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have similar behavior.

Integrable fractional equations such as the fractional Korteweg-deVries and nonlinear Schrodinger
equations are key to the intersection of nonlinear dynamics and fractional calculus. In this manuscript,
the first discrete/differential difference equation of this type is found, the fractional integrable discrete
nonlinear Schrédinger equation. This equation is linearized; special soliton solutions are found whose
peak velocities exhibit more complicated behavior than other previously obtained fractional integrable
equations. This equation is compared with the closely related fractional averaged discrete nonlinear
Schrodinger equation which has simpler structure than the integrable case. For positive fractional
parameter and small amplitude waves, the soliton solutions of the integrable and averaged equations

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Integrable systems play a central role in nonlinear dynam-
ics because they provide exactly solvable models for important
physical systems. Notable examples of integrable equations are
the Korteweg-deVries (KdV), applicable to shallow water waves,
plasma physics, and lattice dynamics among others [1-3], and the
nonlinear Schrodinger (NLS) equation, which finds applications in
nonlinear optics, Bose-Einstein condensates, spin waves in ferro-
magnetic films, plasma physics, water waves, etc. [2-5]. These in-
tegrable nonlinear evolution equations have an infinite number of
conservation laws and soliton solutions [6]. Solitons, the funda-
mental solutions of such equations, are stable, localized nonlinear
waves which propagate without dispersing and interact elastically
with other solitons. Nonlinear integrable evolution equations have
these surprising properties because of their deep mathematical
structure described by the inverse scattering transform (IST).

IST is a method of solving nonlinear equations which general-
izes Fourier transforms. It solves these equations in three steps:
mapping the initial condition into scattering space, evolving the
initial data in scattering space in time, and mapping the evolved
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scattering data back to physical space; i.e., inverse scattering. This
process gives the solution to nonlinear equations solvable by IST
in terms of linear integral equations; such nonlinear equations
are called integrable. Recently, we used the mathematical struc-
ture of IST associated with for the Korteweg-deVries (KdV) and
nonlinear Schrodinger (NLS) equations to develop a method of
finding and solving the fractional KdV (fKdV) and fractional NLS
(fNLS) equations [7]. We also showed that this method could be
applied to find fractional extensions of the modified KdV, sine-
Gordon, and sinh-Gordon equations [8]. These equations represent
the first known fractional integrable nonlinear evolution equations
with smooth (physical) solutions and deeply connect the fields of
nonlinear dynamics and fractional calculus.

Fractional calculus is a mathematical structure originally de-
signed to define non-integer derivatives and integrals. It has since
become an effective way of modeling many physical processes that
exist in multi-scale media [9,10] or exhibit non-Gaussian statistics
or power law behavior [11-13]. A particularly important exam-
ple is anomalous diffusion, where the mean squared displacement
is proportional to t*, « > 0 [11,14-16]. Transport that follows
this rule has been observed in biology [17-20], amorphous ma-
terials [21-23], porous media [24-27], climate science [28], and
attenuation in materials [29] amongst others. As we have shown,
the merger of fractional and nonlinear characteristics in integrable
equations such as fKdV and fNLS predict anomalous dispersion,
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where the velocity and amplitude of solitonic solutions are related
by a power law [7].

In this article, we demonstrate how the method introduced in
Ref. [7] can be applied to discrete (or differential-difference) sys-
tems to define integrable discrete fractional nonlinear evolution
equations by presenting a fractional generalization of the inte-
grable discrete nonlinear Schrodinger (IDNLS) equation. We do this
by demonstrating the three key mathematical ingredients of our
method — IST, power law dispersion relations, and completeness
relations — for the Ablowitz-Ladik (AL) discrete scattering prob-
lem. In the linear limit, the fractional IDNLS (fIDNLS) equation is
a discretization of the fractional Schrodinger equation which was
derived with Feynman path integrals over Lévy flights [30,31].

The KdV equation was the first equation shown to be solvable
by IST in Ref. [32]; it was soon followed by the NLS equation in
Ref. [33]. These two equations were then found to be contained
in a general class of equations solvable by IST when associated
to the Ablowitz-Kaup-Newell-Segur (AKNS) system [3,34]. Shortly
thereafter IST was used to solve families of discrete (or differential
difference) problems like the self-dual network [35]. In particu-
lar, it was discovered that the AKNS system could be discretized
while maintaining integrability, leading to the AL scattering prob-
lem which was used to solve a family of discrete nonlinear evolu-
tion equations [36]. This family contained important discrete evo-
lution equations — continuous in time but discretized in space
— such as integrable discretizations of the nonlinear Schrodinger,
KdV, modified KdV, and sine Gordon equations. Further, this fam-
ily of equations was shown to have soliton solutions and an infinite
number of conservation laws [36].

