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Abstract—Wireless systems must be resilient to jamming attacks.
Existing mitigation methods require knowledge of the jammer’s
transmit characteristics. However, this knowledge may be difficult
to acquire, especially for smart jammers that attack only specific
instants during transmission in order to evade mitigation. We
propose a novel method that mitigates attacks by smart jammers
on massive multi-user multiple-input multiple-output (MU-MIMO)
basestations (BSs). Our approach builds on recent progress in
joint channel estimation and data detection (JED) and exploits
the fact that a jammer cannot change its subspace within
a coherence interval. Our method, called MAED (short for
MitigAtion, Estimation, and Detection), uses a novel problem
formulation that combines jammer estimation and mitigation,
channel estimation, and data detection, instead of separating
these tasks. We solve the problem approximately with an efficient
iterative algorithm. Our simulation results show that MAED
effectively mitigates a wide range of smart jamming attacks
without having any a priori knowledge about the attack type.

I. INTRODUCTION

Jamming attacks pose a serious threat to the continuous
operability of wireless communication systems [1]. Effective
methods to mitigate such attacks are necessary as wireless sys-
tems become increasingly critical to modern infrastructure [2].
In the uplink of massive multi-user multiple-input multiple-
output (MU-MIMO) systems, effective jammer mitigation is
rendered possible by the asymmetry in the number of antennas
between the basestation (BS), which has many antennas, and
a mobile jamming device, which has one or few antennas.
One possibility, for instance, is to project the receive signals
on the subspace orthogonal to the jammer’s channel [3], [4].
But such methods require accurate knowledge of the jammer’s
channel. If a jammer transmits permanently and with a static
signature (often called barrage jamming), the BS can estimate
the required quantities, for instance during a dedicated period
in which the user equipments (UEs) do not transmit [3] or in
which they transmit predefined symbols [4]. Instead of barrage
jamming, however, a smart jammer might jam the system only
at specific time instants. Such attacks may prevent the BS from
estimating a jammer’s channel with simple methods.

A. State of the Art
Multi-antenna wireless systems have the unique potential to

effectively mitigate jamming attacks, and a variety of multi-
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antenna methods have been proposed for the mitigation of
jamming attacks in MIMO systems [3]–[11]. Common to
all of them is the assumption—in one way or other—that
information about the jammer’s transmit characteristics (e.g.,
the jammer’s channel, or the covariance matrix between the
UE transmit signals and the jammed receive signals) can be
estimated based on some specific subset of the receive samples.1
Fig. 1(a) illustrates the approach taken by these methods: The
data phase is preceded by an augmented training phase in which
the jammer’s transmit characteristics are estimated in addition
to the channel matrix. This augmented training phase can either
complement a traditional pilot phase with a period during which
the UEs do not transmit in order to enable jammer estimation
(e.g., [3], [5]), or it can consist of an extended pilot phase so that
there exist pilot sequences which are unused by the UEs and
on whose span the receive signals can be projected to estimate
the jammer’s subspace (e.g., [8]–[10]). The estimated jammer
characteristics are then used to perform jammer-mitigating
data detection. Such an approach succeeds in the case of
barrage jammers, but is unreliable for estimating the transmit
characteristics of smart jammers: A smart jammer can evade
estimation and thus circumvent mitigation by not transmitting in
those samples, for instance because it is aware of the defense
mechanism, or simply because it jams in brief bursts only.
For this reason, our proposed method MAED unifies jammer
estimation, channel estimation and data detection, see Fig. 1(b).

Many studies have already shown how smart jammers can
disrupt wireless communication systems by targeting only
specific parts of the wireless transmission [12]–[20] instead of
using barrage jamming. Jammers that jam only the pilot phase
have received considerable attention [12]–[16], as such attacks
can be more energy-efficient than barrage jamming in disrupting
communication systems that do not defend themselves against
jammers [14]–[16]. However, if a jammer is active during the
pilot phase, then a BS that does defend itself against jamming
attacks can estimate the jammer’s channel by exploiting
knowledge of the UE transmit symbols, for instance with the aid
of unused pilot sequences [8]–[10]. To disable such jammer-
mitigating communication systems, a smart jammer might
therefore refrain from jamming the pilot phase and only target
the data phase, even if such jamming attacks have not received

1The method of [7] is to some extent an exception as it estimates the UEs’
subspace and projects the receive signals thereon. However, this method dist-
inguishes the UEs’ from the jammer’s subspace based on the receive power,
thereby presuming that the UEs and the jammer transmit with different power.
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(a) Existing jammer-mitigation methods separate jammer estimation (JEST)
and channel estimation (CHEST) from the jammer-resilient data detection
(DET). Such methods are ineffective against jammers that attack only the
data phase and do not transmit in the training phase.

augmented training phase data phase

standard pilot phase data phase
JEST CHEST DEST

MAED
(b) MAED unifies jammer estimation and mitigation, channel estimation, and
data detection to mitigate jamming attacks regardless of their activity pattern.

