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Three wave resonant triad interactions in two space and one time dimensions form a

well-known system of first-order quadratically nonlinear evolution equations that arise
in many areas of physics. In deep water waves, they were first derived by Simmons
in 1969 and later shown to be exactly solvable by Ablowitz & Haberman in 1975.
Specifically, integrability was established by introducing a system of six wave interactions
whose symmetry reduction leads to the well-known three wave equations. Here, it is
shown that the six wave interaction and classical three wave equations satisfying triad
resonance conditions in finite-depth gravity waves can be derived from the non-local
integro-differential formulation of the free surface gravity wave equation with surface
tension. These quadratically nonlinear six wave interaction equations and their reductions
to the classical and non-local complex as well as real reverse space–time three wave
interaction equations are integrable. Limits to infinite and shallow water depth are also
discussed.

Key words: Hamiltonian theory

1. Introduction

Waves occur widely in real world phenomena. This includes waves in fluids, optics,
acoustics and elasticity among many others. Linear waves find many important
applications across various scientific disciplines. As such, their mathematical and physical
properties have been extensively investigated dating back to the pioneers of dynamics.
In comparison with their linear counterparts, nonlinear waves have been relatively less
studied and, in certain cases, even their underlying processes are not so well understood.

† Email address for correspondence: musslimani@math.fsu.edu
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However, much more is known about weakly interacting nonlinear waves for which
researchers often consider the dominant approximation to be a collection of Fourier modes.

In weakly nonlinear deep water waves, Stokes (1847) found a relationship between the
frequency and amplitude of the dominant Fourier mode. More than a hundred years later
Benjamin & Feir (1967) showed that this wave was unstable. Soon afterwards, by allowing
the envelope of the wave to vary slowly in space and time Zakharov (1968) (see also
Zakharov 1998) showed that the complex amplitude of the envelope satisfies a two space,
one time dimensional nonlinear Schrödinger (NLS) equation. Remarkably, the one space
and one time dimensional NLS equation was shown to be an integrable equation (Zakharov
& Shabat 1972). The integrability of the NLS equation followed after another well-known
one-dimensional equation, the Korteweg–de Vries (KdV) equation was found to be an
integrable system (Gardner et al. 1967); see also Ablowitz & Segur (1981), Novikov et al.

(1984) and Ablowitz (2011).
The KdV equation arises in the study of long gravity waves. Its two-dimensional

extension, the so-called Kadomtsev–Petviashvili equation (Kadomtsev & Petviashvili
1970) is also obtained for long waves and was also found to be integrable, see e.g. Ablowitz
& Clarkson (1991) and Ablowitz & Segur (1979).

When we consider the leading order to be a sum of harmonics (Fourier modes)
the theory of resonant wave interactions is fundamental. This is often termed resonant
interaction theory. Many key ideas were discovered by O.M. Phillips in the study of deep
water waves (Phillips 1960); see also Phillips (1966). Suppose we consider the elevation
of the water wave η to be approximated by a sum of M harmonics:

η(r, t) =

M
∑

j=1

Aj exp(i(kj · r − ωjt)) + c.c., (1.1)

where r is the two-dimensional transverse spatial coordinate, kj are the wavenumbers,
ωj = ω(kj) the corresponding wave frequencies and c.c. stands for complex conjugation.
Furthermore, the amplitudes Aj are assumed to vary slowly in space and time. In deep
water and when surface tension is neglected, the dispersion relation of a single Fourier
mode is given by

ω2 = gk, k = |k|. (1.2)

In this scenario, wave interactions become significant when M = 4 with the wavenumbers
kj and their corresponding frequencies ωj = ω(kj), j = 1, 2, 3, 4 satisfy the following
resonance criteria:

k1 ± k2 ± k3 ± k4 = 0,

ω1 ± ω2 ± ω3 ± ω4 = 0.

}

(1.3)

These relations are sometimes referred to as quartet resonance conditions. By allowing Aj

to vary slowly in time (only) and using multiple scale methods, Benney (1962) derived
nonlinear equations that governed the slow dynamics of quartet wave resonance. If ǫ

denotes the size of the nonlinearity (which is assumed to be asymptotically small; ǫ is
typically taken to be proportional to the (small) slope of the wave elevation) then these

equations are valid for time scales of the order of 1/ǫ2. Later, Benney & Newell (1967)
found the wave amplitude satisfies a more general four wave resonant interaction equations
in space and time that obey the resonance condition (1.3). Contrary to the deep water case
without surface tension (for which resonant interaction requires four waves), resonant three
modes interaction can, however, occur when surface tension is included. With surface
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Six wave interaction equations in finite-depth gravity waves

tension the infinite depth dispersion relation is given by

ω2 = gk + σk3, k = |k|, (1.4)

where σ denotes the ratio between the surface tension and fluid density. In this case, the
so-called triad resonances satisfy the wavenumber–frequency condition

k1 ± k2 ± k3 = 0,

ω1 ± ω2 ± ω3 = 0.

}

(1.5)

In 1964, Bretherton (1964) provided a model partial differential equation that had such
triad resonance. Bretherton also found and solved the equations for the underlying slowly
varying temporal amplitudes valid on a 1/ǫ time scale, an order of magnitude faster
than quartet resonances. Soon afterward McGoldrick (1965) showed that gravity waves
with surface tension exhibited such triad resonance phenomena. McGoldrick also found
the equations describing the slowly varying temporal equations that describe the wave
interactions on a 1/ǫ time scale. Subsequently experiments were carried out that further
elucidated the phenomena (McGoldrick 1970; Henderson & Hammack 1987; Perlin,
Henderson & Hammack 1990; Hammack & Henderson 1993).

In 1969, Simmons (1969) gave a geometric argument that explained why the triad
resonance occurs in deep gravity waves with surface tension and found the slowly varying
envelope equations in both space and time. To simplify the analysis, which was tedious,
Simmons derived a (2+1)-dimensional three wave system by employing a Lagrangian
approach which had been recently pioneered by Whitham (1974). We also remark that
the general form of the interaction equations in conservative systems was found by
Hasselmann (1967); later, a perturbation approach was formulated by Case & Chiu (1977).
A detailed discussion of the above and additional references can be found in Craik (1988),
(see also Dyachenko, Zakharov & Kuznetsov 1996; Dyachenko, Korotkevich & Zakharov
2003; Korotkevich, Dyachenko & Zakharov 2016). Notably, the three wave equations are
solvable by the inverse scattering transform in both one spatial dimension (Ablowitz &
Haberman 1975b; Zakharov & Manakov 1975; Kaup 1976) and in two spatial dimensions
(Ablowitz & Haberman 1975a; Kaup 1981).

In this paper, a six wave triad resonant interaction system corresponding to both
infinite and finite-depth gravity waves and in the presence of surface tension is obtained

from the so-called Ablowitz–Musslimani–Fokas non-local formulation of gravity waves
(Ablowitz, Fokas & Musslimani 2006) (which has the advantage of only depending on the
surface variables). Using a space–time multiscale asymptotic expansion, a hierarchy of
equations governing the evolution of the surface variable at each order in the perturbation
parameter ǫ is derived. The leading-order solution is expressed as a superposition of
six wavepackets corresponding to wavenumbers ±kj, frequencies ±ω(kj) and distinct
amplitudes Aj(k), Bj(k), j = 1, 2, 3, where in general Aj(k) /= B∗

j (k). The desired six

wave evolution equations governing the space–time slow dynamics of these amplitudes
are obtained from a secularity condition at order ǫ. Furthermore, using the integrable
symmetry relations between the amplitudes, we obtain an integrable system of three wave
interactions that include in it: (i) classical, (ii) non-local complex reverse space–time and

(iii) non-local real reverse space–time systems (Ablowitz & Musslimani 2017). These six

wave interaction equations reduce back to the well-known result in infinite depth.

The solutions of the non-local three wave systems have been recently investigated in one

spatial dimension (Ablowitz, Luo & Musslimani 2023). The six wave system corresponds
to complex reductions of gravity waves. Complex reductions of physical systems have
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been widely investigated; e.g. self-dual reductions of Yang–Mills and Einstein equations,
Kadomtsev–Petviashvili and Davey–Stewartson equations etc.; they exhibit interesting
and novel properties, see e.g. Ward (1977), Gibbons, Page & Pope (1990), Mason &
Woodhouse (1996) and Fokas (2006).

