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ABSTRACT

In recent years, there has been considerable interest in the study of wave propagation in nonlinear
photonic lattices. The interplay between nonlinearity and periodicity has led researchers to manipulate
light and discover new and interesting phenomena such as new classes of localized modes, usually
referred to as solitons, and novel surface states that propagate robustly. A field where both nonlinearity
and periodicity arises naturally is nonlinear optics. But there are other areas where waves propagating
on background lattices play an important role, including photonic crystal fibers and Bose-Einstein
condensation. In this review article the propagation of wave envelopes in one and two-dimensional
periodic lattices associated with additional potential in the nonlinear Schrodinger (NLS) equation,
termed lattice NLS equations, are studied. A discrete reduction, known as the tight-binding approxima-
tion, is employed to find the linear dispersion relation and the equations governing nonlinear discrete
envelopes for two-dimensional simple periodic lattices and two-dimensional non-simple honeycomb
lattices. In the limit under which the envelopes vary slowly, continuous envelope equations are derived
from the discrete system. The coefficients of the linear evolution system are related to the dispersion
relation in both the discrete and continuous cases. For simple lattices, the continuous systems are NLS
type equations. In honeycomb lattices, in certain cases, the continuous system is found to be nonlinear
Dirac equations. Finally, it is possible to realize so-called topological insulator systems in an optical
waveguide setting. The modes supported by these systems are associated with spectral topological
invariants and, remarkably, can propagate without backscatter from lattice defects.

© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

In nonlinear optics, periodic structures that have been care-
fully studied are arrays of coupled nonlinear optical waveguides.
These waveguides typically consist of media with higher refrac-
tive indices that tend to confine and steer light beams. The first
theoretical prediction of discrete solitons in an optical waveguide
array was reported by Christodoulides and Joseph [ 1]. Many prop-
erties of such discrete solitons were subsequently studied cf. [2,3].
However, after the theoretical prediction of [1], it was almost a
decade until self-trapping of light in nonlinear waveguide array
was experimentally observed [4].

Early on, it was difficult to fabricate specialized materials with
fixed geometry at such small scales. This has been largely over-
come by optical and etching techniques. A schematic illustrating
the coupled waveguide configuration used in [4] is given in Fig. 1.
The array consists of approximately 40 waveguide “ridges” that
are 4 um wide and 0.95 wm deep; the longitudinal propagation
length of the waveguide is 6 mm. An input laser beam is injected
at the central location of the waveguides. The results of the
experiment are shown in Fig. 2. At low power, the beam diffracts;
at moderate power, the beam begins to self-focus. Finally, at
high power the beam strongly self-focuses and a highly localized
soliton beam is observed.

A few years later, a new method of creating optical peri-
odic lattices in photosensitive materials using optical induction
was proposed [5]. Soon afterwards, using this ‘all optical’ tech-
nique two-dimensional (2D) periodic lattices were created and
2D solitons were observed and studied [6,7]. These solitons are
sometimes termed ‘gap’ solitons because they are found in the
frequency gaps of the underlying periodic wave spectrum. This
area has attracted considerable interest from engineers, physi-
cists, and mathematicians. Subsequently, many novel types of
localized modes, e.g. solitons, have been predicted theoretically
and demonstrated experimentally. Examples include dipole soli-
tons [8], vortex solitons [9], soliton trains [10], etc.

The experimental results of [7] are depicted in Fig. 3. Here, as
with the one dimensional configuration, at low input power the
beam diffracts and at high input power the beam self-focuses and
a localized structure is seen to emerge; i.e., a soliton is formed.

Researchers usually model the above phenomena by a gen-
eral 2D lattice nonlinear Schrodinger (NLS) equation, written in
dimensionless form:

iV, + V2 — V()WY + f(I¥ 1Py =0,

where V2 = 92 4+ 8}, r = (xy) is the transverse spatial
dimensions, and z (the direction of propagation) behaves like a
temporal variable. The effective refractive index is split into two
parts: a linear periodic potential V(r), and an intensity-dependent
nonlinear term f(|v|?). The most commonly studied type of non-
linearity is cubic, i.e. f(||>) = o|y¥|*> where o is constant. This
model describes light propagation in a periodic Kerr nonlinear
medium as well as in Bose-Einstein condensates trapped in a 2D
optical lattice [11]. A representation of a typical cross-section of
two-dimensional rectangular lattice potential, V(x, y), is given in
Fig. 4. Here the maxima and minima play the role of the ‘ridges
and valleys’ in the waveguide (high and low refractive index).
We note that the photonic material employed in experiments
[6,7] used so-called photorefractive media, not Kerr media; in this
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Fig. 1. Schematic illustrating the coupled waveguide array used in [4]. Reprinted
figure with permission from [4], copyright (1998) by the American Physical
Society.

Fig. 2. Output field measured at the output facet of the waveguide. Input power:
(top) low, (middle) medium, and (bottom) high. A solitary wave forms at high
power. Reprinted figure with permission from [4], copyright (1998) by the
American Physical Society.

case, the nonlinearity/potential is usually modeled by saturable
nonlinear media

V) +f(Y1}) = (1= Wm +oly).

Despite their different forms, saturable nonlinearity reduces to
a cubic/Kerr nonlinearity in the small refractive index limit,
[W(r) + o|¥)?| <« 1, where

—(1 =W +oly ) = (=1-W(r) +oly)

and V(r) = —1 — W(r). In [5,12], this type of saturable lattice
was used numerically and shown to yield solitons at high input
power.

After these results in 2D periodic lattices were reported, many
novel localized structures were predicted theoretically and
demonstrated experimentally. Examples include dipole solitons,
vortex solitons, soliton trains, cf. [8-10,13,14]. Similarly, in con-
densed matter physics, ultracold atoms, Bose-Einstein conden-
sates (BECs) can be trapped in a periodic optical lattice which
is described by a lattice NL equation, also known as the Gross—
Pitaevskii equation. The experimental observation of gap solitons
in BECs was reported in [15], and vortices theoretically predicted
in [16]. With observations and theory in different fields, the
study of related phenomena such as localized modes and their
properties has gained significant scientific interest.
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Fig. 3. (Top) Output intensity measurements obtained in a nonlinear waveguide
array. Left, low input power; Right, high input power. Reprinted by permission
from Springer Nature: Nature [7], copyright (2003). (Bottom) Numerically ob-
tained lattice soliton at high power. Reprinted figure with permission from [12],
copyright (2003) by the American Physical Society.
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Fig. 4. V(x,y) = Vo(cos? mx 4 cos® my); Vo = 1.

Background lattice periodicity alone leads to interesting math-
ematical investigations. An important feature follows from what
it is often termed Bloch theory [17]. Namely, the associated
spectrum has multi-band structure. Bands are regions that sup-
port bounded, quasi-periodic, eigenmodes. Between two adjacent
bands, there can exist a gap where bounded linear eigenmodes
do not exist. Analogous to Fourier modes, Bloch modes can prop-
agate in a periodic linear waveguide; here different Bloch modes
admit different dynamics that, in turn, do not influence each
other because of the superposition principle.

Nonlinearity can change the eigenmodes associated with band
structures. The spectral regions where modes propagate can be
extended by nonlinearity into the band gaps. So, in the gap region
where linear bounded modes do not propagate, i.e. are forbidden,
there can exist nonlinear bounded eigenmodes. Localized non-
linear gap modes are known as band gap solitons. The dynamics
can become more interesting with nonlinearities; for example,
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in BECs, nonlinear Bloch oscillations, nonlinear Landau-Zenner
tunneling etc. have been reported; cf. [15]. In optics, conical
diffraction that was thought to be a linear phenomena is also
exhibited in nonlinear honeycomb lattices [18]. In addition, since
the superposition principle does not hold when nonlinearity is
present, different Bloch modes may interfere each other. Energy
can spread among these linear Bloch modes and new Bloch modes
may be produced due to interference—as seen in supercontinuum
generation [19,20]. Asymptotic descriptions can be obtained via
multiple-scales approach, as in [21-24].

The geometric distribution of local minima of the potentials,
also called sites, can be used to classify the potentials. These sites
are the positions of the potential wells. In optics, they have in-
creased refractive index and the electromagnetic field is attracted
to these regions. The distribution of these sites greatly influence
the properties of the associated dynamics/waves. Discrete one
dimensional evolution equations on 1D lattices were studied by
the so-called Wannier function approach in (cf. [2,25]). However,
there are significant differences that occur among 2D periodic
lattices.

First, we will divide 2D periodic lattices into two groups: sim-
ple and non-simple stationary (z-independent) lattices. Simple
lattices only have one site in a basic unit cell while non-simple
lattices have more than one site per cell. Examples of simple
lattices are rectangular and triangular lattices. A well-known non-
simple lattice is the honeycomb hexagonal lattice that has two
sites in a unit cell and breaks up into two triangular sublattices.
Due to the underlying symmetries in the honeycomb lattice, we
will see below that the dispersion relation of the associated Bloch
theory may have isolated degenerate points where two dispersion
surfaces touch each other. These are called Dirac points and near
these points the dispersion surface has a conical structure. It
was rigorously proven in [26] that dispersion surfaces touch each
other at Dirac points.

The evolution of a Bloch mode envelope in the neighborhood
of these points is governed by nonlinear Dirac systems [ 18]. There
are interesting phenomena associated with the Dirac system. An
example in optics is conical diffraction—where a narrow beam
transforms into bright expanding rings, see [18,27,28]. Honey-
comb lattices also admit various types of band gap solitons that
like other 2D periodic lattices is due to the effect of nonlin-
earity; cf [29]. Another important application is the material
graphene that has a honeycomb lattice structure, see [30]. In
BECs, honeycomb background lattices may also lead to interesting
phenomena, see [31].

From the field of beam propagation in waveguide arrays, nat-
urally came a way to realize a type of system (or media) known
as a topological insulator (TI) in a photonic setting. Topological
insulators have their origins in condensed matter physics, and
in particular the quantum Hall effect [32-34]. The first discus-
sion of a TI in an electromagnetic system can be traced back
to the seminal work of Haldane and Raghu [35]. The experi-
mental realization of a TI in an electromagnetic system with
anisotropic permeability; i.e. in a magneto-optic system occurred
soon afterwards [36]. The realization of a TI in a photonic system
came a few years later [37] and notably did not require an
external magnetic field. Instead, researchers induced an effective
magnetic field by fabricating waveguides that helically-varied in
the direction of beam propagation. These studies assumed the
wave propagation was linear. Interest in the field of topological
insulators in electromagnetic systems has expanded considerably
since this earlier research—see e.g. [38,39].

In a topological insulator system, linear wave propagation
is possible at frequencies lying in band gaps of the spectrum,
typically when they propagate along the boundary or surface of
the lattice media; these are called edge modes. Wave propagation
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Fig. 5. Experimental results from a Floquet topological insulator in a helically-
driven waveguide array. (a-d) Yellow ellipses shows input beam location, output
beam is shown in heat map. Collectively, the snapshots show a unidirectional
edge mode which does not backscatter at corners Reprinted by permission from
Springer Nature: Nature [37], copyright (2013).

in the interior of the media (well away from any boundaries)
is still prohibited at these frequencies; these are known as bulk
modes. To induce this behavior, one type of system referred to
as Floquet systems, are generated by driving the lattice potential
and creating equations with coefficients that are periodic in z.
The associated linear eigenmodes possess so-called topological
invariants which through a principle known as the bulk-edge
correspondence, indicate the presence of topologically protected
edge states which propagate unidirectionally. These modes are
localized along the domain boundary and are exceptionally ro-
bust to defects in the lattice system; they do not suffer from
backscatter and only move forward (See Fig. 5). Furthermore,
weak nonlinearity induces edge solitons see [40-42]. These soli-
tons inherit the topological properties of their linear counterpart,
yet also manage to balance dispersion and nonlinearity, like a
typical soliton. Several linear and nonlinear results are discussed
in this review. Another notable TI system is the Su-Schrieffer-
Heeger (SSH) model. It occurs in non-driven waveguide lattices
where the coupling strength among adjacent sites alternates.

