
PNAS  2023  Vol. 120  No. 26  e2221150120� https://doi.org/10.1073/pnas.2221150120   1 of 11

RESEARCH ARTICLE | 

Significance

Pheromones are signaling 
molecules used for chemical 
communication in social 
interactions. Although diverse 
pheromone classes from diverse 
species have been identified, little 
is known about how chemical 
languages evolve. To study the 
genetic basis underlying natural 
diversity in animal chemical 
language, we analyzed the 
secreted pheromones of 95 
whole-genome sequenced 
wild Caenorhabditis elegans 
strains. We characterized the 
genetic architectures underlying 
natural differences in the 
production of 44 ascarosides, 
which represent the nematode’s 
primary pheromone class. Our 
study uncovered “hot spot loci” 
that broadly impact ascaroside 
production, as well as inverse 
correlations between two major 
classes of ascarosides. Our 
findings provide insights into how 
metabolism and chemical 
communication are coupled in 
evolution.
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From bacterial quorum sensing to human language, communication is essential for 
social interactions. Nematodes produce and sense pheromones to communicate among 
individuals and respond to environmental changes. These signals are encoded by different 
types and mixtures of ascarosides, whose modular structures further enhance the diver-
sity of this nematode pheromone language. Interspecific and intraspecific differences 
in this ascaroside pheromone language have been described previously, but the genetic 
basis and molecular mechanisms underlying the variation remain largely unknown. 
Here, we analyzed natural variation in the production of 44 ascarosides across 95 wild 
Caenorhabditis elegans strains using high-performance liquid chromatography coupled 
to high-resolution mass spectrometry. We discovered wild strains defective in the pro-
duction of specific subsets of ascarosides (e.g., the aggregation pheromone icas#9) or 
short- and medium-chain ascarosides, as well as inversely correlated patterns between 
the production of two major classes of ascarosides. We investigated genetic variants 
that are significantly associated with the natural differences in the composition of the 
pheromone bouquet, including rare genetic variants in key enzymes participating in 
ascaroside biosynthesis, such as the peroxisomal 3-ketoacyl-CoA thiolase, daf-22, and 
the carboxylesterase cest-3. Genome-wide association mappings revealed genomic loci 
harboring common variants that affect ascaroside profiles. Our study yields a valuable 
dataset for investigating the genetic mechanisms underlying the evolution of chemical 
communication.

C. elegans | pheromone | natural variation | ascaroside | fatty acid metabolism

“Pheromone” is an informative chemical or mixture of chemicals that an organism pro-
duces and secretes into the environment, affecting the behavior, physiology, and develop-
ment of other individuals. Nematodes use pheromones called ascarosides (1, 2), which 
consist of the dideoxy sugar, ascarylose, linked to diverse fatty acid–like (FA–like) side 
chains, and can be decorated with diverse derivatives of amino acids, folate, and other 
primary metabolites (3) (Fig. 1A). The nematode sensory system perceives distinct com-
binations and concentrations of ascarosides (4), which in turn modulate a variety of 
biological processes, including developmental plasticity, social and sexual behaviors, olfac-
tory learning, stress response, reproduction, and longevity (1, 5–11).

Studies of the model nematode Caenorhabditis elegans have uncovered a complex net-
work of ascaroside biosynthetic pathways. One of the key biochemical reactions in asca-
roside production is the iterative shortening of the FA–like side chains by peroxisomal 
β-oxidation (Fig. 1B). Mutations in peroxisomal β-oxidation genes impair the production 
of functional short- and medium-chained ascarosides that control development and behav-
ior (13–17). Analysis of peroxisomal β-oxidation mutants, in particular daf-22(ok693), 
revealed an accumulation of long-chained precursors with both odd and even numbers 
of carbons in the side chain (16). Although the roles of many genes involved in the pro-
duction of ascarosides have been characterized (e.g., daf-22, dhs-28, maoc-1, and acyl-CoA 
oxidase orthologs) (16, 18–21), the upstream pathway that produces long-chained pre-
cursor ascarosides is largely unknown.

Ascaroside pheromones are a universal nematode chemical language found across diverse 
parasitic and free-living species (2), but the repertoire of ascaroside pheromones varies 
from species to species. For example, a dimeric ascaroside discovered in Pristionchus paci-
ficus, dasc#1, regulates the mouth-form dimorphism underlying its facultative predatory 
lifestyle (22). In addition, intraspecific quantitative variation in pheromone production 
has been observed in both C. elegans and P. pacificus species (2, 23, 24). These discoveries 
suggest that ascaroside biosynthetic pathways vary within and across species. In line with 
the natural variation in pheromone production, natural differences in pheromone responses 
have been demonstrated as well (23, 25–28). Here, we characterized the genetic basis of 
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Fig. 1. A natural deletion in the daf-22 gene was found in a pheromone-deficient wild Caenorhabditis elegans strain. (A) Chemical structures of the ascarosides. 
Simple ascarosides consist of the dideoxy sugar ascarylose (brown) and an FA–like side chain of varying lengths (blue). Modular ascarosides incorporate 
additional building blocks from other primary metabolic pathways, e.g., indole 3-carboxylic acid (icas#, green) derived from tryptophan, the neurotransmitter 
octopamine (osas#, green), and a variety of C-terminal modified ascarosides, including folate derivatives (ascr#8, ascr#81) and several glucosides (black) (12). 
(B) Chain shortening of ascarosides by enzymes in the peroxisomal β-oxidation pathway. Ascarosides of the two classes (“ascr” and “oscr”) are derived from very 
long-chain precursors. (C) Schematic of the ascaroside profiling experiments, in which 95 C. elegans strains were grown in liquid cultures, and the conditioned 
media extracted and analyzed by HPLC-HRMS, then correlated with genomic data to identify QTL underlying natural differences in pheromone production. (D) 
A 29,011 bp natural deletion in the JU1400 strain encompassing daf-22 and seven additional genes. (E) Extracted ion chromatograms (EICs) corresponding to 
several short- and medium-chain ascarosides, as indicated, in the N2 strain (wild-type, WT), daf-22(ok693), and the JU1400 strain exo-metabolome extracts from 
synchronized adults. Y axis are scaled as indicated to clearly show lower-intensity metabolites. (F) EICs for m/z 429.3222 and 443.3378, corresponding to precursor 
ascarosides with C18 and C19 sidechains, respectively, in the N2 strain (WT), daf-22(ok693), and the JU1400 strain exo-metabolome extracts from synchronized adults.D
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natural variation in C. elegans pheromone production. We ana-
lyzed the secreted metabolites from 95 wild C. elegans strains and 
profiled their pheromone bouquets by measuring relative abun-
dances of 44 different ascarosides. Our quantitative genetic anal-
ysis of heritable variation in ascaroside production revealed diverse 
links between natural differences in metabolism and chemical 
communication of the species.