The complex nature of gravity waves is itself an active subject, see e.g. Dyachenko,
Lushnikov & Korotkevich (2016), Lushnikov (2016), Dyachenko et al. (2021) and
references therein. To the best of our knowledge, the classical three wave system in
finite depth has not been previously obtained. We also make some remarks about the
shallow-depth reduction of the six wave system which also appears to be a new classical

and non-local integrable system. As mentioned above, starting from the classical water

wave equations in finite depth, written in non-local form, we derive the well-known system

of (2+1)-dimensional first-order quadratically nonlinear six wave interaction equations
which was introduced and shown to be integrable by Ablowitz & Haberman (1975a). In
doing so, we connect the mathematical theory of integrable interaction equations and the
physics of classical fluids. Consider the following two-dimensional space–time system of

first-order quadratically nonlinear evolution equations:

∂Nlj

∂t
+ αlj

∂Nlj

∂x
+ βlj

∂Nlj

∂y
=

3
∑

m=1

(αlm − αmj)NlmNmj, l, j = 1, 2, 3, (1.6)

where N ≡ (Nlj), l, j = 1, 2, 3 is an 3 × 3 complex matrix whose elements are functions
of r = (x, y) and time t satisfying Njj = 0, j = 1, 2, 3. Furthermore, the constant matrices
(αlj) and (βlj) are assumed to be real and symmetric with αjj = βjj = 0. System (1.6)
arises from a compatibility condition between two linear pairs (see Ablowitz & Clarkson
(1991) for further details regarding their derivation and soliton solutions in both one and
two space dimensions). Thus, by construction, the matrix N has six complex components
which we denote by

N =

⎛

⎝

0 A3 A2

B3 0 B1

B2 A1 0

⎞

⎠ . (1.7)

Substituting (1.7) into (1.6) leads to the following six wave interaction equations:

(∂T + C1,x∂x + C1,y∂y)A1 − iσ1B2A3 = 0,

(∂T + C2,x∂x + C2,y∂y)A2 − iσ2B1A3 = 0,

(∂T + C3,x∂x + C3,y∂y)A3 − iσ3A1A2 = 0,

(∂T + C1,x∂x + C1,y∂y)B1 + iσ1A2B3 = 0,

(∂T + C2,x∂x + C2,y∂y)B2 + iσ2A1B3 = 0,

(∂T + C3,x∂x + C3,y∂y)B3 + iσ3B1B2 = 0,

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(1.8)

where we identify the constants Cj,x, Cj,y, σj, j = 1, 2, 3 with the coefficients αlj, βlj, l, j =
1, 2, 3 in (1.6). Therefore, the A, B system is equivalent to the sixth-order wave system

(1.6). This sixth-order wave system has reductions to the integrable classical three wave

equations (e.g. when Bj = A∗
j ),j = 1, 2, 3 and to the non-local complex and real three wave

systems (i.e. when Bj(x, t) = A∗
j (−x, −t), j = 1, 2, 3 or Bj(x, t) = Aj(−x, −t), j = 1, 2, 3,

respectively (Ablowitz & Musslimani 2017) (see also Ablowitz & Musslimani 2013, 2016,
2019).
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Six wave interaction equations in finite-depth gravity waves

In §§ 4–5 we establish that these non-local reductions are asymptotic limits of gravity

waves with surface tension in both infinite and finite depth, respectively. In this regard,
Cj,x, Cj,y, j = 1, 2, 3 correspond to the respective group velocities. In infinite depth
the well-known result of Simmons (1969) is obtained. The shallow-depth limit to our
knowledge also leads to a new system of equations even in the classical three wave
interaction case.

A summary of the new results is listed below:

(i) The derivation of six wave interaction equation in infinite depth starting from the
non-local formulation of classical gravity waves with surface tension (§ 4).

(ii) The derivation of six wave equation for finite and shallow-depth cases (§ 5).
(iii) The derivation of classical three wave interaction for finite depth. The shallow water

reduction follows as a special case (§ 5).

It is remarkable that the system (1.6) stands out as a ‘complete asymptotic reduction’
of the gravity wave equations with surface tension in both infinite and finite depth. By
complete asymptotic reduction we mean that in the limit when the asymptotic parameter ǫ

vanishes, the equations after transformation are exactly the integrable equations found in
1975 (Ablowitz & Haberman 1975a). These equations are given by (1.6) or more explicitly
system (1.8). The small parameter ǫ is associated with small wave elevation; see § 2 below.
This six wave system in one or two dimensions can be viewed as the multi wave analogue

of the NLS/Davey–Stewartson (DS) equations and the KdV/Kadomtsev–Petviashvili (KP)
equations. The NLS/DS/KdV/KP equations are also complete asymptotic reductions of
the gravity wave equations with surface tension. Other interacting wave systems such as
those interactions satisfying non-trivial quartet resonant interactions in gravity waves have
not been shown to be integrable.

2. Formulation

The free surface gravity wave equations with a flat bottom of depth h are given by

Euler ideal flow

∇2φ = 0, −h < z < η(r, t), (2.1)

where φ is the velocity potential.
No flow through bottom

∂φ

∂z
= 0, on z = −h. (2.2)

Bernoulli or pressure equation

∂φ

∂t
+

1

2
|∇φ|2 + gη = σ∇ ·

(

∇η
√

1 + |∇η|2

)

, on z = η(r, t). (2.3)

Nonlinear kinematic boundary condition

∂φ

∂z
=

∂η

∂t
+ ∇φ · ∇η, on z = η(r, t), (2.4)

where ∇ is the horizontal gradient operator. As mentioned earlier, σ is proportional to
surface tension. These four equations constitute the classical equations for gravity waves.
Here, the unknowns are as follows: φ(r, z, t) the velocity potential; η(r, t) the elevation,
r = (x, y) is the horizontal coordinate, z the vertical coordinate and t is time. This is a
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free-boundary problem for the unknowns φ(r, z, t) and η(r, t). In Ablowitz et al. (2006),
the above wave problem was reformulated as a system of two non-local differential integral
equations for two surface unknowns: η and q = q(r, t) = φ(r, η(r, t)). The equations are
given by the following system:

∫

R2
dre−ik · r

(

iηt cosh[k(η + h)] −
k · ∇q

k
sinh [k(η + h)]

)

= 0, (2.5)

qt +
1

2
|∇q|2 + gη −

(ηt + ∇q · ∇η)2

2(1 + |∇η|2)
= σ∇ ·

(

∇η
√

1 + |∇η|2

)

. (2.6)

It is assumed that the envelopes associated with the wave elevation η and derivatives of
the velocity potential q (i.e. ∇q, qt) decay rapidly to zero at infinity. Equation (2.6) is
Bernoulli’s equation on the free surface. Once q is obtained then we solve Laplace’s
equation (2.1) for φ(r, z, t). The non-local formulation is particularly useful for asymptotic

calculations. In the infinite-depth limit (h → ∞) (2.5) reduces to

∫

R2

dre−ik · r

(

iηt −
k

k
· ∇q

)

= 0. (2.7)

We consider the weakly nonlinear waves case for which it is convenient to let η →
ǫη, q → ǫq and assume |ǫ| to be small; we assume ǫ is proportional to the size of the
slope of the wave elevation. Doing so and expanding to order ǫ we find: (i) for finite depth

∫

R2

dre−ik · r

(

iηt(1 + ǫk tanh(kh)η) −
k

k
· ∇q(tanh(kh) + ǫkη)

)

= 0, (2.8)

and (ii) for infinite depth (h → ∞)

∫

R2

dre−ik · r

(

(iηt −
k

k
· ∇q)(1 + ǫkη) + · · ·

)

= 0. (2.9)

Note that these two equations differ only by simple factors. The free surface Bernoulli
equation (2.6) is unchanged regardless of finite or infinite depth; this equation to order ǫ

reads

qt = −gη + σ∇2η +
ǫ

2
(η2

t − |∇q|2). (2.10)

The linear dispersion relation for two-dimensional gravity waves with finite depth and
surface tension is

ω2 = (gk + σk3) tanh(kh), (2.11)

while for the infinite-depth case is given by (1.4). In Simmons (1969), Simmons showed

that triad resonance in the form given by (1.5) occurs in infinite-depth water waves. In
this paper, we show that such triad resonance also holds in finite depth as well as shallow
water.
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Six wave interaction equations in finite-depth gravity waves

3. Triad resonances in infinite, finite and shallow depth

The purpose of this section is to numerically establish the existence of a triad resonance
in the form

k3 = k1 + k2,

ω(k3) = ω(k1) + ω(k2),

}

(3.1)

with the gravity wave dispersion relation ω(k) given by

ω(k) =

√

(g|k| + σ |k|3) tanh(h|k|). (3.2)

Of particular interest are the cases corresponding to finite and shallow depth. We note
in infinite depth investigations, suitable parameter values of depth, surface tension and
density were used by Henderson and Hammack in their experimental studies of ripple
instabilities with resonant triads (Henderson & Hammack 1987). In our study below,
we consider only some parameter values in finite, shallow and infinite depth. It is
outside the scope of this paper to do an intensive numerical parameter analysis. Here,
the wavenumbers k are measured in units of cm−1; water depth h in cm; frequency

(dispersion) ω in s−1; surface tension coefficient σ ≡ surface tension /density in cm3 s−2;

and gravity g = 980 cm s−2. We identify three regimes: (i) shallow-depth case that

corresponds to small kh; (ii) finite depth that occur for moderate values of kh and
(iii) infinite depth valid for large kh. To this end, let us consider the auxiliary function
Ω defined as

Ω(k1, k2) ≡ ω(k1) + ω(k2) − ω(k1 + k2). (3.3)

Thus, the zero level set of the function Ω corresponds to a resonant triad. We numerically
solve the equation Ω(k1, k2) = 0 to identify all resonant points in the wavenumber space.
In doing so, we use the following set of parameters to produce all figures.