Before outlining the content of this article, we note this review
does not include a thorough discussion of parity-time (PT) sym-
metric systems. Since their theoretical proposal in the photonic
systems in 2008 [43,44], this class of systems has been heavily
studied. Indeed, stable PT-symmetric modes were experimentally
realized in a waveguide array [45,46]. We omit details of this
subfield, which is extensive, in order to focus on the basics of
optical waveguides and topological insulators systems.

Another important realization of waveguide arrays that we do
not consider in detail is that of planar lattices governed by the
linearly polarized 2D Maxwell’s equations. For non-magnetized
systems, the governing PDE for time-harmonic solutions is the
variable-coefficient Helmholtz equation [47]. The variable coeffi-
cient is due to the permittivity function that models the dielectric
of the waveguides. These systems can exhibit similar proper-
ties to those found in Schrédinger operators (mentioned below)
which possess Dirac points in honeycomb lattices [48,49] and
localized edge states [50]. Moreover, these systems also extend
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to topological insulators. Indeed, the seminal works of [35,36,
51] showed the existence of in-plane TE and TM topologically
protected modes, respectively.

Now we outline the topics covered in this review. The general
methodology of the tight-binding approximation is discussed in
Section 2. In Section 3 the equations governing the tight-binding
equations and envelope dynamics of a class of simple lattices
are derived. As an example, a simple square lattice is considered
in Section 4. The two-dimensional harmonic oscillator and its
relationship to the orbital approximation are shown in Section 5.
Next, tight-binding models for non-simple lattices is described in
Section 6.

From here, the realization of topological insulators in optical
waveguides is explored in Section 7. The well-known one di-
mensional SSH model is relatively simple to realize in an optical
waveguide setting; it is described in Section 8. In Section 9 a
class of longitudinally driven, Floquet-type 2D lattices are shown
to support unidirectional edge mode propagation with associated
Chern invariants. We conclude in Section 10.

2. Fundamentals

The analysis here follows closely that in [18,52,53]. We will
consider the 2D lattice nonlinear Schrédinger (NLS) equation with
cubic nonlinearity, written in dimensionless form:

i, + V2 — V()Y + oy *y =0, (2.1)

where r = (x,y), z is a temporal variable, V(r) is the periodic
potential and o is a constant that is positive for focusing non-
linearity and negative for defocusing nonlinearity. This model
can be used to describe paraxial light propagation in a periodic
Kerr nonlinear medium [54,55] and Bose-Einstein condensates
trapped in a 2D optical lattice [11].

The potential V(r) is a 2D periodic, bounded, and real-valued
function with two primitive lattice vectors, v; and v,. The poten-
tial has the translational symmetry V(r + mvy 4+ nvy) = V(r), for
any m,n € Z. We denote P = {mv; + nv, : m,n € Z} as the
set of lattice vectors and K; and k;, as the primitive reciprocal
lattice vectors and G = {mk; + nky, : m,n € Z} as the set
of reciprocal lattice vectors. The unit cell of the physical lattice,
denoted by £2, is the parallelogram with v; and v; as its two sides
and the unit cell of the reciprocal lattice, £2’, is the parallelogram
determined by k; and k;. The relationship between lattice and
reciprocal lattice is vy, - Ky = 27 8.

We first consider a simple periodic lattice that has one local
minimum site per unit cell. With a starting point and the lattice
vectors, all the positions of the sites can be constructed. All sites
form a discrete lattice in the r plane, namely P. We use S, to
denote the position of the site with index vand S, = Sp + v
where Sy is the starting point of the site lattice, i.e, So € £2. Due
to translational symmetry, one unit cell has all the information
of periodic functions. For simplicity, we place So = 0 and choose
the parallelogram determined by v; and v, whose center is Sy
as the primitive unit cell £2. We also choose the parallelogram
determined by k; and k, whose center is k = 0 as the primitive
reciprocal unit cell £2’. On the other hand, a non-simple lattice
may have more than one site in one unit cell. One may need
more than one starting point to construct the lattice. An example
of a non-simple lattice is a honeycomb lattice. These two situa-
tions are illustrated in Fig. 6. For the square lattice, all sites are
‘black’ and they can be constructed by integer translations of the
two primitive vectors. On the other hand, the honeycomb lattice
consists of ‘black’ and ‘white’ sites. The black and white sites are
separately constructed from the underlying primitive vectors.

Let us first consider solutions of Eq. (2.1) when the nonlinear
coefficient o is negligibly small, or equivalently |y|> < 1, so that

i, + V2 — V(r)y = 0. (2.2)
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S9,+7,

S-3, So s, X

Fig. 6. (Left) A typical simple lattice. (Right) A non-simple honeycomb lattice.
In each case the lattice sites (corresponding to minima of potential V(r)) are
denoted by dots. The shaded region is a fundamental cell.

Special separable solutions, which form a complete set, take the
form ¢(r,z) = ¢(r)e”"** and then Eq. (2.2) transforms to the
following eigenvalue problem

Vip —V(r)p = —ugp. (2.3)

According to Bloch theory (cf. [17]), the eigenfunction, also called
a Bloch mode or Bloch wave, has the k-dependent form

o(r; k) = e*Tu(r; k),

where u(r; k) has the same periodicity as the potential V(r)
for any k. Physically, k is known as quasi-momentum. It is
convenient to introduce the following two operators:

H=V?—V(r), Hx=V?:+2k-V—|k?-V(r),

where H is the Schrédinger operator with a periodic potential and
Hy is a k-dependent operator, defined on L2(£2); hence u(r; k)
satisfies the following eigenvalue problem,

Hiu(r; K) = —pu(r; K);  u(r+vg; K)=u(r; k); s=1,2,

where u = (k) is called the dispersion relation. On the other
hand, Bloch mode ¢(r; k) satisfies the eigenproblem with quasi-
periodic boundary condition

Ho(r: K) = —ue(r; K); o(r + vg; k) = e®%g(r; K) (2.4)

for s = 1, 2. Note that after one period the Bloch mode comes
back to its original value, up to a phase factor.

Assume that u(k) = u(k+g) for any g € G. We also note that
¢(r; k) and ¢(r; k + g) satisfy the same eigenvalue problem and
boundary condition Eq. (2.4) due tov-g = 2xm for any v € P
and g € G. So for any r, ¢(r; K) is periodic with respect to k, thus
k is restricted in the parallelogram determined by k; and k.

It is noted that for an arbitrary value of k, the Bloch mode
¢(r; k) is usually not a periodic function of r. However, there
are some special values of k, where ¢(r; K) is periodic or anti-
periodic with two periods v; and v,. For example, At the I" point
(k = 0) that is located at the center of the Brillouin zone, ¢(r; 0) is
periodic (see boundary condition in Eq. (2.4)). At the X;,s = 1,2
points (k = %ks, s = 1, 2), which are located at the middle of
one side of the Brillouin parallelogram, we have: ¢(r+ vs; %ks) =
—@(r; 1K) and @(r + vi_5; 31Kk) = o(r; 1K;). At the M point
(k = Jk; + 5k2) that is located at one vertex of the Brillouin
parallelogram, we have: o(r+vy; 1Ki +1ka) = —¢(r; 1K1+ 1k2)
and (r + vo; 1Ky + 1ky) = —o(r; 1ki + 1k;); See Fig. 7
below. Thus at the I, X; and M points, which are special loca-
tions in the reciprocal lattice fundamental cell, the corresponding
Bloch modes are either periodic or anti-periodic. In addition, at
these special points the Bloch modes can be made real since the
multiplicative factor in Eq. (2.4) is real and consequently, the
eigenfunctions can also be taken to be real.

For each Kk, the operator #yx has an infinite set of discrete
eigenvalues u(k) = p;(k),j = 0,1,2,.... Thus, the dispersion
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Fig. 7. (a) The site distributions of the square lattice Eq. (4.1). The shadow region
is the primitive unit cell. (b) The Brillouin zone of the square lattice—the square
surrounded by the dashed lines. The first dispersion relation band (c) obtained
from direction simulation and (d) from the approximate formula (4.2). Reprinted
by permission from Wiley: Studies in Applied Math. [53], copyright (2012).

relation pu, its corresponding eigenfunctions and the associated
Bloch modes could have an additional subscript j to indicate
different eigenvalues. Here, for simplicity, we will usually omit
the subscript j. Hence the spectrum of the Schrédinger operator
‘H has multiple band structures and therefore may exhibit band
gaps between two dispersion surfaces, where bounded Bloch
modes are not allowed. As k varies, the discrete eigenvalue (k)
and the corresponding eigenfunctions u(r; K) as functions of k
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are assumed to be smooth over k. Later on, it will no longer
necessarily be the case that the eigenfunctions are smooth in k.
Chern insulators contain eigenmodes with discontinuous phase
topology [56].

Since ¢(r; k) is periodic in Kk, we can represent it as a Fourier
series

(r; k) = ) pu(r)e™” (2.5)
veP
where the Fourier coefficient ¢y(r) is defined as
1 / _ik
o(r; K)e "Vdk (2.6)
[£2'] Jor
and is the so-called Wannier function [57]. From here on, the sum
over v means v takes all values in P, i.e., v = mv; + nv,, for all

m,n € Z.
From definition Eq. (2.6), we can see that

du(r) =

1 .
dul(r) = f ol Ky ™ Vdlk
Y 12| Jor
1 .
= — u(r; K)e* gk
1] Jor
1
= — o(r — v; K)dk = ¢po(r — v)
12| /g 0

due to the periodic nature of u(r; k). This equation shows that all
Wannier modes are merely translations of the primitive Wannier
mode, ¢o(r). Usually, the subscript 0 is omitted and the Wannier
function is referred to as ¢(r — v). Wannier functions have all the
information of the Bloch modes, yet they do not depend on k.
If one has all Wannier function coefficients, then the exact Bloch
mode can be constructed through (2.5), or vice versa via Eq. (2.6).
In general, is not possible to compute either Bloch modes or
Wannier functions explicitly. However, under some limits, such
as tight-binding/deep lattice limit (i.e., |V(r)| > 1), they can be
constructed by asymptotic analysis that in turn provides crucial
analytical understanding. Details will be discussed below.

For a periodic potential, the local minima are called the sites.
Physically, local minima are the positions of potential wells and
in optics correspond to increased refractive index to which the
electric field is attracted. In the tight-binding limit, the potential
well at each site is very deep, hence it often turns out that
the Wannier function defined in Eq. (2.6) is localized at the site
Sv, becoming more localized as the depth increases. Physically
speaking, Bloch modes tend to concentrate most of their energy in
the neighborhood of these sites. The lattice sites are waveguides
that effectively trap the wave function with some weak coupling
among nearby lattice sites.

