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Integrable fractional equations such as the fractional Korteweg-deVries and nonlinear Schrödinger 
equations are key to the intersection of nonlinear dynamics and fractional calculus. In this manuscript, 
the first discrete/differential difference equation of this type is found, the fractional integrable discrete 
nonlinear Schrödinger equation. This equation is linearized; special soliton solutions are found whose 
peak velocities exhibit more complicated behavior than other previously obtained fractional integrable 
equations. This equation is compared with the closely related fractional averaged discrete nonlinear 
Schrödinger equation which has simpler structure than the integrable case. For positive fractional 
parameter and small amplitude waves, the soliton solutions of the integrable and averaged equations 
have similar behavior.
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1. Introduction

Integrable systems play a central role in nonlinear dynam-
ics because they provide exactly solvable models for important 
physical systems. Notable examples of integrable equations are 
the Korteweg-deVries (KdV), applicable to shallow water waves, 
plasma physics, and lattice dynamics among others [1–3], and the 
nonlinear Schrödinger (NLS) equation, which finds applications in 
nonlinear optics, Bose-Einstein condensates, spin waves in ferro-
magnetic films, plasma physics, water waves, etc. [2–5]. These in-
tegrable nonlinear evolution equations have an infinite number of 
conservation laws and soliton solutions [6]. Solitons, the funda-
mental solutions of such equations, are stable, localized nonlinear 
waves which propagate without dispersing and interact elastically 
with other solitons. Nonlinear integrable evolution equations have 
these surprising properties because of their deep mathematical 
structure described by the inverse scattering transform (IST).

IST is a method of solving nonlinear equations which general-
izes Fourier transforms. It solves these equations in three steps: 
mapping the initial condition into scattering space, evolving the 
initial data in scattering space in time, and mapping the evolved 
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scattering data back to physical space; i.e., inverse scattering. This 
process gives the solution to nonlinear equations solvable by IST 
in terms of linear integral equations; such nonlinear equations 
are called integrable. Recently, we used the mathematical struc-
ture of IST associated with for the Korteweg-deVries (KdV) and 
nonlinear Schrödinger (NLS) equations to develop a method of 
finding and solving the fractional KdV (fKdV) and fractional NLS 
(fNLS) equations [7]. We also showed that this method could be 
applied to find fractional extensions of the modified KdV, sine-
Gordon, and sinh-Gordon equations [8]. These equations represent 
the first known fractional integrable nonlinear evolution equations 
with smooth (physical) solutions and deeply connect the fields of 
nonlinear dynamics and fractional calculus.

Fractional calculus is a mathematical structure originally de-
signed to define non-integer derivatives and integrals. It has since 
become an effective way of modeling many physical processes that 
exist in multi-scale media [9,10] or exhibit non-Gaussian statistics 
or power law behavior [11–13]. A particularly important exam-
ple is anomalous diffusion, where the mean squared displacement 
is proportional to tα , α > 0 [11,14–16]. Transport that follows 
this rule has been observed in biology [17–20], amorphous ma-
terials [21–23], porous media [24–27], climate science [28], and 
attenuation in materials [29] amongst others. As we have shown, 
the merger of fractional and nonlinear characteristics in integrable 
equations such as fKdV and fNLS predict anomalous dispersion, 
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where the velocity and amplitude of solitonic solutions are related 
by a power law [7].

In this article, we demonstrate how the method introduced in 
Ref. [7] can be applied to discrete (or differential-difference) sys-
tems to define integrable discrete fractional nonlinear evolution 
equations by presenting a fractional generalization of the inte-
grable discrete nonlinear Schrödinger (IDNLS) equation. We do this 
by demonstrating the three key mathematical ingredients of our 
method — IST, power law dispersion relations, and completeness 
relations — for the Ablowitz-Ladik (AL) discrete scattering prob-
lem. In the linear limit, the fractional IDNLS (fIDNLS) equation is 
a discretization of the fractional Schrödinger equation which was 
derived with Feynman path integrals over Lévy flights [30,31].

The KdV equation was the first equation shown to be solvable 
by IST in Ref. [32]; it was soon followed by the NLS equation in 
Ref. [33]. These two equations were then found to be contained 
in a general class of equations solvable by IST when associated 
to the Ablowitz-Kaup-Newell-Segur (AKNS) system [3,34]. Shortly 
thereafter IST was used to solve families of discrete (or differential 
difference) problems like the self-dual network [35]. In particu-
lar, it was discovered that the AKNS system could be discretized 
while maintaining integrability, leading to the AL scattering prob-
lem which was used to solve a family of discrete nonlinear evolu-
tion equations [36]. This family contained important discrete evo-
lution equations — continuous in time but discretized in space 
— such as integrable discretizations of the nonlinear Schrödinger, 
KdV, modified KdV, and sine Gordon equations. Further, this fam-
ily of equations was shown to have soliton solutions and an infinite 
number of conservation laws [36].