(i) One-dimensional case: illustrations.

(a) Shallow depth: surface tension = 81 dyn cm−1; density = 1 gram cm−3; water
depth h = 0.5 cm. This leads to surface tension coefficient σ ≡ surface tension/
density equals to 81 cm3 s−2. Typical values for the wavenumbers are k1 ≈

0.3 cm−1; k2 ≈ 0.3 cm−1 (marked as a full circle in figure 1a) and k3 = k1 +
k2 ≈ 0.6 cm−1. With these values at hand, we find k1h ≈ 0.15; k2h ≈ 0.15 and
k3h ≈ 0.3 which represent a shallow-depth limit.

(b) Finite depth: surface tension = 81 dyn cm−1; density = 1 gram cm−3; water

depth h = 0.6 cm. This results in σ = 81 cm3 s−2. In this case, we choose
the following set of wavenumbers: k1 ≈ 1.5 cm−1; k2 ≈ 2 cm−1 (indicated

by a full circle in figure 1b) and k3 = k1 + k2 ≈ 2.5 cm−1. Thus, we have
k1h ≈ 0.9; k2h ≈ 1.2 and k3h ≈ 1.5 which is a finite-depth regime.

(c) Infinite depth: surface tension = 73 dyn cm−1; density = 1 gram cm−3; water
depth h = 2 cm and σ = 73 cm−3 s−2. Here, prototypical values for the
wavenumbers are as follows: k1 ≈ 2.5 cm−1; k2 ≈ 2.6 cm−1 (shown by a full

circle in figure 1c) and k3 = k1 + k2 ≈ 5.1 cm−1. In this case we find, k1h ≈
5; k2h ≈ 5.2 and k3h ≈ 10.2 which fall into the limit of an infinite depth.

(ii) Two-dimensional case: illustrations.

(a) Shallow depth: surface tension = 73 dyn cm−1; density = 1 gram cm−3; water
depth h = 0.35 cm and surface tension coefficient σ equals to 73 cm3 s−2.
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Typical values for the wavenumbers are k1 = |k1| ≈ 1 cm−1; k2 = |k2| ≈

0.54 cm−1 (marked as a full circle in figure 2a) and k3 = |k1 + k2| ≈
1.54 cm−1. With these values at hand, we find k1h ≈ 0.35; k2h ≈ 0.19 and
k3h ≈ 0.5 which represent a shallow water limit.

(b) Finite depth: surface tension = 73 dyn cm−1; density = 1 gram/cm3; water

depth h = 0.6 cm and σ = 73 cm3 s−2. Some prototypical values of
wavenumbers are as follows: k1 = |k1| ≈ 2.1 cm−1; k2 = |k2| ≈ 1.9 cm−1

(marked as a full circle in figure 2b) and k3 = |k1 + k2| ≈ 4 cm−1. With these
values at hand, we find k1h ≈ 1.3; k2h ≈ 1.1 and k3h ≈ 2.4 which falls into the
finite-depth fluid regime.

(c) Infinite depth: surface tension = 73 dyn cm−1; density = 1 gram/cm3; water
depth h = 2 cm and σ = 73 cm3 s−2. Example values of wavenumbers are as

follows: k1 = |k1| ≈ 2.8 cm−1; k2 = |k2| ≈ 2.3 cm−1 (marked as a full circle
in figure 2c) and k3 = |k1 + k2| ≈ 5 cm−1. With these values at hand, we find
k1h ≈ 5.6; k2h ≈ 4.6 and k3h ≈ 10 which falls into the infinite-depth case.

First, we will discuss typical values in the one-dimensional case. Figure 1 shows the
existence of a numerical resonant triad for various values of depth: (a) shallow depth
h = 0.5 cm with σ = 81 cm3 s−2, (b) finite depth h = 0.6 cm, with σ = 81 cm3 s−2 and

(c) deep depth with h = 2 cm and σ = 73 cm3 s−2. For convenience, we show in
figure 1(d) a plot of the tanh function that helps identify various water depth limits. For
completeness, in figure 2 we also show two more cases corresponding to shallow and
finite-depth water limits with surface tension σ = 73 cm3 s−2.

Next, we discuss the two-dimensional case. Here, in all cases we take the surface tension
coefficient to be σ = 73 cm3 s−2. Figure 3 illustrates numerical resonant triad for various
values of depth: (a) shallow depth h = 0.35 cm, (b) finite depth h = 0.6 cm and (c) deep
case with h = 2 cm. To help identify each limiting case we show in figure 2(d) a graph of
the tanh as a function of the dimensionless parameter kh.

Gravity waves in fluids with different surface tension than pure water are included in our
formulation. High surface tension fluids such as mercury in finite depth have been used
in experiments to exhibit remarkable surface wave fluid phenomena. In Falcon, Laroche
& Fauve (2002), solitary waves on an air interface with mercury in shallow depth exhibit
solitary waves of depression as opposed to solitary waves of elevation.

4. Six wave interaction in infinite depth

In this section we outline the derivation of the six wave equations in infinite depth starting
from the non-local formulation of gravity waves as given by (2.9) and (2.10) up to order ǫ.

It is convenient to take the gradient of (2.10) and to define ∇q ≡ Q = (Q1, Q2). With this
definition, we find the following equations to order ǫ:

∫

R2

dre−ik · r(1 + ǫkη)

(

iηt −
k · Q

k

)

= 0, (4.1)

Qt + g∇η +
ǫ

2
∇

(

|Q|2 − η2
t

)

= σ∇2
∇η. (4.2)

We can eliminate the Q variable from (4.1) by taking the time derivative of (4.1) and then
substituting the expression for Qt from (4.2) back into the resulting system. This yields (to
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Six wave interaction equations in finite-depth gravity waves
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Figure 1. One-dimensional resonant triad curves satisfying the wavenumber–frequency resonance condition

k3 = k1 + k2 and ω3 = ω1 + ω2. All wavenumbers are measured in units of cm−1 and depth h in cm. The

numerical values for the depth h and surface tension used to produce the figure are respectively given by

(a) h = 0.5 cm; σ = 81 cm3 s−2, (b) h = 0.6 cm; σ = 81 cm3 s−2 and (c) h = 2 cm; σ = 73 cm3 s−2. Shown

in (d) is the graph of the tanh function for various values of depth. The full circles indicate typical wavenumber

values leading to (a) shallow-depth limit with k1h ≈ 0.15; k2h ≈ 0.15 and k3h ≈ 0.3; (b) finite depth with

k1h ≈ 0.9; k2h ≈ 1.2 and k3h ≈ 1.5; and (d) infinite-depth limit when k1h ≈ 5; k2h ≈ 5.2 and k3h ≈ 10.2.

first order in ǫ)

∫

R2
dre−ik · r

{

iηtt +
k

k
· (g∇η − σ∇2

∇η)

+ ǫ

(

k

2k
· ∇(|Q|2 − η2

t ) + ik(ηηt)t − (k · Qη)t

)}

= 0. (4.3)

Here, we will use a space–time multiple scale perturbation procedure to find the six wave
interaction equations. Before doing so, it is important to mention that most applications
of multiple scale asymptotic expansion is done within the framework of ordinary or
partial differential equations. This is in sharp contrast to our case where now multiple
scale method is being applied on system of equations of an integral type which further
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Figure 2. One-dimensional resonant triad curves satisfying the wavenumber–frequency resonance condition

k3 = k1 + k2 and ω3 = ω1 + ω2. All wavenumbers are measured in units of cm−1 and depth h in cm. The

numerical values for the depth h and surface tension used to produce the figure are respectively given by

(a) h = 0.475 cm; σ = 73 cm3 s−2, (b) h = 0.52 cm; σ = 73 cm3 s−2. The full circles indicate typical

wavenumber values leading to (a) shallow-depth limit with k1h ≈ 0.152; k2h ≈ 0.175 and k3h ≈ 0.33; (b) finite

depth with k1h ≈ 0.75; k2h ≈ 0.75 and k3h ≈ 1.5.

complicates the process of scale separation. As such, a new approach should be adapted.
In fact, similar situation has been previously encountered by Ablowitz & Haut Terry
(2009) in their study of two fluid layers. To this end, we introduce a slow space–time
scales R = ǫr, T = ǫt and assume that the wave elevation and velocity potential to depend
on both the fast and slow variables, i.e. η = η(r, t, R, T; ǫ) and Q = Q(r, t, R, T; ǫ).
Substituting the asymptotic expansion η = η(0) + ǫη(1) + · · · , Q = Q(0) + ǫQ(1) + · · ·
and the transformation ∇ → ∇r + ǫ∇R; ∂t → ∂t + ǫ∂T into (4.3) leads to a hierarchy
of equations at each order in ǫ. For example, the ‘leading’-order equation (that has no

apparent order-ǫ terms in it) takes the form

Lk[η(0)] ≡

∫

R2

dre−ik · r

[

iη
(0)
tt +

k

k
·

(

g∇rη
(0) − σ∇

2
r ∇rη

(0)
)