The potential function describing the periodic lattice can be
written in the form

V(r) = sz(r —v). (2.7)

where V(r) denotes the potential well at the site So. It originally
is defined only in the cell §2 (i.e., its support is only the primitive
unit cell £2). We also define

AV(r) = V(r) — Vy(r).

Moreover, we will extend the domain of V(r) to the whole plane
with fast decaying tails. Since the overall value of the potential is
not important, here we take the potential to satisfy max.{V(r)} =
0. For an arbitrary potential that does not satisfy this requirement,
we can just simply subtract its maximum value through a phase
transformation of v (r, z). Mathematically, a way to construct a
periodic function is to let V(r) be a rapidly decaying function
and then repeat this function under translational shifts of the

Physica D 440 (2022) 133440

lattice vectors. A periodic function is now a sum of rapidly de-
caying functions that are the same up to a spatial shift. In the
tight-binding limit: V,(r) of a simple Periodic potential can be
approximated by V(r) ~ —Vye K¢*+¥") with k3 > 1. We note
that if the potential has more than one local minima in a unit
cell, i.e.,, a non-simple lattice, then we apply this approximation
near each distinct site type.

3. Simple lattices, nonlinear envelope dynamics
3.1. Dispersion relations

In order to understand the envelope dynamics in weakly non-
linear periodic media, we need a good understanding of the
associated linear problem. The linear problem is governed by a
linear Schrédinger equation with a periodic potential and the
dispersion relation, u(Kk), plays a key role.

Since u(K) is a periodic function of k, it can be represented in
a Fourier series

(k) = fio + ) _je™". (3.1)
v#£0

where iy = ft*, since u(k) is real. For a simple 2D periodic
potential we will estimate the order of /i, and find the leading
order contributions. The 1D lattice is a special case. For a 1D
lattice, it turns out that u(k) ~ f[io + 2f1 cos(kl) with |fq]| >
|n], n > 1 where [ is the 1D period.

In the tight-binding limit, we assume the Wannier functions
Eq. (2.6) are localized at the lattice sites and decay exponentially.
This allows us to use WKB expansions where the harmonic os-
cillator is a good approximation. To leading order, the Wannier
function can be approximated by “orbitals”, defined as

[V? = Vi(m)] ¢(r) = —Eg(r), (3.2)

where E is the real discrete eigenvalue of the operator V2 — Vi(r),
also called orbital energy. In other words, Wannier functions
defined in Eq. (2.6) satisfy the eigenvalue problem Eq. (3.2) to
leading order. We do not distinguish between orbitals and Wan-
nier functions here. For convenience, we require that the orbitals
are real and have norm 1, i.e., f ¢?(r)dr = 1. We define

H' = V? — Vi(r — V)

where %" is a self-adjoint operator defined in L*(R?). So, E and
¢(r — v) are the eigenvalue and corresponding eigenfunction
of #Y. Moreover, H" usually has a infinite number of discrete
eigenvalues if Vi(r) is bounded. In this chapter, we will discuss the
lowest band, where using orbitals to construct the Bloch mode is
reasonable if Vy(r) is deep: |V| > 1.

Next, we use a discrete approach to compute the dispersion
relation. Substituting the Bloch mode Eq. (2.5) into the eigenvalue
problem (2.3), we get

[H® + Elp(r) = [E — 11 + AV(r)]g(r).

For the ground state, we assume the nullspace of the opera-
tor #® + E is one dimensional. Then the Fredholm condition
associated with #° gives

/ SO (E — 1)+ AV()] g(r)dr = 0.

Substituting the decomposition of the Bloch mode Eq. (2.5) into
the above condition yields the dispersion relation

b eik~v
E v
v

\'
v
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where

Av = /(ﬁ(r)AV(r)(p(r —v)dr

Ky = / H(r)p(r — v)dr = i_y.

The dispersion relation in Eq. (3.3) can be simplified. Note that
ko = land Ay < 1and ky, < 1 when v # 0 because ¢(r)
is localized. To leading order, the dispersion relation is wo~
E + Ao ~ [1g; i.e., the mean value of u. Since Zv;ﬁo ke « 1,
we have

uAE+o+ Y G (3.4)
v#0

where

CV = )\v — )"OKV-

Comparing Egs. (3.1) and (3.4), we see iy ~ G, for v # 0.
Hence, we have calculated the first few Fourier coefficients of the
dispersion relation u = u(k).

Furthermore, we need only take the leading order terms of
>, Cve™V. Note that both A, and ky decay fast as [v| — oo.
So we only need to consider the nearest neighbor and on-site
interactions for the dominant contributions. This is the tight-
binding approximation that has been widely used in solid state
physics to calculate electronic band structure (cf. [58]). Then we
get the dispersion relation

u(k)=E+ 20+ Y Ge*™. (3.5)
(v)

Here and afterwards (v) indicates the sum over v only takes
nearest (nonzero) neighbor shift vectors. For convenience, we also
define

w(k) =Y G,
(v)

It is noted that E + Ao has no k dependence and only determines
the mean value of the frequency. The k dependence of the dis-
persion relation is determined by w(k). When considering nearest
neighbor interactions, we typically assume that G, for all nearest
neighbor shift vectors have the same values and denote

C=Gy,.

So, for any nearest neighbor shift vector v, G, ~ O(C). In the tight-
binding limit, C is very small. So w(K) is order O(C). It is also seen
that as Vo — oo, C — 0 and consequently w(k) — 0. Hence the
dispersion surface in Eq. (3.5) becomes flatter and flatter. On the
other hand, the two nearest orbital energy difference Ej; 1 — E; ~
0(v'Vy), so Ej 1 — Ej — oo. Consequently, there may exist a gap
between p;y1(K) and (k).

Note that the ground state (lowest eigenfunction) of the opera-
tor #" is taken to be simple; however, the eigenvalues associated
with the higher excited states can be degenerate; i.e., there can
be multiple eigenfunctions corresponding to one eigenvalue. The
interested reader can find a discussion of the higher states in [53].

3.2. Envelope dynamics

Similar to Fourier modes, the Bloch modes form a complete
set in the space of L? functions [59,60]. As a result, an L? function
can be decomposed into Bloch mode components [23,24].

In the linear limit, the dynamics of Bloch modes are de-
termined by the dispersion relation. Due to the superposition
principle of linear problems, different Bloch modes have different
dynamics and they do not mix with each other. However, when
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nonlinearity is present, the dynamics is more subtle. Although the
derivation of the equation for a continuous envelope in space-
time is well-known, it is not obvious how one can derive the
equations for a discrete, in space, envelope.

When (k) has a single dispersion relation branch, we assume
to leading order

)~ oo

Here ay represents the Bloch wave mode envelope at the site
Sv. We assume the envelope ay(Z) varies slowly under evolution,
where Z = ¢z for a small parameter ¢ that will be determined
later.

Substituting the envelope representation Eq. (3.6) into the
lattice NLS Eq. (2.1), one obtains

’Hp-i-E (Za" zkv>

= —XV: (sid—z" +ay[pn—E— AV(r— p)]) é(r — v)e'™V

—a(sz r—v ““’) (Zavqs r—ve "‘V) ., (37

where p € P. The Fredholm condition associated with #P,
ie., f F¢(r—p) = 0 where F represents the right hand side (RHS)
of Eq. (3.7), yields

dapiv e ik-v’
Zlé‘Kv 7 "'+Zap+v/ w— Ecy — Ay]é

+ OZZZyV1V2V3avlaV2 vy = 0,

Vi V2 v3

1[kv /L(k)Z] (36)

where v = p + V' and only leading order terms are considered
and

ik- _
Wivpvy = ek Vitv2—v3) o

/ $(r —p — V1)(r — p — v2)(r — p — v3)¢p(r — p)dr.

When only on-site and nearest neighbor interactions are taken
into account, the governing equation, after dropping the prime
notation, is

dap
ie—2 4+ w(K)ap

= =) ap ™ + golay’ay = 0, (3.8)

(v)

where g = ygoo = f ¢(r)*dr is the only on-site interaction term
taken for the nonlinear term. Here we assume that ¢, o and C all
have the same order to ensure maximal balance.

After rescaling, we obtain the nonlinear discrete evolution
equation

dap = ik 2
i+ (K)ap — %:awcve' vt gs(o)|ap|’ap = 0, (3.9)
Where for convenience we have taken ¢ = |C| = |o|; ® =

‘C‘ CV = ‘CC" and s(o) is the sign of o. Eq. (3.9) is the unified
discrete non{mear wave system that describes the dynamics of
a single envelope in any simple nonlinear periodic lattice. Note
that the linear coefficients of the equation are directly related
to the coefficients of the linear dispersion relation in the tight-
binding limit, defined in Eq. (3.5). We also note that the 1D
reduction is obtained as a special case; i.e., either the vector v
is one dimensional or the 2D lattice is well-approximated by a
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1D lattice. So if v = i and we omit vy, the 1D lattice equation
is given in 1D notation by

dap

—ikl
dZ )

—+a(k)a, — (ap+,Ep+,eik' + ap_fp_,e

(3.10)

The derivation of the tight-binding models above can be made
rigorous. In particular, it is possible to show that the Wannier
expansion (2.5) approaches the solution of the lattice NLS Eq. (2.1)
in the deep-lattice limit, i.e. Vp, |Vs|] — o0, using an appropriate
Sobolev norm. The works of [61-64] have proven this for various
lattice Schrédinger equations with different types of deep, but
periodic potentials.

+ gs(o)lay|*a, = 0.

3.3. Continuum reduction

Next, we consider the continuous limit. Assume that the en-
velope ay varies slowly over v. In other words, the envelope takes
the form

Z)~ Z ay(Z)p(r — V)eik"’e*mz
~ Z (R, 2)p

where R = (X,Y) = vr now denotes the coordinate of the
envelope and v < 1. To leading order, a, ~ [ a(R)p*(r — v)dr ~
a(v(R — Sy)) where ay is defined at site points.
Before proceeding, we recall our assumption that the disper-
sion relation is sufficiently smooth at the k value we are studying.
We also introduce some further notation: 9,, = a% and V =

(81, 3,): Oy = ﬁ and V = 3,,3,)7; o = W and V =
(81, 82)"; dmn = 00y Here m = 1 denotes the x-direction and
m = 2 is the y-direction.
Using Taylor expansion, we get
~ vz
apiv ~ ap + vV - Va, + ?vHvTap,

) ik-v —mz

En E]Z

where H =
( 021 O

Then

ikv
E apvGe™T x
(v)

2
) ~ . v )
apZC,,e"“" +vVa, - Zvc‘,e"‘“’ + ?ZCve"“"vHvTap
(v) (v) (v)

) is the Hessian matrix operator.

