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ABSTRACT. In previous work we showed that the Hurwitz space of W (Es)-covers of the projective
line branched over 24 points dominates via the Prym-Tyurin map the moduli space Ag of principally
polarized abelian 6-folds. Here we determine the 25 Hodge classes on the Hurwitz space of W (Eg)-covers
corresponding to the 25 irreducible representations of the Weyl group W (Es). This result has direct
implications to the intersection theory of the toroidal compactification Ag. In the final part of the paper,
we present an alternative, elementary proof of our uniformization result on Ag via Prym-Tyurin varieties
of type W (Es).

1. INTRODUCTION

It is well known that the moduli space A, of principally polarized abelian varieties of dimension g < 5
can be uniformized via Prym varieties associated to unramified double covers of curves. This amounts
to the fact that the Prym map P: Ryy1 — Ay is dominant in this range. This explicit parametrization
of the moduli space has important applications, for instance it implies that 4, is unirational for g <5,
see [D1, MM, C, V1]. Note also that A, is a variety of general type for ¢ > 7, see [M, T]. Using
advances in automorphic forms, it has been recently proven [DSS] that the Kodaira dimension of Ag is
non-negative.

There is a well documented history going back at least to [D3] showing the importance of the symme-
tries of the 27 lines on a cubic surface in the study of the Galois group of the Prym map P: Rg — As.
Conversely, Clemens and Groffiths [CG] famously associated to a smooth cubic threefold its intermedi-
ate Jacobian in order to study rationality questions. For recent developments in moduli theory or in
hyperkahler geometry related to this circle of ideas we refer to [CMGHL, LSV, V2].

In our previous paper [ADFIO] we found an explicit parametrization of .Ag by means of one-dimensional
objects. Recalling that W (Eg) is the group of symmetries of the 27 lines on a smooth cubic surface, we
proved that the general ppav [A4, ©] € Ag can be represented as the Prym-Tyurin variety of exponent 6
associated to an W (Eg)-cover m: C' — P! branched over 24 points. Precisely, let Hur denote the Hurwitz
space of covers [1: C — P!, py + - - - + pa4] having monodromy group W(Es) C Sa7 and branched over
the points pi,...,pa € P such that the local monodromy of 7 at p; is given by a reflection in a root
of Eg. For each such cover 7: C' — P! we can identify the points in a general fiber with the lines on
a smooth cubic surface. The curve C has genus 46 and is equipped with an incidence correspondence
D C C x C first considered by Kanev [K2]. The correspondence D gives rise to an endomorphism
D: JC — JC and to a Prym-Tyurin-Kanev map

PT: Hur — Ag, [r:C — P'|— PT(C,D):=Im(D—1) C JC.
Since (D — 1)(D + 5) = 0, one has PT(C,D) = Ker(D + 5)°. Our main result from [ADFIO] is
that the map PT is generically finite, in particular dominant. This parametrization opens the way to

a study of Ag via the theory of curves and their correspondences. The main goal of this paper is to
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understand the intersection theory associated to this uniformization of Ag, in particular to determine
the 25 Hodge classes associated to the irreducible representations of the group W (FEs).

The moduli space Ay has a partial compactification A} obtained by adding rank 1 degenerations and

contained in the toroidal compactification A, = jgerf for the fan of perfect forms, with the complement
Zg \ A7 having codimension 2. The Hurwitz space Hur has a modular compactification Hur by means
of W (Eg)-admissible covers. The Prym-Tyurin map PT extends to a rational map

PT: Hur --» Ag

with indeterminacy locus of codimension at least 2. Although the Hurwitz space Hur has an intricate
divisor theory, with boundary divisors associated to complicated discrete data, it is one of the important
results of [ADFIO] that only three explicitly described boundary divisors Dy, Dagy, Dsy, of Hur are not
contracted under the map PT'. Here D,,y and Dy, denote the boundary divisors of azygetic (respectively
syzygetic) W (Eg)-admissible covers, having as general element a cover

[W:C:C&UCQ*)RquRQ, p1+ -+ Dol

with 7= Y(R;) = C; for i = 1,2, where Ry and Ry are smooth rational curves meeting at the point g,
precisely two branch points, say pa23 and pog4, lie on Ry and the distinct roots ra3, rog € Eg determining
the local monodromy at the corresponding points satisfy ra3 - 194 # 0 (respectively ro3 - rog4 = 0). The
divisor Dy corresponds to the situation when the roots 723 and re4 are equal. In order to study Ag, it
suffices therefore to restrict our attention to the partial compactification of the Hurwitz space

Hur := Hur U Do U Dayy U Dgy, € Hur.
The divisor Dy is mapped onto the the boundary divisor Dg := Ag \ Ag, whereas Dgy, and D,y are
mapped onto divisors of Ag not contained in the boundary.

The Kanev correspondence D C C'x C can be extended for any point [7: C' — R, p1+---+pa4] € Hur.
In particular, it induces a decomposition

(1A) H(C,we) = H(C,we) ™Y @ HY(C,we) D)

into (+1) and (—5) eigenspaces with respect to D and having dimensions 40 and 6 respectively. We
denote by A, A(tD and A(=®) the Hodge eigenbundles on Hur globalizing the decomposition (1A) over
the entire moduli space. If \; € CH'(Ag) denotes the Hodge class, since PT*(\;) = A(=%) and
Kz, =T\ - [Dg], where Dg is the boundary divisor of Ag of rank 1 degenerations, determining the
class A(=5) is essential to any further investigation of the birational geometry of Ag. One of the main
results of this paper is that A(~®) has a remarkably simple expression:

Theorem 1.1. The class of the (—5)-Hodge eigenbundle on Hur is given by the following formula:

_ 1
6>‘( 5 = A— §[Dsyz]'
Since it has been shown in [ADFIO, Theorem 6.17] that the Hodge class A on Hur can be expressed

in terms of boundary divisors, Theorem 1.1 can be rewritten using only Dy, Dsy, and D,,, and one has
the following identity on Hur:
11 1 7

(1B) AP = @[DO] - E[Dsyz] + %[

Dagy].

Our approach to proving Theorem 1.1 is representation-theoretic: The Weyl group W (FEs) has 25
irreducible representations pi,...,p25. Each of these determines a variant E; of the Hodge vector
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bundle over Hur. At a point given by the 27-sheeted cover [r: C — R,p1 + --- + pa4] € Hur with
Galois closure 7: C — R, the fiber of E; is defined to be HomW(Efj)(pi,Ho(é’,wé)). The Hodge
classes in question are defined as \; := ¢1(E;), for i = 1,...,25. The Prym-Hodge bundles AHED and
A=5) are two special cases of this construction, obtained from the two non trivial representations of
W (Es) that occur in the standard 27-dimensional permutation representation of W(Eg). This gives
the relation A(*1 4+ X\(=%) = X, Every representation p; occurs in some permutation representation
and every permutation representation gives rise to an associated cover, and the Hodge bundle arising
from such a cover decomposes into contributions coming from the various classes A;. We calculate
the Hodge bundles corresponding to a sufficiently large collection of such permutation representations,
and use representation theory to extract from these formulas the formulas for the Hodge bundles \;
corresponding to all 25 irreducible representations of W (Es). The permutation representations we use
are quotients of the Galois cover C by cyclic subgroups W, generated by representatives of the 25
conjugacy classes in W (Eg). The list for the expression of the Hodge classes Aq, ..., \o5 € CH'(Hur)
can be found in the statement of Theorem 3.9.

Another important result of this paper concerns the class of the Weyl-Petri divisor on Hur. For a
smooth W (Eg)-cover m: C' — P! the Weyl-Petri map is the multiplication map
w(L): H(C,L) ® H°(C,wec ® LY) — H°(C,we),

where L = m*Opi(1) € Wi (C). By [ADFIO, Theorem 9.2], the map u(L) is injective for a general
point of Hur. Furthermore, it factors through the (+1)-eigenspace, that is, one has a map

(1C) u(L): HY(C,L) @ H(C,we @ LY) — HO(C,we) Y.
Therefore, since its source and target have the same rank, its degeneracy locus is a divisor 91 on the

space of admissible W (Eg)-covers (see Section 4 for a more precise definition and a discussion of what
happens when h%(C, L) jumps). Our next result determines the class of 9 on Hur:

Theorem 1.2. The class of the Weyl-Petri divisor on Hur is given by the following formula:

(1) 9 = 220 — = 1Do] = £ Dyl

The proof of Theorem 1.2 involves passing to an alternative partial compactification g ge of Hur over
which the multiplication map (1C) can be defined globally, then reinterpreting the obtained result on
Hur.

In [ADFIO, Theorem 0.4] we showed that if [7: C — P!] € Hur does not lie in the Weyl-Petri
divisor 91 then it lies in the ramification locus of the Prym-Tyurin map PT: Hur — Ag if and only if
the Prym-Tyurin canonical curve p(_5)(C) C PH(C, we)™® = P® induced by the sublinear system
}H oc, wc)(_5)‘ lies on a quadric, that is, the multiplication map

Sym?H°(C,we) ™ — HO(C,wd?)
in not injective. We clarify the set-theoretic description of the ramification divisor of PT"

Theorem 1.3. The ramification divisor of the Prym-Tyurin map PT: Hur — Ag is contained in the
union of the Weyl-Petri divisor & and the effective divisor MM parametrising W (Eg)-covers [r: C — P!]
such that h°(C,7*(Op1 (1)) > 3.

The fact that the condition h°(C, L) > 3 for L = 7*(Op1 (1)) defines a divisor 9 on Hur comes to us
as a surprise, for general Brill-Noether theory would predict that such curves depend on considerably
fewer moduli. For the precise definition of the divisor 9, we refer to (4.3).
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By analysing directly the differential of the map PT at a general point of the boundary divisor Dy,
we give a second, more elementary proof of the main result from [ADFIO].

Theorem 1.4. The Prym-Tyurin map PT is generically unramified along the boundary divisor Dg of
Hur. It follows once more that PT: Hur --» Ag is generically finite.

We recall that the original proof of the dominance of PT amounted to the tropicalization of the
Prym-Tyurin map. Precisely, we studied the principal term of the Prym-Tyurin map by expanding
the monomial coordinates near the neighborhood of a maximally degenerate cover and then used the
theory of degenerations of Prym-Tyurin varieties. This time, the proof, which we complete in Section 6
is more direct. The element of Dy for which Theorem 1.4 is verified is obtained by choosing judiciously
12 points qi,...,q12 € P! together with roots r1,...,712 € Eg, determining a degree 27 stable map
7: C — P!, where C is the curve obtained from the disjoint union of 27 copies of P! labeled by the
27 lines on a smooth cubic surface and then gluing over each point ¢; the components labeled by the
double-six corresponding to the root r;. The verification that the W (Eg)-admissible cover associated to
7 verifies all required properties is completed in Theorem 5.6.
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2. THE WEYL GROUP OF FEg AND THE UNIFORMIZATION OF Ag.

We give a summary of some group theoretic facts and the results established in [ADFIO] that are
used in this paper.

2.1. The group W (Eg) and its representations. Let W (Eg) be the Weyl group of the root lattice
Eg. Tt is the subgroup of the orthogonal group O(Eg) generated by reflections rq: x — x + (z, @) in a
root « of Eg. One has |W(Fg)| = 51840 and W (FEs) has 25 irreducible representations. The dimensions
of these representations are 1, 1, 6, 6, 10, 15, 15, 15, 15, 20, 20, 20, 24, 24, 30, 30, 60, 60, 64, 64, 80,
81, 81, 90. In order to refer to the characters and conjugacy classes of W (Eg) we use the notation from
the character table from the Atlas [CCNPW, p.27] for the group Us(2).2 = W(Ejs). It is obtained from
the character table of Us(2) by the splitting and fusion rules. It can be reproduced in GAP [GAP] by
using the command Display(CharacterTable ("W(E6)")).

In addition to the numbers 1, ..., 25 for the characters of W (Ejg), we use convenient names, as in
Table 2. They start with the dimension of the representation and add attributes a, b, and so on, if
there are several irreducible representations of the same dimension. We also group characters in pairs
x and ¥ = x ® 1 whenever these are different. Here, 1 is the 1-dimensional character of W (FEs) sending
an element u € W(Eg) to (—1)" if w is a product of n reflections.

Notation 2.1. We use repeatedly the geometric realization Eg = K § C Pic(S), where S is a smooth
cubic surface. We use the classical notation ai,...,ag, b1,...,bs and ¢;;, for 1 < i < 57 < 6 for the 27
lines on S. A system of fundamental roots of Fg is then given by w; := a; — a;41 for i = 1,...,5 and
wg := h — a1 — ag — ag, where h := —Kg is the hyperplane class.
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Notation 2.2. We record three important conjugacy classes in the Weyl group W (FEjg), namely the
class 2¢ containing reflections w € W (Eg), the class 2b containing products w; - wy of two commuting
(syzygetic) reflections wy,ws € W (Eg), and 3b containing products wj - wy of two non-commuting
(azygetic) reflections.