]

= 0. (4.4)

For the type of wave elevation η(0) considered in this paper (such as those that have
a slowly varying amplitude and a carrier wave which are of the form given by (1.1)),
this ‘leading’-order contributions, i.e. (4.4), could include in it ‘hidden’ higher-order
contributions in powers of ǫ. This is the case due to the presence of an integral in (4.4) and,
hence, lack of full separation of scales. This can be clearly seen by examining a typical
term in the hierarchy that looks like

I ≡

∫

R2

dr′e−ik · r′

G(k)f (R′, T) exp(is(k0 · r′ − ω0t)), (4.5)

where k0, ω0 belongs to the set of resonant wavenumbers and frequencies; R′ ≡ ǫr′ and
s = ±1. Multiplying (4.5) by exp(ik · r) and integrating over the k variable gives

Ĩ = e−isω0t

∫

R2

∫

R2

dr′ dkeik · rG(k)f (R′, T) exp(−i(k − sk0) · r′). (4.6)
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Six wave interaction equations in finite-depth gravity waves
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Figure 3. Two-dimensional resonant triad curves satisfying the wavenumber–frequency resonance condition

k3 = k1 + k2 and ω3 = ω1 + ω2. All wavenumbers are measured in units of cm−1 and depth in cm. In all

cases, the surface tension coefficient is taken to be σ = 73 cm3 s−2. The wavenumbers and depth are as follows:

(a) k1x = k1y = 0.7 cm−1 and depth h = 0.35 cm, (b) k1x = k1y = 1.5 cm−1 and depth h = 0.6 cm, (c) k1x =

k1y = 2 cm−1 and depth h = 2 cm. Furthermore, we show in (d) the graph of tanh function for various values

of depth h that help identify the three limiting regimes of shallow, finite and deep depth. As is the case with

figure 1, here, full circles indicate typical wavenumber values leading to (a) shallow-depth limit with k1h ≈
0.35; k2h ≈ 0.19 and k3h ≈ 0.5; (b) finite depth with k1h ≈ 1.3; k2h ≈ 1.1 and k3h ≈ 2.4 and (d) infinite-depth

limit when k1h ≈ 5.6; k2h ≈ 4.6 and k3h ≈ 10.

Next, introduce the change of variables: k − sk0 ≡ ǫK and R ≡ ǫr. With this, (4.6)
becomes

Ĩ = exp(is(k0 · r − ω0t))

∫

R2

∫

R2
dR′ dKeiK ·RG(sk0 + ǫK)f (R′, T)e−iK ·R′

= exp(is(k0 · r − ω0t))

∫

R2

dKG(sk0 + ǫK)f̂ (K , T)eiK ·R. (4.7)

In the above, f̂ denotes the two-dimensional Fourier transform of f defined by

f̂ (k) = F[ f ] ≡

∫

R2

dre−ik · rf (r). (4.8)
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M.J. Ablowitz, X.-D. Luo and Z.H. Musslimani

Finally, replacing G(sk0 + ǫK) in (4.7) by its first-order approximation G(sk0) +
ǫK · ∇kG(sk0) and K f (r) by −i∇Rf we find

Ĩ = 2π exp(is(k0 · r − ω0t))
(

G(sk0) f (R, T) − iǫ∇kG(sk0) · ∇Rf + O(ǫ2)

)

. (4.9)

The consequences of (4.9) are twofold: (i) it allows one to identify any ‘hidden’
contributions in powers of ǫ that otherwise are absent and (ii) it provides a mechanism
to get rid of the integral that appears in (4.5) by replacing it with its equivalent differential
form. The latter is vital in deriving the six wave interaction system.

The three resonant wave ansatze for the wave elevation considered throughout this paper
is given by

η(0)(r, t; R, T) =

3
∑

j=1

(

Aj(R, T)e−iθj + Bj(R, T)eiθj

)

, (4.10)

where θj ≡ kj · r − ωjt, ωj = ω(kj), kj = |kj|. Then

Lk[G(k)η(0)] = 0. (4.11)

Furthermore, for the ansatz given in (4.10) we find G(k) = i[−ω2
j + sk · kj(g +

σ |kj|
2)/k], s = ±1 and k = |k|. Note that ∇kG(skj) = 0 hence, no higher order in powers

of ǫ are present in (4.4). Furthermore, G(skj) = 0 whenever, the frequency ω satisfies the
infinite-depth water wave dispersion given in (1.4). The leading-order solution for Q is
obtained from linearizing (4.2). This yields

Q(0)(r, t, R, T) =

3
∑

j=1

ωjkj

kj

(

Aj(R, T)e−iθj + Bj(R, T)eiθj

)

. (4.12)

Next, we analyse the order-ǫ equation given by

−Lk[η(1)] =

∫

R2

dre−ik · r

[

2iη
(0)
tT +

k

k
·

(

g∇Rη(0) − σ∇
2
r ∇Rη(0)

− 2σ(∇r · ∇R)∇rη
(0)

)]

+

∫

R2

dre−ik · r

(

k

2k
· ∇r(|Q

(0)|2 − (η
(0)
t )2) + ik

(

η
(0)
t η(0)

)

t

− k ·

(

Q(0)η(0)
)

t

)

. (4.13)

Substituting (4.10) and (4.12) gives rise to a linear non-homogeneous equation that

exhibits secular terms proportional to exp(isθj) with wavenumbers kj and corresponding

frequencies ωj = ω(kj), j = 1, 2, 3 satisfying the resonance triad condition (3.1). In terms

961 A3-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

12
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss



Six wave interaction equations in finite-depth gravity waves

of the phases θj the resonance relation takes the alternative form

θ3 = θ1 + θ2. (4.14)

The conditions that guarantee removal of such terms leads to the following six wave
interaction equations (valid for infinite water depth):

2vI
p1

(

∂T + C I
1 · ∇R

)

A1 − iγ IB2A3 = 0, (4.15)

2vI
p2

(

∂T + C I
2 · ∇R

)

A2 − iγ IB1A3 = 0, (4.16)

2vI
p3

(

∂T + C I
3 · ∇R

)

A3 − iγ IA1A2 = 0, (4.17)

2vI
p1

(

∂T + C I
1 · ∇R

)

B1 + iγ IB3A2 = 0, (4.18)

2vI
p2

(

∂T + C I
2 · ∇R

)

B2 + iγ IB3A1 = 0, (4.19)

2vI
p3

(

∂T + C I
3 · ∇R

)

B3 + iγ IB1B2 = 0, (4.20)

where C I
j ≡ ∇kω(kj) and vI

pj
≡ ω(kj)/kj are the group and phase velocities, respectively;

γ I denotes the nonlinear coefficient corresponding to the infinite-depth case (see the

Appendix)

γ I = ω1ω2e1 · e2 + ω1ω3e1 · e3 + ω2ω3e2 · e3 + ω1ω2 − ω1ω3 − ω2ω3, ej ≡ kj/kj.

(4.21)

For the one-dimensional case for which e1 · e2 = 1, e1 · e3 = 1 and e2 · e3 = 1 we find
γ I = 2ω1ω2 When Bj = A∗

j the resulting equations agree with those given by Simmons

(1969).

5. Six wave interaction in finite depth

In this section we turn our attention to the study of the six wave resonant interaction system
corresponding to the finite-depth wave limit. The mathematical derivation closely follows
the infinite-depth case with the exception that the model coefficients are now dependent on
the depth h. We begin by taking the time derivative of the non-local (2.8) for finite depth
that contains in it the O(1) and O(ǫ) terms. This yields (recall that Q ≡ ∇q)
∫

R2
dre−ik · r

{

iηtt −
tanh(kh)

k
k · Qt + ǫ

[

ik tanh(kh)(ηηt)t − (k · Qη)t

]

}

+ O(ǫ2) = 0.

(5.1)

We substitute the free surface Bernoulli equation (4.2) for Qt (which is valid for the

finite-depth case as well) back into (5.1) to find
∫

R2

dre−ik · r

{

iηtt +
tanh(kh)

k
k · (g∇η − σ∇2

∇η)

+ ǫ

(

tanh(kh)

2k
k · ∇(|Q|2 − η2

t ) + ik tanh(kh)(ηηt)t − (k · Qη)t

)}

= 0. (5.2)

Next, we employ a space–time multiple scale perturbative expansion to isolate the
‘leading’ and order-ǫ equations for the wave amplitude and velocity potential. In this
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M.J. Ablowitz, X.-D. Luo and Z.H. Musslimani

regard, the integral-to-differential formulation presented in (4.5)–(4.9) is used to identify
any ‘hidden’ order-ǫ contributions that could be embedded in the ‘leading’-order equation.

