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Abstract—We present PULPO, a floating-point baseband-
processing accelerator for massive multi-user multiple-input
multiple-output (MU-MIMO) basestations (BSs). PULPO accel-
erates matrix-vector products, not only with a matrix but also
with its Hermitian, as well as affine transforms and nonlinear
projections used in iterative algorithms that outclass traditional
linear methods in various applications. PULPO is integrated in
a system-on-chip (SoC) with a tight integration to the system’s
data memory, facilitating data exchange and co-operation with 8
RISC-V cores. The fabricated accelerator achieves comparable
efficiency as recently-proposed fixed-point baseband processors,
while eliminating the burdens associated with fixed-point design,
thus simplifying massive MU-MIMO BS development.

I. INTRODUCTION

Baseband processing for modern high-rate wireless commu-
nication systems poses significant implementation challenges
in terms of power consumption and throughput. Emerging tech-
nologies, such as massive multi-user multiple-input multiple-
output (MU-MIMO) [1] and millimeter-wave (mmWave) com-
munication [2], further aggravate the situation as they require
processing of high-dimensional signals acquired at hundreds of
basestation (BS) antennas at rates exceeding billions of tasks per
second. As a result, baseband processing at infrastructure BSs
for such systems is expected to be carried out with application-
specific integrated circuits (ASICs), which achieve the best
energy efficiency and highest throughput. Over the last few
years, a wide range of baseband-processing ASICs for massive
MU-MIMO BSs have been proposed; see, e.g., [3]–[6].

A. Programmable Accelerators for Massive MU-MIMO
Baseband-processing ASICs often implement a single algo-

rithm that is highly optimized for specific system parameters
and operation conditions. Specialization limits their adaptability
to time-varying system and channel conditions, which was
shown to be key to low-power mmWave massive MU-MIMO
baseband processing [6]. Furthermore, supporting an entirely
different set of system parameters (e.g., the number of BS anten-
nas) might even require fabrication of another ASIC. To counter
these issues, flexible and programmable hardware accelerators
have emerged recently [7], [8]. The work in [7] proposes a
configurable systolic array comprising 64 processing elements
(PEs), while [8] proposes an application-specific instruction-set
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processor (ASIP) comprising 8 lanes; both of these designs
use complex-valued 32-bit fixed-point datapaths. These two
accelerators provide improved flexibility and adaptability over
an ASIC, and improved hardware efficiency over a general
processor. However, to support vastly different conditions (such
as system dimensions, propagation conditions, or modulation
and coding schemes) with fixed-point datapaths, extensive
simulations and re-configuration/re-programming are necessary
to make best use of the available dynamic range. In fact, failing
to re-adjust a fixed-point datapath to a given scenario (often
significantly) degrades performance; see, e.g., Sec. IV-A.

B. Contributions
We propose PULPO, a programmable floating-point

baseband-processing accelerator for massive MU-MIMO BSs.
PULPO supports a wide range of baseband algorithms for both
the uplink and the downlink. By implementing a (transprecision)
floating-point datapath, PULPO adapts to different system
conditions without requiring fixed-point parameter tuning or
a specialized compiler to compensate for changes in numeric
representations. PULPO is tightly integrated with the data
memory of a system-on-chip (SoC) containing 8 Parallel Ultra-
Low Power (PULP) RISC-V cores; the SoC’s architecture
follows that of [9]. This tight integration enables PULPO to
access the SoC’s entire data memory at full bandwidth, which
facilitates communication and interaction with the RISC-V
cores. Hardware measurements of the 22 nm FD-SOI prototype
demonstrate that PULPO offers comparable performance and
efficiency to the fixed-point solutions in [7], [8], while further
improving flexibility and adaptability.

II. THE PULPO BASEBAND-PROCESSING ACCELERATOR

PULPO supports several baseband algorithms for both uplink
and downlink in massive MU-MIMO BSs equipped with
B antennas serving U single-antenna user equipments (UEs).

A. Supported Baseband Algorithms
1) Linear Algorithms: In the uplink, the BS uses the received

signals to estimate the transmitted UE symbols. To minimize
complexity, one typically resorts to the linear minimum mean-
squared error (LMMSE) equalizer, which simply corresponds to
a matrix-vector product (MVP). In the downlink, the BS must
generate a precoded vector that removes MU interference in the
UE signals to be transmitted [10]. This task can be achieved
with the linear zero-forcing (ZF) precoder, also applied as an
MVP. Computing the LMMSE and ZF matrices requires MVPs
too. Thus, MVPs are crucial tasks to be accelerated by PULPO.
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2) Nonlinear Algorithms: Linear detection and precoding
algorithms are suboptimal, especially (i) in systems with a
large load factor U/B [11], (ii) for BSs that utilize low-
resolution digital-to-analog converters (DACs) [12], or (iii) for
channels with short coherence times [13]. Thus, PULPO
also supports (among many others) the following nonlinear
algorithms that alleviate these issues: (i) box-constrained (BOX)
equalization achieving near-maximum-likelihood performance
even in systems with large load factors [14]; (ii) biconvex x-bit
precoding (CxPO) for BSs with low-resolution DACs [12]; and
(iii) projection-onto-convex-hull (PrOX) for joint channel esti-
mation and data detection (JED) [13]. PULPO further supports
computing finite-alphabet equalization and precoding matrices,
which enable low-power linear detection and precoding [15].