Results

A Peroxisomal β-Oxidation Gene Is Deleted in a Pheromone-Less 
Wild C. elegans Strain. To investigate the intraspecific variation in  
C. elegans pheromone production, we analyzed the exo-metabolomes 
of 95 wild strains using high-performance liquid chromatography 
coupled to high-resolution mass spectrometry (HPLC-HRMS) 
(Fig. 1C and Methods). Because ascaroside biosynthesis is affected by 
diverse factors including sex, developmental timing, and nutrition 
(29), we chose to analyze the exo-metabolomes of synchronized 
hermaphrodites at the young adult stage. Among thousands of 
detected metabolites, we identified and quantified 44 ascarosides 
(Methods and SI Appendix, Fig. S1). Unexpectedly, we found that 
short- and medium-chain ascarosides were almost completely 
absent in a single wild strain (JU1400), suggesting that key steps in 
ascaroside biosynthesis could be impaired in this strain. Previously, 
mutations in peroxisomal β-oxidation genes (e.g., daf-22, dhs-28, 
maoc-1) (Fig. 1B) were shown to abolish the production of short- 
and medium-chain ascarosides (16). To investigate whether the 
JU1400 strain has an impaired peroxisomal β-oxidation pathway, 
we performed a de novo assembly of this genomic region and 
identified a large deletion (29  kb) in the daf-22 locus, which 
completely removes daf-22 and seven neighboring genes (Fig. 1D). 
Consistent with this deletion, the metabolic phenotype of the 
JU1400 strain closely resembled that of daf-22(ok693) loss-of-
function mutants, which lack short- and medium-chain ascarosides 
and instead accumulate large amounts of long-chain precursor 
ascarosides (Fig. 1 E and F). Intriguingly, the ratio of very long-
chain (ω-1)- to ω-ascarosides in daf-22(ok693) and JU1400 was 
similar (Fig. 1F), suggesting that the ratio of these precursors is 
controlled independently of peroxisomal β-oxidation. We extended 
our analysis of the daf-22 locus to 538 wild genomes (30) but did 
not find the same deletion nor any nonsense mutation in any other 
wild strains, suggesting that the loss of a β-oxidation gene that leads 
to the severe impairment of ascaroside production is rare in the 
natural C. elegans population.

The Pheromone Bouquet Varies among Wild C. elegans Strains. 
C. elegans produces and releases a diverse collection of ascarosides 
with different lengths of FA side chains as well as other types 
of modifications (Fig.  1A and SI  Appendix, Table  S1). Based 
on the HPLC-HRMS data, we compared the composition and 
abundances of pheromones among 94 wild C. elegans strains 
(Fig. 2 A and B and Dataset S1), excluding the JU1400 strain 
that lacks the majority of short- and medium-chain ascarosides. 
For each strain, we calculated the intensity of each ascaroside 
relative to the sum of the 44 measured ascarosides (henceforth, 
referred to as relative abundance). On average, we found that 
two major ascarosides, ascr#5 and ascr#3, which are derived 
from the ω and ω-1 pathways, comprised 51.2% and 21.4% 
of measured ascarosides, respectively (Fig. 2C). The rest of the 
identified ascarosides comprised 0.004 to 7.4%, and the relative 
abundances of each ascaroside varied from strain to strain, though 
to different extents (Fig. 2 B and C and SI Appendix, Fig. S2). For 
example, a pheromone that promotes aggregation at picomolar 
concentrations, referred to as icas#9 (indole-3-carboxylic acid 

ascarosides) (8, 31), was not detected in the ECA36 strain but 
it comprised 3.3% of total ascarosides in the CB4856 strain 
(Fig.  2D). Notably, ECA36 possesses a nonsense mutation in 
cest-3, which encodes the enzyme required for 4′ attachment of 
indole 3-carboxylic acid to the ascarylose core (32). By contrast, 
ascr#11 was much less variable than icas#9 across the 94 wild 
strains, as its relative abundance ranged from 2.1 to 5% (Fig. 2E).

To investigate the genetic contributions to natural variation in 
ascaroside abundances, we analyzed the heritabilities for relative 
abundance traits of 44 ascarosides. We found that the narrow-sense 
heritabilities (h2) of 44 ascaroside abundance traits ranged from 
0 to 80% (Fig. 3A). Variation in the icas#9 abundance trait exhib-
ited the highest heritability (80%), followed by ascr#10 (67%), 
icas#10 (59%), and ascr#5 (57%). All icas# showed high herita-
bilities (>50%), whereas differences in β-hydroxylated ω-ascarosides 
(bhos#10, bhos#11, bhos#18, bhos#22) were not explained by 
additive genetic factors (h2 = 0%). To focus on genetic differences 
in pheromone production, we chose 23 ascarosides that showed 
at least 10% of total additive genetic variance for further study.