We derive the fIDNLS equation from the AL scattering problem
using three key components: linear dispersion relations, complete-
ness relations, and IST. IST is used to linearize the equation and
obtain special soliton solutions.

We also show how the characteristics of the fractional IDNLS
(fIDNLS) equation reach beyond integrability by comparing the
one-soliton solution of the fIDNLS equation to the solitary wave
solution of the fractional averaged discrete nonlinear Schroédinger
(fADNLS) equation. This equation is a different fractional general-
ization of the IDNLS equation in which the linear second order dif-
ference is replaced by the discrete fractional Laplacian [37-40]. The
fADNLS equation can be understood as a discretization of a frac-
tional NLS equation involving the Riesz derivative which has been
extensively studied in, e.g., [41-45]; it is also closely related to the
(likely) non-integrable fractional DNLS equation, recently studied
in [37,46]. Though the fADNLS equation is likely not integrable to
our knowledge (apart from the limiting case when fADNLS reduces
to IDNLS), the similarity between the two equations suggests that
some of the physical predictions of fractional integrable equations
are shared by equations which are simpler to realize computation-
ally.

2. The discrete fractional linear Schrodinger equation

Consider the family of discrete linear evolution equations

0tGn + Y (—An)Gn =0 (1)

for the function g, (t) which depends on the discrete variable n € Z
and the continuous variable t € R. Here, y is a sufficiently regular
function of the discrete laplacian, — Ay, defined by

1
(—An)qn ) = h—z( = qn+1(t) + 2qn () — Gn—1 (t)) (2)

where h is the distance between lattice sites. Using the Z-
transform, which is equivalent to the discrete Fourier transform,
the solution to Eq. (1) can be explicitly written as
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w/h
1 . . .
a0 =5 [ e 0l sty 3)
—m/h

where G(k,0)=h) 72 gn(0)e~ i is the Z-transform of qy(t)
at t =0 and 4sin2(kh/2)/h2 is the Fourier symbol of —A,. Note
that the Z-transform is often written in terms of z with the substi-
tution z = e~™" where integration in k becomes integration with
respect to z on the unit circle. If we choose y to be power law,
then Eq. (1) becomes a fractional discrete equation in terms of
the discrete fractional laplacian. For example, if we put y(—A;) =
—i(—Ap)!€, |€| < 1, then we obtain the linear fractional discrete
Schrodinger equation

i0eqn + (—An)'T€qn = 0. (4)

Here, (—A,)'T€ is the discrete fractional laplacian of order 1 +
€ which is defined in terms of its Fourier symbol [4sin? (hk/2)/
h%]1*€ and the Z-transform/discrete Fourier transform as

w/h
1 )
(—An)”eqn:E / dkq(k)e*™[4sin?(kh/2)/h*)' €. (5)
—m/h

Notice that the k integral above can be evaluated to express the
discrete fractional laplacian as a summation over m of g, multi-
plied by a weight vector. The solution to Eq. (4) can still be written
in the form Eq. (3) with

y (4sin? (kh/2) /h?) = —i[4sin®(kh/2)/h?]1+€

and, because 4sin®(kh/2)/h? is real and positive, the solution to
equation (1) with this choice of y is well posed. In defining and
solving the linear fractional discrete Schrédinger equation, we used
a power law dispersion relation, ingredient 1 of our method, and
we defined the fractional operator using completeness of the dis-
crete Fourier transform/Z-transform, ingredient 2. Then we solve
the equation by the inverse discrete Fourier transform, the analog
of ingredient 3.

3. The fractional integrable discrete Schrodinger equation

To develop the fIDNLS equation, the integrable nonlinear analog
of Eq. (4), and solve it, we apply the three key ingredients of our
method, starting with writing the equation in terms of a linear
dispersion relation. Note that h =1 is taken in this section without
loss of generality; to recover the scaling factor for h # 1, replace g,
by hqn and r, by hry.