With this at hand, the ‘leading’-order equation reads

Lh
k[η(0)] ≡

∫

R2

dre−ik · r

[

iη
(0)
tt +

tanh(kh)

k
k ·

(

g∇rη
(0) − σ∇

2
r ∇rη

(0)
)

]

= 0. (5.3)

The three wave form (4.10) would transform (5.3) into the integral representation
given by (4.5) with G(k) = i[−ω2

j + s tanh(kh)(g + σk2
j )k · kj/k], s = ±1 and k = |k|.

Additionally, we find

∇kG(skj) = i(gkj + σk3
j )∇k tanh(kh)|k=skj

/= 0. (5.4)

There are two important implications emanating from (5.4) especially in conjunction
with (4.9). The first is concerned with the identification of the genuine leading-order
contribution that takes the form G(skj) = 0. The latter is always satisfied so long the
frequency ωj follows the finite-depth wave dispersion relation (2.11). The associated
eigenfunction (wave elevation) remains unchanged while the velocity potential assumes
the new form

Q(0)(r, t, R, T) =

3
∑

j=1

ωjkj

kj tanh(kjh)

(

Aj(R, T)e−iθj + Bj(R, T)eiθj

)

. (5.5)

Secondly, as a consequence of (5.4) the order-ǫ equation for η(1) now acquires a new term

which is proportional to ∇kG(skj)

−Lh
k[η(1)] =

∫

R2

dre−ik · r

[

2iη
(0)
tT +

tanh(kh)

k
k ·

(

g∇Rη(0) − σ∇
2
r ∇Rη(0)

− 2σ(∇r · ∇R)∇rη
(0)

)

− i∇kG · ∇Rη(0) +
tanh(kh)

2k
k · ∇r

(

|Q(0)|2 − (η
(0)
t )2

)

+ ik tanh(kh)
(

η
(0)
t η(0)

)

t
− k ·

(

Q(0)η(0)
)

t

]

. (5.6)

Substituting (4.10) and (5.5) into (4.13) gives rise to a non-homogeneous integral equation
whose solvability condition (boundedness of the associated eigenfunctions) determines
the six wave interactions equations. They are given by

2vF
1

(

∂T + CF
1 · ∇R

)

A1 − iγ FB2A3 = 0, (5.7)

2vF
2

(

∂T + CF
2 · ∇R

)

A2 − iγ FB1A3 = 0, (5.8)

2vF
3

(

∂T + CF
3 · ∇R

)

A3 − iγ FA1A2 = 0, (5.9)

2vF
1

(

∂T + CF
1 · ∇R

)

B1 + iγ FB3A2 = 0, (5.10)

2vF
2

(

∂T + CF
2 · ∇R

)

B2 + iγ FB3A1 = 0, (5.11)

2vF
3

(

∂T + CF
3 · ∇R

)

B3 + iγ FB1B2 = 0, (5.12)
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Six wave interaction equations in finite-depth gravity waves

where CF
j = ∇kω(k = kj) is the group velocity; vF

j ≡ ω(kj)/[kj tanh(kjh)] and γ F is the

nonlinear coupling coefficient respectively given by

CF
j =

(g + 3σk2
j ) tanh(kjh)kj

2kjωj

+
h(g + σk2

j )sech2(kjh)kj

2ωj

, (5.13)

γ F =
ω1ω2e1 · e2

tanh(k1h) tanh(k2h)
+

ω1ω3e1 · e3

tanh(k1h) tanh(k3h)
+

ω2ω3e2 · e3

tanh(k2h) tanh(k3h)

+ω1ω2 − ω1ω3 − ω2ω3. (5.14)

The above equations are equivalent to the six wave equations (1.8) by taking σj =

γ F/(2νF
j ), j = 1, 2, 3. We next discuss various important limiting cases such as the infinite

and shallow depth.

Infinite depth
This amounts to taking the h → ∞ in (5.14) recovering the result given in (4.21).

Shallow-depth limit
This is an interesting and important case that also apparently has not been studied in the
literature. This amount to ‘small’ depth h such that tanh(kjh) ≈ hkj. In this limit the six
wave interaction shallow-depth equations are given by

2ω1

k2
1h

(

∂T + CS
1 · ∇R

)

A1 − iγ SB2A3 = 0, (5.15)

2ω2

k2
2h

(

∂T + CS
2 · ∇R

)

A2 − iγ SB1A3 = 0, (5.16)

2ω3

k2
3h

(

∂T + CS
3 · ∇R

)

A3 − iγ SA1A2 = 0, (5.17)

2ω1

k2
1h

(

∂T + CS
1 · ∇R

)

B1 + iγ SB3A2 = 0, (5.18)

2ω2

k2
2h

(

∂T + CS
2 · ∇R

)

B2 + iγ SB3A1 = 0, (5.19)

2ω3

k2
3h

(

∂T + CS
3 · ∇R

)

B3 + iγ SB1B2 = 0, (5.20)

where, as h → 0, the dispersion relation is given by

ω2 = (gk2 + σk4)h. (5.21)

With this at hand, the group velocity and nonlinear coefficient are given by

CS
j =

h(g + 2σk2
j )kj

ωj

, (5.22)

and

γ S =
ω1ω2e1 · e2

(k1h)(k2h)
+

ω1ω3e1 · e3

(k1h)(k3h)
+

ω2ω3e2 · e3

(k2h)(k3h)

+ ω1ω2 − ω1ω3 − ω2ω3. (5.23)
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M.J. Ablowitz, X.-D. Luo and Z.H. Musslimani

Equations (5.15)–(5.20) comprise the shallow-depth six wave interaction equations. While
written in this form they have the depth h in them, they can be rescaled to eliminate this
dependence.

6. Conclusion

Multi wave parametric resonant interactions are ubiquitous in nonlinear sciences. They
occur in a wide range of physical settings beyond gravity waves; e.g. optics, plasma physics
and other areas of fluid mechanics to name a few. Generally speaking, they form when
two or more waves with wavenumbers kj and corresponding frequencies ωj ‘add up’ to

generate a new wave form with wavenumber kn and frequency ωn that satisfy the resonant
condition: ωn =

∑

j ωj and kn =
∑

j kj. We also remark that such parametric processes

find application in nonlinear optics where second and third harmonic generations are used
for frequency conversion (Buryak et al. 2002). In fluid mechanics on the other hand, they
are sometimes utilized to explain formation of rogue waves (Yang & Yang 2022, 2021).

Of particular interest are the three wave resonant triad interactions which occur on an
order 1/ǫ time scale where ǫ is a measure of nonlinearity. Mathematically speaking, they
form a coupled system of three first-order quadratically nonlinear evolution equations in
two space one time dimension. As mentioned in the introduction, they were first derived by
Simmons (1969) in the context of deep-depth waves. Later, they were shown to be exactly
solvable in 1975 by Ablowitz & Haberman (1975a) using inverse scattering transform
methods. Importantly, their integrability was established by introducing a system of six

wave interactions whose integrable symmetry reduction leads to the same three wave
equations as Simmons found.

In this paper we show that the six wave interaction system found by Ablowitz &
Haberman, in the context of integrability theory, can be derived from the equations
of classical gravity waves. Rather than employing the depth-dependent equations of
water waves ((2.1)–(2.4)) we use the Ablowitz–Fokas–Musslimani (Ablowitz et al.

2006) (2+1)-dimensional non-local reformulation and solve for the free surface variables
of gravity waves; see ((2.5)–(2.6)). This has the advantage of reducing some of the
tedious algebra. From this this formulation the six wave interaction equations satisfying
triad resonance conditions are obtained in both finite and infinite-depth cases. The

shallow-depth limit is also considered. The derivation has several steps: (i) introduce a
small amplitude wave elevation and velocity potential via a small parameter 0 < ǫ ≪ 1
and recast the non-local equations in terms of the new variables. (ii) Expand the resulting
system and keep terms up to order ǫ. (iii) Implement a space–time multiple scale
perturbation expansion. Since the equations are non-local one must carefully consider how

to apply multiscale methods. Equations ((4.5)–(4.9)) are used here to transform non-local
equations to differential equations and hence achieve full scale separation. (iv) Make a
three wave ansatz for the wave amplitude and velocity potential. (v) Remove all secular
terms at the order-ǫ equation and obtain the desired system of six waves equations. As
a closing remark, we point out that the six wave system admits a generalized integrable
non-local symmetry reductions in the form r(x, t) = σq(x0 − x, t0 − t) with arbitrary real
parameters x0, t0 (Ablowitz & Musslimani 2021). This in turn leads to a new system of
interacting shifted three wave system whose study is left for a future work.