We analyzed the correlation patterns among these 23 heritable 
traits and found that negative correlations are prevalent between 
ω-ascarosides and (ω-1)-ascarosides. For example, the most abun-
dant ω-ascaroside (ascr#5) showed negative correlations with all 
(ω-1)-ascarosides but positive correlations with all ω-ascarosides 
(oscr#9, oscr#12, oscr#18) (Fig. 3B). The strongest correlations 
(Spearman’s rho = -0.81) were observed between ascr#5 and the 
most abundant (ω-1)-ascaroside (ascr#3) (Fig. 3 B and C). 
Furthermore, the ratio between ascr#3 and ascr#5 was remarkably 
heritable (h2= 82.1%), which was even higher than the h2 values 
of the relative abundance traits for ascr#3 (48.1%) or ascr#5 
(57.4%). We observed a similar trend using principal component 
analysis (PCA) of the 23 heritable traits (Fig. 3 D–F and Methods). 
The first principal component (PC) that explained 32.3% of the 
variance in the dataset had negative loadings for all ω-ascarosides 
(ascr#5, oscr#9, oscr#12, oscr#18) and positive loadings for all 
(ω-1)-ascarosides (Fig. 3E). Because ω- and (ω-1)-ascarosides are 
derived from parallel β-oxidation of very-long chain precursors 
(29), these results suggest that the relative amounts of ω- and 
(ω-1)-starting materials vary across the species.

To examine the biological significance of the (ω-1)- to 
ω-ascaroside ratio, we measured the correlation between this trait 
and an ascr#5-induced dauer formation trait (27). We found that 
the ascr#3:ascr#5 ratio is weakly correlated (Spearman’s rho = 
0.192) with ascr#5-induced dauer formation across 61 wild 
strains. Notably, this weak correlation is largely driven by four 
outlier strains (JU258, ED3052, LKC34, and NIC166) that 
exhibit a high ascr#3-to-ascr#5 ratio (SI Appendix, Fig. S3).

A Common Genomic Locus Underlies Variation in Ascaroside 
Biosynthesis. To characterize genomic loci underlying observed 
natural differences in the composition of the pheromone bouquet, 
we performed genome-wide association (GWA) mappings 
(SI Appendix, Table S2). We identified four quantitative trait loci 
(QTL) from the mapping of ascr#3:ascr#5 ratio trait (Fig. 4 A and 
B), including the most significant genomic region on the right 
arm of chromosome II (peak marker at II:13,692,928), which 
explained 71.8% of the phenotypic variance. Specifically, five wild 
strains (ED3052, JU258, LKC34, NIC166, and NIC256) had 
high ascr#3:ascr#5 ratios (≥1) and the nonreference (ALT) allele 
at the peak position (Fig. 4B). We also performed GWA mapping 
for heritable (>10%) relative abundance traits of 23 ascarosides 
and identified QTL from 20 traits (Fig. 4C). The ascr#3:ascr#5 
trait QTL overlapped with QTL that were mapped for relative 
abundance traits; ChrIIR-QTL overlapped with 11 ascarosides D
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(anglas#7, ascr#1, ascr#3, ascr#5, ascr#7, ascr#12, ascr#81, 
bhas#18, bhas#22, osas#2, and oscr#12) and three other QTL 
(ChrIIL-QTL, ChrIV-QTL, and ChrX-QTL) also overlapped 
with QTL from other relative abundance traits (Fig. 4C). These 
results together suggest that shared genomic loci (“QTL hot spots”) 
harbor variants with a broad impact on ascaroside biosynthesis.

We investigated the QTL hot spot spanning 1.49 Mb on the 
right arm of chromosome II (ChrIIR-QTL), which explained the 
largest fraction of variance for the ascr#3:ascr#5 ratio trait and 
also was mapped for the largest number of relative abundance 
traits. To identify a quantitative trait gene underlying this hot 
spot, we performed a fine-mapping for the ascr#3:ascr#5 ratio 
trait (Fig. 5A). Among 9,907 genetic variants in 290 genes across 
the QTL (Dataset S2), we prioritized genetic variants that were 
predicted to disrupt protein function (i.e., missense, frameshift). 
Four single-nucleotide variants (SNVs) were found to be equally 
and significantly associated with the phenotypic variation  
(−log10p = 12.469). Among four genes (moe-3, W09H1.1, 
W09H1.3, and mecr-1) impacted by these SNVs, we focused on 
mecr-1 because of its predicted involvement in fatty acid metab-
olism, which is upstream of ascaroside biosynthesis and therefore 
potentially related to the ascr#3:ascr#5 ratio trait. The gene mecr-1 
encodes a mitochondrial trans-2-enoyl-CoA reductase, a key 

enzyme in mitochondrial FA synthesis (mtFAS) (33), whose 
potential interactions with ascaroside biosynthesis have not been 
described previously. We found that four of the five wild strains 
with high ascr#3:ascr#5 ratios (ED3052, JU258, LKC34, and 
NIC256) harbored the G159V missense variant in mecr-1 
(Fig. 5B), suggesting that this allele could cause increased produc-
tion of ascr#3, a reduction of ascr#5, or both.