We derive the fIDNLS equation from the AL scattering problem 
using three key components: linear dispersion relations, complete-
ness relations, and IST. IST is used to linearize the equation and 
obtain special soliton solutions.

We also show how the characteristics of the fractional IDNLS 
(fIDNLS) equation reach beyond integrability by comparing the 
one-soliton solution of the fIDNLS equation to the solitary wave 
solution of the fractional averaged discrete nonlinear Schrödinger 
(fADNLS) equation. This equation is a different fractional general-
ization of the IDNLS equation in which the linear second order dif-
ference is replaced by the discrete fractional Laplacian [37–40]. The 
fADNLS equation can be understood as a discretization of a frac-
tional NLS equation involving the Riesz derivative which has been 
extensively studied in, e.g., [41–45]; it is also closely related to the 
(likely) non-integrable fractional DNLS equation, recently studied 
in [37,46]. Though the fADNLS equation is likely not integrable to 
our knowledge (apart from the limiting case when fADNLS reduces 
to IDNLS), the similarity between the two equations suggests that 
some of the physical predictions of fractional integrable equations 
are shared by equations which are simpler to realize computation-
ally.

2. The discrete fractional linear Schrödinger equation

Consider the family of discrete linear evolution equations

∂tqn + γ (−�n)qn = 0 (1)

for the function qn(t) which depends on the discrete variable n ∈Z
and the continuous variable t ∈R. Here, γ is a sufficiently regular 
function of the discrete laplacian, −�n , defined by

(−�n)qn(t) = 1

h2

( − qn+1(t) + 2qn(t) − qn−1(t)
)

(2)

where h is the distance between lattice sites. Using the Z-
transform, which is equivalent to the discrete Fourier transform, 
the solution to Eq. (1) can be explicitly written as
2

qn(t) = 1

2π

π/h∫
−π/h

dkq̂(k,0)eiknh−γ (4 sin2(kh/2)/h2)t (3)

where q̂(k, 0) = h 
∑∞

n=−∞ qn(0)e−iknh is the Z-transform of qn(t)

at t = 0 and 4 sin2(kh/2)/h2 is the Fourier symbol of −�n . Note 
that the Z-transform is often written in terms of z with the substi-
tution z = e−ikh where integration in k becomes integration with 
respect to z on the unit circle. If we choose γ to be power law, 
then Eq. (1) becomes a fractional discrete equation in terms of 
the discrete fractional laplacian. For example, if we put γ (−�n) =
−i(−�n)1+ε , |ε| < 1, then we obtain the linear fractional discrete 
Schrödinger equation

i∂tqn + (−�n)
1+εqn = 0. (4)

Here, (−�n)1+ε is the discrete fractional laplacian of order 1 +
ε which is defined in terms of its Fourier symbol [4 sin2(hk/2)/

h2]1+ε and the Z-transform/discrete Fourier transform as

(−�n)1+εqn = 1

2π

π/h∫
−π/h

dkq̂(k)eiknh[4 sin2(kh/2)/h2]1+ε . (5)

Notice that the k integral above can be evaluated to express the 
discrete fractional laplacian as a summation over m of qm multi-
plied by a weight vector. The solution to Eq. (4) can still be written 
in the form Eq. (3) with

γ (4 sin2(kh/2)/h2) = −i[4 sin2(kh/2)/h2]1+ε

and, because 4 sin2(kh/2)/h2 is real and positive, the solution to 
equation (1) with this choice of γ is well posed. In defining and 
solving the linear fractional discrete Schrödinger equation, we used 
a power law dispersion relation, ingredient 1 of our method, and 
we defined the fractional operator using completeness of the dis-
crete Fourier transform/Z-transform, ingredient 2. Then we solve 
the equation by the inverse discrete Fourier transform, the analog 
of ingredient 3.

3. The fractional integrable discrete Schrödinger equation

To develop the fIDNLS equation, the integrable nonlinear analog 
of Eq. (4), and solve it, we apply the three key ingredients of our 
method, starting with writing the equation in terms of a linear 
dispersion relation. Note that h = 1 is taken in this section without 
loss of generality; to recover the scaling factor for h �= 1, replace qn

by hqn and rn by hrn .
As in the linear case, Eq. (1), we have a family of nonlinear 

evolution equations for the solutions qn(t) and rn(t) [47], see also 
[48],

σ3
dun

dt
+ γ (	+)un = 0, un = (qn,−rn)T (6)

where T represents transpose, σ3 = diag(1, −1), and 	+ is

	+xn = hn

(
E+

n 0
0 E−

n

)(
x(1)

k

x(2)

k

)
(7)