2 2
— ~ v —_ ~
= apoo(k) — Ve - Vap — — > Omnltmntp.

m,n=1

Substituting Eq. (3.11) into Eq. (3.8) yields, to leading order, the
equation

(3.11)

2 s T ot 2 S Gl 2q=0
1882 +wvu - Va+ 5 Z mnOmn@ + gold|®a = 0,
m,n=1

where a = a, is a continuous function now. The above equation,
whose coefficients depend on u(k), governs the dynamics of a
single Bloch mode envelope in nonlinear simple periodic media.
It is valid for any value of k. In analogy to homogeneous media,
Ve plays the role of the group velocity; it is the velocity of
the envelope. In special cases, Vi = 0. This condition gives
the extrema of the dispersion surface, and at these points, the
group velocity is zero and the envelope will remain at its initial
position. The envelope has a spatial shift in the cross-section
when propagating along z direction if Vu # 0. However, by
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defining a moving frame variable £ = R — VuZ we find the

equation

d 2

ity Z Omnfl dmnd + S(0)|al’a = 0, (3.12)
mn 1

where I = # and s(o) is the sign of o and the matrix 9, .t

IC|
is typically called the Hessian. Here we have taken the maximal

balance condition ¢ ~ O(v%|C|) ~ O(g|o|). The above Eq. (3.12)
is a 2D nonlinear Schrédinger equation. At different values of Kk,
the linear dispersive terms may be elliptic, hyperbolic or even
parabolic.

4. A typical simple lattice—square lattice

In the previous section, we derived the dispersion relation
for arbitrary simple lattices and the dynamics of Bloch mode
envelopes. In this section, we will use a typical square lattice to
apply the above general analysis. For convenience, we assume the
nonlinearity is focusing, i.e., 0 > 0. Square 2D periodic structures
are common in nature and can be readily engineered in optics
(cf. [7] and Fig. 4).

A typical square lattice is

Vix,y)= %(sinZ(kox) + sin?(koy) — 2), (4.1)

where 0 > V(r) > —Vy, Vo > 0 is the lattice intensity and
ko is the scaled wavelength of the interfering plane waves. The
characteristic vectors are

vi =1(1,0), v, =1(0, 1),
b4 2
1(1:7(1,0), kzzf(O,l),
where | = ,— is the lattice constant. Clearly, v;-k; = 27 ; and the

potential has periodicity V(x + ml,y + nl) = V(x,y) for m,n € Z.
The site distribution is displayed in Fig. 7(a). For this potential,
each site has four nearest neighbors. Note that Sy, 4y, is not one
of the nearest neighbors of So. The nearest shift vectors are vy,
—Vi, Vp, —Vs.
For the first band, we find that

Gy, = Gy, = C ~ —0.056Vj exp (

he)©

(see below for further details). So the dispersion relation of the
first band is

W(K) =E + Ao + 2C[cos(k - v{) + cos(k - v»)],

(4.2)
= E + Ao + 2C [cos(lk,) + cos(lky)] .

The Brillouin zone that is also a square is displayed in Fig. 7(b),
as well as special points. The dispersion relation obtained by
direct numerical simulation of the eigenproblem (2.4) is displayed
in Fig. 7(c) and it agrees both qualitatively and quantitatively very
well with the dispersion relation obtained by the formula (4.2),
shown in Fig. 7(d).

From the analytical formula Eq. (4.2), we readily obtain

= 2 cos(lky) 0
Hy = =2I°C ( 0 cos(lky) ) (4.3)
En §12

Here H =
(321 02

) is the Hessian matrix operator with

respect to k.
Next we describe the dispersive nature of the system at special
symmetry points. At the I" point, the Hessian matrix is

= o (10
Hy = 21C<01 .
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So I' is a minimum point. Furthermore, since C < 0 the governing

equation of the envelope is a focusing NLS equation. It is expected

that band gap solitons will bifurcate from this point, see [65].
At the M point, the Hessian matrix is

T o -1 0
Hu = 2!C<0 1)

So M is a maximum point since —C > 0. The governing equation
of the envelope is a defocusing NLS equation. There may exist
dark solitons.

At the X; point, the Hessian matrix is

= 5 -1 0
H;L_—ZIC(O 1).

So X; is a saddle point. The governing equation is a hyperbolic
focusing NLS equation. We note that this version of NLS describes
deep water waves [66].

At the X, point, the Hessian matrix is

T o 1 0
Hu = 21C<0 _1>.

So X, is also a saddle point but with opposite negative and
positive eigen-directions to Xj.

5. 2D quantum harmeonic oscillator

In this section, we discuss the case when V(r) is large and is
locally harmonic at each site, i.e., for Vo > 1 we approximate
V(r) = —Vpe K+ py

V(r) ~ Vo(lP(F +y?) — 1)

s (x,y) — (0,0), or (x,y) — (Xo0,y0) Where (xg,yo) is the
coordinate of an arbitrary site. We call this the two quantum
dimensional harmonic oscillator, which has been well studied.
One can find the results in many books on quantum mechanics
(cf. [67]). Below we list some results for formulae that we have
used in the above sections.

The 2D harmonic oscillator is the eigenvalue problem

[V2 = do(x® + y*)] n(r) = —en(r),

where dy > 0 is called the intensity and € the energy. This
problem can be solved by separation of variables into two 1D
oscillators, by assuming n(x, y) = f(x)g(y)

dZ
<ﬁ — dox )f(X) = —&f (%),

and

d2
— —d = —¢ ,
( e oy )g(y) v8(Y)
where € = ¢ + €.

Each of the 1D oscillators are solved in terms of Hermite
functions; it follows that ¢, = (1+2m)+/dg, m=10,1,2,...
and the associated normalized eigenfunctions are

14"
In) =\ o e 2 Hildy ),
where Hp(x) is the mth Hermite polynomial. Similarly, ¢, =
(14+2n)+/dy, n = 0,1,2,... and the associated normalized
eigenfunctions are
1 d® v, 4
_ e Ty /4
8n(X) =\ S 7€ Hy(dy""y).

So the total eigenvalue is € = €, = /do[(1 4+ 2 m) + (1 + 2n)]
and the associated normalized eigenfunctions are

Nmn(X, ¥) = fm(X)gn(¥),

Physica D 440 (2022) 133440

1 4 v
=/ 0 I, (d ) H (d) ).

2m+nmin! g 1/2

We note that the above calculations show that the ground state,
or lowest eigenvalue, is simple but the higher ones, e.g the first
excited state, can have eigenvalues that are multiple (note that
eigenvalue €19 = €9 1).

Next, we use the above functions to estimate the parameters
for the lowest eigenvalue; i.e., the ground state. As mentioned
above, when V; is very large, an approximation of Vy(r) is Vs(r) =
Vo(R2(x2 +y?) — 1) &~ —Voe ¥*+¥) Thus the associated orbitals
can be approximated by the wave functions of the harmonic
oscillator and the corresponding orbital energy E is approximated
by E = € — V. There are two parameters: V;, the depth of the
potential and ko, the width of the potential. The validity of this
approximation is due to WKB theory. With the above approxi-
mation, AV(r) = —Vo ), .o e~ Ir=vI® \where |r| = /X2 +2 is
the standard Euclidean norm. Recall we have assumed that the
position of the first site S = 0, so Sy = v. So the square lattice
Eq. (4.1) has the asymptotic behavior near the first site V(r) ~

Vo [3K3(x* +y?) — 1] and V(r) = -V, e‘*(" +") The behavior
near all other sites is merely a translation of this argument.

As mentioned above, we consider only the lowest band. With
the above approximation, the orbital energy and the orbital are

E = e00 — Vo = 2ky/Vo — Vo,

V)4 Ry
o(r) = ng o(r) = %e_ 5 0(x2+y2).

After some further calculations, the parameters in the dispersion
relation Eq. (3.5) are found to be

Ky = f P(r)p(r — v)dr ~ exp (—%kﬁo ||v||2) ,

Iy = /¢(r)AV(r)¢(r —v)dr
v/? k/Vo(2k + Vo)
exp | — vii“ ),

~
~ —

k+ Vo 4k + Vo)
Ao = / (D) AV(D)p(r)dr

_w” RV o
Whm%“"( f” ||>

Since Gy = Ay

V"
G~ ———exp
k+ Vo

[Zexp( *?u ||)

—exp( K mn || )}

For simplicity, we only take the leading order of Cy under the limit
Vo > 1, and get
vl ) [Zexp (= vi®)

— exp (—’222 IIVIIZ)]

As Vj goes to infinity, G, goes to zero exponentially with respect
to Vp, while 1o ~ O(V}) goes to negative infinity, E + 1y — —o0.

- )“OKVv

||V||

G~V exp(
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Since we consider a square lattice Eq. (4.1) with lattice period ¢
and k? = 1k2, it follows that
o(_F
2

o

G, = G, = Vpexp (—

Note that kol = 7, so

Vo m?
Cy, = Gy, ~ —0.056V,exp (— 0 ) :

44/2kq

6. A typical non-simple lattice—honeycomb lattice

As mentioned earlier, a non-simple lattice may have more
than one site, i.e., one minima, in a unit cell. In this case one
may need more than one initial site to describe the lattice. An
example of a non-simple lattice is the honeycomb lattice. The
right-hand lattice in Fig. 6 is a non-simple honeycomb lattice.
Its sites (potential minima) consist of ‘black’ and ‘white’ sites.
The black and white sites are separately constructed from the
underlying primitive vectors. Hence, we need two initial sites to
describe the honeycomb lattice.

A perfect hexagonal lattice is composed of two standard trian-
gular sublattices: A and B sublattices. The lattice vectors P should
form a triangular lattice. To generate the other sublattice, extra
information is needed to determine the shift from the B site to the
A site in the same unit cell. We denote this shift as a vector d;. The
lattice vectors are given by v; and v,, and a displacement between
adjacent A and B sites is d; = —%(w + v;). We also introduce
two other vectors. d, = v, + d; d3 = v; + d;. The vectors and
their relations are shown in Fig. 8. By connecting all the nearest
neighbors, a perfect hexagonal lattice is obtained. It is noted that
all A (filled-black) form a triangular sublattice and all B (open-
white) sites form the other triangular sublattices. The distance
between two nearest A sites or two nearest B sites (next-nearest
neighbors) is . However, the nearest neighbors of A sites are three
B sites are a distance I/ /3 apart and the shifts are determined by
d], d2 and d3.

A honeycomb lattice can be constructed by three interfering
plane waves

V(r) = % (|eik0b1<r + eilobaT eikob3‘l'|2 _ 9) , (6.1)

where 0 > V(r) > —V; and by = (0,1), b, = (=¥, —1) and
b; = (?, —%); Vo > 0 is the lattice intensity; ko is the scaled
wavelength of the interfering plane waves. The characteristic
vectors for this potential are

V31 V3001
vi=il5-3) w=l5 3

a7 (1 V3 ar (1 /3
k=—|[5>) k=—1|[s-3")
J3\2 2 J3\2 2

where | = ;‘T” and v; - k; = 276; The lattice in Eq. (6.1) has the
periodicity V?r + mvy + nvy) = V(r) for any m, n € Z.