The character table of W (FEjs), playing a significant role in several of our calculations is reproduced in
the appendix of this paper as Table 2. We fix representatives w; of the 25 conjugacy classes in W (Eg),
labeled so that: w1, = 1, wo. is a reflection, that is, a representative of the class 2¢ in the notation of
the character table of W (FEjg), then wey, is the product of two syzygetic reflections and so on.

Notation 2.3. For an element u € W(Eg), we denote by Z, its centralizer in W (Eg) and by ¢, its
conjugacy class in W (Fg).

Assume now that G is a subgroup of W (Eg) of index d and let uw € W(Eg) be a fixed element. The
assignment G — uzG induces a bijection on the sets W (Eg)/G of left cosets and can thus be regarded
as a permutation from S;. We shall need the following simple group-theoretic fact.

Lemma 2.4. Let u € W(Eg) be an element of prime order p. Then its cycle type in Sq is p*1°, where

_lGnal- 1zl _d=b
|G| ’ p

Proof. We consider the bijection W (Eg)/G — W (Eg)/G on the set of G-cosets induced by multiplication
with u. Since u € W (Eg) has prime order p, there are only two possibilities for a coset zG. It is either
fixed, or its orbit consists of exactly p cosets. We first count the number of elements x € W (FEjg) such
that urG = xG. In this case z 'uz =: u' € G N¢,. We consider the surjective map x.: W (Es) — cu
given by xu.(z) := x~luz. Each fibre of y, consists of |Z,| elements, thus the number of elements z
with uxG = G € W(Eg)/G equals |G N ¢yl - |Zy|. In order to obtain the number of u-fixed G-cosets
we have to divide this number by |G|, which gives the stated formula for b. Then a is computed from
the equality pa + b = d. O

(2A) b

The quantities a and b computed in Lemma 2.4 clearly depend only on the conjugacy class ¢, of u.
In particular, when the subgroup G is fixed, we obtain a vector of positive integers

(2B) (a2e, bac, azp, bay, asy, bap).
Since the order of the representatives wo. and wgy is equal to 2, whereas ord(wsp) = 3, one has

2a9c + bae = 2a9p + bop = 3agy + boy = [W(Eg) : G] = d.

2.2. Maximal subgroups of W(Eg). Up to conjugation, the group W(FEs) has five maximal sub-
groups, see [Do, Theorem 9.2.2].
e A subgroup Ga7 € W (Ejg) of index 27, which can be viewed as the stabilizer of a line of the cubic
surface S under the identification Fg = K fg- One has Go7 =2 W(Ds5). In this paper we constantly make
the choice Ga7 := Stabyy(g,)(as) = (w1, w2, ws, wa, We).
e A subgroup Gss C W (FEs) of index 36, viewed as the stabilizer of a double six on S.
e A subgroup G45 C W (FEjs) of index 45, regarded as the stabilizer of a tritangent plane of S. Note that
Gas = W (Fy).
e Two subgroups G4 and G of index 40.

For instance, for the subgroup Ga7 the vector described in (2B) is equal to

(a267 b207 azp, b2b7 asp, b3b) = (67 157 107 77 67 9)
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2.3. Three versions of compactified Hurwitz spaces of W(FEs)-covers. We denote by H the
Hurwitz space of smooth W (Eg)-covers [7: C' — P!, py, ..., pa] together with a labeling of its branch
points. The map 7 is of degree 27. The global monodromy of 7 equals W (FEjg) and the local monodromy
around each branch point p; € P! is a reflection in a root of g, that is, an element in the conjugacy
class 2c in the notation of the character table of W(Ejg). The curve C is smooth of genus 46 and the
cover 7: C — P! is not Galois.

Let H be the compactification of H by admissible W (Eg)-covers. This can be regarded as the stack
of balanced twisted stable maps into the classifying stack BW (Es) of W (Eg), that is,

H = Moo (BW(E@)) .

The map b: H — My o4 forgetting the monodromy data is finite, so dim(#H) = 21. The symmetric
group S24 acts on both My o4 and H by permuting the marked (respectively branch) points, and we
denote the corresponding quotients by

Hiul“ = ﬁ/SQAL and //\;110,24 = ﬂ0724/524.

Let ¢: H — Hur denote the quotient map. The space Hur is the main object of study both in [ADFIO]
and in the present paper, on which most of the intersection-theoretic formulas are written.
We have regular maps -
br: Hur — Mopos and ¢ Hur — Myg
associating to an admissible cover [r: C' — R,p1 + - - - + pa4] € Hur the branch locus [R, p1 + - - - + pad]
and the stable model of its source curve C' respectively.

The third version of a compactified space of W (Eg)-covers is the one that admits a universal W (Eg)-
line bundle of degree 27, which is something both 4 and Hur lack. Following Section 9 of [ADFIO]
we denote by G, 1, the (normalization of the) moduli space parametrizing finite maps [7 : C' — R] with
monodromy W (Eg), where C' is an irreducible stable curve of genus 46 and R is a smooth rational curve.
For such a map, L := 7*Og(1) is a base point free line bundle of degree 27 on C with h°(C, L) > 2. The
spaces Hur and §Ee share the open subspace Hur on which the source curve C is smooth. We denote
by o N

f:Crs — GEg
the universal genus 46 curve. The fibres of f are irreducible curves of genus 46.

Following [ADFIO, 9.5], we denote by E : Hur --» GVES the birational map assigning to a point
[1: C — Pl p; + -+ pau] € Hur the map [r: C — R] € Gg,. Since Hur is normal, 3 can be extended
to a regular map outside a subvariety of codimension at least 2 in Hur.

2.4. The dominance of the Prym-Tyurin map. A fiber of the cover 7: C' — P! corresponding to
an element of H has the combinatorial structure of the 27 lines on a cubic surface, and the W ( Eg)-action
on each of its fibres preserves the incidence relation. The correspondence sending a line ¢ to the 10 lines
incident to it can be thus regarded as a correspondence on C' and it induces an endomorphism D on
the Jacobian JC := Pic’(C), satisfying the quadratic relation (D — 1)(D +5) = 0. By Kanev [K1, K2]
the (—5)-eigenspace of this endomorphism

PT(C,D) :=Ker(D +5)° =Im(D - 1) C JC

is a principally polarized abelian variety of dimension 6 and exponent 6, which we call the Prym-Tyurin
variety of the pair [C, D]. This assignment defines the map PTy: H — Ag which factors through the
Prym-Tyurin map PT: Hur — Ag. By [ADFIO, Theorem 0.1] these maps are dominant and generically
finite.
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2.5. Boundary divisors on the Hurwitz space. The boundary divisors on the moduli space ﬂo,%
of stable 24-pointed rational curves are of the form Ag.;, with I C {1,...,24} being a subset such
that |I| > 2 and |I¢] > 2. A general point of Ag.; corresponds to a 24-pointed stable rational curve
[R,p1,...,p24] consisting of two smooth components R; and Ry meeting at a single point, with the
marked points {p;}ier (respectively {p;};ecre) lying on Ry (respectively on Ry). For i = 2,...,12, we
have the Sy4-invariant boundary divisor

Bi = Z AO:I-

|1]=i
The boundary divisors of H correspond to the components of the pull-back b*(B;) under the map
(20) b: ﬁ — Mo,m.

In order to keep track of these divisors, we need further combinatorial data. In addition to the
partition /U I = {1,...,24}, we also have the data of reflections {w;}ic; and {w;};cre in W(Es) such
that [[;c; wi = u, Hjelc w; = u~!. The products are taken in order, and the sequence wi, ..., wqy is
defined up to conjugation by the same element g € W (FEj).

Let p := (p1, ..., e) be the cycle type of the element u € W (Fs) considered as a permutation in So7.
Set

1 1 1
(2D) —i=—+ -+ — and lem(p) :=lem(p,. .., 1e).
T e

We denote by P; the set of partitions p of 27 appearing as products of i reflections in W (Eg) . The
possibilities for © € P; are listed in [ADFIO, Table 1]. For u € P;, let E;., denote the sum of all the
divisors of H whose general point corresponds to an W (FEg)-cover

t:= [7r:C’—>R, pl,...,p24] €H,

where [R = Ry Ug Ro,p1,. .., pay] € B; C M0,24 is a pointed union of two smooth rational curves R,
and Ry meeting at the point q. Over ¢ € Rging, the map 7 is ramified according to u, that is, the points
in 771(q) correspond to cycles in the permutation p associated to the element u € W (Es).

Next, we focus on three special divisors on H, see also [ADFIO, 6.8, 6.9]:
(1) EO = E2:(127)
(2) The syzygetic divisor Egy, := E (210 17).
(3) The azygetic divisor Easy = Fo.(36 19).

These three divisors correspond to the boundary divisors where there are exactly two branch points
lying on the first irreducible component R; and having local monodromy wi,wy € W (Es). For Ey the
reflections wy and wy are equal, thus the partition associated to wy - we equals u = (127). For Egy, the
local monodromies w; and ws are different and commuting and the associated partition is u = (21°,17),
whereas for E,,, the reflections w; and ws do not commute, in which case the partition describing the
cycle type of wy - wy is (3%,17). As explained in [ADFIO, 6.6], we have the following relation:

(2E) 6*(B;) = ) _ lem(p) By
HEP;

On the space Hur we define the reduced divisors D;., which are the set-theoretic images of Ej.,. In
particular, we have the three key divisors Dy, Dsy,, Dazy. By [ADFIO, 6.13] the pullbacks of the key
divisors under the quotient map ¢: H — Hur are

1

1
(2F) Ey = C]*(gDo), Esyz = q*(Dsyz)7 Eazy = q*(gDazy)-
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Furthermore, ¢*(D;.,) = Ej.p, for i =3,...,12 and p € P;.
At the level of the partial compactification G, Es [ADFIO, 9.5] the pullbacks under B: Hur- -+ G E¢ are

(2G) B*(DE(,) = Do, B*(Dsyz) = Dsyz7 B*(Dazy) = Dazy-
For further details regarding the local description of the morphism 3 we refer to Section 4.1. When
carrying out divisor class calculations we will not distinguish between the spaces

Hur := Hur U Dy U Dyy, U Dyyy C Hur
and QV e and we will accordingly identify the divisors Dy, Dy, and D,,, on the two spaces.

2.6. Properties of the rational map PT. The Prym-Tyurin map PT: Hur — Ag extends to a
rational map PT: Hur --~ Ag for which we use the same symbol. We denote by Ugryy the domain of
definition of this rational map. Since Hur is normal, the complement Hur \ Uy has codimension at
least 2.

In Section 5.2. of [ADFIO], we assigned to any point [r: C — R,p1,...,p24] € H a group Prym-
Tyurin variety PT(C,D) = Im(D — 1) for the induced endomorphism D of JC = Pic’(C). It is a
semiabelian variety of dimension 6, that is, an extension

0—T— PT(C,D)— A—0

of an abelian variety A by a torus 7.
The toric rank tor.rk := dim 7" of the semiabelian variety PT(C, D) is an upper semicontinuous func-
tion on Hur. By [ADFIO, Thm. 5.9], the domain of definition Up; contains the open set {tor.rk < 1}.

Lemma 2.5. The rational map PT: Hur - -~ Ag does not create new divisors. In other words, for any
resolution of singularities

X
fl K
Hur -F15 4

and for any closed subset Z C Hur such that codim Z > 2, one has codim g(f~1(Z)) > 2.

Proof. We have to show that, for every irreducible subset Z C Hur\ Uz, one has codim g(f~*(Z)) > 2.
By the previous paragraph, we know that Z C {tor.rk > 2}.

By the Borel theorem [B, Thm. A] applied to a smooth cover of Hur, the map PT: Hur — Ag extends
to a regular map to the Satake-Baily-Borel compactification Hur — Zzat =As U A5 U ... U Ap. Thus,
g(f~1(2)) is contained in the preimage of A4 ... Ap under the map Ag — 742%. It has codimension
at least 2 in Ag. O

Corollary 2.6. The divisorial pushforward map PT,: Div(Hur) — Div(Ag) is well defined.

By [ADFIO, Thm. 7.17], the divisors Dy, Dsy,, Dazy are the only boundary divisors not contracted
by the morphism PT': Ugy — Ag. The divisor Dy maps to the boundary Dg of Ag \ Ag, while Dgy,
and D,y map onto divisors not supported on the boundary.

