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Abstract. HPC practitioners make use of techniques, such as paral-
lelism and sparse data structures, that are difficult to reason about
and debug. Here we explore the role of data refinement, a correct-by-
construction approach, in verifying HPC applications via bounded model
checking. We show how single program, multiple data (SPMD) par-
allelism can be modeled in Alloy, a declarative specification language,
and describe common issues that arise when performing scope-complete
refinement checks in this context.
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1 Introduction

To explain the points of view expressed in this paper, it helps to take the example
of how an HPC expert practices their programming craft. The expert has the
intended math in their head but then uses the medium of code not just to express
intent but also to get the code running efficiently on the chosen computational
medium, be it a CPU or a GPU accelerator. Such details end up being baked
into the code, including sparse data structure designs and thread-to-array-slice
mappings. Even though the final product is arrived at through a succession of
refinements, it is seldom that these intermediate forms play a continued role in
explaining the elaboration of the design. Doing so may in fact be considered
counterproductive, since one would be forced to maintain even more code.

While this practice is standard and seemingly successful in some ways, one
has to question whether the required apprenticeship is keeping a generation
of (otherwise programming-language-aware) students from entering the area.
Even absent this, the real price seems to be already getting paid by the experts
when they suddenly realize that porting the code to a new platform requires
hard-to-hire talent, with bugs crippling productivity [7]. Performance-portability
mechanisms such as Kokkos [4] and RAJA [3] seem like a possible answer, but
they are not widespread, and are too much to teach at an introductory level.
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Harking back to the vision of early computer science pioneers, and taking
inspiration from the creators of lightweight model-finding “thought calculators”
such as Alloy [9], we present our experience-to-date using Alloy as the medium
in which to capture refinements. We argue that doing so might encourage the
practice of stating refinements in the tangible (and analyzable) medium of formal
logic. The benefits of Alloy-style specifications are already evident in their ability
to generate test cases—even for GPU memory models [10]—and perhaps they
may one day help formally examine code ports at the design level.1

Scope and Organization. In what follows, we describe a lightweight modeling app-
roach for reasoning about the structure and behavior of scientific software. We
propose abstraction and refinement principles to manage sources of complexity,
such as those introduced to meet performance goals, including sparse structure
and parallelization. Elements of the approach include declarative models that are
automatically checked with (Boolean satisfiability) SAT solvers, akin to the anal-
ysis approaches used in traditional engineering domains, so no theorem proving
is required. The approach is bounded and therefore incomplete, but we appeal to
the small scope hypothesis, which suggests that most real bugs have small counter-
examples. For data refinement, we adopt a state-based style, which extends well
to concurrency and parallelism—typically better than, say, an algebraic one.

We begin with related work, then introduce our refinement-checking approach
and demonstrate it in the context of an HPC application, and follow up briefly
with conclusions and future directions.

2 Previous Work

Formal methods is an extensive field that we do not intend to survey. Instead, we
present a few examples of related work that are most relevant to the HPC com-
munity. These studies set a precedent for the framework we present, highlighting
refinement, lightweight model-finding, and rich state in scientific computing.

Dyer et al. [5] explore the use of Alloy to model and reason about the structure
and behavior of sparse matrices, which are central to scientific computing. Exam-
ples of sparse matrix-vector multiplication, transpose, and translation between
ELLPACK and compressed sparse row (CSR) formats illustrate the approach.
To model matrix computations in a declarative language like Alloy, a new idiom
is presented for bounded iteration with incremental updates. The study consid-
ers the subset of refinement proof obligations that can be formalized as safety
properties—and are thus easier to check—in Alloy.

Baugh and Altuntas [2] describe a large-scale hurricane storm surge model
used in production and verification of an extension using Alloy. To explore imple-
mentation choices, abstractions are presented for relevant parts of the model,
including the physical representation of land and seafloor surfaces as a finite
element mesh, and an algorithm that allows for the propagation of overland
flows. Useful conclusions are drawn about implementation choices and guaran-
tees about the extension, in particular that it is equivalence preserving.
1 It is well known that running unit tests is a poor way of unearthing conceptual flaws.
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Martin [11] shows how a data refinement approach can be used to formally
specify parallel programs using a Coarray Fortran (CAF) implementation of
an iterative Jacobi routine. At an abstract level, a mathematical description of
a step in the iteration is given, and at the concrete level, the corresponding
operation is defined for parallel coarray images; an abstraction function relates
the two levels. Since it focuses on specification, the roles of state-space invariants
and other refinement proof obligations needed for verification are not addressed.