Funding. This work was partially supported by NSF under grant DMS-2005343 and NSFC under grant

number 12101590.
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Appendix A

Here, we provide a detailed account of the derivation of the six wave equations for
infinite depth in particular deriving the linear and nonlinear coefficients that appear in
(4.15)–(4.20). To start with, note that the right-hand side of (4.13) has two contributing
factors: (i) linear and (ii) nonlinear. Substituting (4.10) into (4.13) and using the
integral-differential identity discussed in (4.5)–(4.9) (that allows one to transform the
integral to differential form) we find

linear terms ≡ 2iη
(0)
tT +

k

k
· (g∇Rη(0) − σ∇

2
r ∇Rη(0) − 2σ(∇r · ∇R)∇rη

(0))

=

3
∑

j=1

(

−2ωj

∂Aj

∂T
e−iθj + 2ωj

∂Bj

∂T
eiθj

)

−

3
∑

j=1

kj

kj

· (g∇RAj + σk2
j ∇RAj + 2σkj(kj · ∇R)Aj)e

−iθj

+

3
∑

j=1

kj

kj

· (g∇RBj + σk2
j ∇RBj + 2σkj(kj · ∇R)Bj)e

iθj

= −

3
∑

j=1

[

2ωj

∂Aj

∂T
+

(g + 3σk2
j )

kj

kj · ∇RAj

]

e−iθj

+

3
∑

j=1

[

2ωj

∂Bj

∂T
+

(g + 3σk2
j )

kj

kj · ∇RBj

]

eiθj

= −

3
∑

j=1

2ωj

[

∂Aj

∂T
+∇kωj · ∇RAj

]

e−iθj +

3
∑

j=1

2ωj

[

∂Bj

∂T
+ ∇kωj · ∇RBj

]

ei.θj

(A1)

Next, we turn our attention to the nonlinear terms which we write as R1 + R2 with (here
Q = (Q1, Q2))

R1 =
kx

k
[Q1Q1x + Q2Q2x − ηtηtx] +

ky

k
[Q1Q1y + Q2Q2y − ηtηty], (A2)

R2 = ikF [(ηηt)t] − kxF [(Q1η)t] − kyF [(Q2η)t] . (A3)

Substituting the expressions for the wave elevation η(0) and velocity potential Q(0) into
(A2) we obtain

R1 = −i

3
∑

j,ℓ=1

(

ωjωℓ(kj · kℓ)(k · kℓ)

kkjkℓ

+
ωℓωj

k
(k · kℓ)

)

AjAℓe−i(θℓ+θj)
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M.J. Ablowitz, X.-D. Luo and Z.H. Musslimani

+ i

3
∑

j,ℓ=1

(

ωjωℓ(kj · kℓ)(k · kℓ)

kkjkℓ

+
ωℓωj

k
(k · kℓ)

)

BjBℓei(θj+θℓ)

− i

3
∑

j,ℓ=1

(

ωjωℓ(kj · kℓ)(k · kℓ)

kkjkℓ

−
ωℓωj

k
(k · kℓ)

)

BjAℓei(θj−θℓ)

+ i

3
∑

j,ℓ=1

(

ωjωℓ(kj · kℓ)(k · kℓ)

kkjkℓ

−
ωℓωj

k
(k · kℓ)

)

AjBℓe−i(θj−θℓ). (A4)

Next, we compute the quantity R2. We find

R2 = −i

3
∑

j,ℓ=1

(ωj + ωℓ)

(

kωℓ +
ωjk · kj

kj

)

AjAℓe−i(θℓ+θj)

− i

3
∑

j,ℓ=1

(ωj + ωℓ)

(

kωℓ −
ωjk · kj

kj

)

BjBℓei(θℓ+θj)

+ i

3
∑

j,ℓ=1

(ωj − ωℓ)

(

kωℓ +
ωjk · kj

kj

)

BjAℓei(θj−θℓ)

+ i

3
∑

j,ℓ=1

(ωj − ωℓ)

(

kωℓ −
ωjk · kj

kj

)

AjBℓe−i(θj−θℓ). (A5)

Thus, we have

R1 + R2 =

− i

3
∑

j,ℓ=1

ωjωℓ

[

(kj · kℓ)(k · kℓ)

kkjkℓ

+
k · kℓ

k
+

(ωj + ωℓ)

ωjωℓ

(

kωℓ +
ωjk · kj

kj

)]

AjAℓe−i(θj+θℓ)

(A6)

+ i

3
∑

j,ℓ=1

ωjωℓ

(

(kj · kℓ)(k · kℓ)

kkjkℓ

+
k · kℓ

k
−

(ωj + ωℓ)

ωjωℓ

(

kωℓ −
ωjk · kj

kj

))

BjBℓei(θj+θℓ)

(A7)

− i

3
∑

j,ℓ=1

ωjωℓ

(

(kj · kℓ)(k · kℓ)

kkjkℓ

−
k · kℓ

k
−

(ωj − ωℓ)

ωjωℓ

(

kωℓ +
ωjk · kj

kj

))

BjAℓei(θj−θℓ)

(A8)

+ i

3
∑

j,ℓ=1

ωjωℓ

(

(kj · kℓ)(k · kℓ)

kkjkℓ

−
k · kℓ

k
+

(ωj − ωℓ)

ωjωℓ

(

kωℓ −
ωjk · kj

kj

))

AjBℓe−i(θj−θℓ)

(A9)
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Six wave interaction equations in finite-depth gravity waves

In what follows, we explicitly compute the nonlinear coefficients that lead to resonant
three wave triad, i.e. those that satisfy θ1 + θ2 = θ3. The imaginary number i is already
accounted for in the six waves (5.7)–(5.12).

Coefficient of e−iθ1 .

Here, we have contribution from resonant terms with j = 2, ℓ = 3 (coming from (A8)) as
well as resonant terms from (A9) with j = 3, ℓ = 2 and k = −k1. Thus

γ I
1 =

ω2ω3(k2 · k3)(k1 · k3)

k1k2k3
−

ω2ω3

k1
(k1 · k3) + (ω2 − ω3)

(

k1ω3 −
ω2k1 · k2

k2

)

−
ω3ω2(k3 · k2)(k1 · k2)

k1k3k2
+

ω3ω2

k1
(k1 · k2) − (ω3 − ω2)

(

−k1ω2 −
ω3k1 · k3

k3

)

= k1 (ω1ω2e1 · e2 + ω1ω3e1 · e3 + ω2ω3e2 · e3 + ω1ω2 − ω1ω3 − ω2ω3) . (A10)

Coefficient of e−iθ2 .

Here, we have contribution from resonant terms with j = 1, ℓ = 3 (from (A8)) and
contribution from resonant terms with j = 3, ℓ = 1 (from (A9)) with k = −k2. Thus,

γ I
2 =

ω1ω3(k1 · k3)(k2 · k3)

k2k1k3
−

ω1ω3

k2
(k2 · k3) + (ω1 − ω3)

(

k2ω3 −
ω1k2 · k1

k1

)

−
ω3ω1(k3 · k1)(k2 · k1)

k2k3k1
+

ω3ω1

k2
(k2 · k1) − (ω3 − ω1)

(

−k2ω1 −
ω3k2 · k3

k3

)

= k2 (ω1ω2e1 · e2 + ω1ω3e1 · e3 + ω2ω3e2 · e3 + ω1ω2 − ω1ω3 − ω2ω3) . (A11)

Coefficient of e−iθ3 .

Here, we have contribution from resonant terms with j = 1, ℓ = 2 and j = 2, ℓ = 1 (from
(A6)) with k = −k3. This gives

γ3 = −

(

−
ω1ω2(k1 · k2)(k3 · k2)

k3k1k2
−

ω1ω2

k3
(k3 · k2) + (ω1 + ω2)

(

k3ω2 −
ω1k3 · k1

k1

))

−

(

−
ω2ω1(k2 · k1)(k3 · k1)

k3k2k1
−

ω2ω1

k3
(k3 · k1) + (ω2 + ω1)

(

k3ω1 −
ω2k3 · k2

k2

))

= k3 (ω1ω2e1 · e2 + ω1ω3e1 · e3 + ω2ω3e2 · e3 + ω1ω2 − ω1ω3 − ω2ω3) . (A12)

Coefficient of eiθ1 .

Here, we have contribution from resonant terms with j = 3, ℓ = 2 (from (A8)) and
contribution from resonant terms with j = 2, ℓ = 3 (from (A9)) with k = k1. Thus

γ1 = −
ω3ω2(k3 · k2)(k1 · k2)

k1k3k2
+

ω3ω2

k1
(k1 · k2) + (ω3 − ω2)

(

k1ω2 +
ω3k1 · k3

k3

)

+
ω2ω3(k2 · k3)(k1 · k3)

k1k2k3
−

ω2ω3

k1
(k1 · k3) − (ω2 − ω3)

(

−k1ω3 +
ω2k1 · k2

k2

)

= k1 (ω1ω2e1 · e2 + ω1ω3e1 · e3 + ω2ω3e2 · e3 + ω1ω2 − ω1ω3 − ω2ω3) . (A13)
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M.J. Ablowitz, X.-D. Luo and Z.H. Musslimani

Coefficient of eiθ2 .