We have a bijection between divisors on Hur and the divisors on the domain of definition Uy of
PT. Thus, for a divisor D on Ag we have the rational pullback divisor PT*(D) on Hur which is the
closure of the corresponding regular pullback divisor on Uy

Definition 2.7. Denote by () the subgroup of Pic(Hur) ® Q generated by the boundary divisors on
Hur different from Dy, Dgyyy Dagy .
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2.7. The Hodge classes X\, A(=3) , X(+1)_ A point of Hur represents a cover t := [1: C' — R, p1+---+
p24] with W (Eg)-monodromy. The Kanev correspondence D on C induces an eigenspace decomposition

HO(C, U')C) = HO(Ca wC)(_S) D HO(Ca wC)(J’_l)

into subspaces of dimension 6 and 40 respectively. We denote by E the Hodge bundle over Hur with
fiber H(C,wc) over a point t € Hur and by E(-® and E+ the Hodge eigenbundles globalizing the
decomposition (2.7), that is, having fibres HO(C,we)™® and HO(C,we) Y over t. We denote by

(2H) AT = ¢ (%) and A = ¢ (EHFD)

the corresponding Hodge eigenclasses. Since (=) = PT™*()\;), determining A\(=%) explicitly is essential

for any application concerning the birational geometry of Ag.

Theorem 6.17 and Remark 6.18 of [ADFIO] establish the following important formula for the Hodge
class on Hur:
33 17

7
(21) A= EDQ + Z6Dsyz + gDaZy mod (*)

3. TWENTY FIVE FUNDAMENTAL HODGE BUNDLES ON Hur.

The main purpose of this section is to determine the Hodge classes A1, ..., \os € CH?! (}/I\u/r) associated
to the irreducible representations of W (Es). In particular, we shall compute the class of the (—5)-Hodge
eigenbundle A(=) and thus prove Theorem 1.1. We first describe our strategy. Theorem 6.17 of [ADFIO]
has been used to compute the Hodge class A € C H!(Hur) for the universal family of degree 27 covers,
corresponding to the lines on a fixed cubic surface. In that case, A = A(7®) + X1 and the summands of
H(C,we) = HY(C,we) ™9 @ HO(C,we) Y are associated with irreducible representations of the Weyl
group W (Eg). Namely, the 27-dimensional representation of W (Es) < So7 has character 1 + 6 + 20b,
whose dimensions add up to 27. The Hodge eigenbundles E;, Eg = E(-5), and Eqp, = EGHD associated
with these characters have ranks 0 + 6 + 40 = 46 = ¢(C).

3.1. The 27:1 cover m: C' — P! whose fibres correspond to lines on a cubic surface is merely one of
many. Let 7: C — P! be the Galois closure of 7. Then C' = C/Ga7, where the maximal index 27
subgroup Go7 has been introduced in 2.2. We have further covers associated to subgroups of W (Eg):

(1) A maximal subgroup of index 36. The cover Css := C /G3s — P! is associated with the
permutation representation W (Eg) < Ssg with character 1 + 15b + 20b. The points of the
fibers of C3g — P! correspond to the pairs of roots 7 of the W (FEg) root lattice; equivalently,
to the double sixers of lines on a cubic surface. The ranks of the respective vector bundles E;
are 0+ 45 + 40 = 85 = g(C'g).

(2) A maximal subgroup of index 45. The cover Cys = C/Gys — P! is associated with the
permutation representation W (FEg) < Sy5 with character 1 + 24 4+ 20b. The points of the
fibers of Cy5 — P! correspond to the triangles {/1, fo, 3} of lines on a cubic surface. The ranks
of the respective vector bundles E; are 0 + 96 4+ 40 = 136 = g(Cls).

(3) More generally, for each fixed representative w, of one of the 25 conjugacy classes in W (Es),
labeled as described in 2.2, recalling that Z, := Z,,, is the centralizer of w,, we have the curve

A, =C /Z .
(4) Similarly, let W, = (w,) be the cyclic subgroup generated by w,. This gives rise to 25 curves
B, = C/W,.

Each of these families gives a map to a certain moduli space of curves and has a Hodge bundle
whose first Chern class we can compute as a linear combination of Dy, Dgy,, Da,y modulo the other
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boundary divisors (x). Each Hodge bundle is a direct sum of isotypical components for the 25 irreducible
representations of W (Fjs), that is, a direct sum of the same basic 25 Hodge bundles (with appropriate
multiplicities). The multiplicities of these isotypical components are easily computable. Thus, given 25
“linearly independent” families, we can compute the semi-ample Chern classes A\; = ¢i(E;) of the 25
bundles E; labeled by the characters of W (Eg). It turns out that the relations obtained by considering
universal versions of the curves B, are linearly independent, so they work for this purpose.

In particular, this gives us a formula for A\g = A(=®) that is, the first Chern class of the vector bundle
we denoted E(—®) in Section 2.7. We now put this program to practice.

3.2. Hur as a moduli space of Galois admissible covers. In what follows we choose to view H as
the moduli space of W (FEs)-Galois admissible covers

[%2 5—>R,p1,...,p24].

This means that [R, p1, ..., p2] € Mo 4, as usual, 7~T_1(Rsing) = 6’Sing and that there is a W (Eg)-action
on C' compatible with 7 such that the restriction

7o (Rueg \ {P1, - -, 24}) = Rueg \ {p1,- ... P2}

is a principal W (Eg)-bundle. At each node g € Cging, the action of the stabilizer Staby (W (Egs)) C W (Es)
is balanced, that is, the eigenvalues of the actions on the tangent spaces on the two branches of the
tangent spaces of C at ¢ are multiplicative inverses to one another.

To recover the description of H given in (2.3), we fix the subgroup Gar = Stabyy(g,)(as) € W (Es)
and note that if 7: C — R is a W (Eg)-Galois cover, then 7 := TGor C/Ga7 — R is a degree 27 cover
with monodromy group equal to W (Eg). The inverse operation is obtained by taking the Galois closure
of each degree 27 cover m: C' — R with W (Ejgs)-monodromy. Both of these operations can be carried
out in families.

Notation 3.1. For a Galois W (Eg)-cover 7: C — R and for a subgroup G C W (Eg), we denote
Cg :=C/G and g : Cg — R the induced cover of degree d = [W(Eg) : G]. We further set gg := pa(Cg).

Lemma 3.2. The arithmetic genus gg of the curve Cqg is
(3A) 96 = 12as. —d + 1

where d = [W(Es) : G| and ag. is given by Equation (2A) for w in the conjugacy class 2c containing
the reflections of W (Eg).

Proof. The sheets of the cover ng: Cq — P! over a general point from P! are in bijection with the
set of cosets W(FEg)/G. The monodromy action by an element u € W (Fjg) is given by multiplication
G — uxG on the set of cosets. If [rg: Cg — P!, p1,...,po4] corresponds to a general element from
H, then 7g is ramified over each of the 24 points p; according to the ramification profile 2%2¢1%2¢,
where ag. and by, have been defined in (2B). Applying the Hurwitz formula to 7g, we thus have
29G — 2 = d(—2) + 24as., which finishes the proof. O

3.3. Computation of Hodge classes on H. Having fixed a subgroup G C W (FEg) of index d, the
assignment [7: C' — P, py,... py] = [Cg] induces a regular map

H— My,
and accordingly a Hodge bundle E¢ on H of rank gg obtained by pulling back the Hodge bundle from
Mg. We aim to compute its determinant Ag := ¢1(Eq) on H. To that end we need some preparation:
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The universal stable curve over ﬂoﬂ is denoted by mas5: ﬂog{, — MO,M and forgets the marked
point labeled by 25. We recall the following standard formulas, see for instance [FG].

24
(3B) C1(wps) =25 — 3 _ S0:i25 € CH' (Moya5).
=1
12 . .
(30) sz S o (Mgay =3 CT B
1=2 =2

Here ; are the cotangent tautological classes corresponding to the marked points, whereas xi is the
usual x-class.

Theorem 3.3. Let G be a subgroup of W (Eg) as before. Assume the ramification profile of the degree d
cover Cg — P! corresponding to a general element [C — P py, ..., pog] € ﬁg@er each of the 24 branch
points p; is of the type 2°1°, where 2a + b = d. Then the Hodge class Ag on H is given by

12 - :
A = Z Z 11210111(/1)(?;1(21;3_” —d+ ;) [E;.,) € CHY(H).

1=2 peP;

Proof. The proof follows the lines of that of [ADFIO, Theorem 6.17], with appropriate changes we
indicate below. Over the Hurwitz space H we consider the universal W (Es)-admissible cover f: Cq — P
of degree d, where

P =M X3q,5, Mo2s
is the universal degree d orbicurve of genus zero over H. We fix a general point

t= [TFGI CG — R7p17“ . 7]724]

of a boundary divisor Ej.,, where p = (p1,...,1¢) € P;. In particular, R is the union of two smooth
rational curves Ry and Ry meeting at a point ¢. The local ring of the space of Harris-Mumford admissible
covers has the the following local description at ¢:

(3D) (C[[tl,...,t21,81,...,8d]/8l1“ = - _86 _tl,

where 1 is the local parameter on My 24 corresponding to smoothing the node ¢ € R. The space P
has a singularity of type Ajem(,)—1, and accordingly Cq has singularities of type Ajem(y)/u,—1 at the £

points corresponding to the inverse image of Rging. Indeed, to determine the local ring of H at the point
t, one normalizes the ring (3D). To that end, we introduce a further parameter 7 and choose primitive
pj-th roots of unity ¢; for j = 1,...,£. These choices correspond to specifying the stack structure of
the cover Cg — R at the points of Cg lying over the point ¢ € Rgjne. Thus

Ottcrrcd, 7 = Clltas -+ t21, 7]
lem(p) _ N
and s; = (;7 * , for j =1,...,¢. Accordingly, the map b: H — My 24 is branched with order lem ()
at each such point [t, (1, ..., (/. When the stack data (Ci,...,() is clear from the context, we drop it
and we write as before t = [¢,(3,..., (] € H when referring to a point of H.

Let ¢: P — H and q: P — Mo,% be the two projections and put v := ¢ o f: Cq — H respectively
f=7qo f:Cq — Myas. Note that v respectively f are viewed as the universal curve of genus gg over
H and M 25 respectively. The ramification divisor of f decomposes as

Ram(f) =Ri+-+ Roy CCq,
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where a general point of R; is of the form [r: Cg — R, pi1,...,p24, x|, with R being a nodal rational
curve and x € C being one of the a ramification points lying over the branch point p;. Since over each
branch point lie @ ramification points, we have f.([R;]) = a[®B;], where B; C P is the corresponding
branch divisor.

We apply the Riemann-Hurwitz formula to the finite map f: Cq — P. Accordingly, we can write
c1(wy) = f*@ c1(wnys ) + [Ram(f)], where we recall that mos: Mg 25 — Mo 24 is the morphism forgetting
the last marked point. We square this identity and then push it forward via v to obtain a relation in
CH'(H). We have that

0,63 (00) = 2 (F A (@ray) + 2 €1(0rs,) - Ram(f)] + [Ram()]).

We evaluate each term, starting with the second one. We write v, <?*c1(w7r25) - [Ram(f )]) =

24 24 24
Z O« <§*01 (Wrrog) - a[%i]) =a Z D«q" (Cl (Wrros) - [AO:i,QS]) =ab” (Z 1/11‘).
i1 i1 =1

Furthermore, we write f*(%B;) = 2R; + A;, where the residual divisor A; defined by the previous
equality maps b : 1 onto B;. Note that 4; and R; are disjoint, hence f*([%Bi]) - R; = 2R7. Therefore

wl[RI?) = 56u(1B7]) = S0u(@ (8F5)) = — 56" ().

Using Equation (3C), we compute that
24

o (Ram (1)) = v (3[R ):—fb*(m)— LI

=1 =2

We use Equation (3B), and the relation ”*(58@,25) =—¢;fori=1,...,24, to write:

24
v*?*c%(wﬂ'%) = ¢* <dg*6% (Wﬂ'%)) =d b*ﬂ'* (7!}25 - Z 60:1',25)2 =
=1

_ db*(m - iw) = d b*(i[BiDv

where the last equation is again a consequence of (3C). B
We find the following expression for the pull-back of the Mumford  class to H.:

(3E) V2 (wy) = i(?l(%g) ) Z 3 lem(n (3“ 223 i) —d)Ew

1=2 1=2 pueP;

Via a Grothendieck-Riemann-Roch calculation in the case of the universal genus gg curve v: Cg — H,
coupled with the local analysis of the fibers of the branch map b, we find

1
120g = v.¢3 (wy) + Z Z lem(p) - — [Eipl-

=2 peP;

Substituting in (3E), we finish the proof. O

";

We now make Theorem 3.3 more precise involving the monodromy vectors defined in (2B).
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Corollary 3.4. Let G be a subgroup of W(Eg) of index d and let W(Eg) < Sy be the monodromy
action for a generic cover [w: Cg — P p1, ..., pa] in this family. Suppose that the cycle types of the
elements a € W(Eg) in the conjugacy classes 2c, 2b, 8b are 2%2¢1b2¢, 20201020 qnd 3%301%30 respectively.
Then the Hodge class \g on Hur is:

1 660,26 3a2b 1 66@20 8a3b
(3F) AG = g [DOHE( 23 _T)[ SyzHé( 23 _T>[Dazy} mod ().