3 Approach

Data refinement is a correct-by-construction approach for the stepwise devel-
opment of programs and models from a higher-level abstract specification to
lower-level concrete ones [13]. The HPC field lends itself well to a data refine-
ment approach as most programs begin with a mathematical specification—often
as a theory report—that serves as a guide, to one extent or another, in the imple-
mentation of high performance code.

To ensure that a refinement step preserves correctness in a formal, machine-
checkable manner, proof obligations must be met and discharged; their articu-
lation and promotion begins with the work of Hoare [8] and thereafter proceeds
along both relational and predicate transformer lines; de Roever [13] summarizes
and contrasts a variety of modern approaches. While many of these offer some
degree of tool support, Alloy’s model-finding strengths for expressing rich state,
combined with its push-button automation, make it an attractive alternative to
those requiring theorem proving, especially for HPC practitioners.

Below we introduce refinement checking and some of the practical details of
formalizing the checks in Alloy. Our goal beyond this short paper is to develop a
general framework for carrying out data refinement checks in Alloy that will make
the approach clear and appealing to practitioners. That includes characterizing
a sufficient set of proof obligations for data refinement, showing how to encode
them in Alloy, and demonstrating the approach on practical HPC problems.

4 Refinement Checking

The notion of refinement is relative. It makes use of an upper abstract level and
a lower level concrete one:

Definition: Semantic Implementation Correctness [13]. Given two pro-
grams, one called concrete and the other called abstract, the concrete
program implements (or refines) the abstract program correctly whenever
the use of the concrete program does not lead to an observation which is
not also an observation of the abstract program.

Refinement as inclusion, above, is a global criterion. To be made practical, a
local criterion with a finite number of verification conditions can be obtained
by defining a simulation in terms of abstraction relations and commutativity
diagrams.
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Fig. 1. Data Refinement

In Fig. 1, the commutativity diagram
shows the concrete (C) and abstract (A)
states related by an abstraction relation
α, together with concrete and abstract
operations, opc and opa, respectively, that
define transitions from the non-primed to
primed states.

There are four different technical
notions of simulation that correspond to
ways in which commutativity can be defined in terms of the diagram [13]. When
α is both total and functional, the four types of simulation coincide and some
of the proof obligations simplify, including the condition for correctness of the
concrete operation opc:

∀ a, a′ : A, c, c′ : C | α(c, a) ∧ opc(c, c′) ∧ α(c′, a′) ⇒ opa(a, a′) (1)

That is, starting from a concrete state in which the corresponding abstract pre-
condition holds, the final concrete state must represent a possible abstract final
state. Such a criterion implies inclusion, i.e., that programs using some concrete
data type C have (only) observable behaviors of programs using a corresponding
abstract data type A. Diagrams satisfying such properties are said to commute
weakly, whereas strong commutativity would be expressed with material equiv-
alence instead of implication in Eq. 1.

Summarizing the set of proof obligations for data refinement in a state-based
formalism [13], we have the following conditions:

1. Adequacy – every abstract state must have a concrete counterpart.
2. Correspondence of initial states – every concrete initial state must represent

an abstract initial state.
3. Applicability of the concrete operation – the precondition for the concrete

operation should hold for any concrete state whose corresponding abstract
state satisfies the abstract precondition.

4. Correctness of the concrete operation – as we describe above.

Not every condition applies in every situation, and in some cases a condition may
require a special interpretation for the given context. For instance, an adequacy
check for a refinement from abstract matrices to coarrays can be satisfied trivially
in the one-processor case: a single coarray matrix, equivalent to the abstract one,
“refines” it, but one might rather show adequacy for an n-processor case.

To draw sound conclusions from these, the structure of α is clearly important.
If the correctness condition of Eq. 1 is to apply, for instance, it must be shown
to be both functional (Eq. 2) and total (Eq. 3):

∀ a1, a2 : A, c : C | α(c, a1) ∧ α(c, a2) ⇒ equal(a1, a2) (2)

∀ c : C | ∃ a : A | α(c, a) (3)

What would it mean to check these in Alloy? The three equations above are
all expressions of first order logic, and yet they present different levels of difficulty
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to the Alloy Analyzer, the model-finding tool supporting the formalism. Equa-
tion 3 in particular, which checks whether or not a relation is total, is problematic
because its SAT encoding results in an unbounded universal quantifier [9].