Fig. 1. The approach to jammer mitigation taken by existing methods (a)
compared to the approach taken by MAED (b). In the figure, {y1, . . . ,yK}
are the receive signals, and ĵ, Ĥ and ŜD are the estimates of the jammer
channel, the UE channel matrix, and the UE transmit symbols, respectively.

much attention so far [18], [19]. Other threat models that have
been analyzed include jammers that attack specific control
channels [16]–[18] or the time synchronization phase [20].

B. Contributions
We propose MAED (short for MitigAtion, Estimation, and

Detection), a novel method for jammer mitigation that does
not depend on the jammer being active during any specific
period. Instead, our approach leverages the fact that a jammer
cannot change its subspace instantaneously. To this end, MAED
utilizes a problem formulation which unifies jammer estimation
and cancellation, channel estimation, and data detection, instead
of dealing with these tasks independently, see Fig. 1(b). In
doing this, the method builds upon techniques for joint channel
estimation and data detection (JED) [21]–[27]. The proposed
problem formulation is approximately solved using an efficient
iterative algorithm. Extensive simulation results demonstrate
that MAED is able to effectively mitigate a wide variety of
naïve and smart jamming attacks, without requiring any a priori
knowledge about the attack type.

C. Notation
Matrices and column vectors are represented by boldface

uppercase and lowercase letters, respectively. For a matrix
A, the transpose is A

T, the conjugate transpose is A
H, the

entry in the `th row and kth column is [A]`,k, the submatrix
consisting of the columns from n through m is A[n:m], and
the Frobenius norm is kAkF . The N⇥N identity matrix is IN .
For a vector a, the `2-norm is kak2, the real part is <{a}, and
the imaginary part is ={a}. The expectation with respect to
the random vector x is denoted by Ex[·]. We define i2 = �1.

The complex n-hypersphere of radius r is denoted by Snr , and
the span of a vector a is denoted by span(a).

II. SYSTEM SETUP

We consider the uplink of a massive MU-MIMO system in
which U single-antenna UEs transmit data to a B antenna BS
in the presence of a single-antenna jammer. The channels
are assumed to be frequency flat and block-fading with
coherence time K = T +D. The first T time slots are used
to transmit pilot symbols; the remaining D time slots are
used to transmit payload data. The UE transmit matrix is
S = [ST ,SD], where ST 2 CU⇥T and SD 2 SU⇥D contain
the pilots and the transmit symbols, respectively, and S is
the transmit constellation, which is taken to be QPSK with
symbol energy Es throughout this paper.2 We assume that the
jammer does not prevent the UEs and the BS from establishing
time synchronization, which allows us to use the discrete-time
input-output relation

Y = HS+ jw
T +N. (1)

Here, Y 2 CB⇥K is the BS-side receive matrix that contains
the B-dimensional receive vectors over all K time slots,
H 2 CB⇥U models the MIMO uplink channel, j 2 CB models
the channel between the jammer and the BS, w 2 CK contains
the jammer’s transmit symbols over all K time slots, and
N 2 CB⇥K models thermal noise and contains independently
and identically distributed (i.i.d.) circularly-symmetric complex
Gaussian entries with variance N0. In what follows, we usually
assume that the jammer’s transmit symbols w are independent
of the UE transmit symbols S. However, we will also consider
a scenario in which we drop this assumption (see Section IV-F).
We make no other assumptions about the distribution of w. In
particular, we do not assume that its entries are distributed i.i.d.