Proof. For the divisors Ey, Fsy,, Fazy one has i = 2. The classes 2¢, 2b, 3b are the conjugacy classes

respectively of a reflection w, a product of two commuting reflections w; - wo and two non commuting
. . 1 . 3a 8as:
reflections wy - wa. Over Dy, respectively Dsy,, Dayy, we compute d — m to be respectively 0, =2, =5,

and lem(u) to be 1, 2, 3. Finally, we use the relation between E’s and D’s from Equation 2F. O

B 116LQC

Example 3.5. For the maximal subgroup Gaoy C W (Eg), using (aac, azp, as.) = (6,10, 6) we recover the
formula for A\g,, = A given in Theorem [ADFIO, Theorem 6.17].

3.4. Prym-Tyurin varieties via Galois covers. We now discuss a different representation-theoretic
interpretation of the Prym-Tyurin variety PT(C, D) associated to a W (Eg)-cover 7: C — P!. Recall
that in 2.2 we fixed the maximal index 27 subgroup Ga7 = Stabyy (g (as) of W(Es). For a W (Es)-Galois

cover [7: C — R,p1 + -+ + pa4], we denote by 7: C' = 5’/G27 — R the associated degree 27 cover with
monodromy group W (FEs). Let (Eg)c := Fg ® C. Notice that (Eg)c is also generated by the elements
of the orbit of ag (all weights of Eg). Following [D2, 5.1], we define the Prym variety associated to the
lattice Eg as the abelian variety parametrizing equivariant maps to JC'|, that is,
Prymp, (JC) := Homy (g ((Es)c, JC).

The evaluation at the element ag induces an injective morphism of abelian varieties ([LP, Lemma

5.4.] and [LP, Proposition 5.2.])
evaly, : Homyy () (Es, JC~’) — JC, [v: Eg— JC| — v(ag).

In this way Prympg,(J 6’) is endowed with a polarization. The image of the map eval,, above lands

inside JC = (J 5’)G27. We now summarize results from [D2, Section 12], see also [LP, Section 5]:

Theorem 3.6. The evaluation induces an isomorphism of 6-dimensional ppav PrymEﬁ(Jé) = PT(C,D).

Since the proof given in [D2, Section 12] is representation-theoretical it works without modification in
families. Passing to tangent spaces at the origin, Theorem 3.6 implies that one has a natural isomorphism
of vector spaces

(3G) HomW(E6)(E6,HO(C~’,wC~,)) = HO(C, wc)(_5).

3.5. Computing the 25 fundamental Hodge classes. We denote by p1,..., pss the irreducible
representations of W (Eg). We also fix a subgroup G C W (Es) of index d. For each W (Es)-Galois cover
[7: C = Plp,... ,D24], the space of differentials Ho(é,wé) is a W(Eg)-module and accordingly we
have the following decompositions into sums of irreducible representations:

(3H)
N 25 _ 25 ~
HO(Cwz) = @) pieHomy s, (i HO(Cowz)), HO(Conwee) = €D o @ Homuy iy (i, HO(C ).
=1 =1

Notation 3.7. We denote by E the W (Es)-Hodge bundle on H, that is, having fibre Ho(é,wé) over
a point [7: C' — R] € Hur.
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We now define Hodge bundles corresponding to each irreducible representation of W (Eg).

Definition 3.8. For each i =1,...,25, let E; := Homyy (g (pi, E) regarded as a vector bundle on Hur.
We let \; := c1(E;) € CH!(Hur).

We have therefore the following identity in the K-group of Hur:

25
(31) E=EPp@E.
i=1
The dimensions of the invariant subspaces ,oZ-G as usual are given by the formula
) 1
(3J) dim(p{’) = =7 > Trp(9)-
Gl 2=

Here, for g € W(Es) in the conjugacy class «, we have Tr,,(g) = Try,(c) in the character table of
W (Eg), see Table 2.

We now come to the first main result of this paper, the explicit computation of all the classes A;.
This implies Theorem 1.1.

Theorem 3.9. The ranks rk(E;) and the 25 fundamental Hodge classes \; = c1(IE;) on Hur in terms
of the generators Dy, Dsyy, Dayy mod (%) are given as in Table 1.

Proof. We apply the above formulas to the 25 cyclic groups G = W, = (w,) generated by 25 fixed
representatives w, of the conjugacy classes of W (Egs). Precisely, we have

25
A = Z dim(p&) \;.
i=1

From (3J) we compute the 25 x 25 matrix of multiplicities M = dim(py“)1§i7a§25 and find its determi-
nant to be 400771988324352 # 0, so it is invertible. B

We compute the vector of genera of the curves B, = C/W, by (3A). Multiplying this vector by M1
we find the ranks of E;. Next, for each of the curves B,, we find the 6-tuple (asc, bac; aop, bop; ase, bsc)
by applying (2A) to the elements u lying in the conjugacy classes 2¢, 2b, 3b. Then, using Corollary 3.4,
we find the corresponding lambda class Ay, on Hur. Finally, we multiply the 3 x 25 matrix of these

lambda classes by M ™! to get the expressions for \; in terms of Dy, Dy, Dyyy mod (x).
O

Remark 3.10. Since A = A\(=9 4+ \(+1) Equation 1B and Theorem 1.1 are equivalent. There are similar
identities to 1B for the universal covers of degree 36 and 45 from 3.1(1,2).

Remark 3.11. From Corollary 3.4 we see that the Hodge class Ag is a linear function of the vector
a = (agc, agp, asp) given by an invertible matrix. It follows that @ is a linear function of the vector Ag.
Associating to a cover Cg = C/G the element Y,(dim p$*)y; in the character space of W (Eg), we see

that
25

ao(Cq) = Z(dim paa(xi) for a = 2¢,2b,3b.
i=1
Then aq(x) can be computed using the same linear algebra, from Equations 3J and 2A. We list them
in the last three columns of Table 1.
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x name | Tk E; Dy Dsyz Dazy a2c  Gp  G3p
11 0 0 0 0 0 0 0
2 1 11 | 11/92 11/23  33/92 1 0 0
3 10 50 | 55/92 32/23 127/276 | 5 4 4
4 6 6 | 11/92 —1/46  7/276 1 2 1
5 6 54 | 55/92 87/46 403/276 | 5 2 1
6 20a | 100 | 55/46 41/23  73/46 | 10 12 6
7 15a 45 | 55/92  9/23  127/276 | 5 8 4
8 15a | 105 | 55/46 64/23 311/138 | 10 8 4
9 15b 45 | 55/92 41/46 35/276 | 5 6 5
10 15b | 105 | 55/46 151/46 265/138 | 10 6 5
11 20b 40 | 55/92 9/23 35/276 | 5 8 5
12 20b | 160 | 165/92 119/23 1025/276 | 15 8 5
13 24 96 | 55/46 41/23 127/138 | 10 12 8
14 24 144 | 77/46 85/23 325/138 | 14 12 8
15 30 90 | 55/46 59/46  27/46 |10 14 9
16 30 210 | 55/23 279/46  96/23 |20 14 9
17 60a | 300 | 165/46 169/23 473/138 | 30 28 22
18 80 400 | 110/23 210/23 346/69 | 40 40 28
19 90 450 | 495/92 219/23 565/92 | 45 48 30
20 60b | 240 |275/92 114/23 181/92 | 25 28 21
21 60b | 360 | 385/92 224/23 511/92 | 35 28 21
22 64 224 | 66/23 80/23  134/69 | 24 32 20
23 64 416 | 110/23 256/23 530/69 | 40 32 20
24 81 351 | 99/23 309/46 90/23 | 36 42 27
25 81 459 | 495/92 507/46 657/92 | 45 42 27

TABLE 1. x;, tkE;, \;, and (agc, agp, asp)(Xi)

The following is also easy to see, cf. (3A). For any character x one has

(3K) 9(x) := rank E(x) = 12a2.(x) — x(1a) + mult; (x),
where x(la) = dimV,, is the dimension of the representation, and mult;(x) is the multiplicity of the
trivial representation 1 in x. For example g(Ca7) =126 — 27+ 1 = 46, and rank(Es) = 12-1 -6 = 6.

Remark 3.12. From Table 1 one can observe that for any character x one has

Ax@1) = A00) + x(20)A(1),  alx®1) = a(x) + x(2¢)(1,0,0).

4. THE WEYL-PETRI DIVISOR AND THE RAMIFICATION OF THE PRYM-TYURIN MAP

In [ADFIO, Section 10], we showed that, if a smooth W (Es)-cover [r: C — R,p1 + - -+ + p2s] € Hur
lies in the ramification locus of PT, the line bundle L associated to 7 satisfies h°(C, L) = 2 and the
Petri map

H(C,L) ® H(C,we ® L™Y) — H(C,we) Y

is an isomorphism, then the Prym-Tyurin canonical image of C'is contained in a quadric. In this section
we refine the above result by showing that the ramification divisor of PT' is contained in the union of two
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divisors M and 91 which we shall describe. In this section, we work on an alternative compactification
G of Hur which we first discuss in some detail.

4.1. The parameter space Gg,. In [ADFIO, 9.4] we introduced the stack Gg, classifying SL(2)-
equivalence classes of finite maps [r: C — P!] with W (Es) monodromy, where C is an irreducible
curve of genus 46. To construct Gg,, we let Xz, denote the substack of the moduli stack Myg(P!,27)
parametrizing finite stable maps m: C' — P!, from an irreducible nodal curve C' of genus 46 and having
monodromy group M, contained in W (FEs). Then we set

QEG = [XEG/SL(Q)] 5
where SL(2) acts on the base by linear transformations.

Let fgs: Ces — GEs be the universal curve of genus 46. One has a birational map f: Hur --» OE-
We recall the effect of this map on the boundary divisors Dy, Dsy, and D,y of Hur. We fix a point

t=[r:C=C1UCy — R=RyUy Ry, p1+---+pas] € Hur,

where we assume that Ry and Ry are smooth rational curves meeting at ¢ and that py,...,p22 € R1\{q}
whereas pa3, poa € Ro \ {q}.

If ¢ represents a general point of Dy, then C] is a smooth curve of genus 40. The curve C5 consists of 21
components, of which 6 map with degree 2 onto Ry and meet C] in two points, whereas the remaining 15
map isomorphically onto Ry and meet Cy in one point. Then 3(t) = [7 : C — R3] € Gg,, where C is the
6-nodal curve obtained from C by pairwise identifying the six pairs of points lying on the components
of Co mapping 2-to-1 onto Ry, and 7 is induced by 7. If v: C; — C is the normalization map, then
L :=7*0g, (1) € W4,(C) is uniquely characterized by the property v*(L) = Tir, (Oc, (1)) € Wi (Cy).

If  represents a general point of Dagy, then C is smooth of genus 46 and 7|, : C1 — R; is a map of
degree 27 with 6 ramification points of index 3 over the point ¢ € R;. Then

B(t) = [mcy: C1 = Ra] € G
and Ly := 7T|*C1(OR1(1)) € Wi (C1).

The case when ¢ corresponds to a general point of Dy, requires care. Then C; is a smooth curve
of genus 45. The permutations in Ss; corresponding to the roots wes and wsy describing the local
monodromy around pog and po4 share four elements. For instance, using the standard notation for the
lines on a cubic surface, we may assume wo3 = Qmax = 2h — a1 — - -+ — ag and woy = a3 = a1 — as:

b 5
max = (b; by by by by bg) and ong = (gL 0% 08 00 6 ).