We extended our analysis to the association between the mecr-1 
variant and pairwise ratio traits of all the 23 analyzed ascarosides. 
We found that the MECR-1(G159V) variant explained much of 
the phenotypic variance for many traits (Fig. 5C). Specifically, the 
MECR-1(G159V) variant was frequently associated with differ-
ences between ω-ascarosides (ascr#5, oscr#9, oscr#12, oscr#18) and 
(ω-1)-ascarosides (e.g., ascr#1, ascr#3, ascr#7, bhas#18, icas#3, 
osas#2), suggesting that this variant could affect the balance between 
the two parallel ascaroside production pathways. In addition, the 
relative ratio traits between bhas#12, an (ω-1)-oxygenated β-hydroxy 
ascaroside, and many (ω-1)-ascarosides were associated with the 
MECR-1(G159V) variant. Relative abundances of iglas#2, osas#9, 
and osas#10 to many other ascarosides [both ω-ascarosides and 
(ω-1)-ascarosides] were also associated with this same variant. Taken 
together, these results suggested that the mecr-1 variant might 
broadly affect ascaroside biosynthesis pathways.
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Fig. 2. Pheromone bouquet varies across wild C. elegans strains. (A) Neighbor-joining tree of 94 wild C. elegans strains analyzed in this study (except the JU1400 
strain) generated from 963,027 biallelic segregating sites. The terminal branch is colored by the strain’s geographic origin. (B) A heatmap showing relative 
abundances of 44 ascarosides. Each row represents one of the 94 wild strains, ordered by genome-wide relatedness. Ascarosides are grouped by structural 
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Natural Genetic Variants in the mtFAS Pathway Are Associated 
with the Variation in Ascaroside Biosynthesis. To test whether 
the MECR-1(G159V) variant underlies observed differences 
in ascaroside production, we performed allele-replacement 
experiments. Using CRISPR-Cas9 to edit the mecr-1 locus, we 
tried to substitute the glycine at position 159 with a valine in 
the N2 strain and the valine at position 159 with a glycine in the 

ED3052 strain (Methods). We successfully generated N2 MECR-
1(G159V), but we failed to replace the valine with glycine in the 
ED3052 strain after extensive trials (no. of injected animals = 
63). We also failed to introduce the same valine-to-glycine edit in 
the NIC256 strain (no. of injected animals = 43). Although our 
results suggest a potential genetic incompatibility of glycine at this 
residue in these genetic backgrounds, possibly from uncharacterized 
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Fig.  3. Relative abundances of ω- and (ω-1)-
ascarosides are inversely correlated. (A) Narrow-
sense heritabilities of 44 different ascarosides 
are shown. Each point corresponds to one of the 
44 ascarosides and is colored by the structural 
property. Cn: Number of carbons. The blue 
dashed horizontal line shows the heritability 
threshold (10%) for downstream analyses. The 
length of the FA side chain is shown on the x axis. 
(B) A heatmap showing correlation (Spearman’s 
rho) of relative abundance traits between two 
different ascarosides. (C) A scatter plot showing 
relative abundances of ascr#3 (x axis) and 
ascr#5 (y axis). Each point corresponds to one of 
the 94 wild C. elegans strains. (D) Plots of the 94 
wild strains showing their values for each of the 
two significant axes of variation, as determined 
by PCA of the ascaroside pheromone bouquet. 
(E) Relative abundance trait loadings of the first 
PC that explains up to 32.3% of the total variance 
in the trait data are shown. (F) Pie charts showing 
the relative abundances of 23 ascarosides with 
high heritability (>10%) for four wild C. elegans 
strains labeled in D are shown. (E and F) Bar 
plots and pie charts are colored by the structural 
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Fig. 4. QTL hot spots underlie natural variation in various ascarosides. (A) Manhattan plot for GWA mapping of the ascr#3:ascr#5 ratio trait. Each dot represents 
a single-nucleotide variant (SNV) that is present in at least 5% of the 94 wild strains. The genomic position in Mb, separated by chromosome, is plotted on the x 
axis, and the statistical significance of the correlation between genotype and phenotype is plotted on the y axis. The dashed horizontal line denotes the Bonferroni-
corrected P-value threshold using independent markers correcting for LD (genome-wide eigen-decomposition significance threshold). SNVs are colored red if 
they pass this threshold. The region of interest for each QTL is represented by a cyan rectangle. (B) Beeswarm plots of phenotypes split by peak marker position 
of the four QTL from A. Each dot corresponds to the phenotype of an individual strain, which is plotted on the y axis. Strains are grouped by their genotype at 
each peak QTL position. Dots for the reference N2 strain and five high trait-value strains are colored red. (C) A summary plot showing the GWA mapping results 
including location and range of QTL for relative abundance traits for 20 ascarosides with high trait heritability (>10%) and the ascr#3:ascr#5 ratio trait. Each red 
bar corresponds to the peak position of the QTL and each gray box represents the region of interest for each QTL.
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genetic interactions with other alleles, we cannot conclusively rule 
out other technical reasons [e.g., inefficient homology-directed 
repair (HDR)] for our inability to create the desired edit. We grew 
allele-replacement strains in the N2 background and examined the 
phenotypic effects of the MECR-1(G159V) variant on the profile of 
excreted ascarosides. We found that two independent N2 MECR-
1(G159V) strains, ECA2818 and ECA2834, produced an N2-like 
pheromone blend, as measured by the ascr#3:ascr#5 ratio, whereas 

the ED3052 and NIC256 strains grown in parallel reproduced the 
altered ascr#3:ascr#5 ratio trait (SI Appendix, Fig. S4).