+
(

qn
∑+

n−1 rk−1 qn
∑+

n−2 qk+1

−rn
∑+

n−1 rk−1 −rn
∑+

n−2 qk+1

)(
x(1)

k

x(2)

k

)
(8)

+ hn

(
qn+1

∑+
n+1

rk
hk

qn+1
∑+

n+1
qk
hk

−rn−1
∑+

n
rk
hk

−rn−1
∑+

n
qk
hk

)(
x(1)

k

x(2)

k

)
(9)
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where hn = 1 −rnqn , 
∑+

n = ∑∞
k=n , and E±

n x(q)

k = x(q)
n±1 with q = 1, 2. 

The inverse of this operator is

	−1+ xn = hn

(
E−

n 0
0 E+

n

)(
x(1)

k

x(2)

k

)
(10)

+
(

−qn
∑+

n rk+1 −qn
∑+

n+1 qk−1

rn
∑+

n−1 rk+1 rn
∑+

n qk−1

)(
x(1)

k

x(2)

k

)
(11)

+ hn

(−qn−1
∑+

n
rk
hk

−qn−1
∑+

n
qk
hk

rn+1
∑+

n+1
rk
hk

−rn+1
∑+

n+1
qk
hk

)(
x(1)

k

x(2)

k

)
. (12)

Here, γ is a sufficiently regular function of the operator 	+ and is 
connected with the linearized dispersion relation. Specifying this 
dispersion relation, or γ directly, picks out particular equations 
from this family. For example, if we take

γ (	+) = −i(2 − 	+ − 	−1+ )

and let rn = ∓q∗
n , then we obtain the IDNLS equation

i∂tqn + �nqn ± |qn|2(qn+1 + qn−1) = 0. (13)

We can relate γ to the dispersion relation of the linearization of 
(6) by considering the linear limit qn → 0. In this limit, we have

	+ →
(

E+
n 0
0 E−

n

)
≡ Dn, (14)

so the linearization of the nonlinear evolution equation is

σ3
dun

dt
+ γ (Dn)un = 0. (15)

Because Dn is a diagonal matrix, we have

γ (Dn) =
(

γ (E+
n ) 0

0 γ (E−
n )

)
. (16)

Taking the first component of (15) with

qn = z2ne−iω(z)t

gives

γ (z2) = iω(z). (17)

Therefore, by specifying the linear limit of the nonlinear evolu-
tion equation, we obtain the nonlinear equation itself. To define 
the fIDNLS equation, we choose the linear limit to be the dis-
crete linear fractional Schrödinger equation in (4), which gives 
the dispersion relation ω(z) = −(2 − z2 − z−2)1+ε and, hence, 
γ (z2) = −i(2 − z2 − z−2)1+ε . So, the fIDNLS equation is

i∂tun + (2 − 	+ − 	−1+ )1+εun(t) = 0. (18)

In fact, by choosing γ (z2) = −i(2 − z2 − z−2)m+ε , for integer m, we 
generate a hierarchy of fractional equations

i∂tun + (2 − 	+ − 	−1+ )m+εun(t) = 0. (19)

It can be shown that the limit of (18) as ε → 0 is the IDNLS equa-
tion (13). Notice that to define the fIDNLS equation, we used a 
power law dispersion relation, ingredient 1 of the method. How-
ever, this dispersion relation leads to the operator (2 − 	+ −
	−1+ )1+ε the meaning of which is currently unclear. To define this 
operator, we will need to use the 2nd ingredient: appropriate com-
pleteness relations. The third ingredient will be making use of IST 
to find solutions of the fIDNLS equation.
3

4. Completeness of squared eigenfunctions and fractional 
operators

In this section we define the fIDNLS equation in (18) and, in 
fact, any equation of the form (1) that is well-posed in physical 
space. We do this using the observation that γ (	+) is a multi-
plication operator when acting on the eigenfunctions of 	+ and 
the fact that the eigenfunctions of 	+ are complete. This result 
is known as completeness of squared eigenfunctions, and is the 
second ingredient in our method. The resulting representation of 
γ (	+) will be similar to that of the discrete fractional laplacian 
in (5). The eigenfunctions of 	+ are �n(z) and �n(z) each with 
eigenvalue z2 (note that time t is suppressed throughout this sec-
tion). Therefore, the operation of γ (	+) on these eigenfunctions is 
given by

γ (	+)�n = γ (z2)�n, γ (	+)�n = γ (z2)�n. (20)

Because 	+ is not a self-adjoint operator, completeness of squared 
eigenfunctions involves both �n , �n and the adjoint functions �A

n , 
�

A
n where

γ (	A+)�A
n = γ (z2)�A

n , γ (	A+)�
A
n = γ (z2)�

A
n (21)

and 	A+ is the adjoint, with respect to �2(Z) × �2(Z), of 	+ . The 
eigenfunctions and adjoint eigenfunctions can be written in terms 
of solutions to the Ablowitz-Ladik scattering problem which is a 
2 × 2 eigenvalue problem fo the discrete vector-valued function 
vn = (v(1)

n , v(2)
n )T

vn+1 =
(

z qn

rn z−1

)
(22)

where qn and rn act as potentials and z is an eigenvalue. Through 
this association, one can solve the family of nonlinear evolution 
equations in (22) (see Appendix for more details).