The curve C7 meets a smooth rational component of E of Cs at two points p; and py corresponding
to the sheets labelled by the transpositions (a1, b2) and (b1, ag) corresponding to multiplying _Qumax and
a12. The map mg: £ — Ry is of degree 4 and 7r|*E(q) = 2p1 + 2p2. We have g(t) = [7 : C — Ri,
where C is obtained from C; by identifying the points p; and py and 7 is induced by 7. Therefore C
is an irreducible 1-nodal curve of genus 46. The line bundle L := 7*Og, (1) € W3-(C) is characterized
by the fact that if v: C; — C' is the normalization map, then v*(L) = Ly := 77‘*01(031(1)). Moreover,

if 6Smg = {z}, that is, v71(2) = {p1, p2}, then

h0(Cr, Li(=2p1 — 2p2)) > 1.
Because the points p; and py are ramification points of Ly, it follows that the local equations of G,
around t € Dy, are
(u, U,tl,tQ, . ,tgl), u2 = ’02 = tl,
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see [Va, Corollary 4.16] for a similar discussion. The parameters ¢1, ...t correspond to deforming the
branch points of 7 and the divisor D,, C Gg, is locally given by (t; = 0). Therefore G, is not normal
along Dy, .

Notation 4.1. We denote by _C’7E6 — Gg the normalization map. Let
f : C~E6 - gEG
be the universal curve over C7 Eg- _

Finally, we clenote by B: Hur --+ Gg, the map induced from § by the universal property of the
riormalization Gr; — Gg,. We still denote by Dy, DSyZ~ and D,y ~the reduced bgundary divisors on
GEg corresponding to the same symbols under the map f, that is, 8*(Do) = Do, 5*(Dsyz) = Dsy, and
B*(Dazy) = Dagy-

Along the divisor Dsy,, the space g 1, consists of two sheets having local coordinates (s, to,...,t21),
such that the map Gg, — G, is given locally by

(u=sv=st=5) ad (u=—sv=st=s)

respectively. Accordingly, the fibre product C’E6 = Cgq X G, §E6 has Aj-singularities along the codi-
mension 2 locus corresponding to nodes ([C — R,z € Csing) over points in D_,. Indeed, if xy = t;

is the local equation of Cg, in coordinates (z,y,t1,...,t21), then the local equation of C};G is 2y = s°.

Observe that C, B¢ is obtained from CjEG by blowing-up the locus of nodes. It follows that over a point
[C = R] € D_,, we have
7Y€ = R) =C Uiprpay £

where E is a smooth rational curve meeting the smooth curve C; at p; and ps.

Notation 4.2. We denote by £ a universal line bundle over C £s- For a point [C = C1UE,L] € Dgy,
as above, we have L, = v*(L) € Wy;(C1) and L = Op.

Theorem 4.3. At the level of -C7E6 one has the following formula:

33 7 17 e

Proof. We study the map ¢ := E oq: H --» QVEG. At the level of H we have the formula [ADFIO,
Theorem 6.17]:

17 33

_ 7 172y
A= Q—B[Eazy] + E[Esyz] + 2—8[E0] +---€ CHY (H).

We claim that ©*([Do]) = 2[Eo], ¢*([D,,,]) = 2[E,,,] and ¢*([D,,,]) = [E,,,]

We start with a family of W (Eg)-pencils ( fr: Cy — IP’l) or and assume that over a special point
to € T, two branch points coalesce. Depending on the situation, the curve Cj is smooth (in the azygetic
case), or nodal (in the syzygetic, or the Dy-case). In order to separate the branch points one makes a base

change of order 2 which justifies the multiplicity in front of both Fy and E,, . This base change is not
needed in the case E,, for, when we passed to the normalization, the two branches were separated. []

Remark 4.4. Observe that a formula identical to Theorem 4.3 has been established in [ADFIO, Remark

5.21] at the level of Hur. The stacks Hur and G Ee are however not isomorphic over the divisors Dy, D,
and D_,. For instance, over a general point in D,, the non-normalized Harris-Mumford space HM g,
of admissible covers has local equations

which explains the result.

3 3
31:"':S6Zt1,
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in local coordinates (s1,...,56,t1,...,t21), where D, is given by (1 = 0). Accordingly, the local
equation of Hur (which locally is the normalization of HMpg,) in coordinates (a,t2,...,t21) is given
by s1 = Cia,...,s¢ = (sa, t1 = a3, where (1,...,(s are primitive cubic roots of unity and a is a local

parameter. In particular, over a general point of D, in Gg, there lie 3° = % x 3% points in Hur.

y

Theorem 4.5. We have the following formula:

Kk =12\ — 6[Dg] — 2[D,,,] € CH (Gp,).

syz}

Proof. By definition £ = fi (C% (w f)) We apply Grothendieck-Riemann-Roch to the universal curve
f . C, Es — G Ee- The usual calculation of Mumford yields

K =12\ — f.[Sing(f)].

The general point of Dy has 6 singularities, thus explaining the factor 6[Dy]. Similarly, the general
point of D_, corresponds to a curve with fwo singularities, namely the points of intersection £ N (1,

keeping the notation above. This explains the factor 2[D O

syz]'

4.2. Tautological classes on G, e+ In [ADFIO, 9.6], after having chosen a universal line bundle £ on
the universal curve Cg, the following tautological classes over Gg, were defined:

A= f (D), B:=fi(all) alw), =3~ 29‘ € CH'(GE).

Whereas 20 and 98 depend on the choice of a universal line bundle £ on C, Eg, the class v is intrinsically

defined and does not depend on such a choice. We define the tautological part of CH 1(§’7E6) to be the
three dimensional subspace with the following three distinguished bases:

® (Dazy, Dsys, Do). All calculations on Hur are carried out using it.

e (\,7,Dp). This basis is best suited for working with the space QNEB.
o (A, A9 Dy). This is the basis compatible with the Prym-Tyurin map PT.

In what follows we clarify the relation between these bases:
Theorem 4.6. The following relation holds:'
[Dasy] = 7 + 4\ — 3[Do] — 2[Dsy,] € CHY(Gy).

Proof. We represent Dy, as the push-forward of the codimension two locus in the universal curve C Jo
of the locus of pairs [C' — R, p], where p € C is such that h%(C, L(—3p)) > 1. We form the fibre product
of the universal curve Cg, together with its projections:

~ - ~ ~ o ~
CEG — CEg XgEG CEG — CE(;-

For each k > 1, we consider the locally free jet bundle Ji (L) defined, e.g., in [E96], as a locally free
replacement (that is, double dual) of the sheaf of principal parts P}f(ﬁ) = (m2)« (7r’1k (£) @ Lt A> on

C, Es- Note that P]’;(ﬁ) is not locally free along the codimension two locus in Cg, where f is not smooth.

ITheorem 4.6 corrects Theorem 8.14 from [ADFIO], where the non-normality of Gg, along Dsy, was not accounted for.
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To remedy this problem, we consider the wronskian locally free replacements J J’cf (L), which are related
by the following commutative diagram for each k& > 1:

0—— ke L ——=PHL) —=P; (L) —=0

N .

—_— @k o Jk e ’ffl —_—
0—wi oL JH(L) JEL) 0.

Here Q’i denotes the (’)~ —module TiA /I(k+1 . The first vertical row here is induced by the canonical
map Qk — w® 7 ¥ relating the sheaf of relative Kéahler differentials to the relative dualizing sheaf of the
family f . The sheaves P}f(ﬁ) and J }f (£) differ only along the codimension two singular locus of f.
Setting V := f, L, there is, for each integer k > 0, a vector bundle morphism v: f*(V) — J }?([,), which
for points [C, L, p] € G, such that p € Cyeg, is just the evaluation morphism H°(C, L) — HO(L](,CH)[,).

We specialize now to the case k = 2 and consider the codimension two locus Z C C~E6 where
vy fX(V) = J;(ﬁ)

is not injective. Then, at least over the locus of smooth curves, D,y is the set-theoretic image of Z.
Furthermore, a local analysis shows that the morphism v is simply degenerate for each point [C, L, p],
where p € Cging. Taking into account that a general point of Dy, corresponds to a pencil with siz triple
points aligned over one branch point, and that the stable model of a general element of the divisor Dy,
corresponds to a curve with one node, whereas that of a general point of Dy to a curve with siz nodes,
we obtain the formula:

6[Dasy] = f. (JJ%(E)>—6[D]—8[D | € CH'(Gry)
azy| — JxC2 f*(V) 0 Syz FEg)-

The fact that Dgy, appears with multiplicity 8 is a result of the fact that fﬁl([C, L)) = C Ugpr ot B
over a general point [C, L] € D_, has two singularities, and that, at each of the nodes, there is a local
multiplicity equal to 4 as we shall explain.

We choose a family F': X — B of curves of genus 46 over a smooth 1-dimensional base B, such that
X is smooth, and there is a point by € B such that X := F~1(b) is smooth for b € B\ {by}, whereas
Xy, has precisely two nodes p; and pa. Assume L € Pic(X) is a line bundle such that L, := Lx, is a
pencil with W (Eg)-monodromy on X, for each b € B, and furthermore [Xp,, Ly,] € Dsy,. We have that
Xby = C Uy, poy E, where C is a smooth curve of genus 45 and FE is a smooth rational curve, meeting
C' at the nodes p; and ps.

Choose local parameters ¢t € Opy, and u,v € Ox p,, such that uv = ¢ represents the local equation
of X around the point p;. Here u is the local parameter on C, whereas v is the local parameter on
E. Then wp is locally generated at the point p; € X by the meromorphic differential 7 = d—“ = d”
We choose two sections si, 59 € HY (X, L), where s; does not vanish at p; or ps and so vamshes w1th
order 2 at pp,p2 along C, while being identically zero along E. Thus (after a local analytic change of
coordinates) we can write a relation S2.p; = u2817p1 between the germs of the two sections s; and so at

p1. We compute
d(s2) — 2udu = d(s3) — 2u*t € (u,v)7, and d*(s2) — 4udu = d*(s3) — 4u*t € (u,v)T.
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In local coordinates, the map H° (Xbo, Lbo) — H° (Xbo, Ly, | 3p1) is then given by the following matrix,

1 0 0
u? 2u? + (u,v) du® + (u,v) )’

where the symbol f+ (u,v), indicates an element of Oy ;, that differs from f by an element in the ideal
(u,v). The local equations of the degeneracy locus Z are the two by two minors of the above matrix.
This shows that the local multiplicity coming from the node p; € Xj, of [Dsy,] in Z is equal to 4, hence
[D. ] appears with multiplicity 8 = 4 4+ 4 in the degeneracy locus.”

syz]

We compute: ¢ (JJ%(E)) = 3c1(£) +3c1(wy) and CQ(JJ%(ﬁ)) =3c2(L)+6c1(L)-c1 (wf)+2c%(wf), hence

[ J3L
feea (ff(v)> = 3% + 6B — 3(d + 29 — 2)1 (V) + 2k = 6 + 2.

As explained in Theorem 4.5, we also have k = 12\ — 6[Dg;| — 2[Dsy,], which finishes the proof. O

Recall that f: CNE6 — §E6 denotes the universal curve and £ is a universal line bundle of relative
degree 27 over Cg,. The push-forward sheaves f.(£) and f, (w F® £V) are reflexive sheaves, therefore
using [Hal, both are locally free outside a subset of codimension at least 3 in G, Bs- By possibly removing
this locus, for all divisor class calculations that follow, we may assume that both f.(£) and f. (wf®ﬁv)

are locally free. Using [ADFIO, Lemma 11.5), for a general point [r: C' — P!] € Gg,, if L := n*(Op1 (1)),
we have h(C, L) = 2 and h°(C,wc ® LY) = 20, therefore by Grauert’s Theorem

rk(f*(ﬁ)) =2 and rk(f*(wf@@ﬁv)) = 20.

We fix a point [r: C — P! = [C, L] € JEG and a point p € P! such that 771(p) C Creg. We consider
the usual cohomology exact sequence on C'

(4A) 0 — H°(C,0¢) — HY(C, L) — H°(Or,(T},)) % HY(C,0c) — HY(C, L) — 0,

where I, is the divisor of |L| = |7*Op1(1)| above p. We identify H%(Or,(T'p)) with the C-vector space
spanned by the 27 lines on a fixed cubic surface S. The incidence correspondence on the set of lines of
S induces an endomorphism

Wi HO(Or,(Ty)) = H%(Or, (L))
with eigenvalues 10, 1 and —5, with eigenspaces H°(Or, (T',))1?, H(Or, (T',))® and H(Or, (T)) >
of dimensions 1, 20 and 6 respectively. Note that H O(Opp)(+10) is spanned by the sum of all the 27 lines
on S and, as in the proof of [ADFIO, Theorem 9.3], the space HO(Opp (Fp))(HO) can be identified with

the trivial representation of W (FEg). Furthermore, if D: H(C,wc) — H°(C,wc) is the endomorphism
induced by the Kanev correspondence on C, the following diagram is commutative for each p € P*':

HO(Or,(T)) —> HO(C,we)¥

vpl Dvi

(e}

HO(Or, (T,) —2> H(C,we).