As in the linear case, Eq. (1), we have a family of nonlinear
evolution equations for the solutions g, (t) and ry(t) [47], see also
[48],

du, T
03— + V(AU =0, Uy = (Gn.—T1) (6)

where T represents transpose, o3 = diag(1, —1), and A4 is

e
EXf o X
A*"":h"(g E;)(jz)) (7)
k

1
KDY ELUSI D WEL X, )
—Tn Z;—] Tk—1 —Tn Z:_z k+1 x,(f)
+ +
I Gn+1 2 _ns1 }rT',i An+1 D _ny1 Z—’; XI(<]) 9
Tl _ e + Gk @) 9
'n—1 Zn hi -1 Zn hi Xy
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where hy =1—raqn, Y = 352, and Eix(‘” _x(‘il withg=1, 2.
The inverse of this operator is

(1)
1, _ E; O X
nen (5 9)(%
k
1
n —qn Zn+ Tk+1 —qn 21-1:1 qk—1 X1(< ) (11)
'n Z:_1 Tk+1 I'n Z,;r qk—1 X(Z)
" —Qn-1 Yy R —n-12, i\ [« 1
+ + e _ i (2) ’ (12)
Tnt1 Zn-H hy Tnt1 Zn-H X

Here, y is a sufficiently regular function of the operator A and is
connected with the linearized dispersion relation. Specifying this
dispersion relation, or y directly, picks out particular equations
from this family. For example, if we take
y(A)=—i@—Ar—ATD

and let r, = Fq;;, then we obtain the IDNLS equation

i3eqn + AnGn £ 1qn|* (@nt1 +qn_1) = 0. (13)

We can relate y to the dispersion relation of the linearization of
(6) by considering the linear limit g; — 0. In this limit, we have

EF 0

re (2 )=on (14)
so the linearization of the nonlinear evolution equation is

duy,
U3d_ + v Dpu, =0. (15)

t
Because D, is a diagonal matrix, we have
y(EDH 0 )

D) = N 16
Taking the first component of (15) with
n _ZZne—lw(z)t
gives
(@) =io(2). (17)

Therefore, by specifying the linear limit of the nonlinear evolu-
tion equation, we obtain the nonlinear equation itself. To define
the fIDNLS equation, we choose the linear limit to be the dis-
crete linear fractional Schrédinger equation in (4), which gives
the dispersion relation w(z) = —(2 — z2 — z=%)1*€ and, hence,
Y (%) = —i(2 — 22 — z72) 1€, So, the fIDNLS equation is

i0pun + (2 — Ay — ATH w0 = 0. (18)

In fact, by choosing y (z%) = —i(2 — z2 — z~2)™*+€, for integer m, we
generate a hierarchy of fractional equations

oy + (2 — Ay — ATH™u,(t) =0. (19)

It can be shown that the limit of (18) as € — 0 is the IDNLS equa-
tion (13). Notice that to define the fIDNLS equation, we used a
power law dispersion relation, ingredient 1 of the method. How-
ever, this dispersion relation leads to the operator (2 — Ay —
Ajrl)”f the meaning of which is currently unclear. To define this
operator, we will need to use the 2nd ingredient: appropriate com-
pleteness relations. The third ingredient will be making use of IST
to find solutions of the fIDNLS equation.
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4. Completeness of squared eigenfunctions and fractional
operators

In this section we define the fIDNLS equation in (18) and, in
fact, any equation of the form (1) that is well-posed in physical
space. We do this using the observation that y(A;) is a multi-
plication operator when acting on the eigenfunctions of A} and
the fact that the eigenfunctions of A, are complete. This result
is known as completeness of squared eigenfunctions, and is the
second ingredient in our method. The resulting representation of
Y (A4) will be similar to that of the discrete fractional laplacian
in (5). The eigenfunctions of A, are W¥,(z) and W,(z) each with
eigenvalue z? (note that time t is suppressed throughout this sec-
tion). Therefore, the operation of y (A4 ) on these eigenfunctions is
given by

Y (AD¥ =y (@)W, y(A)T =y ()W, (20)

Because A is not a self-adjoint operator, completeness of squared
eigenfunctions involves both ¥, ¥, and the adjoint functions \Il,ﬁ‘,

<A
W, where

y(AHWE =y ()W, y(ADHT, =y (D), (21)

and A% is the adjoint, with respect to ¢2(Z) x ¢?(Z), of A. The
eigenfunctions and adjoint eigenfunctions can be written in terms
of solutions to the Ablowitz-Ladik scattering problem which is a
2 x 2 eigenvalue problem fo the discrete vector-valued function

1
Vi = (v, v

z
Va1 = (rn Zq_"l) (22)

where g, and r, act as potentials and z is an eigenvalue. Through
this association, one can solve the family of nonlinear evolution
equations in (22) (see Appendix for more details).