B. Operating Principle
All of the above linear and nonlinear baseband algorithms

involve one or more of the following three atomic operations:

z = Ax+ y (M), z = y � ⌧AHx (H), z = prox(⇢x) (P).

Here, A, x, y, ⌧ , and ⇢ are algorithm-specific quantities. For
example, LMMSE equalization only needs an MVP (M) with
A being the equalization matrix, x the signals received by the
BS, and y = 0. The C1PO and PrOX algorithms iterate MVPs
(M) followed by projection (P), resulting in iterations of the
form x(t+1) = prox(⇢Ax(t)); see [12], [13] for the specific
choices for ⇢, A, and x(0). The BOX and C2PO algorithms
iteratively perform all three operations (M), (H), and (P) as
follows: x(t+1) = prox(⇢(x(t) � ⌧AH(Ax(t)))), where ⇢ and
⌧ are system-dependent tunable parameters. For all of these
algorithms, the prox(·) operator is an element-wise clipper.

PULPO accelerates exactly the atomic operations (M), (H),
and (P) for any problem dimension that fits the available
memory. To achieve this goal at the highest efficiency, one
must support (i) MVPs with a matrix A and also its Hermitian
AH without requiring explicit transposition of A in memory,
(ii) hardware-support for sequencing these atomic operations
for iterative algorithms and for varying system dimensions, and
(iii) flexibility for different prox(·) operators. We next detail a
VLSI architecture that satisfies all of these requirements.

III. VLSI ARCHITECTURE

Fig. 1(a) illustrates the SoC comprising 8 PULP RISC-V
cores with 128 kB of data memory that is shared with the
PULPO baseband-processing accelerator. PULPO consists of
16 PEs connected in a unidirectional ring network. As detailed
in Fig. 1(b), each PULPO PE is a configurable complex-
valued floating-point multiply-accumulate unit equipped with a
projection unit that is able to perform the most common prox(·)
operators. The PE’s complex-valued multiplier is pipelined,
and can be configured to conjugate one of the operands or to
compute two real-valued multiplications in parallel.

A. Cannon’s Algorithm for MVPs
The PEs implement Cannon’s algorithm [16] to efficiently

calculate MVPs: Each PE is associated with a different row of

the matrix A 2 CN⇥N , and all PEs operate simultaneously on
a different entry of the vector x 2 CN (and thus on a different
column of their respective row). The PEs then circularly
exchange their vector x entries (blue path in Fig. 1) to complete
the MVP Ax in O(N) clock cycles. The advantage of Cannon’s
algorithm is that it can also be used to multiply a vector x̃ 2 CN

by the Hermitian AH with the same matrix readout pattern,
thus avoiding the need of rewriting the memory to explicitly
transpose A; this is achieved with minimal overhead by the
PEs circularly exchanging the partial products a⇤

j,i
x̃j (red path

in Fig. 1) instead of the entries of the vector x̃.

B. Higher-Dimensional Problems and Memory Access
Since PULPO incorporates 16 PEs, it natively executes

MVPs with 16 ⇥ 16 matrices. To support larger square and
non-square matrices, we divide them in blocks of 16 ⇥ 16.
MVPs with wider matrices are computed by accumulation via
the y vector in (M) and (H); MVPs with taller matrices are
simply computed in a time-multiplexed manner. Intermediate
matrix dimensions are handled through zero-padding.

To perform tasks with matrices as large as the SoC’s memory
can support, each PULPO PE is tightly-coupled to a memory
bank (SRAM) of the shared data memory: Each PULPO PE
has a read/write connection to a specific SRAM that bypasses
the tightly-coupled-data-memory (TCDM) interconnect used to
route communication between RISC-V cores and data memory
(green and orange paths in Fig. 1). To avoid interfering with
the cores’ memory accesses, PULPO’s requests (orange paths)
have low priority and will only reach a memory bank if no
core is trying to access that bank. To reduce memory requests,
PULPO has an internal memory that stores four 16⇥16 blocks.