In [47], it was shown that the arbitrary discrete function Hn =(
H (1)

n , H (2)
n

)T ∈ l1 can be written as

Hn =
2∑

p=1

∮
S(p)

dz

z
f (p)(z)

∞∑
m=−∞

G(p)
n,m(z)Hm (23)

where S(1) = S R (S(2) = Sδ) is a circular contour evaluated coun-
terclockwise centered at the origin of radius R > 1 (δ < 1) such 
that all of the singularities of the integrand are inside (outside) of 
the contour and

G(1)
n,m(z) = �n(z)�A

m(z)T /hn, f (1)(z) = i

2πa2(z)
(24)

G(2)
n,m(z) = �n(z)�

A
m(z)T /hn, f (2)(z) = −i

2πa2(z)
(25)

with hn = 1 − rnqn . The eigenfunctions �n(z), �A
n (z), �n(z), �A

n (z)
(see appendix) and scattering data a(z), a(z) are defined in terms 
of solutions to the Ablowitz-Ladik scattering problem (see Ap-
pendix). With this completeness relation, and the operation of 
γ (	+) on �n and �n in Eq. (20), we have

γ (	+)Hn =
2∑

p=1

∮
S(p)

dz

z
f (p)(z)γ (z2)

∞∑
m=−∞

G(p)
n,m(z)Hm. (26)

Therefore, the nonlinear evolution equation in (6) can be explicitly 
characterized in physical space as
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σ3
dun

dt
= −

2∑
p=1

∮
S(p)

dz

z
f (p)(z)γ (z2)

∞∑
m=−∞

G(p)
n,m(z)um. (27)

In particular, if we put γ (z2) = −i(2 − z2 − z−2)1+ε and rn = ∓q∗
n , 

the fIDNLS equation is the first component of (27). Using the sym-
metries of the eigenfunctions (see appendix), this is

i∂tqn =
2∑

p=1

∮
S(p)

dz

z
f (p)(z)γ (z2)

∞∑
m=−∞

g(p)
n,m(z) (28)

with

g(1)
n,m(z) = −i

νnνm

hn
ψ

(1)
n (z)ψ(1)

n+1(z) (29)

·
(
φ

(2)
m (z)φ(2)

m+1(z)qm ∓ φ
(1)
m (z)φ(1)

m+1(z)q∗
m

)
g(2)

n,m(z) = −i
νnνm

hn

(
ψ

(2)
n (1/z∗)ψ(2)

n+1(1/z∗)
)∗

(30)

·
(
φ

(1)
m (1/z∗)φ(1)

m+1(1/z∗)q∗
m ∓ φ

(2)
m (1/z∗)φ(2)

m+1(1/z∗)1qm

)∗

where t has been suppressed.
In the appendix we show how this equation can be linearized 

via Gel’fand-Levitan-Marchenko type summation equations. After 
long time the kernel of the summation equation contains only dis-
crete spectra, i.e., the soliton solutions. Multisoliton solutions can 
be found by standard methods.

5. Solitons and solitary wave solutions of the fIDNLS and fADNLS 
equations

The fIDNLS equation in (18) is not the only fractional gener-
alization of the IDNLS equation in (13). A simpler generalization 
is to replace the discrete laplacian −�n in (13) with the discrete 
fractional laplacian (−�n)1+ε defined in (5) to give the fractional 
averaged DNLS (fADNLS) equation

i∂tqn + (−�n)1+εqn ± |qn|2(qn+1 + qn−1) = 0. (31)

Notice that in the figure captions we refer to the fIDNLS equation 
as the fractional integrable equation and the fADNLS equation as 
the fractional averaged equation.

The fADNLS equation is not known to be integrable, but in the 
limit ε → 0, it becomes the IDNLS equation, Eq. (13), which is in-
tegrable; therefore, we expect Eq. (31) to have some similarity the 
fIDNLS equation. To characterize this similarity, we will compare 
the solitons and solitary waves predicted by these equations. The 
fIDNLS equation has an exact one-soliton solution, derivable by the 
IST. To find the solitary wave solutions to the fADNLS equation we 
use the same initial condition as that of the fIDNLS equation.