In [47], it was shown that the arbitrary discrete function H, =

T
(H,(ql), H,ﬁz)) €11 can be written as

=Y f 2 o) Z G (@) Hy 23)

p=1g(p)

where S = §; (5@ = S;) is a circular contour evaluated coun-
terclockwise centered at the origin of radius R > 1 (§ < 1) such
that all of the singularities of the integrand are inside (outside) of
the contour and

(1) _ (1)

Cn@ = ¥ @WA@D /h, fD(2) = mz(z) (24)

62(2) = @ TA D) [, [P D) = — (25)
2mwa“(z)

with h, =1 — r;qy. The eigenfunctions W, (2), ¥4 (2), W (2), E: (2)
(see appendix) and scattering data a(z), a(z) are defined in terms
of solutions to the Ablowitz-Ladik scattering problem (see Ap-
pendix). With this completeness relation, and the operation of
y(A4) on ¥, and ¥, in Eq. (20), we have

T $ Zrvare S GPA@Hn  (26)

P=15(p) m=-00

Therefore, the nonlinear evolution equation in (6) can be explicitly
characterized in physical space as
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2
du,
o3t =) y§ — P @y Z Gifm (D). (27)
p_ls(p) m=—oo
In particular, if we put y(z%?) = —i(2 — 22 — z72)1*€ and r, = Fq;,

the fIDNLS equation is the first component of (27). Using the sym-
metries of the eigenfunctions (see appendix), this is

i9¢qn —ng — P @y Z gim(@) (28)
p=1g)

with

gim(@ = — Doy @ (29)

(0 @, @am F 91 @94, D)

3 " (w2 /20 (1/29) (30)

Enm(2) =

hn
(80 /2980 (1295 F 88 (129821 (1/7)14m)

where t has been suppressed.

In the appendix we show how this equation can be linearized
via Gel'fand-Levitan-Marchenko type summation equations. After
long time the kernel of the summation equation contains only dis-
crete spectra, i.e., the soliton solutions. Multisoliton solutions can
be found by standard methods.

5. Solitons and solitary wave solutions of the fIDNLS and fADNLS
equations

The fIDNLS equation in (18) is not the only fractional gener-
alization of the IDNLS equation in (13). A simpler generalization
is to replace the discrete laplacian —A, in (13) with the discrete
fractional laplacian (—A,)'*€ defined in (5) to give the fractional
averaged DNLS (fADNLS) equation

i0eqn + (—An) "€ qn £ 1qnl?(Gns1 + gn1) = 0. (31)

Notice that in the figure captions we refer to the fIDNLS equation
as the fractional integrable equation and the fADNLS equation as
the fractional averaged equation.

The fADNLS equation is not known to be integrable, but in the
limit € — 0, it becomes the IDNLS equation, Eq. (13), which is in-
tegrable; therefore, we expect Eq. (31) to have some similarity the
fIDNLS equation. To characterize this similarity, we will compare
the solitons and solitary waves predicted by these equations. The
fIDNLS equation has an exact one-soliton solution, derivable by the
IST. To find the solitary wave solutions to the fADNLS equation we
use the same initial condition as that of the fIDNLS equation.

Even though this solitary wave initially deforms from the ex-
act secant profile, emitting radiation in the process, its solutions
have nearly constant velocity, propagate with nearly constant am-
plitude, and have comparable velocities to the fIDNLS equation in
certain regimes. These integrable-like properties of this equation
are stronger for positive € than negative € and stronger for smaller
wave amplitudes than larger wave amplitudes. Soliton solutions to
the fIDNLS equation can be derived using the IST (see appendix
and [49]); they are of the form

inh 2nh) -; ;
n(t) = sin }(1 n )e21(vi(z%)t—éhn)—l(w—n/2) (32)

x sech (Znh(n —ng) — 2vr(z%)t)
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0.1
— large amplitude
0.08F  _ medium amplitude
g — small amplitude
S 0.06}
I
= 0.04f
S
=
0.02+
0. .
500 1000 1500