Similar checks are required if we have concerns, as we should, about progress
properties: a concrete operation opc can “do nothing” and satisfy the correctness
check vacuously, e.g., when the term opc(c, c′) is false in Eq. 1, as it might be due
to an inadvertently buggy specification. So we add to the set of proof obligations
a progress check:

5. Progress of the concrete operation – with respect to the operation, every
initial state satisfying the concrete precondition must have a corresponding
final state.

As with Eq. 3, which requires that α be total, this kind of check introduces an
unbounded quantifier in its formulation, and is again problematic for Alloy.

All this points to a limitation of finite instance finding. Various approaches
have been devised to try and circumvent it, including the definition of generator
axioms [9], though they are sometimes difficult to come by or too computation-
ally expensive to employ, as we later show. Below we describe a new, simpler
approach for performing these and other checks in Alloy and do so in the context
of HPC.

5 A Parallel HPC Application in Alloy

We illustrate our approach with Alloy models of a parallel program originally
specified by Martin [11]. We extend his work by formalizing coarrays in Alloy,
adding necessary and sufficient conditions for checking refinement, and defin-
ing the state-space invariants required to formally verify them. Our models are
available online [1].

Iterative Jacobi Computation. Martin considers an example of the numer-
ical solution to Laplace’s equation over a rectangular domain, with fixed values
on the boundary, using the technique of Jacobi iteration. The example is imple-
mented in Coarray Fortran (CAF), a single program, multiple data (SPMD)
extension to the language. In CAF, designated variables are extended with a
parallel dimension, so that each is shared across copies of the same program
(images) using the Partitioned Global Address Space (PGAS) model.

At each iteration, the algorithm averages the four-nearest neighbors of all
interior elements of a matrix. Because it updates or “displaces” all of the ele-
ments at the same time, the Jacobi method is sometimes called the method
of simultaneous displacements, which contrasts with the Gauss-Seidel method,
whose elements are successively “updated in place.” As a result, extra storage is
needed in the Jacobi method to take a step, but, afterward, the previous step’s
storage can be reused if we swap matrix storage locations at each iteration.

To specify the parallel program, Martin takes a refinement perspective, defin-
ing a step in a sequential Jacobi iteration as the abstract level, and a step in
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a parallel CAF implementation as the concrete level. The abstraction relation
maps coarrays at the concrete level (a sequence of image matrices) to a single
abstract matrix. Duplicating columns at the image interfaces allows computation
and then communication to proceed in separate “stages” in the CAF program.

Figure 2 shows the column mapping between coarray images and the abstract
matrix (left) and the role of invariants (right) which we use to tighten the
abstraction relation α so that it is total. In the concrete space, the invariant
enforces interface conditions between neighboring coarrays, i.e., the duplication
of columns necessary for halo or border exchanges, and it ensures that the matri-
ces corresponding to a given coarray variable all have the same dimensions in
each image, as dictated by CAF semantics. In the abstract space, another invari-
ant enforces basic matrix index and bounds checking.

Fig. 2. Mapping coarray images to a matrix (left) and enforcing invariants (right)

Alloy Models and Extensions. We formalize the problem in Alloy using the
same matrix structure as Dyer et al. [5], along with new machinery to capture
the relevant aspects of Coarray Fortran.

sig Matrix { sig Value {}
rows , cols: Int , sig Coarray {
vals: Int→ Int→ lone Value mseq: seq Matrix

} }

A signature in Alloy introduces both a type and a set of uninterpreted
atoms, and may introduce fields that define relations over them. A summary
of the language is available online (see alloytools.org/download/alloy-
language-reference.pdf).

Here, intuitively, matrices are defined with two-dimensional indexing, and
coarrays are defined as a sequence of matrices. Since Alloy provides no means
of representing reals or floating point values, matrix elements are modeled as a
number of distinct values, depending on scope size. This simple approach suffices
for representing the structural properties of matrices, and where more is needed,
arithmetic expressions can be built up and checked symbolically [5].
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After adding abstract and concrete Jacobi operations, refinement checks can
be performed. Below we describe some of the issues that arise when attempting
to verify such obligations, along with their resolution, including a new idiom for
checking whether or not a relation is total. Further details and other refinement
checks appear in models that are available online [1].