Even though this solitary wave initially deforms from the ex-
act secant profile, emitting radiation in the process, its solutions 
have nearly constant velocity, propagate with nearly constant am-
plitude, and have comparable velocities to the fIDNLS equation in 
certain regimes. These integrable-like properties of this equation 
are stronger for positive ε than negative ε and stronger for smaller 
wave amplitudes than larger wave amplitudes. Soliton solutions to 
the fIDNLS equation can be derived using the IST (see appendix 
and [49]); they are of the form

qn(t) = sinh (2ηh)

h
e2i

(
vi(z2

1)t−ξhn
)−i(ψ−π/2) (32)

× sech
(

2ηh(n − n0) − 2vr(z2
1)t

)

4

Fig. 1. Radiation emission for small, medium, and large initial data. Solitary wave solu-
tions to the fractional averaged equation emit more radiation for larger amplitude 
initial conditions and larger fractional order ε (ε = 0.1 is shown here). The initial 
amplitudes corresponding to the small, medium, and large solutions are A = 0.100, 
1.175, and 3.627, respectively; however, each solitary wave solution is normalized 
to peak height 1. (For interpretation of the colors in the figure(s), the reader is re-
ferred to the web version of this article.)

where vi(z2
1) = 1

2 Imγ (z2
1), vr(z2

1) = 1
2 Reγ (z2

1), and z1 = eh(η−iξ) . 
Here we choose γ (z2

1) = −i(2 − z2
1 − z−2

1 )1+ε in accordance with 
Eq. (18) though (32) holds for all sufficiently regular γ . The free 
parameters in (32) are ε , h, η, ξ , ψ , and n0.

To find the localized wave solutions to the fADNLS equation, we 
numerically evolved the equation at discrete time steps {tm}M

m=0
with t0 = 0 using a Fourier split-step scheme. The initial condition 
qn(t0) = qn(0) is given by (32) with t = 0. The Fourier split-step 
scheme propagates the approximation from tm to tm+1 by sepa-
rately evaluating the linear and nonlinear parts of the equation; cf. 
Refs. [50–52]. Explicitly, we compute

qn(tm+1) = e−i�tmL/2ei
∫ tm+1

tm dξN e−i�tmL/2qn(tm) (33)

where Lqn = (−�n)1+εqn and Nqn = ±|qn|2(qn+1 + qn−1). The 
particular operator splitting in equation (33) makes the solution 
method O(�t2) accurate [53,54]. The linear step, e−i�tmL/2, is 
evaluated using discrete Fourier transforms, while the nonlinear 
step, ei�tmN , is evaluated by solving the associated differential 
equation, equation (31) with (−�n)1+εqn → 0, using a fourth-
order Runge-Kutta scheme. Throughout this manuscript, solutions 
to the fADNLS equation were computed with the parameters h = 1, 
ξ = 0.5, and ψ = π/2 and with N = 2, 000 grid points and time 
discretization �t = 0.01.

The fADNLS equation initialized with the soliton solution to 
fIDNLS, i.e., putting t = 0 into Eq. (32), leads to radiation emission 
for non-zero ε . Fig. 1 shows this radiation for small (η = 0.05), 
medium (η = 0.5), and large (η = 1) amplitude initial conditions 
at simulation time T = 300 with ε = 0.1. Recall that amplitude 
is related to the parameters η and h (h is taken to be 1) by 
A = sinh (2ηh)/h. The heights of the three solutions are normal-
ized to 1 to compare the relative amount of radiation; the radiation 
increases with increasing amplitude, with the large amplitude so-
lution having radiation about 2% of the height of the solution, 
the medium amplitude having 1%, and the small amplitude hav-
ing negligible radiation.

The positions of the peaks of the fADNLS equation (solid lines) 
are given along with linear fits (dashed lines) in Fig. 2 for medium 
amplitude initial conditions and ε = −0.25, 0.0, +0.25. The lin-
ear fit shows that the positive ε solution propagates with nearly 
constant velocity, while the negative ε one has quadratic char-
acter which causes it to slow down over time. The amplitudes 
of these localized wave solutions have breathing patterns. Fig. 3
shows that when we average over these oscillations, the amplitude 
settles down to a constant for ε = 0.25 after deformation from the 
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Fig. 2. Linearity of solitary wave peak displacement. Medium amplitude solitary wave 
solutions of the fractional averaged equation have a nearly linear relationship be-
tween displacement and time for positive and zero ε . For negative ε , the solitary 
wave slows down over time.

Fig. 3. Time-averaged solitary wave peak amplitude. The time-averaged amplitudes of 
medium solitary wave solutions of the fractional averaged equation are nearly con-
stant for positive and zero ε and grow slightly for negative ε . The results in this 
plot and Fig. 2 suggest that the solitary waves for positive ε are closer to solitons 
than for negative ε .