Fig. 1. Radiation emission for small, medium, and large initial data. Solitary wave solu-
tions to the fractional averaged equation emit more radiation for larger amplitude
initial conditions and larger fractional order € (¢ = 0.1 is shown here). The initial
amplitudes corresponding to the small, medium, and large solutions are A =0.100,
1.175, and 3.627, respectively; however, each solitary wave solution is normalized
to peak height 1. (For interpretation of the colors in the figure(s), the reader is re-
ferred to the web version of this article.)

where vi(z2) = 3Imy (z3), v;(z}) = JRey(22), and z; = eh1=1%),
Here we choose y(zl) =—i(2 — z1 21’2)1+€ in accordance with
Eq. (18) though (32) holds for all sufficiently regular y. The free
parameters in (32) are €, h, n, &, ¥, and no.

To find the localized wave solutions to the fADNLS equation, we
numerically evolved the equation at discrete time steps {tm},’;l”zo
with tg = 0 using a Fourier split-step scheme. The initial condition
qn(to) = qn(0) is given by (32) with t = 0. The Fourier split-step
scheme propagates the approximation from tp to tpm4+1 by sepa-
rately evaluating the linear and nonlinear parts of the equation; cf.
Refs. [50-52]. Explicitly, we compute
n(tmy1) = e~ 1AL 2 i [y den e iAmL2g (¢ (33)
where Lqn = (—An)'"“qn and Ngn = =£|gn|*(@n+1 + gn-1). The
particular operator splitting in equation (33) makes the solution
method O(At?) accurate [53,54]. The linear step, e AmL/2 g
evaluated using discrete Fourier transforms, while the nonlinear
step, eidtmN s evaluated by solving the associated differential
equation, equation (31) with (—A,)!*€q, — 0, using a fourth-
order Runge-Kutta scheme. Throughout this manuscript, solutions
to the fADNLS equation were computed with the parameters h =1,
& =0.5 and ¥ =7 /2 and with N =2,000 grid points and time
discretization At =0.01.

The fADNLS equation initialized with the soliton solution to
fIDNLS, i.e., putting t = 0 into Eq. (32), leads to radiation emission
for non-zero €. Fig. 1 shows this radiation for small (n = 0.05),
medium (7 = 0.5), and large (n = 1) amplitude initial conditions
at simulation time T = 300 with € = 0.1. Recall that amplitude
is related to the parameters n and h (h is taken to be 1) by
A = sinh (2nh)/h. The heights of the three solutions are normal-
ized to 1 to compare the relative amount of radiation; the radiation
increases with increasing amplitude, with the large amplitude so-
lution having radiation about 2% of the height of the solution,
the medium amplitude having 1%, and the small amplitude hav-
ing negligible radiation.

The positions of the peaks of the fADNLS equation (solid lines)
are given along with linear fits (dashed lines) in Fig. 2 for medium
amplitude initial conditions and € = —0.25, 0.0, +0.25. The lin-
ear fit shows that the positive € solution propagates with nearly
constant velocity, while the negative € one has quadratic char-
acter which causes it to slow down over time. The amplitudes
of these localized wave solutions have breathing patterns. Fig. 3
shows that when we average over these oscillations, the amplitude
settles down to a constant for € = 0.25 after deformation from the
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1400F peak € = +0.25

+ 1200 — - linear fit € = +0.25

GE" 1000L peak € = 0.0

8 — - linear fit e = 0.0
& 800f )

2, peak e = —0.25 —
£ 600} inear fit € — —0.25 —

= — - linear fit e = —0.25 o
= 4000 =

b} o

= 2000

0 . . . .
0 100 200 300 400 500
time

Fig. 2. Linearity of solitary wave peak displacement. Medium amplitude solitary wave
solutions of the fractional averaged equation have a nearly linear relationship be-
tween displacement and time for positive and zero €. For negative €, the solitary
wave slows down over time.

2
= 1.5;////
=
=
g
e 1.+
<
£
=} .
%O 0.5- —e=+0.25
;]; —e=0.0
< —e=—0.25
< O L L L L
0 100 200 300 400 500

time

Fig. 3. Time-averaged solitary wave peak amplitude. The time-averaged amplitudes of
medium solitary wave solutions of the fractional averaged equation are nearly con-
stant for positive and zero € and grow slightly for negative €. The results in this
plot and Fig. 2 suggest that the solitary waves for positive € are closer to solitons
than for negative €.