Because the MECR-1(G159V) allele–replacement strains did not 
recapitulate the QTL effect, we hypothesized that multiple linked 
alleles together might contribute to the QTL effect. Notably, ALT 
alleles at the peak markers of all four ascr#3:ascr#5 ratio QTL 
(II:2,429,716; II:13,692,928; IV:6,958,736, and X:148,173) were 
associated with greater trait values (Fig. 4B), and these alleles displayed 

II

12.4 12.8 13.2 13.6

0

5

10

15

20

Genomic position (Mb)

−
lo

g1
0(

p)
A

anglas#7
ascr#1

ascr#10
ascr#12
ascr#18

ascr#3
ascr#5
ascr#7

ascr#81
bhas#10
bhas#12
bhas#18
bhas#22
icas#10

icas#3
icas#9
iglas#2

osas#10
osas#2
osas#9

oscr#12
oscr#18

oscr#9

an
gl

as
#7

as
cr

#1
as

cr
#1

0
as

cr
#1

2
as

cr
#1

8
as

cr
#3

as
cr

#5
as

cr
#7

as
cr

#8
1

bh
as

#1
0

bh
as

#1
2

bh
as

#1
8

bh
as

#2
2

ic
as

#1
0

ic
as

#3
ic

as
#9

ig
la

s#
2

os
as

#1
0

os
as

#2
os

as
#9

os
cr

#1
2

os
cr

#1
8

os
cr

#9

20 40 60
Variance
explained (%)

C

CX11254
JU1530
JU1581
PB303

ED3077
QX1212

RC301
CX11314

JU2007
JU346
JU406
MY16

CX11292
EG4349
ED3017
ED3048

CX11271
EG4347

KR314
QX1792
JU1246
NIC236

MY1
ED3046
JU1395
JU397
JU310

CX11276
JU367

JU1491
JU1172
JU393

JU1896
DL226
ECA36

JT11398
ED3011
EG4725
JU2466
JU1200

BRC20067
JU1409

MY10
NIC2

QX1233
NIC207
JU360
DL238

JU2001
JU323

QX1794
ED3012

GXW1
JU394

NIC3
JU1793
JU774
JU847

CX11285
PS2025
NIC267
ED3049
NIC231
JU778
JU775

ED3073
CX11264

MY23
ED3005
CB4932
JU2316
JU440

QG536
JU1586

NIC1
QG556
QG557
JU642

JU1652
N2

JU1568
QX1791
CB4856
JU1242
NIC199
JU2464
PB306

WN2001
QX1793
NIC166
LKC34

ED3052
JU258

NIC256

0.0 0.5 1.0 1.5
ascr#3 : ascr#5

MECR-1
159G
159V

B

Fig. 5. A mecr-1 variant is associated with natural differences in ascaroside production. (A) Fine mapping of the ChrIIR-QTL (II:12,422,412-13,692,928) for 
the ascr#3:ascr#5 ratio trait is shown. Each dot represents an SNV that is present in at least 5% of the 94 wild strains. The association between the SNV and 
ascr#3:ascr#5 trait value is shown on the y axis, and the genomic position of the SNV is shown on the x axis. SNVs with high or moderate impact inferred from 
SnpEff are colored purple. (B) A bar plot for the ascr#3:ascr#5 trait value of 94 wild C. elegans strains. The reference N2 strain is colored orange, and wild strains 
with the MECR-1(G159V) variant are colored red. (C) A heatmap showing amounts of variance explained by the MECR-1(G159V) variant for pairwise ratio traits 
of 23 ascarosides with high trait heritability.
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strong linkage disequilibrium (LD) (SI Appendix, Fig. S5). Specifically, 
two QTL that are on opposite arms of chromosome II (ChrIIL- 
QTL-ChrIIR-QTL) showed high LD (r2 = 0.509). Surprisingly, we 
detected the same level of LD between QTL on different chromo-
somes (ChrIIR-QTL-ChrV-QTL, SI Appendix, Fig. S5). These intra-
chromosomal and interchromosomal LD might reflect genetic 
interactions between MECR-1(G159V) and other uncharacterized 
alleles in pheromone production.

To test this hypothesis, we performed a fine-mapping for the 
ChrIIL-QTL, which has a much smaller CI (2.6 Mb) than that 
of the ChrIV-QTL (6.5 Mb) that spans almost half of chromo-
some IV (Fig. 6A). In total, we analyzed the association between 
28,230 genetic variants in ChrIIL-QTL with the ascr#3:ascr#5 
ratio trait. The five most significantly associated variants were 
identified in the genes bath-4, nstp-4, pod-2, T04B8.5, and math-7 
(Dataset S3). Intriguingly, the most significantly associated variant 
predicted to impact gene function was in pod-2, an ortholog of 
human ACACA (acetyl-CoA carboxylase alpha). POD-2 is pre-
dicted to act upstream of MECR-1 in the mtFAS pathway (−
log10p = 15.300, Fig. 6B). Given the low probability of randomly 
mapping two highly significant coding variants in two distinct 
genes within the same biochemical pathway from two separate 
QTLs, we prioritized the pod-2 variant for further analysis. The 
alternative POD-2(1516Y) allele is associated with a higher 
ascr#3:ascr#5 ratio than that of the reference POD-2(1516H) 
allele (Fig. 6C). Furthermore, the association patterns of pairwise 
ratio traits are similar to those of MECR-1(G159V) variant 
(SI Appendix, Fig. S5). Most importantly, three wild strains that 
exhibit extremely high ascr#3:ascr#5 ratios carry alternative alleles 
for both genes (Fig. 6C).

To analyze the effects of the POD-2(H1516Y) variant and its 
genetic interaction with the MECR-1(G159V) variant, we gen-
erated allele-substituted strains in both the N2 and the N2 
MECR-1(159V) genetic backgrounds. We found that neither 
the single edit of POD-2(1516H>Y) nor the double edits of 
both MECR-1(159G>V) and POD-2(1516H>Y) changed the 
ascr#3:ascr#5 ratio (Fig. 6D). Although these two variants are 
highly associated with phenotypic variation and components of 
the same mtFAS pathway, this result shows that neither 
MECR-1(G159V), POD-2(H1516Y), nor both variants are 
sufficient to change the ratio of ω-ascarosides to (ω-1)-ascarosides 
in the N2 background.