C. Operating PULPO
Tightly coupling PULPO with the data memory requires the

operands A, x, and y to be aligned with the memory banks.
Furthermore, to simplify readout logic for PULPO, we store
the matrix A in a so-called skewed fashion (see Fig. 1(c)).
These two data-arrangement requirements are handled by the
RISC-V cores when receiving or generating the input operands.
Once the operands have been arranged in memory, the cores
can configure PULPO’s control unit with their dimension and
memory location (among other parameters; see Fig. 1(d)), and
start PULPO’s operation. PULPO offers hardware support
to automatically and independently sequence through the
(M), (H), and (P) atomic operations, and iterate over such
sequence. Specifically, PULPO can iterate over (M) or (H)
only, as well as over the sequences (M)!(P), (H)!(P), and
(M)!(H)!(P), where the output z of each sequence step
becomes the input x of the subsequent step. Other sequences
can be implemented by using the RISC-V cores to execute
the (M), (H), and (P) operations in the desired order. Once
finished with its task, PULPO raises an event and the cores
can access the results directly from the shared data memory.

D. Exploiting Shared Memory with the RISC-V Cores
The shared data memory enables tight interaction between

the RISC-V cores and PULPO. For example, PULPO’s prox(·)
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(a) PULPO-SoC system overview (b) PULPO processing element (PE)

(c) Skewed 3⇥3 matrix A

off. function off. function
00 x address 1C ⇢&⌧ address
04 y address 20 k�, k+

08 A address 24 # iterations
0C z address 28 dimensions
10 ⇢ and and op mode

fix ⇢&⌧ 2C stop
14 ⌧ 30 resume
18 ⌧ in use 3C start

(d) PULPO configuration words

floating-point number of bits
format sgn exp mant tot
binary16 1 5 10 16
bfloat16 1 8 7 16
binary8 1 5 2 8
hardware 1 8 10 19

(e) PULPO floating-point formats

Fig. 1. Implementation details of the PULPO baseband-processing accelerator and its host SoC.

unit only supports element-wise clipping operations (required
by the nonlinear algorithms from Sec. II-A2) and thresholding
operations (useful, e.g., for sparse signal recovery and channel
vector denoising). For other tasks, PULPO can rely on the
RISC-V cores to perform any kind of projection. To this end,
PULPO simply writes intermediate results to memory, raises
an event, and waits to receive a resume command after the
cores have calculated the projection. Another use case is early
stopping: In each iteration, PULPO writes the current iterate to
memory and raises an event so that the cores can keep track of
the iterates, e.g., to stop PULPO upon algorithm convergence.

E. Configurable Floating-Point Precision
A key feature is PULPO’s transprecision support for different

floating-point formats: binary16, bfloat16, and binary8. To
improve area efficiency, all formats share 19-bit arithmetic
units supporting the maximum number of required mantissa
and exponent bits (hardware; see Fig. 1(e)). When operating
with binary8, PULPO only needs to access half of the memory
banks. Moreover, PULPO has a real-valued mode that performs
two real-valued MVPs (same matrix, different vectors) at once.
The RISC-V cores’ floating-point units (FPUs) additionally
support binary32 with the architecture details provided in [17].
The RISC-V cores’ FPUs can also perform division and square-
root operations, further extending the capabilities of PULPO.

IV. IMPLEMENTATION RESULTS

A. Bit Error-Rate (BER) Performance
Fig. 2(a) shows the uncoded BER performance of the imple-

mented PULPO for LMMSE equalization with varying system
configurations. For a fair comparison, we consider a design
similar to that of [8], which uses 16-bit fixed-point (integer16)
representation per real and imaginary parts, as well as 24-bit
accumulation. To illustrate the advantages of floating-point
support, we perform the following experiment: We calibrate the
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(a) LMMSE
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LMMSE

(b) 16⇥16, QPSK

Fig. 2. Uncoded bit-error rate (BER) vs. SNR performance of PULPO when
operating with (a) LMMSE equalization and (b) BOX equalization. In this
second plot, the black and red curves correspond to BOX and LMMSE with
binary64; the other curves follow the same legend as in (a).

position of the fixed-point of integer16 so that it achieves an
acceptable BER across a wide variety of system configurations.
Then, we evaluate the performance using that single fixed-
point format for different system configurations. As shown in
Fig. 2(a), having such a “universal” fixed-point configuration
causes a performance loss of up to 0.5 dB at 0.1% BER. While
a fixed-point design can recover from this performance loss,
doing so would require (i) extensive simulations and (ii) to
re-configure/re-program the accelerator/ASIP to shift the fixed
points accordingly. In contrast, PULPO’s quarter-precision
(binary16) floating-point format achieves virtually the same
performance as double-precision (binary64) floating-point
for all system configurations, without requiring any manual
re-calibration. Fig. 2(a) also shows that, as we reduce the
system dimensions or modulation scheme, alternative floating-
point formats with fewer mantissa bits achieve comparable
performance: For a 16⇥2 (B⇥U ) system, halving the floating-
point bitwidth (binary8) results in a 1 dB loss at 0.1% BER.