Averaged Amplitude
0.1

500
400 0.08
300 0.06

200
0.04

100
0.02

0

)

« 1000 2000 0 1000 2000 0.

Position

Integrable

Time

Fig. 4. Integrable and averaged dynamics for small initial conditions. The soliton solu-
tion to the fractional integrable equation propagates at a constant velocity without
dissipating for € = 0.1. Even though the profile of the solitary wave solution to the
fractional averaged equation deforms from the initial solitonic profile, its peak prop-
agates at a nearly identical velocity to the soliton; the soliton has velocity 1.83864
and the solitary wave 1.83871+1 x 1076,

secant profile, but grows a little bit over time for ¢ = —0.25. The
averaged amplitude was obtained by taking the mean of the ampli-
tude for +10 time units around each point. These results suggest
that for € positive and sufficiently small the localized wave solu-
tions to the fADNLS equation have structure similar to integrable
solitons, while those for € negative are less similar.

A comparison of a small amplitude soliton solution to the
fIDNLS equation and solitary wave solution to the fADNLS equation
is given in Fig. 4 for € = 0.1. The solitary wave spreads out, de-
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— small amplitude

6+ — medium amplitude

— large amplitude
4L

velocity

—1. —0.6 —0.2 0.2 0.6 1.

Fig. 5. Fractional soliton velocity. Velocity of the one-soliton solution to the frac-
tional integrable equation exhibits super-dispersive transport for small amplitudes
(A =0.100). However, for medium (A = 1.175) and large (A = 3.627) amplitudes,
the velocity has a turning point where increasing € decreases the velocity. This is
a fundamentally discrete phenomenon not shared by known continuous fractional
integrable equations; cf. [7,8].

forming from the hyperbolic secant profile of the soliton. However,
the peak velocities of the two waves are nearly identical, 1.83864
for the soliton and 1.838713 + 1 x 10~ for the solitary wave. The
soliton moves with exactly constant velocity, but the solitary wave
does have an acceleration of (—1.513 £ 0.002) x 10~6. However,
this acceleration is small enough that we can still compare the
velocities of these two waves. The velocity and acceleration were
estimated by fitting a quadratic curve to the solitary wave peak
position and error bounds were obtained by doubling the time
discretization, i.e.,, computing the difference between the results
for At =0.01 and At =0.02. For larger values of € and for larger
amplitude waves the agreement between these two equations di-
verges.

The peak velocity for the one soliton solution to the fIDNLS
equation is given by

Vr
CP(’?a -?;_, h) = T]h s
which is determined analytically from the form of the soliton in
equation (32). The peak velocity of the fIDNLS soliton is related
to its amplitude in a much more complicated manner than for
the fKdV and fNLS equations which have power law relationships
between their amplitude and velocity, i.e., anomalous dispersion.
Fig. 5 shows this velocity as a function of € for h =1; £ =0.5; and
small, medium, and large amplitudes.

vy = —2Im(sinh! ¢ (h[n — i£1/2)) (34)

6. Conclusion

In this paper, the fractional integrable discrete nonlinear Schro-
dinger equation was obtained and it’s properties were investigated.
We did this by applying three principal mathematical constituents
which were introduced in our earlier work [7], [8]: the inverse
scattering transform, power law dispersion relations, and com-
pleteness relations, to the Ablowitz-Ladik scattering problem. We
linearized the equation via Gel'fand-Levitan-Marchenko type sum-
mation equations. After long time the kernel of the summation
equation contains only discrete spectra; we then obtained an ex-
plicit one-soliton solution to this equation, showing that it's veloc-
ity depends on the fractional parameter € in a more complicated
way than its continuous counterpart in the fractional nonlinear
Schrodinger equation. Multi-soliton solutions can be obtained by
standard methods; but they are outside the scope of this pa-
per. Using a Fourier split step method, we compared the pre-
dictions of the integrable discretization to the fractional averaged
nonlinear Schrodinger equation, a related non-integrable equation.
We demonstrated that for small amplitude initial data, the two
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equations predicted nearly identical velocities and similar struc-
ture, while for large amplitudes they exhibited qualitatively similar
characteristics. This work shows that fractional integrability can be
substantially extended beyond the continuous nonlinear systems
first studied in [7]. It suggests new areas of research such as frac-
tional integrability for fully discrete systems. It also opens new
opportunities for detailed comparison between fractional nonlin-
ear equations which are integrable to those that are (likely) non-
integrable.
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Appendix A
A.1. Scattering theory for the Ablowitz-Ladik system