Discussion

We explored natural variation in ascaroside pheromone production 
of C. elegans and its genetic basis. By profiling excreted metabolites 
across 95 wild C. elegans strains, we found that ascaroside phero-
mone bouquets differ between strains in several different ways. In 
the most extreme case, we found complete absence of ascaroside 
pheromones in the JU1400 strain likely caused by a deletion 
encompassing the peroxisomal β-oxidation gene daf-22. Similar 
to daf-22(ok693) laboratory mutants, this wild strain has lost the 
ability to produce short- and medium-chain ascarosides and 
instead accumulates long-chain precursors (Fig. 1 E and F). The 
natural loss of the daf-22 gene was surprising because ascaroside 
pheromones are known to play key roles in the survival and repro-
duction of the species (4). Notably, we scanned over 500 wild C. 
elegans genomes and identified this loss only in the genome of the 
JU1400 strain. This strain was sampled from an urban garden in 
the city center of Seville, Spain, suggesting that this rare daf-22 
deletion has been maintained in a human-associated environment. 
Similarly, a nonsense mutation in the carboxylesterase cest-3 in the 

ECA36 strain was correlated with the lack of indole ascarosides, 
which regulate dwelling and aggregation behaviors (8). We also 
found this cest-3 variant from the genome of 28 other wild C. 
elegans strains that were sampled across Pacific regions (30), sug-
gesting that this variant can be maintained in the natural 
populations.

In addition, our analysis revealed a negative correlation between 
the relative abundances of ω- and (ω-1)-ascarosides across many 
different natural strains, highlighted by their most abundant rep-
resentatives, ascr#5 (ω) and ascr#3 (ω-1), which together account 
for more than 70% of measured ascarosides. The structural differ-
ence between ω- and (ω-1)-ascarosides, which also regulate differ-
ent traits, likely arises from differences in the metabolism of their 
long-chain fatty acid precursors, which presumably get hydroxy-
lated in specific positions of the chain followed by attachment of 
the ascarylose, producing long-chain precursors of either ω- or 
(ω-1)-ascarosides. Because the origin of long-chain ascaroside 
precursors remains unknown, we speculate that the ratio of (ω-1) 
to ω-ascaroside is determined by the hydroxylation of long-chain 
alkyl precursors (i.e., hydroxylation at either the ω or ω-1 carbon), 
resulting in fatty acid attachment to ascarylose at the correspond-
ing carbon. This difference might be caused by different metabolic 
inputs to the ascaroside pathway or from the expression of differ-
ent tailoring enzymes (e.g., cytochrome P450 oxidases), which 
could preferentially hydroxylate the ω or ω-1 position (34). 
Interestingly, we found that the five strains with the highest 
ascr#3:ascr#5 ratios were isolated from Europe and Africa but not 
from the Pacific region where C. elegans likely originated (35, 36). 
By contrast, the five strains with the lowest ascr#3:ascr#5 ratios 
include two strains from the Pacific region (SI Appendix, Fig. S7). 
This result suggests that the relative abundances of ω- and 
(ω-1)-ascarosides were reversed in some populations during the 
out-of-Pacific expansion of C. elegans, which is hypothesized to 
have been facilitated by human activity (37).

Our GWA mapping analysis uncovered hot spot genomic loci 
that underlie relative abundances of various ascarosides as well as the 
ascr#3:ascr#5 ratio. Two hot spot QTL on chromosome II were 
mapped, respectively, to loci that harbor coding variants in mtFAS 
pathway genes (mecr-1 and pod-2) that are highly associated with 
the (ω-1)-to-ω-ascaroside ratio. We hypothesize that the mtFAS 
pathway underlies the balance between the two parallel ascaroside 
biosynthetic pathways, and genetic variants in the mtFAS pathway 
contribute to the natural differences in the usage of the two pathways. 
However, our allele replacement experiments in the N2 strain failed 
to demonstrate the causal effects of these two variants, which could 
be interpreted in several ways. First, the mtFAS pathway might not 
be involved in ascaroside biosynthesis, or at least may not be respon-
sible for the natural variation in (ω-1)-to-ω-ascaroside ratio. Second, 
two variants [MECR-1(G159V) and POD-2(H1516Y)] that we 
edited may be neutral but linked to uncharacterized causal variants 
in other genes. Finally, complex genetic interactions could mask the 
effect of these alleles. Recently, incompatible versions of a galactose 
metabolic pathway were characterized in Saccharomyces cerevisiae 
(38), in which the incompatible combination of alleles of metabolic 
genes is not found in nature. We failed to introduce MECR-1 
(159G>V) edit in two wild strains but successfully generated 
MECR-1(159V>G) edit in the N2 background, implying that 
incompatible alleles of metabolic genes might be present across wild 
genomes of C. elegans. Notably, we found strong LD among three 
ascr#3:ascr#5 QTL (the mecr-1 locus, the pod-2 locus, and the 
ChrIV-QTL). Therefore, although even the double-edited 
(MECR-1(159G>V) and POD-2(1516H>Y)) strains did not display 
effects on the mapped trait (ascr#3:ascr#5), this result could be 
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explained by allele(s) in unidentified genes that segregate together 
and exert nonadditive phenotypic effects.

Although we focused on the (ω-1)-ascaroside-to-ω-ascaroside 
ratio among many observed traits in this study, we also discov-
ered natural variation in the production of individual ascaroside 