2In [ADFIO, Theorem 9.12] there is a mistake in a similar calculation: the multiplicity there is 4 and not 3.
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Therefore, the decomposition into eigenspaces produces the exact sequences
0 — H°(C,0¢) — H°(C,L)H) — HO(Or, (T,) 1% — 0,

and
)
(4B) 0 — H(C,L)"» — H(Or,(T,)) ) 2 HY(C,00) 7 — HY(C, L) — 0.

It follows from [ADFIO, Section 11] that h°(C, L) = 2 (hence h*(C, L) = 20) for a general [C, L] € G,
therefore in this case we also have H(C,L) = H(C, L)% and HO(C,L)(=® = 0 and H'(C,L) =
HY(C, L)), It also follows that the space HO(C, L)(*19 can be canonically identified with the subspace
7*HO(P', Op1 (1)) of H°(C, L) and it always has dimension 2.

4.3. The divisor M. The locus of those triples [C, L,p] € C~E6 such that the map

o) HO(Or, (T,)) ™ — (H(C,we)) ™)

is not an isomorphism can be represented as the pullback f*(zm) of an effective divisor M on G B, for

the degeneracy of the map ab™ s independent of the choice of a point p € P!.
In what follows we characterize this divisor set-theoretically and observe that, surprisingly, the locus
in G, of pairs [C, L] such that h®(C, L) > 2 is of codimension one.

Proposition 4.7. If [C, L] € M, then h°(C, L) > 3. Furthermore, if [C,L] € Gg, \ M, then
Im{H°(C, L) ® H*(C,wc ® L") — H°(C,we)} € H(C,we) Y,

Proof. Assume h%(C, L) = 2, therefore H*(C, L) = H(C, L)(*10), From the sequence (4B), it follows
that 041(,_5) is injective, hence by comparing dimensions, it is an isomorphism, that is, [C, L] ¢ 9.

In order to establish the second claim, we use the exactness of the second half of the sequence
(4B). Since Im(a(ff))) = HY(C,we)™), in particular Tm(a,) 2 (H°(C, wc)v)(_5). By dualising, if
s € HO(C, L) is the section defining the divisor T, we obtain that s - H(C,wc ® LY) € HO(C,we) Y,
which establishes the claim, by varying the section s € H(C, L). O

4.4. The divisor 9. We define the Weyl-Petri divisor O to be degeneracy locus of the map of vector
bundles of rank 40

B f*(ﬁ) ® f*(wf®ﬁv) — f*(wf)(+1)

over G, £s- Observe that away from the divisor 90, the points in 91 are precisely those for which the Petri
map u(L): HY(C,L) ® H(C,wc @ L) — HY(C,we) is not injective.

Lemma 4.8. For each point [r: C — P'| € Gg,, one has the identification f.(L)[x) = HO(C, L)+10),
Proof. Use that f.(L£) is locally free, coupled with the sequence (4A). O
In what follows we shall determine the class of the divisor 1.

Proposition 4.9. The following formula holds at the level of §E6:
D) = A —2x 44 = AP = X A 4o,
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Proof. Using the description of 91 as a degeneracy locus, we compute that
9] = XD — e (Fu(0) @ Fulw} @ £9) = ACD 4 ¢y ((£) ® B (L)),

Using [ADFIO, Proposition 9. 11], we have 2 = 27¢; ( f+(£)). Applying Grothendieck-Riemann-Roch to
the universal curve f: C) Es — gE(;a we write

. - - e (L) c1(ws -
c1(ful(L)) — et (R (L)) :f*[ 1(25) _al )2 ey +%(c?(wf)—[Sing(f>])} =

which leads to the claimed formulas. O

+ A,

po| 22

_ %
2

Combining Theorem 4.6 and Proposition 4.9, we obtain the following relation:

Theorem 4.10. In the (\, D, , Dy) basis of CH (Gg,), we have:

syz?

59 12 29
[m] - EA - 7[ 0] - @[Dsyz:h
and 18 3 12

Proof. Put together Theorem, 4.6, Proposition 4.9, together with the relation A=D) = %)\— %[D O

syz]‘

Remark 4.11. In the (A, A(=5), [Dy])-basis of the tautological part of CH? (QNEG), the previous formula

can be written as
29

279,
7

9 = 2X - Do) +

4.5. The ramification divisor of PT. We now show that the ramification divisor of the Prym-Tyurin
map PT': Hur — Ag is contained in the union of the divisors 9t and 1. This improves on our [ADFIO,
Theorem 0.3]. Recall that each W (Eg)-cover [r: C — P! p; + - -+ pgy] € Hur induces an Prym- Tyurin
canonical map

P(=5) = PIHO(Cwe) D) C — P

Theorem 4.12. If the Prym-Tyurin canonical image of a smooth curve [C, L] € Hur is contained in a
quadric, then [C,L] € M, in particular, h°(C, L) > 3.

Proof. Let Q C P5 be a quadric containing the Prym-Tyurin canonical image of C. Recall from [ADFIO,
Section 10] that, for each branch point p; of the map 7: C — P!, the ramification points r;1,. .., 7
have the same image, say p; € P in the Prym-Tyurin canonical space P = IP(HO(C', wc)(_5))v.

Since the Prym-Tyurin canonical image ¢(_5)(C) is non-degenerate, the quadric ) has rank at least
3, hence its singular locus is a linear subspace of P% of codimension at least 3. In particular, Q can be

singular at most 14 of the points p;: indeed, if for instance @) is singular at p;,...,P;5, this implies
n°(Cwe(- 3 ) >3
=1 j=1

which is not possible because we (— di<icis(rin+ o+ ri6)) has degree 0.

Therefore, there exists a branch point p of w, such that @ is smooth at the image P of the six
ramification points on 7 lying over p. Let Iy := 2(r1 +--- +16) + ¢1 + - -- + ¢15 be the divisor of |L]



HODGE CLASSES ON THE MODULI SPACE OF W(Es)-COVERS AND THE GEOMETRY OF Ag 23

above p. We write H°(C, wc)(_5) = (Mo, N1, ..,7M5), where (ny,...,n5) = H° (C’, wc)(_B)(—rl — e —Tg),
therefore ord,, (n9) = 0. Assume the equation defining @ is given by

g=a-m+no-(am+--+asns) + @, ..., n5) € Sym?HO(C,we) ™),

where a € C. Evaluating ¢ at r;, we obtain a = 0. Then 7 := ayn; +---+asn; € H(C, wc)(_5) satisfies
ord,,(n) > 2, for i = 1,...,6. Furthermore, 7 # 0, because p € Q.eg, that is, hence

n e HO(C, wc)(_5)(—2r1 — - —2rg) #0.
Note that 7 is the equation of the tangent hyperplane to () at the point p.

Assume now that [C, L] € G, \ (M UMN), thus the map oz](gﬁr)) is an isomorphism. The dual map can
be identified with the evaluation map

(al™)": HY(C,we) ™ = HO (weyr, )7,

hence we obtain that H° (wc|pp) (=5) (=21 —---—2rg) # 0. Identifying H° (CL)C‘FP)(_B) with the primitive
cohomology of a 1-nodal cubic surface, this fact implies in fact that
HO(WC’|F)(75)(_2T1 — e =2rg—q1 — - —q15) # 0,

which yields 0 # 1 € H(C,wc)(=9(-T,), that is, n € Im{ H*(C, L) ® H*(C,wc @ LV) — H(C,we) }.
We conclude n € H(C,we) ™% N HY(C,we)HY) = {0}, which is a contradiction.
O

Proof of Theorem 1.3. Tt suffices to combine Theorem 4.12 with [ADFIO, Theorems 0.3 and 9.3],
asserting that a point [C, L] € Gg, \ M lies in the ramification divisor of PT' if and only the Prym-
Tyurin canonical curve p_s)(C) lies on a quadric. O

5. A UNIVERSAL THETA DIVISOR ON THE MODULI SPACE OF W (Eg)-COVERS

In this section we discuss the geometry of a very natural effective divisor on }fﬂl/r, which can be viewed
as (a translate of) _the universal theta divisor (not to be confused with the pull-back of the universal
theta divisor from Ag). Since the geometric construction we are interested in is defined directly in terms

of a W (FEs)-pencil, it is easier to work again with the parameter space G Ee -
Definition 5.1. We consider the following locus inside G, Es
(5A) D) = {[C, L) € Gg, : H(C, 2w — 5L) # 0}.

Note that since deg(2we —5L) = g(C) — 1 = 45, points in D7 are characterized by the condition that
2we — 5L lies in the theta divisor Wy5(C) C Pic*®(C). In particular, D is a virtual divisor on Gg.

Theorem 5.2. The virtual class of D1 is given by the following formula:
. 15 ~
D" = A—nt e CH(Gg,).

Proof. We reinterpret the defining property of points in ®; via the Base Point Free Pencil Trick, as
saying that the multiplication map

pi(L): H(C, L) ® H°(C,2we — 4L) — H°(C, 2w — 3L)
is not bijective. Note that one has h°(2wc — 4L) = 27 and that hO(C 2we — 3L) = 54. Furthermore,
using the construction given in 4.1 of the birational isomorphism 5 Hur --» QEG, it follows that L is a
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base point free pencil for every point [C, L] € G s~ The map p1(L) can be globalized to a morphism of
vector bundles over G, having the same rank

p: Fo(L) @ (0P @ L) — [0 e L2Y),

where, as in the prev1ous section, £ is a universal pencil with W (Es)-monodromy over the universal
curve f CE6 — QE6 Clearly, ® is the degeneracy locus of ;.

Since one has
R (020 £20) =0, R (0220 £5C9) =0,

the Chern classes of the sheaves appearing in the definition of the morphism p; can be computed via a
Grothendieck-Riemann-Roch calculation. For instance,

o1 ([ (@22 @ £2D)) = At s+ 8% - 12,
and after routine manipulations we obtain the claimed formula. O

Corollary 5.3. The (virtual) class of [D1] in the (A, [D,,,],[Do]) basis of Pic(Gg,) is given by:

. 1 4
[Ql]VIrt )\_ l[D 8

77 14 = [Dol.

syz ] 7

5.1. A degenerate W (Ejg)-cover. It is crucial to establish that the virtual divisor ©; is a genuine
divisor on QVEG. To that end we shall use degeneration and we first need some preparation. We start
once more with a W (Eg)-cover [r: C — P p; + - -+ + pog] € Hur. Recall that fibers of 7 over a generic
point in P! can be identified with the lines #1, ..., #27 on a fixed smooth cubic surface S, as well as with
the (—1)-vectors in the orbit W (Es).ws of the coweight lattice Ajy, p y- The reflections w € W (Es)
can be identified with the roots of the root lattice Ay (g modulo £1: the roots +r and —r give the
same reflection. For each root r there are exactly 6 coweights a,; with (r,a,;) = 1 and 6 coweights
by with (r,b,;) = —1 so that b.; = a,; + r. The switch from r to —r exchanges a,;’s and b, ;’s.
Under the monodromy representation W (Eg) < So7 the reflection w is represented by a double sixzer
(ar,la br,l) s (ar,6a br,6)'

The following lemma describes the basic degeneration used to show that ®; is a genuine divisor. This
degeneration will also prove to be instrumental in the final step of the proof of Theorem 1.4.

Lemma 5.4. Let C := (ﬂ'ti Cy — PLpi(t),... ,p24(t)) be a 1-parameter family of W (Eg)-covers such
that the local monodromies w; of the points p; are pairwise equal: wo;—1 = wo; fori =1,...,12. Assume
lim po;_1(t) = lim po;(t) = q; € PY. Then the family C can be flatly completed to a family of covers of P*
so that the central fiber C = Cy is a nodal curve labeled by the lines {1, ..., la7, a union of 27 copies of
P! each mapping isomorphically down to the base P*. The sheets are glued as follows. For each point
qj € P!, j =1,...,12 with local monodromy wj, glue the point above q; on the sheet labelled by ajy, to
the point above q; on the sheet bji, for k=1,...,6.

Proof. For a generic point ¢ € P!, each ramification point over p;(t) is of the form y? = x, with the 6
pairs (a;, bjx,) coming together. It is immediate that when two branch points on the base come together,
the limit points on C' are nodes. Let [[.-, C, be the normalization of C. It first follows that all the
components of C are rational, since the map C — P! induces étale maps C~’S — P!. The dual graph
I' = (V(I'), E(I")) of C is connected since the reflections w; are chosen so that they generate W (Es).
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For the arithmetic genus of C' one has
[E@)| = [VID)]+1+ Y pa(Cs) = |[EX)| = V(D) + 1 = 46.
s=1

Since there are 12 x 6 = 72 edges, it follows that the number of vertices, that is, that of the irreducible
components C of C' is 27. Thus, the normalization of C is a disjoint union of 27 copies of P'’s and the
gluing is as described. O

Remark 5.5. The switch from a root r to —r representing the same reflection w changes the orientation
of the 6 respective edges in the oriented dual graph I'.