Here, we define eigenfunctions, scattering data, etc. that are
used to define the fractional integrable discrete nonlinear Schrédin-
ger (fIDNLS) equation and solve it by the IST. The Ablowitz-Ladik
scattering problem

Z Qn
Vi1 = (rn Z—l)"n

is associated to the following family of nonlinear evolution equa-
tions

duy, T
0’3E +y(Apuy, =0, uy=(qn, —Tn)
where T represents transpose, o3 = diag(1, —1), hy =1 — rqn,
S =372, and the operator Ay is defined in the main
manuscript. Eigenfunctions of the Ablowitz-Ladik scattering system
are solutions to equation (A.35) subject to the boundary conditions

¢n(z7t)’\'<zo>’ an(zvt)w(z(—)n>7 n-)-OO,

Yz, t) ~ (29,1), v, (z,t) ~ <Zg) . n— +o0.

(A.35)

(A.36)

(A.37)

(A.38)

Because the “right” eigenfunctions ¥, and Wn are linearly inde-
pendent, we can write the “left” eigenfunctions as

$n(z.t) =a(z, )Y, (z,8) + b(z, )Y, (2, 1),
On(z,t) =0(z, )P, (2, 1) + b(z, )P, (2, 1).

(A.39)
(A.40)
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These relations define the scattering data a, b, @, and b. We can
write the scattering data explicitly in terms of the eigenfunctions
as

a(z,t) =vaW (¢, ¥p), (2, 0) =W (¥, ;). (A41)
b(z,t) =W (¥, y). b(z,0) = vaW (¢, V1), (A42)
with the Wronskian W (u,,v,) = u,ﬂl)vgz) - u,?)v,gl) and v, =

]_[,j’in hy, hy =1 —rqk. The transmission and reflection coefficients,
T(z,t), T(z,t) and p(z,t), p(z,t), respectively, are defined by

1 . b(z,t)
T(z,t) = a0 p(z,t) = az0’ (A.43)
1 _ - bz
T(z,t) = az0’ oz, t)= az0 (A44)

Often, the functions 7, T, p, and p are equivalently referred to as
the scattering data. The eigenfunctions

Oz, )27, Yz, )"

are analytic and bounded for |z| > 1 and continuous for |z| > 1 and

(A45)

,(z.0)Z", U (z,H)z"

are analytic and bounded for |z] < 1 and continuous for |z| < 1.
Hence a and a are analytic inside and outside the unit circle, re-
spectively.

The Ablowitz-Ladik scattering system can have discrete eigen-
values, corresponding to bound states. These occur at the zeros of
a and a — which we notate by z; for j=1,2,..., ] and Z; for
j=1,2,..., ], respectively — such that |zjl > 1 and |Zj| < 1. We
assume that these eigenvalues are proper, i.e., the zeros of a and a
are simple (not on the unit circle and finite in number). At these
discrete eigenvalues, the eigenfunctions are related by

(A.46)

$n(2j,0) =b(zj, OYn(2j, ), ,(Zj,t) =DZj, DV}, 0).

(A.47)
We also define the norming constants by
bzj,t) b@j, t)
a'(zj, t) a(zj,t)

where da'(zj, t) = da(z, D)lz=z;, etc. When r, = Fq;; in (A.35), we
have the symmetry reductions

bn(2.0) =P3dr(1/2°,1), Yu(z,t) =FPzy¥;(1/2"t)  (A49)

for the eigenfunctions and a(z,t) = a*(1/z*,t) and b(z,t) =
Fb*(1/z*,t) where

0 F1
e (0 %)),

The relation a(z, t) =a*(1/z*,t) implies that if z; is a zero (eigen-
value) of a(z,t), then Z; = 1/z;f, j=1,2,... is a zero of a(z, t) and

(A.50)

hence | = J. From the eigenfunctions, solutions of (A.35), we can
construct the eigenfunctions of the nonlinear operator A, ¥y(z,t)

and W, (z, t), and its adjoint A%, WA (z, t) and WHA(Z, t) by

(A51)
(A.52)

V=¥, o 'ﬁn+1’ ‘I’# =—VP_(¢,0 ¢n+1)
_— — — _A p— —
V=Y, o 'ﬁn-H, ¥, =—vP_(¢,0 ¢n+])