pheromones and their QTL. Our dataset will provide a valuable 
resource for future studies to characterize genes involved in 
pheromone production and to explore the molecular mecha-
nisms of how genetic changes lead to the evolution of a chemical 
language.
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Fig. 6. Another mtFAS gene, pod-2, is also associated with natural differences in ascaroside production. (A) Fine mapping of the ChrIIL-QTL (II:4,512-2,641,359) 
for the ascr#3:ascr#5 trait is shown. Each dot represents an SNV that is present in at least 5% of the 94 wild strains. The association between the SNV and 
ascr#3:ascr#5 trait value is shown on the y axis and the genomic position of the SNV is shown on the x axis. SNVs with high or moderate impact inferred from 
SnpEff are colored purple. (B) Schematic of the mitochondrial FA synthesis (mtFAS) pathway. Two enzymes (POD-2 and MECR-1) that harbor missense variants 
associated with ascaroside production variation are shown. (C) A bar plot for the ascr#3:ascr#5 trait value of 94 wild C. elegans strains. The reference N2 strain 
is colored orange and other wild strains are colored by the genotype of two sites (MECR-1(G159V) and POD-2(H1516Y)). (D) Phenotypes of POD-2 allele–replaced 
strains are compared with the N2 reference parental strain (159G, 1516H) and ECA2818 MECR-1–edited strain (159V, 1516H). Two independent POD-2 allele–
replacement strains for each background (ECA3130 and ECA3131 for N2; ECA3128 and ECA3129 for ECA2818) were tested. On the y axis, values of ascr#3:ascr#5 
ratio traits are shown.
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Methods

C. elegans Strains and Growth. N2 (Bristol) and wild nematode strains were 
maintained at 20 °C, reared on Escherichia coli OP50, and grown on modified nem-
atode growth medium containing 1% agar and 0.7% agarose (NGMA) to prevent 
animals from burrowing (39). Wild strains were obtained from the CeNDR (30) and 
are available upon request. Strain information can be found in the C. elegans Natural 
Diversity Resource. For the analysis of staged adults, approximately 35,000 syn-
chronized L1 larvae obtained from alkaline bleach treatment were added to 125 mL 
Erlenmeyer flasks containing S-Complete medium at a density of ~3,000 animals/
mL. Nematodes were fed with concentrated E. coli OP50 and incubated at 20 °C with 
shaking at 180 revolutions per minute (RPM) for approximately 64 to 70 h, at which 
time the population was predominantly gravid adults as determined by microscopic 
inspection. Liquid cultures were transferred to 15 mL conical tubes and centrifuged 
(500 × g, 22 °C, 1 min), and the supernatant (conditioned media, exo-metabolome) 
was transferred to a fresh conical tube and snap frozen.

Sample Preparation. Exo-metabolome (conditioned media) samples were 
lyophilized for 24 h using a VirTis BenchTop 4 K Freeze Dryer. Dried material 
was directly extracted in 3 mL methanol with gentle rocking at room tempera-
ture. Following overnight extraction, the samples were centrifuged (2,750 × g,  
22 °C, 5 min) in an Eppendorf 5702 Centrifuge. The supernatant was trans-
ferred to a clean 8 mL glass vial and concentrated to dryness in an SC250EXP 
Speedvac Concentrator coupled to an RVT5105 Refrigerated Vapor Trap (Thermo 
Scientific). The powder was suspended in 150 µL methanol, vortexed vigorously 
for 30 s, and sonicated for 5 min. The suspension was transferred to a 1.7-mL 
Eppendorf tube and centrifuged (18,000 × g, 22 °C, 5 min), and the clarified 
supernatant was transferred to HPLC vials and analyzed directly by HPLC-HRMS, 
see below.

HPLC-HRMS. Liquid chromatography was performed on a Vanquish HPLC system 
controlled by Chromeleon software (ThermoFisher Scientific) and coupled to an 
Orbitrap Q-Exactive High-Field mass spectrometer controlled by Xcalibur software 
(ThermoFisher Scientific). Methanolic extracts prepared as described above were 
separated on a Thermo Hypersil Gold C18 column (150 mm × 2.1 mm, particle size 
1.9 μM, part no. 25002-152130) maintained at 40 °C with a flow rate of 0.5 mL/
min. Solvent A is 0.1% formic acid (Fisher Chemical Optima LC/MS grade; A11750) 
in water (Fisher Chemical Optima LC/MS grade; W6-4); solvent B is 0.1% formic acid 
in acetonitrile (Fisher Chemical Optima LC/MS grade; A955-4). A/B gradient started 
at 1% B for 3 min after injection and increased linearly to 98% B at 20 min, followed 
by 5 min at 98% B, then back to 1% B over 0.1 min, and finally held at 1% B for the 
remaining 2.9 min to reequilibrate the column (28 min total method time). Mass 
spectrometer parameters were spray voltage, −3.0 kV/+3.5 kV; capillary tempera-
ture, 380 °C; probe heater temperature, 400 °C; sheath, auxiliary, and sweep gas, 
60, 20, and 2 AU, respectively; S-Lens RF level, 50; resolution, 120,000 at m/z 200; 
and AGC target, 3E6. Each sample was analyzed in negative (ESI−) and positive 
(ESI+) electrospray ionization modes with m/z range 100 to 1,000.

Metabolite Nomenclature. Ascarosides were named using Small Molecule 
Identifiers (SMIDs), a search-compatible nomenclature for metabolites identified 
from C. elegans and other nematodes. The SMID database (www.smid-db.org) is an 
electronic resource maintained in collaboration with WormBase (www.wormbase.
org); a complete list of SMIDs can be found at www.smid-db.org/browse (12).

Identification of a Large Deletion at daf-22 Locus in JU1400. To identify 
structural variants in JU1400, we downloaded a genome assembly for JU1400 
assembled with PacBio long reads (36) from NCBI (GCA_016989365.1) and 
called structural variants using MUM&Co (40) (version 3.8; default parameters) 
with the N2 genome (WS285) as a reference. MUM&Co identified a 29,011 bp 
deletion (II:12411041-12440052) in JU1400 relative to N2 that overlaps with 
daf-22 and seven other protein-coding genes (Y57A10C.1, Y57A10C.11, sre-
27, sre-26, Y57A10C.8, dct-12, and Y57A10C.9). We confirmed this deletion by 
aligning unassembled PacBio long reads for JU1400 (PRJNA692613) to the N2 
reference genome using minimap2 (41) (version 2.17; using the parameters -a 
-x map-pb) and inspecting read coverage using IGV (42) (version 2.8.13).
Genetic relatedness. A VCF file containing 963,027 biallelic SNVs from a previous 
study (36) was filtered for 94 wild C. elegans strains and converted to the PHYLIP 
format. The distance matrix and pseudo-rooted (ECA36) neighbor-joining tree were 
made from this PHYLIP file using dist.ml and the NJ function, respectively, using 

the phangorn (version 2.5.5) R package. The tree was visualized using the ggtree 
(version 1.16.6) R package.