As earlier, the dispersion relation is determined from Eq. (2.3).
For a honeycomb lattice it is convenient to write the potential in
the form

V(r) = ) [Va(r = v) + Vi(r — v)] (6.2)

where V,, Vi denote the potentials generated from the two sites
in the primitive unit cell. In the tight-binding approximation they

10
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(b)

Fig. 8. The hexagonal lattice (a) and the extended Brillouin zone (b). Shaded
regions in (a) and (b) are the unit cell £2 and reciprocal unit cell £2’, respectively.
The construction of the A (filled-black) and B (open-white) sublattices is also
depicted (c).

have sharp minima near the A and B sites, respectively; the sum
over v means Vv takes all values in P, i.e.,, v = mvy + nv,, for all
m, n € Z. The Bloch mode is assumed to take the form

oK) = a ) ga(r —v)e Y + b gy(r — )

where ¢4(r) and ¢p(r) represent an orbital (i.e., Wannier function)
of a single V4 or Vp potential, respectively; they have the same
eigenvalue denoted as E. That is to say,

[V? = Vi(n)] ¢(r) = —Egy(r),

where j is A or B. Here we only consider the lowest band energy
level, so there is no subindex to denote different bands. We also
assume ¢, and ¢y are real and normalize them with norm 1,
ie, [¢idr [ ¢zdr 1. It is convenient to introduce the

(6.3)
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notation

AV{(r) = V(r) - Vi(r)

D i =)+ Vitr = v)] + vi(r),

v#0

for | # j. Again, we consider the tight-binding limit, i.e., Vo > 1
which means the potential well at each site is very deep, and
only on-site and nearest neighbor interactions will need to be
considered [62].

6.1. Dispersion relation

As in the simple lattice case, we first determine the dispersion
relation. We can use Fredholm alternative conditions or equiva-
lently the following method. Substituting the above Bloch mode
¢(r; k) into the eigenproblem Eq. (2.3), and applying the orbital
relation in Eq. (6.3), we get

Dl — E)aga(r — v) + by(r — )] — aAV(r — V)gs(r — V)

— bAVE(r — V)gg(r — V)] €Y = 0. (6.4)

Multiplying ¢;(r),j = A, B to Eq. (6.4) and integrating over the
whole plane, we get the matrix eigenvalue problem,

[(u — E)ct — 2]y (K) > ( E )

nw—E—co
[(u = E)er — ca] y*(k) uw—E—co
(6.5)

(5)

Here only on-site and nearest neighbor interactions are consid-
ered because of the tight-binding limit; and

y(K) = (1 + e *V1 4 g7ilvz)

¢ = / A AVA(D)BA(E)dE = / F5(r) AVa()gp(r)dr:

¢ (Vi) = / oa(T)ulr — V)t — / G5(F)a(r — Vdr;
& (Vi) = / ATV AVH(r — V)t — v)dr

_ / $5(F)AVA(F — V)u(r — V).

It is noted that cg, cq, ¢, are all real and c¢; and ¢, are very small.
Moreover, the coefficients ¢; and ¢, are functions of the distance
|lv|l, and as a result, each nearest neighbor term is identical, up to
a phase. Note we can use Vp(r) = V4(r—d;) and ¢p(r) = ¢a(r—dy)
in these calculations.

The system in Egs. (6.5) has non-trivial solutions if and only if
the determinant is zero. The dispersion relation that follows is

w(k) — E — co = £|(u(K) — E)c1 + c2| - [y (K)I.

Since ¢, ¢; < 1, the above dispersion relation becomes (higher
order terms are omitted)

(k) ~ E +co £ Cly(K)|,

where C = cypc; — ¢3. Since the asymptotic behavior of the hon-
eycomb potential Eq. (6.1) near the site is V(r) ~ —VO(%kg((x -
2/Vgr?

X0)> +(y—y0)*)—1), we can find that C = —0.297Vpe Jng; <0
with the same approximations we used in the simple lattice case.

A typical dispersion surface containing the two lowest spectral
bands is depicted in the left hand Fig. 9; an intensity plot of a
hexagonal lattice is given in the right side. The touching points,
also referred to as Dirac points, correspond to the zeros of y (k).

It is also known that material graphene has honeycomb lattice
structure. In the graphene literature, it has been shown that
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Fig. 9. Left: the two lowest spectral bands of a typical honeycomb lattice. The
touching points are the Dirac points [26]. Right: an intensity plot of potential
(6.1). The local minima (blue) are identified as sites. The local maxima are at
the centers of a triangular lattice of hexagons.

two different energy bands can touch each other at certain iso-
lated points that are called Dirac points; such Dirac points are
sometimes termed diabolical points [28,68]. Thus Dirac points
also exist in the band structure of two-dimensional honeycomb
lattices. The tight-binding approximation is often used in the
study of graphene and it is found that structure of the dispersion
relation near these Dirac points is conical in nature [69,70]; the
regions in the neighborhood of Dirac points are called Dirac cones.

Note that y (k) is periodic in k. In one reciprocal unit cell, there
are two zeros known as Dirac points, which we denote K and K'.
For the above special potential Eq. (6.1), the location of the Dirac
points are

4 4
K=[(0,—) and K =(0,——]).
31 31

All the zeros of y (k) form the reciprocal hexagonal lattice, which
also happens to be the Brillouin zone. At these points, u—E —cy =
0 and so the matrix in Eq. (6.5) is identically equal zero. Thus, a
and b are free. Thus the eigenspace is two dimensional. The asso-
ciated original linear Schrodinger eigenproblem has degeneracy.
In other words, when p = E + ¢y, the eigenproblem Eq. (2.3) has
two independent Bloch modes.

(6.6)

6.2. Envelope dynamics

Suppose we input a Bloch wave envelope into the crystal. To
leading order, the envelope is taken to vary slowly along z,

¥~ (2 a@oale — v + 3 b2)ntr — eV )e . (67)

Since v is not a Bloch mode anymore, the intensities are different
at different sites, i.e., a and b have subindex v that are sites on the
A,B lattices, respectively, and Z = &z; the small parameter ¢ will
be determined later.

Substituting the envelope solution Eq. (6.7) into the lattice NLS
Eq. (2.1), one obtains

Z(si% + a‘,[V2 —V(r-— v)]¢A(r —v)

+ Havpa(r —v)) e

+ Z:(si‘g; + b‘,[V2 —V(r— v)]¢3(r —v)
+ bypa(r — v)) e

2
to (Z (ay(Z)pa(r — V) + by(Z)ps(r — V) eikv)

X (Z(avtzm(r—v)+bv(2)¢3(r—v)>e"kV) —0. (68
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To simplify the steps, rather than employing Fredholm conditions,
we can do the following. Multiply ¢;(r — ple~ P j = A B, where
p € P, to Eq. (6.8) and integrate over the whole plane to get

.da

szd—z" + (1 —E —co)ap + [(0 — E)cr — c2]L1bp + 0glap|®ap = 0;
.dbp 5

gi—2 + (u — E — co)bp + [(n — E)c1 — €21£2ap + 0g|bp|*bp = 0,

az
where

l:lbp — bp + bp—V1 e—fk-V] + bp_vze—ik-vz’
L20p = Ap + Apyv, eV 4 Up-+v, eV,

and g = [¢jdr = [ ¢gdr. Recall that ¢; = ¢;(||v]]) and ¢; =
cy(]lv]]), that is the coefficients are functions of distance with
respect to a displacement vector v.

Away from the Dirac points, the situation is essentially the
same as in the simple lattice. Here the determinant of the sys-
tem Egs. (6.5) is nonzero and a, is proportional to b, and the
equations reduce to those discussed earlier in the simple lattice
case. So, next we only consider the case when we are near Dirac
points, so that k takes the value near K, for example. At that
point, considering u — E — cg = 0, the envelope equation is, after
rescaling (recall C < 0),

d
i% + £1by + 5(0)|ap[2ap = O; (6.9)
db

id—z" + Ly + 5(0)|bp|?bp = 0, (6.10)

where we have taken ¢ ~ O(|C|) ~ O(|o|) to ensure maximal
balance and again s(o) is the sign of o, or zero if there is no
nonlinearity. The system (6.9)-(6.10) is what we refer to as the
discrete Dirac system.

6.3. Continuum reduction

Next we consider the continuous limit; i.e., we assume the
lattice constant I is much smaller than the characteristic scale of
the envelope. Denote a(R) and b(R) as the continuous envelopes
where R = (X,Y) vr, v K 1. Then after some expansions
at the Dirac point k = K, similar to Eq. (3.11), we obtain £; ~
“Tﬁ’(ax + idy) and £, &~ “Tﬁ’(—ax + idy). Note that expanding
around the other Dirac point, K = K’, results in the conjugate
system with £, ~ “2(3 — idy) and £, ~ 23(—dy — idy).
Thus the discrete system near k K becomes the following
continuous Dirac system (after rescaling)

d
id—(zl + (3 — idy)b + s(0)|a%a = ; (6.11)
i+ (=0 —idy)a +s(o)|b|*b = 0, (6.12)

where we have taken ¢ ~ O(|C|v) ~ O(|o|) to ensure the maximal
balance. The continuous Dirac system governs broad envelopes
of Bloch modes with quasimomentum k = K propagating in the
honeycomb lattice. If the envelope is not wide, i.e., not slowly
varying in the transverse direction, the discrete system is more
appropriate than the continuous system to describe the envelope
evolution. If the envelope is very wide, both discrete and continu-
ous systems are satisfactory, but the continuous system is simpler
to use. Finally, observe that combining the linearized version of
system (6.11)-(6.12) yields the 2D wave equation
%a  0%a 9%
9z>  ax2 = ay?’
with wave speed 1.

We can compare typical numerical simulations of both lattice
NLS equation and the Dirac system. The comparison between
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Fig. 10. The propagation of the magnitude of a Gaussian Bloch mode envelope
associated with a Dirac point. Top: simulations of the lattice NLS Eq. (2.1);
Bottom: simulations of the Dirac Eqs. (6.11) and (6.12); here only the A-
component is shown. Reprinted figure with permission from [52], copyright
(2010) by the American Physical Society.

4

W
>

Fig. 11. Left: phase structure of amplitude A in linear Dirac system; Right: phase
structure of the amplitude A in the nonlinear system. Reprinted figure with
permission from [18], copyright (2009) by the American Physical Society.

magnitudes is displayed in Fig. 10. The top panel is from the
lattice NLS equation and the bottom panel is from the Dirac
system. From the top panel, we see that a spot becomes two
rings that separated by a dark ring. The simulation of the Dirac
system gives an excellent match. Thus the Dirac system is a
good model to describe the envelope of Bloch modes near a
Dirac point propagating in a perfect hexagonal lattice. The system
(6.9)-(6.10) was originally found in [18].

Thus the existence of Dirac points shows us that certain en-
velopes associated with the underlying Bloch modes propagate
in an interesting manner: an input spot becomes two expanding
bright rings as the beam propagates in the crystal. This phe-
nomenon is called conical diffraction [28,68] and is a fundamental
feature of crystal optics and is of interest in mathematics and
physics. It was first predicted by W. Hamilton [71] in 1832 and
observed by H. Lloyd [72] in a biaxial crystal soon afterwards;
here a narrow beam entering a crystal spreads into a hollow cone
within the crystal. The existence of the conical diffraction phe-
nomenon in the light beam propagation in honeycomb Ilattices
was demonstrated both experimentally and numerically in [27,
73]. The theoretical explanation was given shortly thereafter [18].

We mention that for both the linear and nonlinear lattices the
evolution of the magnitude (recall Fig. 10) is similar and we ob-
serve conical diffraction. However, there is some difference in the
phase structure—above we used amplitude A. This is indicated in
Fig. 11 where the left figure is associated with a linear lattice and
the right figure a nonlinear lattice (see [18,52,74]). When the hon-
eycomb lattice is deformed, then we can have elliptical and even
straight line diffraction [75]. The system of envelope equations
changes significantly when one considers shallow lattices [76].
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Edge

Bulk

Fig. 12. Edge mode propagation along the boundary of a 2D domain. The bulk
region is in the middle, separated from the domain walls.