T
where u, ovy = (uﬁ”vr(:,), U;@W@) .
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A.2. Solving the nonlinear evolution equation using the IST

Solving nonlinear discrete evolution equations with the IST is
analogous to solving linear discrete evolution equations with the
Z-transform. The IST has three distinct steps: direct scattering, time
evolution, and inverse scattering which are analogous to taking the
Z-transform, evolving the solution in frequency space, and taking
the inverse Z-transform, respectively. In direct scattering, the initial
condition is mapped into scattering space by solving the scattering
problem (A.35). The time evolution of the scattering data, which
represents the solution in scattering space, is evolved in time by
solving a simple set of differential equations. Finally, in inverse
scattering, the solution in physical space is reconstructed from the
scattering data by solving a system of algebraic and summation
equations. In the following, we briefly outline direct scattering,
time evolution, and inverse scattering for the Ablowitz-Ladik scat-
tering system.

A.2.1. Direct scattering

To perform direct scattering, we use the scattering problem in
(A.35) to solve for the eigenfunctions ¢, ¢, ¥, and ¥ at t = 0.
Existence and uniqueness of these solutions can be proven by con-
verting equation (A.35) and the appropriate boundary conditions
into linear summation equations which have uniformly conver-
gent Neumann series [49]. These series also provide an alternative
method of constructing these eigenfunctions. Then, the scattering
data, a, b, @, and b, at t = 0 are obtained from the Wronskian rela-
tions in equations (A.41) and (A.42).

A.2.2. Time evolution
The scattering data evolves in time according to [47]

d 0 _

& _ Y@ p(z,t) =0, @, y(@p(z,t) =0, (A.53)
dt dt

dC]‘ 2 dE] i, -

a v (z5)cj(t) =0, T Y (@cjt)=0 (A54)

for j=1,2,...J and j=1,2, ..., ], respectively. We recall that y
is the function of an operator in equation (A.36) and is related
to a linear dispersion relation. Also note that z; and Z; are inde-
pendent of time. To fully characterized the spectral representation
of the operator Y (A4), and find the solution g, (t), we need the
eigenfunctions at time t in addition to the scattering data. These
functions are found using inverse scattering.

A.2.3. Inverse scattering

To reconstruct the solutions to the nonlinear evolution equa-
tion (A.36) and eigenfunctions at time t, we solve the following
Gel'fand-Levitan-Marchenko (GLM) type summation equations for
Kk, m,t) [49]

Kk, m,t) + <(])>f(m+n,t) (A.55)
+ ) K@ j.OFm+j.0)=0,
j=n+1
Kn,m,t) + <(l)) F(m+n,t) (A.56)

oo
+ ) kM OFm+ .0 =0
j=n+1

where
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J
1
F(n,t)= sz_"_lcj(t) +5 f 2" p(z, t)dz, (A.57)
j=1 S
_ J 1
F(n,t)= ZE;”qu(t) + i % 2" 15(z, t)dz. (A.58)
Jj=1 I
Then, the potentials can be obtained from
t@® =—«Dmn+1,0, O =-K2@n+1,0,  (AS59)
and the right eigenfunctions from
0 .
Va(z.t) =)z K, j.0), (A.60)
j=n
Yz =) 2K, j.0 (A61)
j=n
where
K(n,m, t) = vpk (n, m, t), (A.62)
K(n,m,t) = vk (n, m, t). (A.63)

The left eigenfunctions ¢,(z, t) and En(z, t) can be constructed us-
ing the relations in equations (A.39) and (A.40). If r,y(t) = Fq;(t),
then equations (A.55) and (A.56) both reduce to

o0 o0
kDm,m,t) — Fn+m,t) £ Z Z kDm,n", )
n”=n+1n"=n+1

F'" +n',0Fm +m,t)=0 (A.64)

We note that under r;(t) = Fq; (t) there are induced symmetries:
p(2) = F0*(1/z") and for ry(t) = —q;;(t) there can be discrete
states with Zj = 1/z% (hence J=c= (zjf)‘zcjf, ji=1,2,...,].
The above GLM summation equations provide a linearization of the
fIDNLS equation. Moreover, as t — oo, the integral terms in the

kernels F, F given by equations (A.57) and (A.58) vanish. Hence,
we are left with only discrete spectra which yields the multisoli-
ton solutions.
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