i∗q−2d(1) = −2di∗c2d−1(O[2d]) = −2dc2d−1(O
[2d]
G )

which follows via commutativity of taking Chern classes with pullback. !

Let Q denote the rank 2 universal quotient bundle on G. To compute the Chern

class c2d−1(O[2d]
G ) we make use of the following exact sequence:

Proposition 3.8. There is a resolution of OZG by vector bundles on G×X:

0 → det(Q∗)" (−2L) → Q∗
" (−L) → O → OZG → 0.

Proof. This exact sequence is simply the global version of the Koszul resolution of
OX∩PV where PV = {x ∈ Pg

∣
∣ s1(x) = s2(x) = 0} is a codimension 2 linear space:

0 → (s1s2) → (s1)⊕ (s2) → OX → OX∩PV → 0.

On a given fiber of π the restrictions of det(Q∗)" (−2L) and Q∗ " (−L) are (s1s2)
and (s1)⊕ (s2) respectively, because Q∗ = Cs1 ⊕ Cs2. !

Let r1 and r2 denote the Chern roots of Q.

Proposition 3.9. ch(O[2d]
G ) = 2− (d+ 2)e−r1 − (d+ 2)e−r2 + (4d+ 2)e−r1−r2 .

Proof. Consider the (derived) pushforwardRπ∗ of the exact sequence of Proposition
3.8. Computing the derived pushforward sheaves of each term gives

Riπ∗OZG =

{

O[2d]
G if i = 0

0 if i > 0
Riπ∗O =

{

O if i = 0, 2
0 if i = 1

Riπ∗(Q
∗
" (−L)) =

{

0 if i = 0, 1
Q∗ ⊗H0(X,L)∗ if i = 2

Riπ∗(det(Q
∗)" (−2L)) =

{

0 if i = 0, 1
det(Q∗)⊗H0(X, 2L)∗ if i = 2.

The first equation follows from the definition of O[2d]
G and that ZG is finite over

G, and the last three equations all follows from relative Serre duality applied to π.
From these computations, and the fact that h0(X,L) = d+2 and h0(X, 2L) = 4d+2,
we get the following equality in the K-group of G:

[O[2d]
G ]− 2[O] + (d+ 2)[Q∗]− (4d+ 2)[det(Q∗)] = 0.

Since the Chern character ch is a homomorphism from K-theory to cohomology,
the proposition follows from the equalities ch(O) = 1, ch(Q∗) = e−r1 + e−r2 ,
ch(det(Q∗)) = e−r1−r2 . !

Corollary 3.10. The total Chern character of O[2d]
G is

c(O[2d]
G ) =

(1− r1 − r2)4d+2

(1− r1)d+2(1− r2)d+2
=

(1− σ1)4d+2

(1− σ1 + σ2)d+2
.

Proof. Since O[2d]
G is a vector bundle, we can compute the total Chern character

using the splitting principle and the set of “virtual Chern roots”

{−r1 − r2
︸ ︷︷ ︸

4d+2

, 0, 0}− {−r1
︸︷︷︸

d+2

,−r2
︸︷︷︸

d+2

}.

The theorem then follows from the equalities r1 + r2 = σ1 and r1r2 = σ2. !
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Remark 3.11. Let X ⊂ Pg be Cohen-Macaulary of degree d and codimension r.
If X intersects any r-plane in Pg properly, there is a map Gr(r + 1, g + 1) → X [d]

which sends an r-plane to its intersection with X . There is a rank d tautological
vector bundle O[d] → X [d] and the Chern classes of its pullback to Gr(r + 1, g + 1)
can be computed in the same manner as above, via the Koszul resolution.

Theorem 3.12. Let X ⊂ Pg be a smooth K3 surface embedded by a primitive
ample line bundle L of square L2 = 2d = 2g − 2, for which no pencil in |L| has a
base curve. Then, the flex divisor satisfies Rflex ∈ |ndL| where

nd =
(2d)!(2d+ 1)!

d!2(d+ 1)!2
.

Proof. By Propositions 3.6 and 3.7, we have the formula

nd = −σ1 · c2d−1(O[2d]
G ).

From the formula of Corollary 3.10 for c(O[2d]
G ), plus the fact that the minus signs

cancel in any contribution to top degree, we conclude

nd =

[

σ1 ·
(1 + σ1)4d+2

(1 + σ1 + σ2)d+2

]

top

.

The Pieri and Giambelli formulae imply that

σm
1 · σn

2 =
m!

(m/2)!(m/2 + 1)!

when m+2n = 2d add up to the correct dimension to give a top class on G. After
performing binomial expansion in σ1 then σ2, collecting terms of top degree, and
plugging in the above formula, we get the ugly expression

nd =
d

∑

j=0

d−j
∑

"=1

(−1)j+1

(
4d+ 2

j

)(
3d− j

2d+ (

)(
2d+ (

2(− 1

)(
2(

(

)
1

(+ 1
.

Applying automated choose identity verification gives the result. !

Example 3.13. Let (X,L) be any ADE K3 surface of degree L2 = 2. The linear
system |L| defines a 2 : 1 morphism from X onto either P2 or F0

4 and Rflex is
naturally the ramification divisor of this map. The double cover of P2 is branched
in a sextic B. One has R2

flex = B2/2 = 18 = (3L)2, so n1 = 3.

Example 3.14. For a quartic surface, one can compute the flex divisor directly
from the definition. Here are some results:

The Fermat quartic X = V (x4
0 + x4

1 + x4
2 + x4

3) ⊂ P3 contains 48 lines. Each line
appears with multiplicity one in Rflex. The intersections of X with the coordinate
hyperplanes xi = 0 appear with multiplicity 2 in Rflex. So Rflex is cut out by
(x4

0 + x4
1)(x

4
0 + x4

2)(x
4
0 + x4

3)x
2
0x

2
1x

2
2x

2
3.

The maximal number of 64 lines on a smooth quartic surface is realized by the
Schur quartic X = V (x4

0 − x0x3
1 + x2x3

3 − x4
3) ⊂ P3. These lines come in two types.

The first type, of which there are 16, are the lines joining the 4 + 4 points lying
on the skew lines V (x0, x1), V (x2, x3). They appear in Rflex with multiplicity two,
while the remaining 48 lines of the second type appear with multiplicity one. So
Rflex consists only of lines. Thus X has no “flex points” in the naive sense.
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Remark 3.15. Based on the d = 1 case, the authors hoped that Rflex would be
a canonical choice of polarizing divisor living in a reasonably small multiple of
the polarization class, at least compared to the rational curve divisor Rrc. But in
fact, the formula of Theorem 3.12 grows significantly faster than the Yau-Zaslow
formula, with the switch occurring between d = 8 and d = 9. Asymptotically,
nd ∼ 24d+1/πd2 while Yau-Zaslowd ∼ e4π

√
d/
√
2d27/4.
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