The glued curve C' = Cpy comes with an ample line bundle L = 7*(Op1(1)). It also comes with a
Kanev correspondence sending a point over 2 € P! on the sheet labeled ¢ to the 10 points in the same
fiber on the sheets labeled ¢’ such that ¢ and ¢ intersect on the abstract cubic surface S. The induced
endomorphism D on H°(C,w¢) satisfies (D + 5)(D — 1) = 0 and the corresponding eigenspaces have
dimension 6 and 40, just as on a smooth curve. For more details, see [ADFIO, Sections 4 and 5].

Theorem 5.6. There exists a choice of reflections wy = wa, ..., wag = way generating W (Eg) and of
points qi,...,q12 € Pt for which the central curve C and the cover m: C — P! as described above have
the following properties:
(1) K°(C,L) = 2.
(2) The image of the multiplication map H°(C,L) ® H°(C,wc ® L) — H°(C,wc) has dimension
40.
(3) RO(C,wE?(—5L)) = 0.
(4) The 6-dimensional eigenspace HO(C,wc) ™% is base point free.
(5) The image of the Prym-Tyurin canonical curve ¢(_5)(C) in P(Ho(wc)(_5))v does not lie on a
quadric.
Proof. The computation is reduced to linear algebra. A line bundle on C' of multidegree (dy, ..., ds7) is
identified with a sheaf [[27, Op1(d;) with specified twists ¢, ; at the nodes where the sheets labelled by
i and j are glued over a point ¢ € PL. If qy,...,q12 € A = P!\ {00}, then a section of this line bundle
is identified with a collection of polynomials P;(t) of degrees d; with the values at the nodes matching
up to multiplication by the twist ¢y ; ;.
For the sheaf L € W3-(C) we choose the multidegree to be (1,...,1) and the twists are all equal to
1. For we the corresponding degrees are d; = ‘C’Z- NC\ C;| — 2. The restriction w; to C; of a section of
we can be viewed as

P;(t)dt
W = =—————
' [1(t = gis)’
where P;(t) is a polynomial of degree d;. Here, ¢;s are the nodes lying on the sheet labelled by i. The
twist at a node over ¢ € A! joining the sheets 7 and j is the negative of the ratio of residues:
dt dt
Cqij=—Resy =~ / Resg =———.
A (S KD (=
The twists for the line bundles w%m (dL) are then the appropriate products of the above twists. We thus
reduce the computation of the dimension of the spaces of sections H° (C’, wgm(dL)) for any integers m
and d to a concrete linear algebra question.

The eigenspace HO(C,we) (™% is the subspace of HO(C,w¢) where for every branch point g1, ..., qi2
the residues over each of the sheets a;1,. . .,a;6 are equal to each other. The subspace H(C, wc)(+1) is
the subspace where the sums of these residues are zero.
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We performed the check for a concrete glued curve corresponding to the following choices:
e The points ¢; =i € Z C C.
e The following roots, in standard notation for the Minkowski space I15:
Q135 = €0 — €1 — €3 — €5, 12 = €1 — €2, 23 = €2 — €3, O34 = €3 — €4, Q45 = €4 — €5, A56 = €5 — €g,
Q1 = €1 — €6, (456 = €0 — €4 — €5 — €6, (V123 = €9 — €1 — €3 — €3, (346 = €0 — €3 — €4 — €6,
Q1234 = €y — €2 — €3 — €4, (156 = €9 — €1 — €5 — €6.
All the computations were done in Mathematica and are available at [Al]. O

As discussed in [ADFIO, Section 11], a consequence of parts (1,2,3) of (5.6) is that the morphism pu
defining the Weyl-Petri divisor (see 4.4) is generically non-degenerate, that is, 9 is indeed a genuine
divisor on Hur. A consequence of the other parts is:

Theorem 5.7. For a generic cover [r: C — P! € Hur, one has H*(C,2wc — 5L) = 0. Thus D1 is a
genuine divisor on Hur.

Proof. Indeed, we consider a flat family degenerating to the glued curve as in Theorem 5.6. In the
central fiber the dimension of H°(C, 2wc — 5L) can only increase, which the above argument shows not
to be the case. O

6. THE PRYM-TYURIN MAP IS UNRAMIFIED GENERICALLY ALONG THE DIVISOR D

In this Section we prove Theorem 1.4 by showing that the differential of the Prym-Tyurin map
PT': Hur --» Ag is bijective at a general point of the divisor Dy of Hur. We fix throughout the section
a suitably general W (FEg)-admissible cover

(GA) [7r:C:C’luCg—>R::R1UqR2,p1+---+p24]EDogm.

We shall assume that C is a smooth curve of genus 40. The curve C5 has 21 components, all rational,
with 6 components mapping to Ro with degree 2 and the other 15 mapping isomorphically to Ro. The
degree 27 map 7 = 7|, : C1 — Ry has monodromy W (Es) and is branched precisely at the points

P1,..-,P22 € Rl \ {Q}

Definition 6.1. Let Hur; denote the Hurwitz space of W (Eg)-covers [m1: C1 — P py + -+ + pog)
of degree 27 with branch points at pi,...,p22. The source C is a smooth curve of genus 40 and the
local monodromy of m; at each branch point p; € P! is given by a reflection in a root of Eg. As in
the case of covers with 24 branch points, the curve C; has a Kanev correspondence which we denote
by D; and which induces an endomorphism D;: JC; — JC4 and a 5-dimensional Prym-Tyurin variety
PT(Cy,Dy) :=Im(D; — 1) C JCy. Put Ly := 7} (Op1 (1)) € W (Ch).

Let p: C — C be the map contracting Cy. The curve C is the stabilization of C' and it has 6 ordinary
double points obtained by identifying two points of C1 if they are connected by a component of Cy. We
denote by L € W4 (C) the line bundle characterized by the property (pTCI(L) >~ L.

Given a reduced fiber I of the map 7 : C; — P!, we consider the usual exact sequence, see also (4A)
(6B) 0— HY(Cy,0c,) — H°(Cy, L) — H°(Op(T)) =% HY(Cy,0¢,) — HY(Cy, L) — 0.

The map o7 is equivariant for the action of the Kanev correspondence Di, hence it maps the 6-
dimensional (—5)-eigenspace of H?(Op(T))(~5) into the 5-dimensional space H'(C,O¢)(~5). It follows
that h°(Cy, L1) > 3, in particular [C1] € My is a Brill-Noether special curve.

Notation 6.2. Let 9%; C Hur; denote the locus where H°(C1,we, ® L?(_Q)) #0.
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We denote by PT5: Hury — As the Prym-Tyurin map. The proof in [ADFIO, Section 10] carries
through without changes to the case of 22 branch points so that we have the following result:

Theorem 6.3. The Prym-Tyurin map PTs is ramified at a point [1: C1 — P, p14- - -+pas] € Hury\9y
if and only if the Prym-Tyurin canonical image of C is contained in a quadric.

6.1. The map P75 is dominant. This follows for instance, from the fact that the ordinary Prym
map P: Rg — As is dominant, using the fact that 6-dimensional Prym-Tyurin varieties degenerate to
Prym varieties, as was shown in [ADFIO, Theorem 5]. Therefore the codifferential of the map PT5 is
generically injective. The rest of this Section is devoted to the proof of the above result.

Theorem 6.4. Assume [m1: C1 — Ri,p1 + -+ + pao] € Hury. If the map PT is ramified at the point
[CZClLJCQ—)RlURQ] Em,

then, either h° (Cl, wey —2L1) > 0, or, the Prym-Tyurin canonical image of C1 is contained in a quadric,
in which case h%(Cy, L1) >4 and h°(C, L) > 3. Generically on Dy, none of these cases occur.

In what follows, we first recall the interpretation of the cotangent spaces to Ag, Asg, Myg and Hur,
then we describe the codifferential of PT.

6.2. Let P be the usual compactification of the semi-abelian variety PT(C, D) obtained by first com-
pleting PT(C, D) to a P!-bundle over the 5-dimensional ppav B := PT(Cy, D7), and then identifying
the 0 and oo-sections after translating by the extension datum of PT(C, D) over B. We refer to [M] for
details. The local to global spectral sequence induces the exact sequence

0 1 1 . 1 1
0—>H (&ptﬁ(Qﬁ, OP))V - QXS,[PT(C,D)] i QDa,[PT(GD)]

4>07

where QlD&[ PT(C,D)] is the cotangent space to the boundary divisor Dg of Ag. Note that Q}D&[ PT(C,D)]

is the dual to the space of deformations of PT(C, D) that stay singular. Let Qljﬁ (logDg) be the sheaf of

1-forms with at worst simple logarithmic poles along Dg. By [CF, IV Proposition 3.1(vi), p. 107], the
fiber Q}% (logDs)(pr(c,p)) can be identified with Sym? HO(C,wc)("?, and this induces an identification

Q1D67[PT(C’,D)] = HO(07 wc)(_5) © HO(Ch wC1)(_5)7
where
HO(Cwe) ™) © HO(Cwiey) ) = (HO(Cooe) ) © HO(Crywey) T ) () Sym? HO(Cwo) .

Remark that in this description H(C1,we, )™ € HO(C,we) ™ is a codimension one subspace.
6.3. The cotangent space to Myg at [C] is HY(C, Ql6 ® wg). We have the natural map

ng ® wg — px(QE @ we),
obtained from p*(Ql6 ® wg) — Q& ® we, which induces the map
(6C) H(C, QL ® wg) — HY(C,Qf ® we).

A local computation shows that the natural map ws — p.wc is an isomorphism. Therefore it in-

duces an isomorphism H°(C,wg) = H %(C,we), which shows that HY(C,wg) is endowed with an
endomorphism, which we still denote by D, that is induced by the Kanev correspondence.
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6.4. Let JC denote the compactification of the Jacobian of C described as the scheme parametrizing
torsion-free sheaves of degree 0 on C, see [OS]. As above, we have the exact sequence

v _
0—— HY (5$tb—c(93—c, Oﬁ)) —_— Qlj%,[ﬁ] - HO(Ca OJ@) © HO(ChWC’l) —0,

where, again by [CF, IV Proposition 3.1(vi), p. 107], the space on the right classifies deformations of
JC of toric rank 6. Here H(C1,we,) € H(C,wg) is viewed as a subspace of codimension 6.

6.5. Consider the pull-back diagram

— b [
H—— ./\/lo,24

lq lp
e~
Hur —— M 24.
The ramification divisor of p is the divisor Bo, its ramification index being equal to 2. The ramification
divisor of ¢ is the divisor Ey+ Ea,y [ADFIO, Paragraph 6.11]. Furthermore, b*(B2) = Eo+3FEazy+2Ey,.

It follows that the map br is generically unramified along Dy and we can identify the cotangent space

QllTlr,[C,w] with H°(R, Q} ® wr(B)) which is the cotangent space to Mo 24.

Definition 6.5. Let M and A be the ramification and anti-ramification divisors of the W ( Eg)-admissible
cover m: C — R. As M and A are supported on the smooth locus of C, we have the usual identities

(6D) 7*(B)=2M + A, Q¢ =m"(Qp)(M), wc=r"(wr)(M), Q@wc(d)=r"(Qf®wr(B)),
and we can define the trace map as for smooth covers:

Definition 6.6. Let tr: m.Oc(—A) — Og be the trace map on regular functions. For an open affine
subset U C P!, a regular function ¢ € T'(U, Oc(—A)), and a point y € U, one has

) y) = > el@),

z€f~1(y)

counted with multiplicities. Note that tr is surjective. By (6D), the trace map induces the map
T (Qf @ we) = U @ wr(B). Let Tr: HY(C, Qf @ we) — H(R, Q) @ wr(B)) be the induced map on
global sections. The composition of Tr with the map (6C)

Tr: H(C,Qf ® we) — HY(C,Qf ® we) — HY(R, Q) ® wr(B))
can be viewed as the codifferential of the forgetful map Hur — Mg at the point [C, 7].
Propos.ii.:ion 6.7. The codifferential (dPT)E/(J,w] : T[\J/DT(C,D)](ZG) — T[\ém] (m) is given by the following
composition of maps:

tor

— — — Tr
(6E) Tipric,py (As) = Tjey (Ais) = H(C, Qg @ we) —> HO (R, Qf @ wr(B)),
where the second map is the codifferential of the Torelli map Myg — Agp.