Fig. 4. Integrable and averaged dynamics for small initial conditions. The soliton solu-
tion to the fractional integrable equation propagates at a constant velocity without 
dissipating for ε = 0.1. Even though the profile of the solitary wave solution to the 
fractional averaged equation deforms from the initial solitonic profile, its peak prop-
agates at a nearly identical velocity to the soliton; the soliton has velocity 1.83864
and the solitary wave 1.83871 ± 1 × 10−6.

secant profile, but grows a little bit over time for ε = −0.25. The 
averaged amplitude was obtained by taking the mean of the ampli-
tude for ±10 time units around each point. These results suggest 
that for ε positive and sufficiently small the localized wave solu-
tions to the fADNLS equation have structure similar to integrable 
solitons, while those for ε negative are less similar.

A comparison of a small amplitude soliton solution to the 
fIDNLS equation and solitary wave solution to the fADNLS equation 
is given in Fig. 4 for ε = 0.1. The solitary wave spreads out, de-
5

Fig. 5. Fractional soliton velocity. Velocity of the one-soliton solution to the frac-
tional integrable equation exhibits super-dispersive transport for small amplitudes 
(A = 0.100). However, for medium (A = 1.175) and large (A = 3.627) amplitudes, 
the velocity has a turning point where increasing ε decreases the velocity. This is 
a fundamentally discrete phenomenon not shared by known continuous fractional 
integrable equations; cf. [7,8].

forming from the hyperbolic secant profile of the soliton. However, 
the peak velocities of the two waves are nearly identical, 1.83864
for the soliton and 1.838713 ± 1 × 10−6 for the solitary wave. The 
soliton moves with exactly constant velocity, but the solitary wave 
does have an acceleration of (−1.513 ± 0.002) × 10−6. However, 
this acceleration is small enough that we can still compare the 
velocities of these two waves. The velocity and acceleration were 
estimated by fitting a quadratic curve to the solitary wave peak 
position and error bounds were obtained by doubling the time 
discretization, i.e., computing the difference between the results 
for �t = 0.01 and �t = 0.02. For larger values of ε and for larger 
amplitude waves the agreement between these two equations di-
verges.

The peak velocity for the one soliton solution to the fIDNLS 
equation is given by

cp(η, ξ,h) = vr

ηh
, vr = −2Im

(
sinh1+ε(h[η − iξ ]/2)

)
(34)

which is determined analytically from the form of the soliton in 
equation (32). The peak velocity of the fIDNLS soliton is related 
to its amplitude in a much more complicated manner than for 
the fKdV and fNLS equations which have power law relationships 
between their amplitude and velocity, i.e., anomalous dispersion. 
Fig. 5 shows this velocity as a function of ε for h = 1; ξ = 0.5; and 
small, medium, and large amplitudes.

6. Conclusion

In this paper, the fractional integrable discrete nonlinear Schrö-
dinger equation was obtained and it’s properties were investigated. 
We did this by applying three principal mathematical constituents 
which were introduced in our earlier work [7], [8]: the inverse 
scattering transform, power law dispersion relations, and com-
pleteness relations, to the Ablowitz-Ladik scattering problem. We 
linearized the equation via Gel’fand-Levitan-Marchenko type sum-
mation equations. After long time the kernel of the summation 
equation contains only discrete spectra; we then obtained an ex-
plicit one-soliton solution to this equation, showing that it’s veloc-
ity depends on the fractional parameter ε in a more complicated 
way than its continuous counterpart in the fractional nonlinear 
Schrödinger equation. Multi-soliton solutions can be obtained by 
standard methods; but they are outside the scope of this pa-
per. Using a Fourier split step method, we compared the pre-
dictions of the integrable discretization to the fractional averaged 
nonlinear Schrödinger equation, a related non-integrable equation. 
We demonstrated that for small amplitude initial data, the two 
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equations predicted nearly identical velocities and similar struc-
ture, while for large amplitudes they exhibited qualitatively similar 
characteristics. This work shows that fractional integrability can be 
substantially extended beyond the continuous nonlinear systems 
first studied in [7]. It suggests new areas of research such as frac-
tional integrability for fully discrete systems. It also opens new 
opportunities for detailed comparison between fractional nonlin-
ear equations which are integrable to those that are (likely) non-
integrable.
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Appendix A