7. Topological insulator systems

Within the framework of the lattice waveguides described
above, it is possible to realize topological insulator systems. Gen-
erally speaking, topological insulators behave as insulators (forbid
flow of energy) in the bulk or interior of a medium, but act
as conductors (allow flow of energy) along the edge or sur-
face. Localized states, called edge modes, decay exponentially fast
perpendicular to the medium boundary and propagate parallel
to it [77]; see e.g. Fig. 12. Moreover, these edge states can be
associated with topological invariants. In the case of a nontrivial
topological invariant, the bulk-edge correspondence implies the
existence of topologically-protected modes. These modes tend
to be unusually robust and retain their form, even when they
propagate into/around a material defect.

Two different systems will be presented, each with its own
characteristics. The first is the 1D Su-Schrieffer-Heeger (SSH)
model, originally used to understand the propagation of solitary
waves in hydrocarbon chains [78]. The SSH model is similar to
the 1D discrete NLS model in Eq. (3.10), except the left and
right couplings are not equal. The second system is a 2D Floquet
topological insulator, which can be realized in photonic lattices by
longitudinal modulation of a waveguide array [37]. In terms of the
governing equations, this results in time-dependent coefficients,
which can be solved via Floquet theory.

One of the necessary ingredients for inducing modes with
nontrivial topological invariants is the breaking of symmetries.
In the case of the SSH model, inversion symmetry is broken by
the asymmetric coefficient values. In the case of Floquet photonic
insulator, the temporal driving breaks time-reversal symmetry
by the time-dependent coefficients. Symmetry breaking can open
spectral band gaps that admit topologically-protected modes.

It is possible to find parameter regimes where the corre-
sponding bulk eigenmodes of these systems acquire nontrivial
topological invariants. The topological invariants considered here
are defined in terms of line integrals in their associated spectral
planes. These integrals are indirect ways of determining whether
or not the modes possess nontrivial phase properties. For the SSH
model, the eigenmodes can possess a nonzero Zak phase [79],
which corresponds to a winding number of the phase. In the
Floquet model, eigenstates can acquire a nonzero Chern num-
ber [33], which is related to the Berry phase [80] that indicates a
phase discontinuity.

A consequence of a nontrivial topological invariant is remark-
ably stable modes, known as topologically protected modes. The
SSH modes are localized at the endpoints of the lattice, and
remain fixed throughout the evolution. On the other hand, the
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Fig. 13. 1D SSH lattice waveguide profiles. Nearest neighbor couplings are
indicated. Here, d > ¢ > 0 due to the spacing.

Floquet edge modes with nonzero Chern number propagate uni-
directionally along the boundary and around any defects they
encounter. Rather than backscatter, as one might expect, here
there is unidirectional mode propagation. This propagation in a
preferred orientation is known as chirality.

The connection between the bulk topological invariants and
topologically protected edges states is the bulk-edge correspon-
dence (see [81-84]). The principle typically consists of the fol-
lowing properties: (1) A chiral edge mode exists for a topological
insulators if the corresponding bulk modes have a non-zero topo-
logical invariant. (2) The topological number is equal to the net
number of chiral edge states. (3) The topological invariant is
independent of surface defects or boundary conditions.

8. The SSH waveguide lattice

The simplest topological insulator system to realize in a pho-
tonic waveguide system is that of the SSH model. The model
can be formulated by adjusting the waveguide spacings in an
alternating manner, like that in Fig. 13. Experimentally, these
types of lattices have been realized in laser-etched arrays [85] and
photorefractive crystals [86].

We assume that the potential minima V(r) and orbital approx-
imation near both a and b lattice sites are of identical form. As a
result, the coupling coefficients, which are inversely proportional
to distance, are asymmetric. After transforming and rescaling a
set of equations similar to Eq. (3.10), one obtains the nonlinear
SSH system in Kerr media

da
id—zn + cby + dby_1 + y|an|?a, = 0 (8.1)

.db
ld—Z" + cay + dapyq + v |by|*by = 0 (82)

where n € Z and c, d, y are taken to be non-negative coefficients.
If ¢ > d, this physically corresponds to placing the waveguides
a, and b, closer together than their other neighbors; and vice
versa if ¢ < d see e.g. Fig. 13. By allowing ¢ # d, the inversion
symmetry of the problem, V(r) = V(-r), is broken, unlike the
simple square lattice examined in Section 4.

Some of the main results associated with the SSH model
are presented below; a more comprehensive treatment can be
found in [81]. To highlight the topological nature of this system,
consider plane wave solutions on the infinite line domain of the
form

(ﬁ)n — (Z) (k) ei(knf)»z)'

In the linearized problem (y
system

H(k)e=—ic, €= (g)

for (the spectral Hamiltonian)

0 c+de ik
H(k) = (C n de”‘ 0 ) s

0), this yields the eigenvalue

(8.3)
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Fig. 14. SSH model bulk dispersion relations in Eq. (8.4).
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Fig. 15. Path of complex function u(k) = ¢ +de~* for k € [0, 27]. Note that the
loop is clockwise oriented.

which is 2z -periodic in k. The two dispersion relations are given
by

re(k) = £|c +de”™

, (8.4)

leading to a gap width of 2|c — d|. The corresponding normalized
eigenfunctions are

1 (:Feie(k)>
VARV
dsink

where 6(k) tan™! (— C+dcos,{) is the counterclockwise angle
from the positive real axis. A plot of the dispersion relations for
different values of ¢ and d is shown in Fig. 14. Notice that when
inversion symmetry is broken (c # d), a gap opens between the
bands. When the symmetry is preserved (¢ = d), the gap closes
atk = £m.

The topological quantity associated with this system is the
Berry/Zak phase

Z:i% c % dk,
ok

where (flg) = ffg and t denotes the complex conjugate trans-
pose. The Zak phase is an indirect way of measuring the winding
number of the eigenfunction phase 6(k) over one period in k. To
see this, take the eigenfunction in Eq. (8.5) and observe that

) acy i (¥ do
z= T ak = = ~dk =
'?€<Ci 8k> ¢ 2/0 T

A graphical depiction of the path ¢ + de™* for topologically
distinct parameter sets is shown in Fig. 15. In the topological case
(d > c), the path encircles the origin and corresponds to a Zak

(k) = (85)

(8.6)

1 9(1 ) k=2m
—=0(K
2

k=0

phase of z = —1[6(27) —6(0)] = —1 [-27 — 0] = 7. On the
other hand, in the non-topological case (d < c), the loop does not
enclose the origin and Z = —% [0—0]=0.

Now let us examine the finite domain problem, which may
support edge modes. Here the topological (nonzero Zak phase)
case corresponds to localized chiral edge modes at the endpoints
of the lattice (recall the bulk-edge correspondence). We impose
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Fig. 16. SSH model edge dispersion relations in Eq. (8.7) using N = 20 sites.
Recall that ¢ > d (¢ < d) corresponds to the non-topological (topological) case
in Fig. 15.

the Dirichlet zero boundary conditions

an, by, =0, for n<landn>N

in the linearized version of Eq. (8.1) with N > 1. For time-
harmonic solutions of the form a,(t) = ane ™t and by(t) =
Bre~*t The corresponding system is given by

Mc, = —AC, (8.7)
where M is the 2N x 2N matrix

c

d ¢

o | M d
M_( Mo ) M= ’
d c

O is a zero matrix and ¢, = (a, @z, ....ayx | B1. B2, ..., By)-

The solution of system (8.7) for different parameter values is
shown in Fig. 16. Noticeably, when ¢ > d (non-topological case)
there are no localized edge modes. On the other hand, when
d > c (topological case) there are two zero energy (A = 0) edge
states. Via the bulk-edge correspondence, we infer that these
eigenmodes correspond to a chiral edge state.

Plots of the eigenmodes are shown in Fig. 17. There are
two zero energy, localized eigenmodes: symmetric and anti-
symmetric; both are real. Analytically, one can show that the zero
energy modes along the left edge are of the form

c

)= (-5)" b

y (8.8)

and decay as n — oo when ¢ < d. A similar form exists on the
right edge, except the b, mode is decaying and a, is zero. All other
nonzero energy modes are bulk modes and they are not localized.

Physically speaking, the presence of edges modes corresponds
to isolated endpoints in Fig. 13, well-separated from the next
interior site. In the topological regime, the mode propagation
manifests itself as an electromagnetic field concentrated at the
endpoints.

Theoretical and experimental research on the nonlinear SSH
model is still ongoing. A number of works have established
the existence of nonlinear solitons for the system (8.1) in the
bulk [87-89] and at the edge [90,91]. Topological edge soli-
tons appear rather stable, as long as the energies are well-
removed from the balanced limit, c ~ d [91]. We point out that
with non-Kerr type nonlinearities, fascinating phenomena such
as nonlinear-induced topological transition [92,93] have been
theorized.
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Fig. 17. SSH edge eigenmodes of Eq. (8.7) using N = 20 sites and c = 0.5,d = 1
(topological case). The corresponding eigenvalues are shown in Fig. 16. All
eigenmodes are real.

Fig. 18. An electromagnetic wave propagating through a honeycomb lattice that
is helically-varying in the longitudinal direction. The lattice rods correspond to
regions of higher index of refraction and act as waveguides.

9. Longitudinally-driven photonic lattices

A photonic Floquet topological insulator is described in this
section. The proposal and experimental realization of this system
was originally given in the seminal work of Rechtsman et al. [37].
Physically, the system is a photonic waveguide array, similar to
the one described in Section 1. The new technique introduced is
that the waveguides are constructed with a helical-variation in
the longitudinal direction (see Fig. 18). As a result, one obtains
lattice potentials that are periodic in both the transverse and
longitudinal directions. Lattices that are periodic in the time (or
time-like) variable are typically referred to as Floquet lattices
due to the classic mathematical theory of ODEs developed by
Floquet [59]. Below, the key ideas and governing equations are
described; a more thorough treatment can be found in [40-42].

The starting point is a modification of Eq. (2.1), now with
a longitudinally-varying photonic lattice that is modeled by the
potential V(r,z) that is periodic in x,y, and z. The governing
equation is

i, + VY = V(r,2)y + oY’y =0, (9.1)

where V(r, z) = V(r — h(z)) for the potential given in Eq. (2.7),
with driving function h(z) that has period T: h(z + T) = h(z).
Physically, this corresponds to waveguides where the lattice sites
oscillate with a helical motion in z. In [41,42] more complicated
lattice driving patterns were considered in which each sublattice
was allowed to move independently, as long as there was a
commensurate period. Here, however, we only consider the case
where all lattice sites are driven in the same manner.

A natural transformation is to the coordinate frame co-moving
with helical motion: T = r — h(z). Doing so, and introducing the
phase

’

i (7 2
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yields
iV, + [V+i6@)] § - VEW +o|F[T =0,
where V = 31 + 9;] yields the vector potential
o

2
A typical driving function taken is

(9.2)

A(z) =

A(z) =k (sin(Az + x), —cos (Az + x)) . (9.3)

where « is the relevant helix radius, A = 27 /T is the angular
frequency, and yx is an arbitrary phase shift. There are a few things
to note: (a) In the helical frame of reference, the potential V(¥) is
stationary. The form of the potential resembles that of Eq. (6.2)
for a honeycomb Ilattice. (b) The coordinate transformation has
introduced a magnetic vector potential A(z). A common feature
among Chern insulators is the presence of a magnetic-type field.
Opposed to other systems, which use actual magnetic fields [36,
51], here an effective or pseudo magnetic field is generated by the
helically-varying waveguide. (c) The helical driving of the system
breaks time reversal symmetry (conjugation + z — —z) since
A(—z) # A(z).