Proof. Follows along the lines of the proof of [ADFIO, Theorem 10.3] (which treats the same question
in the case of a point [C, 7] € Hur corresponding to a smooth source curve) with obvious modifications.
The first map in (6E) is the codifferential of the map from the perfect cone compactification of the
moduli space of ppav of dimension 46 having an endomorphism D with eigenvalues +1 and —5 of
eigenspaces of dimensions 40 and 6 respectively to Ag. O
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6.6. We first study the codifferential dPT" on the conormal space to the boundary divisor Dg of Ag.
To that end, we first describe locally differentials on C,C and R near the node g of R corresponding to
the point described in (6A).

Choose local coordinates t on R; and s on Ro at the node ¢ of R. These can be identified via
7w with local coordinates at the nodes o1,...,097 of C' above gq. Then the stalks of the sheaves
Q}-‘v WR, Q};, we, Q}-‘c ® WR, Q}J ® we at their nodes have the following presentations

Qg o, O(ds, dt)/ (tds + sdt)
WR,q, WC,o0; O tis’ allEt ds + @

2
Q}%,q Q WR.¢, Qlcm ® Wep; - (dS (dt) ;/ ds _ dt) ) .

We have the natural exact sequence on R
0 — Tors(Q}) — Qk X wp — C, — 0

where Tors(2}) 2 C, is a sky-scraper sheaf at ¢ generated by the torsion differential sdt = —tds. From
this, by tensoring with the locally free sheaf wgr we obtain the exact sequence

0— Cqy— Qp®wr 5 wl? — Cy — 0

2 2
where the kernel of kg is generated by dsdt = s@ = t@. One has a similar exact sequence for C
at the points 0;. A torsion section v € H°(C, Qé ® we) can be written as

2 2
SISV WG

near o; € C.

6.7. Local description at the nodes. Assume the nodes o1, ...,097 of C are labeled in such a way
that 09;_1 and o09; map to the node u; of C for i = 1,...,6. Labeling by s;,t; the local coordinates on
the two branches of Cy and C; at the point o; for i = 1,...,27, then t9;_1,to; are local coordinates at
the point u; € C for i = 1,...,6. We have the natural commutative diagram of exact sequences

e

00— @?:1 Cu, Qla O wg W%Q

| B E

00— p. (GB Coz) —— . (U @ wof T pawd’

where @?:1 C,, is the torsion subsheaf of Ql6 ® wg. The torsion part @Zl C,,; of O} ® we has an
action of the correspondence D which leaves the image of @?:1 C,,; invariant. The action of D on this
subspace has two eigenspaces of dimensions 1 and 5 for the eigenvalues —5 and +1 respectively. The
proof of this is analogous to [ADFIO, Lemma 10.8].

A torsion section 7 of Qla ® we can be locally written near u; € C as

_ dto;i—1 dty
7= MitQiu Hitoi— 1( i)* ,  where p; € C.
l2i—1 l2i
Identifying the local coordinates on C' with those on R as in the previous paragraph, a generator of the
(—5)-eigenspace is the section 7 € Tors(Qla ® wg) with pu; =1fori=1,...,6.
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6.8. Injectivity in conormal directions. By Proposition 6.7, the map PT is ramified at [C, 7] € Hur
if the kernel of the composition of maps (6E) is nonzero. Each of the above cotangent spaces has a
natural subspace which is the conormal space to the equisingular deformations. Restricting the above
sequence to each conormal space appearing in (6E), we obtain the exact sequence:

(6F)

HO (Exth (0L, 0p)) = HO (Extlo(QL5, 050)) " =5 HO (Exth (0L, 0)) — Ty O (Sath(Qk(B), 0r))"

Using e.g., [An, Corollary 15.4], the map tor in (6F) is an isomorphism. Identifying the second and
third space in (6F), by Paragraph 6.7, the second space has an action of the correspondence D and the

image of the first arrow is the 1-dimensional eigenspace for the eigenvalue —5. With our earlier choice

(dtoi— 1)

of bases (see 6.7), a generator of the (—5)-eigenspace is the element ZZ  teis

(dtQZ 1) (dS)

. The image of an

element Zz 1 it in the last space is Zz’:l it
an isomorphism between two 1-dimensional spaces.

. It follows that the composition above is

Note that, via push-forward to R;, we have the following identification
H(R, Q) ® wr(B)) = Torsy (Qp @ wr(B)) ® H(Ry,wi>(Br + q)) = Cy @ H°(Ry, w3 (B + q)),

where By = p1 +- - - +p22 and the skyscraper sheaf C, is generated by ds dt = s(dt) (d‘:)Z. The image
of HY(C, Ql6 ® W) in H°(C, w%Q) is the space of sections vanishing at the nodes of C. This image will
be then identified with H° (C’l, w??(ol + -+ 012)) C HY(C, w%Q) C HY (C’l, w%?(Qol + -+ 2012)).

6.9. Taking the quotient of the exact sequence (6E) by (6F), we obtain the commutative diagram

Tipr(c.py) (As) T (Aso)

| i

Ho(é,wg)(_‘:’) ® HO(Cl,wcl)(_5) — HO(C, wg) © H(Ch,wey) —

HO(C,QF @ wg) H(R,Q) @ wr(B))

| i |

- HO(Cl,wgf(Ol + -+ 012)) L) HO(Rl,wgf(Bl + q))

To summarize the discussion above, the injectivity of the codifferential of PT" at the point [C, 7] € Dy
is equivalent to the injectivity of the composition in the bottom row above.

6.10. The kernel of tr. For each of the branch points p; € Ry with ¢ =1,...,22, let {rij}?zl C (4 be
the ramification points lying over p;. The formal neighborhoods of the points r;; are naturally identified,
so that we can choose a single local parameter x and write a section v € HY (Cl, wgf (o1 4+ 012)) as

v = pij(x) - (dz)* near r;; € C.

Choose a local parameter y at the point p;, so that 7|, is given locally by the map y = z2. We can
use the same local parameter at the remaining 15 antiramification points {g}+> ey Over p; at Wthh mis
unramified, and write v = ¥ (y) - (dy)? near g € C, for k =1,...,15.

At the point ¢, we similarly choose a local parameter x and identify it with the local parameters at

(dz)?

the points o1, ..., 007. Write v = p;(z)~—* near o; fori =1,...,12.



HODGE CLASSES ON THE MODULI SPACE OF W(Es)-COVERS AND THE GEOMETRY OF Ag 31

Lemma 6.8. The kernel of the trace map tr: H° (Cl,w%f(ol 4o 012)) — HY (Rl,wgf(Bl + q))
consists of those quadratic differentials v which, using the previous notation, satisfy

6 12
Z ©ij(rij) =0, for i=1,...,22, and ij(oj) =0.
i=1 =

Proof. Local calculation, very similar to the proof of [ADFIO, Lemma 10.5]. O

We are now in a position to describe set-theoretically the ramification of the map PT: Hur — Ag
along Dg, which then quickly leads to an alternative proof of the dominance of PT'.

Proof of Theorem 6./. The global sections of wg can be identified with the sections of wc, (01 +- - - +012)
whose residues at 09,1 and o9; are opposite for i = 1,...,6. A proof analogous to that of [ADFIO,
Lemma 10.8] shows that, under this identification, the elements of H°(C, wg)(*‘r’) correspond to sections
having the same residue at o2;_1 and o0g; for i = 1,...,6 (in addition to opposite residues at 09;_1 and
09;). This first implies that the points o1,...,012 have the same image, say 0, in the Prym-Tyurin
canonical space IP’(H o, wé)(_f’))v =~ P5. Next, using Lemma, 6.8, we deduce that if an element

B e H(C,wz)" @ H(Cy,we,) P

belongs to the kernel of the composition on the bottom row of the diagram in paragraph 6.9, then its
image in H° (C’l, w%l (o1 +---+ 012)) belongs to the subspace

22 6
H° (Cl,w%f(— > Zw)) = H(Cy,we, @ LY.

i=1 j=1

Assuming HY(C1,we, ® L?(J)) = 0, and regarding 3 as an element of Sym?H(C, w@)(—s)’ we
obtain that 3 is the equation of a quadric containing the image of C in the Prym-Tyurin canonical
space P(H(C, %)(*5))\/.

Since, as explained, PT}: Hur;y — Ajs is dominant, we may assume via Theorem 6.3 that the Prym-
Tyurin canonical image of Cy in P* is not contained in a quadric. It follows that the quadric defined by
£ is not a pull-back from IP’(H O(Cl,wcl)(_5))v via the projection from 6. Therefore this quadric is not
singular at 0 and its tangent hyperplane at o contains the lines tangent to the Prym-Tyurin canonical
image of C. The image of this tangent hyperplane in P(H O(Cl,wcl)(_5))v contains the images of
01,...,012. In other words, the image of H"(Og,...40,,(I')) by the map oy in the sequence (6B) is
contained in a hyperplane. This first implies that h%(Cy, L1) > 4. Next, since the (—5)-eigenspace in
H®(Or(T)) can be identified with the primitive Picard group of a smooth cubic surface, having the
same value at each pair of points 09;_1,09; for ¢ = 1,...,6 imposes only one condition on the sections
of L. Hence we always have h°(C, L) > h%(Cy, L1) — 1, and, in this case, h%(C, L) > 3.

The fact that these situations do not occur for a general choice of a point of Dy is a consequence of
Theorem 5.6, for the W (Eg)-admissible cover constructed there lies in D. O

Corollary 6.9. The Prym-Tyurin map PT: Hur --» Ag is generically finite.

Proof. Indeed, the above shows that the differential of PT on tangent spaces is generically an isomor-
phism. O
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At several points in this paper we have used the character table of W (FEg). We record it in the form
presented by GAP [GAP] by applying the command Display(CharacterTable("W(E6)")). It is also
the same as the table in Atlas [CCNPW, p.27] for the group U4(2).2 = W(Eg), obtained from the
character table of U4(2) by the splitting and fusion rules. As usual, rows are for characters (we added
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APPENDIX: THE CHARACTER TABLE OF W (Ejs)

convenient names in column 2), and columns are for conjugacy classes.

[ADFIO] Valery Alexeev, Ron Donagi, Gavril Farkas, Elham Izadi, and Angela Ortega, The uniformization of the moduli

Al
[An]

[ASB]

x name|la 2a2b 3a3b3c4adb bababbb6c6d9a12a| 2¢ 2d 4c 4d 6e 6f 6g 8a 10a 12b
i 171 1111111111111 111111111 1 1
2 1|1 1111111111111 1/-1-1-1-1-1-1-1-1 -1 -1
3 101{10 6 2 1-242-2 .3 . .21 -1 . .. . .
4 66 -2 2 -3 3 2 11 1-2-1 -1 04 .2 2 1-2 -101
5 66 22 -33 .2 111-2-1 . -1/ 4 2-2-12 1 -1
6 20a(20 4-4 -7 2 2 4 . 1-2-2 2-1 1| . .o : .
7 15a |15 -1-1 6 3 3-1 .2-12-1 5-311-12 .-1 1
8 15a |15 -1-1 6 3 . 3-1 . 2-12-1 J-53-1-11-2 .1 -1
9 15b |15 7 3 -3 3-11 . 1-21 -1 5 13-12-11-1

10 15bj15 73 -3 .3-11 .1-21 . . -1-5-1-3 1-21-11 .
11 20b 20 4 4 2 5-1 -2 111-1 41022 211-1 -1
12 20b (20 4 4 2 5-1 -2 11 1-1 -10-2-2-2-1-1 1 |
13 24124 8 6 3 <102 241 4 4 211 -1

14 24124 8 . 6 .3 . .-12 2-1 . J-4-4 0 .0 2-1-1 1 .
15 301(30-10 2 3 3 3-2 -1-1-1-1 110-24 . 111 -1
16 30(30-10 2 3 3 3-2 -1-1-1-1 1-10 2 4 .-1-1-1 1
17 60a |60 12 4 -3-6 . 4 o I A |

18 801(80-16 .-10-4 2 L.222 -1 .

19 9190 66 9 . .22 .-3 . . . -1 . . . . .
20 60b |60 -4 4 6 -3-3 .2-1-1 1 10 2-2-211-1 1
21 60b |60 -4 4 6-3-3 .o.2-1-1 1 . -10-2 2 2-1-1 1 .-l
22 64|64 -8 4-2 -1 1 16 -2-2 1

23 64064 . . -8 4-2 . .-1 1 -6 . . .22 -1
24 81|81 9-3 =311 9-3 3-1 1 -1

25 8181 9-3 .-3-101 9 331 -101

TABLE 2. The character table of W (Es)
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