Here, we have contribution from resonant terms with j = 3, ℓ = 1 (from (A8)) and
contribution from resonant terms with j = 1, ℓ = 3 (from (A9)) with k = k2. Thus,

γ2 = −
ω3ω1(k3 · k1)(k2 · k1)

k2k3k1
+

ω3ω1

k2
(k2 · k1) + (ω3 − ω1)

(

k2ω1 +
ω3k2 · k3

k3

)

(A14)

+
ω1ω3(k1 · k3)(k2 · k3)

k2k1k3
−

ω1ω3

k2
(k2 · k3) − (ω1 − ω3)

(

−k2ω3 +
ω1k2 · k1

k1

)

= k2 (ω1ω2e1 · e2 + ω1ω3e1 · e3 + ω2ω3e2 · e3 + ω1ω2 − ω1ω3 − ω2ω3) . (A15)

Coefficient of eiθ3 .

Here, we have contribution from resonant terms with j = 1, ℓ = 2 and j = 2, ℓ = 1 (from
(A7)) with k = k3. This gives

γ3 =
ω1ω2(k1 · k2)(k3 · k2)

k3k1k2
+

ω1ω2

k3
(k3 · k2) + (ω1 + ω2)

(

−k3ω2 +
ω1k3 · k1

k1

)

+
ω2ω1(k2 · k1)(k3 · k1)

k3k2k1
+

ω2ω1

k3
(k3 · k1) + (ω2 + ω1)

(

−k3ω1 +
ω2k3 · k2

k2

)

= k3 (ω1ω2e1 · e2 + ω1ω3e1 · e3 + ω2ω3e2 · e3 + ω1ω2 − ω1ω3 − ω2ω3) . (A16)

Appendix B

The purpose of this appendix is to derive the linear and nonlinear coefficients associated
with the six wave equations in finite depth given by (5.7)–(5.12). Specifically, we
compute the group velocity and nonlinear coupling coefficients. A frequent use of the
integral-to-differential identity shown in (4.5)–(4.9) will be made that allows one to
determine all secular terms without having to deal with any integral. Our starting point
is the right-hand side of (5.6) which comprises of linear and nonlinear terms. Upon
substituting (4.10) and (5.5) into (5.6) the linear terms read

linear terms =

3
∑

j=1

(

−2ωj

∂Aj

∂T
e−iθj + 2ωj

∂Bj

∂T
eiθj

)

−

3
∑

j=1

tanh(kjh)

kj

kj · (g∇RAj + σk2
j ∇RAj + 2σkj(kj · ∇R)Aj)e

−iθj

+

3
∑

j=1

tanh(kjh)

kj

kj · (g∇RBj + σk2
j ∇RBj + 2σkj(kj · ∇R)Bj)e

iθj

− h(gkj + σk3
j )sech2(kjh)kj · ∇RAje

−iθj
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Six wave interaction equations in finite-depth gravity waves

+ h(gkj + σk3
j )sech2(kjh)kj · ∇RBje

iθj

= −

3
∑

j=1

2ωj

[

∂Aj

∂T
+ ∇kωj · ∇RAj

]

e−iθj +

3
∑

j=1

2ωj

[

∂Bj

∂T
+ ∇kωj · ∇RBj

]

ei.θj

(B1)

Next, we compute the nonlinear terms which can be express as a sum of two contributions:
tanh(kh)R1 + R2 with (recall that Q = (Q1, Q2))

R1 =
kx

k
[Q1Q1x + Q2Q2x − ηtηtx] +

ky

k
F[Q1Q1y + Q2Q2y − ηtηty], (B2)

R2 = ik tanh(kh)(ηηt)t − kx(Q1η)t − ky(Q2η)t. (B3)

Substituting (4.10) and (5.5) into (B2) one gets

R1 = −i

3
∑

j,ℓ=1

(

Γ
(1)

h,jℓ + Γ
(2)

jℓ

)

AjAℓe−i(θℓ+θj) + i

3
∑

j,ℓ=1

(

Γ
(1)

h,jℓ + Γ
(2)

jℓ

)

BjBℓei(θj+θℓ)

− i

3
∑

j,ℓ=1

(

Γ
(1)

h,jℓ − Γ
(2)

jℓ

)

BjAℓei(θj−θℓ) + i

3
∑

j,ℓ=1

(

Γ
(1)

h,jℓ − Γ
(2)

jℓ

)

AjBℓe−i(θj−θℓ), (B4)

where

Γ
(1)

h,jℓ =
ωjωℓ(kj · kℓ)(k · kℓ)

kkjkℓ tanh(kjh) tanh(kℓh)
, Γ

(2)
jℓ =

ωjωℓ

k
(k · kℓ). (B5a,b)

Next, we compute the quantity R2. We find

R2 = −i

3
∑

j,ℓ=1

(ωj + ωℓ)
(

k tanh(kh)ωℓ + Γ
(3)

h,jℓ

)

AjAℓe−i(θℓ+θj)

− i

3
∑

j,ℓ=1

(ωj + ωℓ)
(

k tanh(kh)ωℓ − Γ
(3)

h,jℓ

)

BjBℓei(θℓ+θj)

+ i

3
∑

j,ℓ=1

(ωj − ωℓ)
(

k tanh(kh)ωℓ + Γ
(3)

h,jℓ

)

BjAℓei(θj−θℓ)

+ i

3
∑

j,ℓ=1

(ωj − ωℓ)
(

k tanh(kh)ωℓ − Γ
(3)

h,jℓ

)

AjBℓe−i(θj−θℓ), (B6)

where

Γ
(3)

h,jℓ =
ωjk · kj

kj tanh(kjh)
. (B7)
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M.J. Ablowitz, X.-D. Luo and Z.H. Musslimani

With this at hand, all nonlinear terms that appear on the right-hand side of (5.6) are given
by

tanh(kh)R1 + R2

= −i

3
∑

j,ℓ=1

{

tanh(kh)
(

Γ
(1)

h,jℓ + Γ
(2)

jℓ

)

+ (ωj + ωℓ)
(

k tanh(kh)ωℓ + Γ
(3)

h,jℓ

)}

AjAℓe−i(θℓ+θj)

(B8)

+ i

3
∑

j,ℓ=1

{

tanh(kh)
(

Γ
(1)

h,jℓ + Γ
(2)

jℓ

)

− (ωj + ωℓ)
(

k tanh(kh)ωℓ −Γ
(3)

h,jℓ

)}

BjBℓei(θj+θℓ)

(B9)

− i

3
∑

j,ℓ=1

{

tanh(kh)

(

Γ
(1)

h,jℓ − Γ
(2)

jℓ

)

− (ωj − ωℓ)

(

k tanh(kh)ωℓ +Γ
(3)

h,jℓ

)}

BjAℓei(θj−θℓ)

(B10)

+ i

3
∑

j,ℓ=1

{

tanh(kh)

(

Γ
(1)

h,jℓ −Γ
(2)

jℓ

)

+ (ωj − ωℓ)

(

k tanh(kh)ωℓ −Γ
(3)

h,jℓ

)}

AjBℓe−i(θj−θℓ).

(B11)

Next, we are ready now to identify all secular terms that satisfy the triad resonant condition
θ1 + θ2 = θ3.

Coefficient of e−iθ1 .

Here, we have contribution from resonant terms with j = 2, ℓ = 3 coming from (B10) and
j = 3, ℓ = 2 arising from (B11). In both cases, k = −k1. Thus

−
{

tanh(k1h)

(

Γ
(1)

h,23 − Γ
(2)

23

)

− (ω2 − ω3)

(

k1 tanh(k1h)ω3 + Γ
(3)

h,23

)}

+ tanh(k1h)
(

Γ
(1)

h,32 − Γ
(2)

32

)

+ (ω3 − ω2)

(

k1 tanh(k1h)ω2 − Γ
(3)

h,32

)

= tanh(k1h)

(

ω2ω3(k2 · k3)(k1 · k3)

k1k2k3 tanh(k2h) tanh(k3h)
−

ω2ω3

k1
(k1 · k3)

− k1ω1ω3 +
ω1ω2k1 · k2

k2 tanh(k2h) tanh(k1h)

)

+ tanh(k1h)

(

−
ω3ω2(k3 · k2)(k1 · k2)

k1k3k2 tanh(k3h) tanh(k2h)
+

ω3ω2

k1
(k1 · k2)

+ k1ω1ω2 +
ω1ω3k1 · k3

k3 tanh(k3h) tanh(k1h)

)

. (B12)

After some algebra, we get

γ F
1 = k1 tanh(k1h)

(

ω1ω2e1 · e2

tanh(k1h) tanh(k2h)
+

ω1ω3e1 · e3

tanh(k1h) tanh(k3h)

+
ω2ω3e2 · e3

tanh(k2h) tanh(k3h)
+ ω1ω2 − ω1ω3 − ω2ω3

)

. (B13)

961 A3-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

12
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss



Six wave interaction equations in finite-depth gravity waves

Coefficient of e−iθ2 .