Fig. 2(b) exemplifies how nonlinear algorithms can out-
perform linear algorithms—here, we consider a system with
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TABLE I
COMPARISON WITH OTHER MASSIVE MU-MIMO ACCELERATORS

PULPO Prabhu Peng Tang Jeon Wen Castañeda
[8] [7] [3] [4] [5] [6]

Programmable B, U , alg. yes yes yes no no no no
Floating-point support hw sw no no no no no
Shared core memory yes no no no no no no

BS antennas B 128 128 128 128 256 256 32
UEs U 16 8 8 32 32 32 16
Technology [nm] 22 28 28 40 28 40 65
Core supply [V] 0.8 1.0 0.9 0.9 0.9 1.1 1.0
Core area [mm2] 1.24 2.2 4.8 0.58 0.37 0.73 4.20
Max. frequency [MHz] 293 290 800 425 400 290 312
Total power [mW] 97 180 528 221 151 87 396
Throughput [Gb/s] 0.240 0.169 1.54 2.76 0.354 1.96 9.98

Accelerator area [mm2] 0.42 0.38 4.8 0.58 0.37 0.73 2.41
Accelerator power [mW] 68 91.7 528 221 151 87 290
Area eff.a [Gb/s/mm2] 0.57 0.91 0.66 28.6 1.97 16.1 106
Energya [pJ/b] 283 214 167 19.1 208 7.10 2.13

aTechnology normalized to 22 nm and 0.8V core supply.

a load factor U/B = 1 and obtain a 9 dB improvement at
0.1% BER. Similar examples can be found for massive MU-
MIMO BS architectures with low-resolution DACs [12] or
low-resolution equalizers [15]. We reiterate that PULPO meets
double-precision performance and its native acceleration of
(M), (H), and (P) achieves an 11⇥ speed-up compared to
execution on the 8 RISC-V cores with their FPUs.

B. Measurements and Comparison
Fig. 3 shows the fabricated 9mm2 chip with the presented

SoC highlighted; the rest of the chip contains other designs.
The PULPO-SoC occupies an area of 1.24mm2, with the
PULPO accelerator, the data memory, and the 8 RISC-V cores
taking 18%, 16%, and 32% of the area, respectively. At 0.8V
supply voltage and 300K, the SoC achieves a maximum clock
frequency of 293MHz, with the critical path being between the
instruction cache (I$) and a RISC-V core. When considering a
128-antenna BS communicating with 16 UEs using 256-QAM,
PULPO achieves a maximum detection/precoding throughput
of 240Mb/s. For applications in which the cores are not using
their FPUs, PULPO is responsible for 70% of the SoC’s power.

Fig. 4 shows the frequency and energy versus the SoC’s
supply voltage. We consider PULPO’s energy per complex-
valued 16⇥128 MVP (C markers) or per real-valued 16⇥128
MVP (R markers) for different floating-point formats. We
observe that binary16 dissipates the most energy, caused by
the largest amount of mantissa bits. The alternative 16-bit
format, bfloat16, requires 3% lower energy, while binary8

saves 16%. Two real-valued MVPs (same matrix, two vectors)
are 7% more energy efficient than one complex-valued MVP.

Tbl. I compares PULPO to the other programmable massive
MU-MIMO accelerators [7], [8], as well as to existing detection
ASICs [3]–[6]. Since PULPO handles all critical baseband-
processing operations on its own, we only take into account the
area and energy used by PULPO and the shared data memory
when reporting area- and energy-efficiency. After technology
normalization, the three programmable accelerators are orders-
of-magnitude less efficient than the ASICs [3]–[6], which is the
cost of enabling programmability and adaptability. Nonetheless,
PULPO’s area- and energy-efficiency is only 1.6⇥ and 1.7⇥
worse, respectively, than the other two accelerators [7], [8],
which is a low price to pay for the flexibility and ease-of-use
provided by native floating-point support.

V. CONCLUSIONS

We have presented PULPO, the first programmable floating-
point baseband accelerator for massive MU-MIMO BSs. Our
accelerator is tightly integrated with the data memory of an 8-
core RISC-V SoC, and supports a wide range of algorithms. Our
comparison with recent fixed-point baseband accelerators [7],
[8] has revealed that PULPO achieves comparable throughput
and energy efficiency while avoiding fixed-point optimizations
and simplifying design, thus resolving the common miscon-
ception that floating-point baseband processing is inefficient.
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