Finally, to simplify the problem, the Peierls phase transforma-
tion [94,95]

V(¥ 2) = p(F. 2)e” ™A,
is applied and reduces Eq. (9.2) to
ip, + Vo +1-A(2)p — V(r)p + o lg’p =0,

where the tilde notation has been dropped. This is the final form
of the PDE, from which the tight-binding model discussed below
is derived.

Next, the field ¢ is expanded in terms of an orbital basis. For
this system, a direct Wannier expansion is ineffective since a
nonzero Chern number eliminates their exponential decay [56];
however other indirect Wannier approaches may be possible [96].
To generate a convenient and analytical basis, we examine the
weakly driven and linear limit of Eq. (9.4) where |A'(z)] <«
1. Physically, a rapidly varying regime where weakly driven
regime where A > 1 was employed; see [40,41]. Indeed the
experiments [37] were in this rapidly varying helical regime.
Using these assumptions eliminates all z-dependent coefficients
in Eq. (9.4). Note, however, that the variable r here is in the helical
frame of reference, so these orbitals are localized at the oscillating
lattice sites (in the original frame of reference).

For a lattice with two sites per unit cell, we look for solutions
of the form

Z [amn(Z)dm,mn(r) =+ Emn(z)d’B,mn(l‘)] efiEz,

m,n

(9.4)

o(r, 2) (9.5)

where ¢;j my(r) are orbital functions. In general, the number of
distinct orbital terms in the expansion matches the number of
lattice sites per unit cell e.g. a lattice with three lattice sites per
until cell will have an extra term of the form Cpy(2)pc mn(r). In
particular, for the honeycomb lattice the orbital functions are
defined by ¢4 mn(r) = ¢(r — mvy — nvy — dy) and ¢g pma(r) =
¢(r — mvy — nvy), where ¢(r) satisfies the orbital equations in
(6.3).

From here, the derivation of a tight-binding model follows
similar to that of Sections 4 and 6. A set of semi-discrete equa-
tions are derived by substituting expansion (9.5) into Eq. (9.4),
multiplying by each orbital type, and then integrating over R2.
For typical experimental systems, the potential is deep or has
large magnitude at the waveguides, that is [V(r)] > 1 near the
lattice sites. As a result, a tight-binding approximation is applied
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Fig. 19. Discrete honeycomb lattice for the tight-binding system (9.6)-(9.7).
The a lattices sites (black dots) are located at points {v,|v, = mw; + nw; + dq}
and the b sites (white dots) at {v,|v, = mw; + nw,} where m, n € Z. Zig-zag
boundary conditions are those in the vertical direction.

and only the on-site and nearest neighbor interactions are kept.
Details of the derivation can be found in [41,42].

The paradigm Floquet tight-binding model is a honeycomb
lattice. Following the procedure described above, the governing
tight-binding model is given by

damn
dz

e [ e AR iy AR

i + Ug|amn|zamn (9.6)

n—-1+ e_idz‘A(Z)bm-o—l,n—l ]: 0,

i— mn|*Donn (9.7)
dz

+C [ et Z)a nt e Az)am+1,n+1 + eidz‘A(Z)amq,nM ]: 0,

where g [ ¢a(rydr = [ ¢p(r)dr. A couple of notes about
this system: (a) The above system is essentially the same as the
one discussed in Section 6 -see Eq. (6.9)-(6.10) only now the
coefficients are periodic functions of z. (b) The coefficient C =
C (JJv])) is distance-dependent and so it is the same for all nearest
neighbor interactions. (c) The indices used here are not in terms
of the lattice vectors v and v,. Instead, the m index is in terms
of the vector w; (vi —vy)/2 = 1(0, 1/2) and the n-index for
wy; = (Vi+Vvy)/2 = l(«/§/2, 0) (see Fig. 19); this is useful in edge
mode calculations, discussed below.

9.1. Floquet dispersion bands

To begin analyzing the honeycomb Floquet system, we first
consider the linearized version of system (9.6)-(9.7) on an infinite
domain. A linear reduction can be achieved by taking a small
intensity field: |amn|?, |bma|?> & 0. The corresponding eigenmodes
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X y X

Fig. 20. Typical bulk dispersion surfaces (9.11) computed from (9.9). In the
absence of driving (A(z) = 0), the surfaces touch at the Dirac points, K and
K’'. Driving the lattice (A(z) # 0) opens a band gap and the corresponding
eigenfunctions acquire nontrivial Chern numbers, as indicated.

are known as bulk modes. The spectral dispersion surfaces or
bands are computed by looking for Fourier solutions of the form

amn(2) = A(k, z)emWitwe) (9.8)
MMA=(knﬂ“M“W%

which yield

d

; iH(K, 2)c . &:@)&JL (9.9)

for (the Hamiltonian)

0 (K, z)
”mi):<ﬂkzﬁ 0 )’

and ‘L'(l(,Z) — e—id]-A(z) + e—i(d3<A(Z)+k~v1) + e—i(d2~A(Z)+k»v2)‘ Notice
that the matrix # is T-periodic in z and periodic in the spectral
plane: H(k + pky, z) = H(k, z) = H(k + gk, z) where p, q € Z.

We look for solutions of system (9.9) via Floquet theory [59].
These solutions are assumed to satisfy the quasi-periodic bound-
ary condition

ck,z+T)=p ck,z), p(K) = e~ (9.10)

The parameter p is known as the characteristic or Floquet mul-
tiplier and for stable Floquet modes, it lies on the unit circle.
To find it, the 2 x 2 principal fundamental matrix solution of
(9.9) at z = T is computed numerically. This matrix solution
is known as monodromy matrix. Moreover, the eigenvalues of
the monodromy matrix are the Floquet multipliers in Eq. (9.10).
Finally, the so-called Floquet exponents are calculated by

ilog[p(K)]

T .
The exponential form of the Floquet multiplier in Eq. (9.10) im-
plies an infinite number of solutions, due to periodicity in «(Kk);
i.e. p is unchanged by the shift « — « + 27/T. For all re-
sults shown here, we only present the principal branch (k) €
[—m /T, /T.]

For a typical set of values, the bulk dispersion surfaces are
shown in Fig. 20. In the absence of driving (A(z) 0), the
bands touch at the Dirac points (6.6). Introduction of the helical
driving motion (A(z) # 0) opens a band gap. Furthermore, as a
result of this driving, the corresponding bulk eigenmodes acquire
a nontrivial topological number, discussed next.

Through the periodic driving of a waveguide array, it is possi-
ble to realize eigenmodes with a nontrivial topological invariant,
known as the Chern number. The relevant topological Chern
number of eigenfunction ¢, in Eq. (9.1), corresponding to the pth
spectral band, is given by

ach o ach o
/y“ %% _ %% % )y p=1.2  (9.12)
= 2mi uc \ Oky dk, Ok, ok,

a(k) = (9.11)
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Fig. 21. (a) Linear edge dispersion bands given in Eq. (9.18). The red (blue)
gapless bands correspond to edge modes localized along the left (right) domain
wall. Black regions correspond to bulk modes. Two typical edge modes are
shown in panels (b) and (c) on a semi-log plot to highlight their exponential
decay.

where UC denotes the reciprocal unit cell defined in terms of
the reciprocal lattice vectors k; and k,. We note that G, is z-
invariant. Physically, the Chern number indicates the presence
of a nontrivial phase jump inside the reciprocal unit cell. In a
rapidly-varying regime (T <« 1), it is also possible to derive an
averaged version of the bulk system (9.1) that is independent
of z [97]. Remarkably, it turns out that the form of this the
averaged-system is analogous to the well-known Haldane model
used to study the quantum Hall effect [34]. On the other hand,
to numerically compute Chern numbers directly, the algorithm
given in [98] can be applied.

As a remark, nonlinearity can induce localized bulk modes.
These nonlinear Floquet modes, predicted in [99] and experimen-
tally observed in [100], correspond to band gap spectral values
and exhibit a cyclotronic motion about a particular lattice site.

Next, we study the problem on a finite domain in the x direc-
tion and infinite in the y direction. We look for edge modes that
decay exponentially fast perpendicular to the imposed boundary.
As a result, we consider modes of the form

Umn(2) = an(K, 2)e™™1 byn(z) = by(k, 2)e™ ™1, (9.13)

which reduce system (9.6)-(9.7) to

da

i— + oglaa|’an (9.14)
dz

e [ e i ADp (e—i[d3~A(z)+k»w1] + efi[d;A(z)fkw]]) by ]: 0,
db

i— + og|bp|?by (9.15)

dz
e [ giAC)g, | (eldAykwi] 4 oty kwil) g ]: 0.
where k-w; = %ky. Zero boundary conditions are imposed along
a set of zig-zag boundaries:

b, =0,
a, =0,

for n<0, n>N-—1, (9.16)

for n<1, n> N,

(see Fig. 19 for reference).

The linear (0 = 0) edge Floquet modes can be computed in
a manner analogous to that of the bulk problem above. Again,
solutions are assumed to satisfy the quasi-periodic boundary
condition

(ﬁﬁiﬁiiii)n = rlky) (ZE%S) plky) = e @™ (9.17)

For the boundary value problem defined in Eqs. (9.14)-(9.16), the
corresponding monodromy matrix can be numerically computed
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at z = T using identity initial conditions. As before, the Floquet
exponents are computed from the Floquet multipliers using

ot = 1808)

and keeping only the fundamental branch.

For a typical driving function A(z), the Floquet band dia-
gram (corresponding to zero boundary conditions) is shown in
Fig. 21(a) using N = 80 sites. The black region corresponds to
bulk modes whose corresponding eigenmodes do not decay in
n. Spanning the bandgap is a chiral edge state, indicated by a
family of Floquet quasienergy values (blue and red curves) whose
corresponding eigenmodes are localized along the left and right
domain walls. In panels Figs. 21(b) and 21(c) the associated edge
Floquet modes in Eq. (9.17) are shown and their exponential
decay is highlighted.

To gain an intuitive understanding of the chirality of this
system, consider the group velocity corresponding to a gapless
mode. Along both curves the slope and therefore group velocity is
sign-definite. Modes with negative (positive) slope correspond to
negative (positive) group velocity localized along the left (right)
boundary. The resulting (positive) chiral mode is the combination
of these two edge modes; it propagates counterclockwise, as
viewed from the waveguide input, along the domain boundary.
This is the topological case with nontrivial Chern number. If the
Chern number is zero, usually there does not exist chiral edge
modes. But there are counterexamples; e.g. phase offset sublattice
driving patterns [82].

Topologically protected modes are identified through the bulk-
edge correspondence. In the topological case, bulk modes whose
band diagrams look like Fig. 21(a) have a nontrivial Chern num-
ber. There is a known algebraic relationship between bulk Chern
number and the number of topologically protected edge states.
The upper bulk band has Chern number C; = —1, which equals
the number of topological edge states in the gap above it (zero)
minus the number of edge states in the gap below it (one). A
similar algebra exists for the lower bulk band.