Relative Scope Sizes. Alloy has a rich notion of scope that allows users to bound
each signature separately. This accommodates, within a model and across the
model’s signatures, individual scope sizes that are problem dependent and tai-
lored to the domain. With matrices, however, their sizes are naturally determined
by row and column dimensions, a numerical quantity that is bound by a single
bitwidth specification in Alloy, which sets the scope of all integers [12]. While
otherwise not a concern, when a model calls for matrices of relatively different
sizes—like coarray images that correspond to a larger abstract matrix—some
checks may produce spurious counterexamples.

In models that relate coarray images and matrices by an abstraction func-
tion, like the check in Eq. 2 that determines whether α is functional, we limit the
dimensions of coarray images in quantifiers so that the dimensions of their cor-
responding abstract matrix, if they have one, will remain in scope. Numerically,
the relationship is as follows: in Fig. 2 we show a mapping from coarrays with nc

columns and i images, say, to an abstract matrix with na columns. When na ≥ 4,
column sizes are related as follows: na = i(nc − 2) + 2, because of the duplica-
tion of border columns. We capture the limit on coarray dimensions in Alloy
by defining a bounded, scope-complete subset of coarrays called CoarraySmall

that can be used as a drop-in replacement when expressions are quantified over
coarrays and abstract matrices.

Total Relation Check. For checking whether or not α is total, we must contend
with the unbounded universal quantifier problem [9]. To do so, we present a
novel approach that avoids the need for generator axioms, which are in any
case impractical in this context, because they produce a combinatorial number
of instances, namely O(vn×n) for n×n matrices whose elements each have v
possible values. We do so by adding problem structure, i.e., by introducing an
additional level of indirection and reformulating the check:

sig P {
con: Coarray ,

abs: lone Matrix

}
check isTotal { all p: P | alpha [ p.con , p.abs ] ⇒ some p.abs }

Here, instances of P necessarily hold a single coarray in con and may hold a
matrix in abs that is related to it by the abstraction function alpha; the lone

keyword in Alloy (less than or equal to one) allows the abs field to be empty.
Intuitively, Alloy searches within a given scope for a counterexample in which a
concrete object exists but there is no abstract counterpart, according to alpha.
If no counterexample can be found, the check is valid within the specified scope.
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To show that the approach is equivalent to adding generator axioms, we
reformulate the check above as a predicate isTotalp, define another predicate
isTotalNaivep that is equivalent to Eq. 3, and then compare them after including
a predicate for the generator axiom:

check isTotalp ⇔ ( isTotalNaivep and generator )

The check passes, though with sizes limited to just 2× 2 matrices and four values,
since generator explodes the scope. In cases where generator axioms cannot be
circumvented, as isTotal manages, parametric reasoning may be considered [6].

Interleaving Specifications. The communication step, as given in CAF by Mar-
tin, makes a subtle but important design choice. A coarray image shares the
values it computes in interface columns before the next iteration begins, yet no
synchronization barrier is needed. Instead of “pulling” values—which may or
may not have been computed—from adjacent matrices, an image “pushes” its
computed values by writing to its neighbors. Doing so guarantees the absence of
race conditions, and eliminates the need for interleaving-style specifications.

Although we can and have used interleaving to detect race conditions in
simple CAF models, it is interesting to ask what happens in applications like
that of Martin, which are not written in an update-in-place style, and where
there is nevertheless interference, such as the inadvertent overwriting of values
by processes due to a bug. Can we find it? In such a case, overwriting produces
a contradiction in the antecedent of the correctness check, so it appears safe.
Therefore, one needs both safety and progress checks, which we include. That is
to say, interference of this kind manifests as lack of progress, which is detectable.

6 Conclusions and Future Work

We present an approach for checking data refinement in Alloy to verify cor-
rectness properties of HPC programs. Unlike attempts at after-the-fact verifica-
tion, our emphasis is on “design thinking,” an inherently iterative process that,
with tool support, may help practitioners gain a deeper understanding of the
structure and behavior of the programs they create. Tangible artifacts from the
process include representation invariants that must be maintained by concrete
implementations—in languages like Fortran, C/C++, and Julia—and abstrac-
tion relations that define and document how they should be interpreted.

Although we believe this to be a promising approach for HPC verification,
the work presented in this paper also exposes some of the limitations of finite
instance finding in dealing with existential quantifiers, integer bounds, and scope
explosion. Practitioners will likely encounter these issues themselves, so develop-
ing a common approach for tackling them is necessary. Further work is needed to
understand the best Alloy formulations for typical refinement checks as well as
addressing technical limitations of the Alloy Analyzer in scientific applications.
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