A.1. Scattering theory for the Ablowitz-Ladik system

Here, we define eigenfunctions, scattering data, etc. that are 
used to define the fractional integrable discrete nonlinear Schrödin-
ger (fIDNLS) equation and solve it by the IST. The Ablowitz-Ladik 
scattering problem

vn+1 =
(

z qn

rn z−1

)
vn (A.35)

is associated to the following family of nonlinear evolution equa-
tions

σ3
dun

dt
+ γ (	+)un = 0, un = (qn,−rn)T (A.36)

where T represents transpose, σ3 = diag(1, −1), hn = 1 − rnqn , ∑+
n = ∑∞

k=n , and the operator 	+ is defined in the main 
manuscript. Eigenfunctions of the Ablowitz-Ladik scattering system 
are solutions to equation (A.35) subject to the boundary conditions

φn(z, t) ∼
(

zn

0

)
, φn(z, t) ∼

(
0

z−n

)
, n → −∞, (A.37)

ψn(z, t) ∼
(

0
z−n

)
, ψn(z, t) ∼

(
zn

0

)
, n → +∞. (A.38)

Because the “right” eigenfunctions ψn and ψn are linearly inde-
pendent, we can write the “left” eigenfunctions as

φn(z, t) = a(z, t)ψn(z, t) + b(z, t)ψn(z, t), (A.39)

φn(z, t) = a(z, t)ψn(z, t) + b(z, t)ψn(z, t). (A.40)
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These relations define the scattering data a, b, a, and b. We can 
write the scattering data explicitly in terms of the eigenfunctions 
as

a(z, t) = νn W
(
φn,ψn

)
, a(z, t) = νn W

(
ψn,φn

)
, (A.41)

b(z, t) = νn W
(
ψn,φn

)
, b(z, t) = νn W

(
φn,ψn

)
, (A.42)

with the Wronskian W (un, vn) ≡ u(1)
n v(2)

n − u(2)
n v(1)

n and νn ≡∏∞
k=n hk , hk = 1 − rkqk . The transmission and reflection coefficients, 

τ (z, t), τ (z, t) and ρ(z, t), ρ(z, t), respectively, are defined by

τ (z, t) = 1

a(z, t)
, ρ(z, t) = b(z, t)

a(z, t)
, (A.43)

τ (z, t) = 1

a(z, t)
, ρ(z, t) = b(z, t)

a(z, t)
. (A.44)

Often, the functions τ , τ , ρ , and ρ are equivalently referred to as 
the scattering data. The eigenfunctions

φn(z, t)z−n, ψn(z, t)zn (A.45)

are analytic and bounded for |z| > 1 and continuous for |z| ≥ 1 and

φn(z, t)zn, ψn(z, t)z−n (A.46)

are analytic and bounded for |z| < 1 and continuous for |z| ≤ 1. 
Hence a and a are analytic inside and outside the unit circle, re-
spectively.

The Ablowitz-Ladik scattering system can have discrete eigen-
values, corresponding to bound states. These occur at the zeros of 
a and a — which we notate by z j for j = 1, 2, ..., J and z j for 
j = 1, 2, ..., J , respectively — such that |z j | > 1 and |z j | < 1. We 
assume that these eigenvalues are proper, i.e., the zeros of a and a
are simple (not on the unit circle and finite in number). At these 
discrete eigenvalues, the eigenfunctions are related by

φn(z j, t) = b(z j, t)ψn(z j, t), φn(z j, t) = b(z j, t)ψn(z j, t).
(A.47)

We also define the norming constants by

c j(t) = b(z j, t)

a′(z j, t)
, c j(t) = b(z j, t)

a′(z j, t)
(A.48)

where a′(z j, t) = ∂za(z, t)|z=z j , etc. When rn = ∓q∗
n in (A.35), we 

have the symmetry reductions

φn(z, t) = P∓φ∗
n(1/z∗, t), ψn(z, t) = ∓P∓ψ∗

n(1/z∗, t) (A.49)

for the eigenfunctions and a(z, t) = a∗(1/z∗, t) and b(z, t) =
∓b∗(1/z∗, t) where

P∓ =
(

0 ∓1
1 0

)
. (A.50)

The relation a(z, t) = a∗(1/z∗, t) implies that if z j is a zero (eigen-
value) of a(z, t), then z j = 1/z∗

j , j = 1, 2, ... is a zero of a(z, t) and 
hence J = J . From the eigenfunctions, solutions of (A.35), we can 
construct the eigenfunctions of the nonlinear operator 	+ , �n(z, t)
and �n(z, t), and its adjoint 	A+ , �A

n (z, t) and �A
n (z, t) by

�n = νnψn ◦ ψn+1, �A
n = −νnP−(φn ◦ φn+1) (A.51)

�n = νnψn ◦ ψn+1, �
A
n = −νnP−(φn ◦ φn+1) (A.52)

where un ◦ vm =
(

u(1)
n v(1)

m , u(2)
n v(2)

m

)T
.
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A.2. Solving the nonlinear evolution equation using the IST