Heritability Calculations. Narrow-sense heritability (h2) estimates were cal-
culated using the phenotype data of 94 wild strains. The A.mat functions in the 
sommer R package (43) were used to generate an additive genotype matrix, from 
the genotype matrix used for the GWA mapping. This matrix was used to calculate 
the additive variance components using the sommer mmer function. Variance 
components were used to estimate heritability and SE through the pin function 
(h2 ~ V1/V1 + V2) in the sommer package.

PCA. Phenotypic values for heritable (>10% narrow-sense heritability) relative 
abundance traits of 23 ascarosides were used as inputs to PCA. PCA was performed 
using the prcomp function in R. Eigenvectors and loadings were subsequently 
extracted from the object returned by the prcomp function.

GWA Mapping. A GWA mapping was performed for heritable (>10%) relative abun-
dance traits of 23 ascarosides as well as the ascr#3 to ascr#5 (ascr#3:ascr#5) ratio trait 
using the NemaScan pipeline (44) available at https://github.com/AndersenLab/
NemaScan. Genotype data were acquired from the latest VCF release (release 
20210121) from the CeNDR. We used BCFtools (45) to filter variants below a 5% 
minor allele frequency and variants with missing genotypes and used PLINK v1.9 
(46, 47) to prune genotypes using LD. The additive kinship matrix was generated 
from the 30,065 markers using the make-grm and make-grm-inbred functions from 
GCTA (48). Because these markers have high LD, we performed eigen decomposition 
of the correlation matrix of the genotype matrix to identify 499 independent tests 
(49). We performed GWA mapping using the mlma-loco and fastGWA-lmm-exact 
functions from GCTA. Significance was determined by an eigenvalue threshold set 
by the number of independent tests in the genotype matrix (49). Confidence intervals 
were defined as ±150 SNVs from the rightmost and leftmost markers that passed the 
significance threshold.

CRISPR-Cas9 Allele Replacement. Genome editing to make alleles pod-
2(ean229), pod-2(ean238), pod-2(ean239), pod-2(ean240), mecr-1(ean216), and 
mecr-1(ean220) was done using CRISPR-Cas9 and the coconversion marker dpy-10 
as previously described (50). Single-strand guide RNAs for mecr-1 and pod-2 were 
designed using the online analysis platform Benchling (benchling.com). All guides 
were ordered from Synthego (Redwood City, CA) and injected at 1 μM for the dpy-
10 guide and 6 μM for all others. Single-stranded oligodeoxynucleotides (ssODN) 
templates used for HDR were ordered from Integrated DNA and injected at 0.5 μM 
for the dpy-10 ssODN and 5 μM for all others, and 5 μM purified Cas9 protein (QB3 
Macrolab, Berkeley, CA) was used. Hermaphrodites were staged at L4 larval stage 
the day before injection, and the reagents were mixed and incubated for 1 h at 
room temperature prior to injection into each gonad. Injected animals were singled 
onto NGMA plates and allowed to lay until the next generation matured to the L4/
young adult stage. Plates were screened for the dpy-10 phenotypes of Dumpy and 
Roller and F1s were singled from plates with a high percentage of affected worms. 
F1s were allowed to lay eggs before single-animal lysis and PCR, and the products 
were sequenced using Sanger sequencing by MCLab Molecular Cloning Laboratories 
(South San Francisco, CA) with no more than one edited strain per independently 
injected progenitor retained for the study. All alleles were confirmed by sequencing 
singled offspring for at least two additional generations to confirm the accuracy of 
the edit sequence and the homozygosity of the line.

All genome-edited strains through CRISPR are listed below:

Strain name Description Genotype

ECA3128 ECA2818 with pod-2 
H1516Y

pod-2(ean229) 
mecr-1(ean216) II

ECA3129 ECA2818 with pod-2 
H1516Y

pod-2(ean238) 
mecr-1(ean216) II

ECA3130 N2 with pod-2 
H1516Y

pod-2(ean239) II

ECA3131 N2 with pod-2 
H1516Y

pod-2(ean240) II

ECA2834 N2 with mecr-1 
G159V

mecr-1(ean220) II

ECA2818 N2 with mecr-1 
G159V

mecr-1(ean216) II
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Oligonucleotides used for the generation of genome-edited strains are listed 
below:

Application Sequence

mecr-1 G159V 
edit repair 
template

CTTCTCACAACATTCACAGTTTTGATGCCA 
AGGATCCGGCAAATTTGAATAACGTGCT 
TCCCGACAGCCGAATTGGCTCCGTTTT 
GAGCCACTGTGTCTACTTTTTTCAGGTCG 
ATAAAGTCTTTAA

mecr-1 guide CCUGAAAAAAGGAGACACAG

pod-2 H1516Y 
edit repair 
template

TTCTCGTTCTTTGCTCCGATGACGGCAAGGA 
TCTTCAGTCTTCCATTGCCCAACTCCTCATA 
CACAACTTCTCCCTCAATCTGTGCCTTGTA 
CTCTCCATCAATGTAAATGTACTCGAATCC 
TTGTT

pod-2 guide UUACAUUGAUGGAGAGCACA

Data, Materials, and Software Availability. All datasets and code for generat-
ing figures and tables are available on GitHub (https://github.com/AndersenLab/
Ce-ascr) (51).
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