As a final observation, topologically protected modes can also
be created along the boundary of two topologically distinct media
(e.g. different Chern numbers) fused together. These so-called
interface modes behave similar to the edge modes constructed
along a domain wall, i.e. Eq. (9.16), in that they propagate uni-
directionally along the interface. These types of arrangements
can allow more precise steering of the electromagnetic waves.
Physically, topologically protected interface modes have been
observed in various Chern insulator systems like gyrotropic lat-
tices [50], Floquet photonic lattices [101], and more generally,
systems with a sharp transition between the topologically distinct
bulk regions [50,84,102].

) (9.18)

9.2. Edge mode dynamics

In this section, the dynamics of the edge modes found in
the previous section are discussed, with particular focus on the
chiral propagation of the topologically protected modes men-
tioned above. Wide spatial envelopes, localized along the domain
boundary, are found to propagate into and around lattice defects,
rather than reflecting or disintegrating. When Kerr nonlinearity is
relevant, it is possible to realize Floquet edge solitons which also
propagate unidirectionally [40-42,103].

To form an analytical description of edge envelopes, con-
sider waveguides that are rapidly rotating such that the an-
gular frequency in Eq. (9.3) is large: A > 1. Furthermore,
assume a weakly nonlinear regime where og = 1/A. A multiple
scales analysis (see [40,41]) reveals, to leading order, edge states
localized along the left boundary of the form

aGmn(Z) ~ 0, byn(z) ~ B(ym, Z)r"eorm, (9.19)
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Fig. 22. Profile comparison between the discrete solution (blue circles), by, o(z),
and envelope (red curve), C(y, z). The top row shows an envelope in a parameter
regime described by the third-order NLS Eq. (9.24); the bottom row is a
stationary bright soliton governed by (9.21). Reprinted figure with permission
from [41], copyright (2017) by the American Physical Society.

where Z is a slow time variable, y,, = \/§m/2 is the continuous
variable y sampled at points on the discrete grid, and |r(ko)| < 1
corresponds to an exponentially decaying edge mode as n — oc.
The edge mode excited corresponds to the mode k, = ko of the
edge band diagram. The slowly-varying envelope B(y, Z) satisfies
the generalized NLS equation

0B taB4 , 0B N a! 3°B a’” 3°B n
i— + oy o, —+ =2 — —i—*—
V4 * oy 2 9y? 6 ay3
+on|B*B+---=0, (9.20)
such that o = [[ba(ko)lIZ/ (Allba(ko)I|2) > 0 and &’ d"“ |ky o

for the red curve in Fig. 21(a). A similar calculation on the right
boundary shows that a,, is the nontrivial contribution while b,
is nearly zero. In the linear regime, the governing equation only
contains linear contributions, i.e. oy = 0.

Through the careful selection of physical parameters, it is
possible to engineer so-called Floquet edge solitons. A slowly-
varying envelope B(y, Z) means that the higher-order dispersion
terms (beyond third-order) in Eq. (9.20) are typically negligible.
Moreover, at moderate power levels the higher-order nonlin-
earity terms (beyond cubic Kerr term) can be neglected too. By
judiciously picking the wavenumber, ko, certain linear terms can
be effectively eliminated. For example, near a critical point of an
edge band (see Fig. 21(a)), @/ # 0 and &) ~ 0. As a result, the
governing equation of the envelope is the traveling NLS equation

B i B VB BPE=0 (9.21)
— + a — 4+ —=—— 4« =0, .
9z " *ay 2 9y2 oM
for which o] > 0 admits the bright soliton solution
7.2
/ i( S5 +ay )z
B(y,Z)=v,/ % sech [v(y—a.Z)] el( : ) , (9.22)
O]

with v € R. Experimentally, Floquet solitons have been observed
in the bulk [100] and along the edge [104]. In the case of o < 0,
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Fig. 23. Intensity snapshots, |bya(z)|?, for a (top row) topologically protected
mode and (bottom row) non-topologically protected mode. The defect barrier
is located in the region [—46, —40] x [0, 4]. Reprinted figure with permission
from [41], copyright (2017) by the American Physical Society.

this equation admits dark solitons of the form

(9.23)

//

v ==
[o4))]

+isina tanh (v [y — (&, — ve] cosat) Z]) ] a2z

[cosa

where v and « are real parameters.

On the other hand, if one considers modal values near the
inflection point of Fig. 21(a), then « ~ 0 while " # 0 and
(9.20) reduces to the third-order NLS equation

oB 0B o 3B
l— +Ol*B+la @ —l?ﬁ
for which no stable solitons are known; in this case there is
considerable dispersion. Theoretically, one expects solitons away
from the zero dispersion point to propagate more effectively over
long distances than modes at the zero dispersion point.

A comparison of the envelope approximation in (9.19) with
the full numerical solution of (9.6)-(9.7) is shown in Fig. 22.
In the case of the soliton being described by the higher-order
NLS Eq. (9.24), the envelope and discrete model both are seen
to develop dispersive tails at large z. On the other hand, the
stationary bright soliton profile is seen to maintain its form over
long distances.

The final consideration is the effect of the topological pro-
tection on the edge envelope evolution. A defect barrier is in-
troduced along the boundary wall. Physically, this defect corre-
sponds to an absence of waveguides, so a,;,;, = 0 and by, = 0 is
imposed in that region. The evolution of a linear edge envelope
with an associated nontrivial Chern number is displayed in the
top row of Fig. 23. The envelope encounters the defect barrier,
and rather than backscatter, propagates around and with virtually
no loss in intensity. On the other hand, if one considers a non-
topological edge envelope, the contrast is stark (see bottom row
of Fig. 23). The envelope propagates into the barrier, reflects
backward and loses a substantial amount of energy.

A similar evolution follows for the edge solitons described
above (see [41]). A potential advantage of incorporating nonlin-
earity is the reduction or removal of dispersion in envelopes. As
was seen in Fig. 22, dispersive degradation of modes is possible
over long distances. In theory, a soliton is a perfect balance
of dispersive broadening and self-focusing nonlinearity. Floquet
edge solitons have the potential to combine the robust unidirec-
tional propagation of topological edge modes with a stable soliton
balance.

Finally, we remark on the case of narrow (in y) envelopes
for this system. In the absence of driving (A(z) = 0), generally
traveling solitary waves are not supported by the discrete NLS

+ o |BI%B = 0, (9.24)
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Fig. 24. The Lieb lattice consists of three interpenetrating square sublattices
Vu(r) (square site, a), V,(r) (circle site, b) and V(r) (triangle site, c). The lattice
vectors are e; = (I, 0) and e, = (0, I). Lines denote nearest neighbor interactions.
Shown is a bearded (straight) boundary condition on the left (right) edge.
Reprinted figure with permission from [42], copyright (2019) by the American
Physical Society.

equation [105,106]. This effect is due to discretization of the
original PDE, and is commonly known as the Peierls-Nabarro
energy barrier [107]. Recently, it was shown that the topological
nature of these systems does not allow highly localized modes
to stop [108], i.e. traveling modes exist. However, the solitary
wave sheds energy until it widens its profile and is effectively
continuous and described by the envelope in Eq. (9.22). The need
to carefully prepare nonlinear edge states was also observed
in [50], albeit in a physically different system. In that latter
work, solutions of the linear system were found to suffer from
decoherence in the fully nonlinear system. Care must me taken
when preparing coherent nonlinear modes.

9.3. Other lattice models

Longitudinally-driven lattice models can be constructed for
other lattice types and with them their own unique band dia-
grams. Examples include staggered-square [41,109], Lieb [110],
and kagome lattices [42,111]. Each case allows topologically pro-
tected, unidirectional edge mode propagation. The principles used
to derive a set of governing tight-binding models are similar to
those used to obtain the honeycomb lattice above.

An interesting example is the Lieb Floquet lattice (see Fig. 24)
which contains three lattice sites per unit cell. The central (b)-
site couples to the four nearest neighbor sites: two (a)-sites and
two (c)-sites. The (a) and (c) sites do not directly couple to each
other, that is a next-nearest neighbor interaction. The governing
tight-binding model is given by the system of three equations

da .
dmn +C [ rAOp, + e_lel'A(z)bm,nJ]
+ O’g|amn|2amn =0, (9.25)
db
d [ 1e1 z)am it te —ieq A(z)a
+elerAR), iz AR, ] 408 |Bynn b = O, (9.26)
.dCmn iey-A(z) —iey-A(z)
1 [e 2 bm+1,n +e €2 bmn]
+ 08|Cmnl*Cmn = 0, (9.27)
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Fig. 25. Lieb lattice edge band diagrams for bearded (straight) boundary condi-
tions on the left (right) boundary. Red curves indicate edge modes on the right
edge, blue curves denote left edge modes, and green curves designate flat band
modes on both edges. When driven, the Chern numbers for the corresponding
bulk bands are shown.

such that g = [ ¢3(r)dr = [ ¢g(r)dr = [ ¢Z(r)

The corresponding bulk and edge dlspersmn bands can be
computed in manner similar to the honeycomb lattice in Sec-
tion 9.1. In the absence of driving, the bulk dispersion surfaces
are characterized by the single Dirac point in the reciprocal unit
cell where all three bands meet [97]. The top and bottom bands
exhibit locally conical structure near the Dirac point while the
middle band is completely flat. Helically driving the waveguide
opens a band gap between the top, bottom, and (flat) middle
bands. The eigenmodes of the top and bottom bulk bands can
acquire nontrivial Chern numbers.

A typical edge band diagram for the Lieb lattice is shown in
Fig. 25. Driving the lattice opens two gaps: between the top and
middle bands and between the bottom and middle. Within each
gap is a single chiral edge state that spans the gap. As a result, the
central band has a Chern number of zero (1 — 1 = 0). Moreover,
flat band edge modes are stationary and do not suffer from
dispersion/diffractive effects [112,113]. Similar to the honeycomb
lattice, the gapless edge modes propagate unidirectionally around
lattice defects, scatter-free (see [42] for details). Edge solitons
have been predicted for the Lieb lattice in [114], meanwhile
dipole solitons have been theorized in the kagome lattice [115].

10. Conclusions

Photonic waveguide arrays are a versatile platform for realiz-
ing interesting physical phenomena. This article discusses some
of the important experimental and theoretical work in the field.
The field of optical waveguides is vast; the focus of this article
was primarily on work done in the last decade.

The history of early experiments and their mathematical mod-
els was reviewed. Most experimentally realizable parameter
regimes correspond to strong waveguide attraction which are
effectively modeled by deep lattice potentials. As a result, the
derivation of and study of various tight-binding models is a useful
consideration. Here, tight-binding models in one and two spatial
dimensions were examined. Emphasis was placed on the orbital
expansion technique due to its ability to yield analytical descrip-
tions of coupling coefficients. Numerous physical phenomena are
found, including: Dirac cones, conical diffraction, gap solitons,
topologically protected modes, and Floquet linear edge mode and
nonlinear edge solitons.

Importantly, photonic waveguide arrays can be experimen-
tally realized. Such waveguides are usually constructed in the
paraxial regime and are governed by the Schrédinger equation
with a periodic potential. The interesting phenomena discussed
in this paper makes it likely that the study of photonic waveguide



M,J. Ablowitz and J.T. Cole

arrays and associated topological waves will continue to draw
considerable research interest in physics, engineering and applied
mathematics for many years.
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