Solving nonlinear discrete evolution equations with the IST is 
analogous to solving linear discrete evolution equations with the 
Z-transform. The IST has three distinct steps: direct scattering, time 
evolution, and inverse scattering which are analogous to taking the 
Z-transform, evolving the solution in frequency space, and taking 
the inverse Z-transform, respectively. In direct scattering, the initial 
condition is mapped into scattering space by solving the scattering 
problem (A.35). The time evolution of the scattering data, which 
represents the solution in scattering space, is evolved in time by 
solving a simple set of differential equations. Finally, in inverse 
scattering, the solution in physical space is reconstructed from the 
scattering data by solving a system of algebraic and summation 
equations. In the following, we briefly outline direct scattering, 
time evolution, and inverse scattering for the Ablowitz-Ladik scat-
tering system.

A.2.1. Direct scattering
To perform direct scattering, we use the scattering problem in 

(A.35) to solve for the eigenfunctions φ , φ, ψ , and ψ at t = 0. 
Existence and uniqueness of these solutions can be proven by con-
verting equation (A.35) and the appropriate boundary conditions 
into linear summation equations which have uniformly conver-
gent Neumann series [49]. These series also provide an alternative 
method of constructing these eigenfunctions. Then, the scattering 
data, a, b, a, and b, at t = 0 are obtained from the Wronskian rela-
tions in equations (A.41) and (A.42).

A.2.2. Time evolution
The scattering data evolves in time according to [47]

dρ

dt
− γ (z2)ρ(z, t) = 0,

dρ

dt
+ γ (z2)ρ(z, t) = 0, (A.53)

dc j

dt
− γ (z2

j )c j(t) = 0,
dc j

dt
+ γ (z2

j )c j(t) = 0 (A.54)

for j = 1, 2, ..., J and j = 1, 2, ..., J , respectively. We recall that γ
is the function of an operator in equation (A.36) and is related 
to a linear dispersion relation. Also note that z j and z j are inde-
pendent of time. To fully characterized the spectral representation 
of the operator γ (	+), and find the solution qn(t), we need the 
eigenfunctions at time t in addition to the scattering data. These 
functions are found using inverse scattering.

A.2.3. Inverse scattering
To reconstruct the solutions to the nonlinear evolution equa-

tion (A.36) and eigenfunctions at time t , we solve the following 
Gel’fand-Levitan-Marchenko (GLM) type summation equations for 
κ(n, m, t) [49]

κ(n,m, t) +
(

1
0

)
F (m + n, t) (A.55)

+
∞∑

j=n+1

κ(n, j, t)F (m + j, t) = 0,

κ(n,m, t) +
(

0
1

)
F (m + n, t) (A.56)

+
∞∑

j=n+1

κ(n, j, t)F (m + j, t) = 0

where
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F (n, t) =
J∑

j=1

z−n−1
j c j(t) + 1

2π i

∮
S1

z−n−1ρ(z, t)dz, (A.57)

F (n, t) =
J∑

j=1

z−n−1
j c j(t) + 1

2π i

∮
S1

zn−1ρ(z, t)dz. (A.58)

Then, the potentials can be obtained from

qn(t) = −κ(1)(n,n + 1, t), rn(t) = −κ(2)(n,n + 1, t), (A.59)

and the right eigenfunctions from

ψn(z, t) =
∞∑
j=n

z− jK(n, j, t), (A.60)

ψn(z, t) =
∞∑
j=n

z jK(n, j, t) (A.61)

where

K(n,m, t) = νnκ(n,m, t), (A.62)

K(n,m, t) = νnκ(n,m, t). (A.63)

The left eigenfunctions φn(z, t) and φn(z, t) can be constructed us-
ing the relations in equations (A.39) and (A.40). If rn(t) = ∓q∗

n(t), 
then equations (A.55) and (A.56) both reduce to

κ(1)(n,m, t) − F (n + m, t) ±
∞∑

n′′=n+1

∞∑
n′=n+1

κ(1)(n,n′′, t)

· F
∗
(n′′ + n′, t)F (n′ + m, t) = 0 (A.64)

We note that under rn(t) = ∓q∗
n(t) there are induced symmetries: 

ρ(z) = ∓ρ∗(1/z∗) and for rn(t) = −q∗
n(t) there can be discrete 

states with z j = 1/z∗
j (hence J = J ), c j = (z∗

j )
−2c∗

j , j = 1, 2, ..., J . 
The above GLM summation equations provide a linearization of the 
fIDNLS equation. Moreover, as t → ∞, the integral terms in the 
kernels F , F given by equations (A.57) and (A.58) vanish. Hence, 
we are left with only discrete spectra which yields the multisoli-
ton solutions.
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