In this case, the only terms that contribute to resonance are those with j = 1, ℓ = 3 (B10)
and j = 3, ℓ = 1 (B11). In addition, we find k = −k2 and

−
{

tanh(k2h)

(

Γ
(1)

h,13 − Γ
(2)

13

)

− (ω1 − ω3)

(

k2 tanh(k2h)ω3 + Γ
(3)

h,13

)}

+ tanh(k2h)
(

Γ
(1)

h,31 − Γ
(2)

31

)

+ (ω3 − ω1)

(

k2 tanh(k2h)ω1 − Γ
(3)

h,31

)

= tanh(k2h)

(

ω1ω3(k1 · k3)(k2 · k3)

k2k1k3 tanh(k1h) tanh(k3h)
−

ω1ω3

k2
(k2 · k3)

− k2ω2ω3 +
ω2ω1k2 · k1

k1 tanh(k1h) tanh(k2h)

)

+ tanh(k2h)

(

−
ω3ω1(k3 · k1)(k2 · k1)

k2k3k1 tanh(k3h) tanh(k1h)
+

ω3ω1

k2
(k2 · k1)

+ k2ω1ω2 +
ω2ω3k2 · k3

k3 tanh(k3h) tanh(k2h)

)

. (B14)

Thus, the nonlinear coefficient γ F
2 reads

γ F
2 = k2 tanh(k2h)

(

ω1ω2e1 · e2

tanh(k1h) tanh(k2h)
+

ω1ω3e1 · e3

tanh(k1h) tanh(k3h)

+
ω2ω3e2 · e3

tanh(k2h) tanh(k3h)
+ ω1ω2 − ω1ω3 − ω2ω3

)

. (B15)

Coefficient of e−iθ3 .

All contributing terms to the resonant condition θ1 + θ2 = θ3 arise from (B8) with
j = 1, ℓ = 2 as well as j = 2, ℓ = 1 with k = −k3. This leads to

−
{

tanh(k3h)
(

Γ
(1)

h,12 + Γ
(2)

12

)

+ (ω1 + ω2)

(

k3 tanh(k3h)ω2 + Γ
(3)

h,12

)}

−
{

tanh(k3h)

(

Γ
(1)

h,21 + Γ
(2)

21

)

+ (ω2 + ω1)

(

k3 tanh(k3h)ω1 + Γ
(3)

h,21

)}

= tanh(k3h)

(

ω1ω2(k1 · k2)(k3 · k2)

k3k1k2 tanh(k1h) tanh(k2h)
+

ω1ω2

k3
(k3 · k2)

− k3ω2ω3 +
ω3ω1k3 · k1

k1 tanh(k1h) tanh(k3h)

)

+ tanh(k3h)

(

ω2ω1(k2 · k1)(k3 · k1)

k3k2k1 tanh(k2h) tanh(k1h)
+

ω2ω1

k3
(k3 · k1)

− k3ω1ω3 +
ω3ω2k3 · k2

k2 tanh(k2h) tanh(k3h)

)

. (B16)

961 A3-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

12
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss



M.J. Ablowitz, X.-D. Luo and Z.H. Musslimani

To this end, the nonlinear coefficient γ F
3 is given by

γ F
3 = k3 tanh(k3h)

(

ω1ω2e1 · e2

tanh(k1h) tanh(k2h)
+

ω1ω3e1 · e3

tanh(k1h) tanh(k3h)

+
ω2ω3e2 · e3

tanh(k2h) tanh(k3h)
+ ω1ω2 − ω1ω3 − ω2ω3

)

. (B17)

Coefficient of eiθ1 .

Here, we have contribution from resonant terms with j = 3, ℓ = 2 coming from (B10) and
j = 2, ℓ = 3 arising from (B11). In both cases, k = k1. Thus

−
{

tanh(k1h)

(

Γ
(1)

h,32 − Γ
(2)

32

)

− (ω3 − ω2)

(

k1 tanh(k1h)ω2 + Γ
(3)

h,32

)}

+ tanh(k1h)
(

Γ
(1)

h,23 − Γ
(2)

23

)

+ (ω2 − ω3)

(

k1 tanh(k1h)ω3 − Γ
(3)

h,23

)

= − tanh(k1h)

(

ω3ω2(k3 · k2)(k1 · k2)

k1k3k2 tanh(k3h) tanh(k2h)
−

ω3ω2

k1
(k1 · k2)

− k1ω1ω2 −
ω1ω3k1 · k3

k3 tanh(k3h) tanh(k1h)

)

+ tanh(k1h)

(

ω2ω3(k2 · k3)(k1 · k3)

k1k2k3 tanh(k2h) tanh(k3h)
−

ω2ω3

k1
(k1 · k3)

− k1ω1ω3 +
ω1ω2k1 · k2

k2 tanh(k2h) tanh(k1h)

)

. (B18)

After some algebra, we get

γ F
1 = k1 tanh(k1h)

(

ω1ω2e1 · e2

tanh(k1h) tanh(k2h)
+

ω1ω3e1 · e3

tanh(k1h) tanh(k3h)

+
ω2ω3e2 · e3

tanh(k2h) tanh(k3h)
+ ω1ω2 − ω1ω3 − ω2ω3

)

. (B19)

Coefficient of eiθ2 .

In this case, the only terms that contribute to resonance are those with j = 3, ℓ = 1 (B10)
and j = 1, ℓ = 3 (B11). In addition, we find k = k2 and

−
{

tanh(k2h)

(

Γ
(1)

h,31 − Γ
(2)

31

)

− (ω3 − ω1)

(

k2 tanh(k2h)ω1 + Γ
(3)

h,31

)}

+ tanh(k2h)
(

Γ
(1)

h,13 − Γ
(2)

13

)

+ (ω1 − ω3)

(

k2 tanh(k2h)ω3 − Γ
(3)

h,13

)

= tanh(k2h)

(

−
ω3ω1(k3 · k1)(k2 · k1)

k2k3k1 tanh(k3h) tanh(k1h)
+

ω3ω1

k2
(k2 · k1)

+ k2ω1ω2 +
ω2ω3k2 · k3

k3 tanh(k3h) tanh(k2h)

)
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Six wave interaction equations in finite-depth gravity waves

+ tanh(k2h)

(

ω1ω3(k1 · k3)(k2 · k3)

k2k1k3 tanh(k1h) tanh(k3h)
−

ω1ω3

k2
(k2 · k3)

− k2ω2ω3 +
ω2ω1k2 · k1

k1 tanh(k1h) tanh(k2h)

)

. (B20)

Thus, the nonlinear coefficient γ F
2 reads

γ F
2 = k2 tanh(k2h)

(

ω1ω2e1 · e2

tanh(k1h) tanh(k2h)
+

ω1ω3e1 · e3

tanh(k1h) tanh(k3h)

+
ω2ω3e2 · e3

tanh(k2h) tanh(k3h)
+ ω1ω2 − ω1ω3 − ω2ω3

)

. (B21)

Coefficient of eiθ3 .

All contributing terms to the resonant condition θ1 + θ2 = θ3 arise from (B9) with
j = 1, ℓ = 2 as well as j = 2, ℓ = 1 with k = k3. This leads to

tanh(k3h)

(

Γ
(1)

h,12 + Γ
(2)

12

)

− (ω1 + ω2)

(

k3 tanh(k3h)ω2 − Γ
(3)

h,12

)

+ tanh(k3h)

(

Γ
(1)

h,21 + Γ
(2)

21

)

− (ω2 + ω1)

(

k3 tanh(k3h)ω1 − Γ
(3)

h,21

)

= tanh(k3h)

(

ω1ω2(k1 · k2)(k3 · k2)

k3k1k2 tanh(k1h) tanh(k2h)
+

ω1ω2

k3
(k3 · k2)

− k3ω2ω3 +
ω3ω1k3 · k1

k1 tanh(k1h) tanh(k3h)

)

+ tanh(k3h)

(

ω2ω1(k2 · k1)(k3 · k1)

k3k2k1 tanh(k2h) tanh(k1h)
+

ω2ω1

k3
(k3 · k1)

− k3ω1ω3 +
ω3ω2k3 · k2

k2 tanh(k2h) tanh(k3h)

)

. (B22)

To this end, the nonlinear coefficient γ F
3 is

γ F
3 = k3 tanh(k3h)

(

ω1ω2e1 · e2

tanh(k1h) tanh(k2h)
+

ω1ω3e1 · e3

tanh(k1h) tanh(k3h)

+
ω2ω3e2 · e3

tanh(k2h) tanh(k3h)
+ ω1ω2 − ω1ω3 − ω2ω3

)

. (B23)
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