III. JOINT JAMMER ESTIMATION AND MITIGATION,
CHANNEL ESTIMATION, AND DATA DETECTION

Our goal is threefold: (i) mitigating the jammer’s interference
by locating its one-dimensional subspace span(j) and projecting
the receive matrix Y onto the orthogonal complement of that
subspace, (ii) estimating the channel matrix H, and (iii)
recovering the UE data in SD. To this end, we develop a novel
problem formulation that combines all three of these aspects.
We then propose an iterative algorithm to approximately solve
this optimization problem.

A. The MAED Optimization Problem

In the absence of a jammer, the maximum-likelihood problem
for joint channel estimation and data detection is [21]

�
Ĥ, ŜD

 
= arg min

H̃2CB⇥U

S̃D2SU⇥D

��Y � H̃S̃
��2
F
, (2)

where, for brevity, we define S̃ , [ST , S̃D] and leave the
dependence on S̃D implicit. This objective already integrates

2Our method can be extended to higher-order modulation schemes.
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the goals of estimating the channel matrix and detecting the
transmit symbols. The jammer, however, will lead to a residual

kY �HSk2F = kjwT +Nk2F ⇡ kjwTk2F (3)

when plugging the true channel and data matrices into (2), and
assuming that the contribution of the noise N is negligible.

Consider now the projection onto the orthogonal subspace
(POS) for jammer mitigation [3]: POS nulls a jammer by
orthogonally projecting the receive signals onto the orthogonal
complement of span(j) using the matrix P(j) , IB�jj

H/kjk2:

P(j)Y = P(j)HS+P(j) jwT +Pj N (4)
= P(j)HS+P(j)N. (5)

One can then define YP(j) , P(j)Y, HP(j) , P(j)H, and
perform channel estimation and data detection using the
resulting jammer-free system. The difficulty is, of course,
that the projection matrix P(j) depends on the (unknown)
direction j/kjk of the jammer’s channel.

Now, consider what happens when we take the matrix3

P̃ , I� p̃p̃
H, p̃ 2 SB1 which orthogonally projects a signal

onto the orthogonal complement of some arbitrary one-dimen-
sional subspace span(p̃), and then apply that projection to the
objective of (2) as follows:

kP̃(Y � H̃S̃)k2F . (6)

If we now plug the true channel and data matrices into (6) and
assume that the noise N is negligible, then we obtain

kP̃(Y �HS)k2F = kP̃jw
T + P̃Nk2F (7)

⇡ kP̃jw
Tk2F (8)

� 0, (9)

with equality if and only if p̃ is collinear with j. In other
words, the unit vector p̃ which—in combination with the true
channel and data matrices—minimizes (6) is collinear with the
jammer’s channel, and hence P̃ is the POS matrix.

So, assuming the noise N is negligible, then {p̃, H̃, S̃} min-
imizes (6) if (i) P̃ is the orthogonal projection onto the orthog-
onal complement of span(j), (ii) H̃ is the true channel matrix,
and (iii) S̃ contains the true data matrix. These are, of course,
exactly the goals that we wanted to attain. Following this insight,
we now formulate the MAED joint jammer estimation and
mitigation, channel estimation, and data detection problem:

�
p̂, ĤP, ŜD

 
= arg min

p̃2SB1
H̃P2CB⇥U

S̃D2SU⇥D

��P̃Y � H̃PS̃
��2
F
. (10)

Note that, compared to (6), we have absorbed the projection
matrix P̃ directly into the unknown channel matrix H̃P.
Otherwise the columns of H̃P would be ill-defined with
respect to the length of their components in the direction
of p̃ ⇡ j, meaning that one could not distinguish between
channel estimates H̃+ ↵jw̃T with different ↵, w̃.

3The dependence of P̃ on p̃ is left implicit here and throughout the paper.

B. Solving the MAED Optimization Problem

The objective (10) is quadratic in H̃P, so we can derive the
optimal value of H̃P as a function of P̃ and S̃, as

ĤP = P̃YS̃
†, (11)

where S̃
† = S̃

H(S̃S̃H)�1 is the Moore-Penrose pseudo-inverse
of S̃. Substituting ĤP back into (10) yields

�
p̂, ŜD

 
= arg min

p̃2SB1
S̃D2SD⇥U

��P̃Y(IK � S̃
†
S̃)
��2
F
. (12)

Solving (12) is difficult due to its combinatorial nature, so
we resort to solving it approximately. First, we relax the
constraint set S to its convex hull C , conv(S) as in [24]. We
then solve this relaxed problem formulation approximately by
alternately performing a forward-backward splitting step in S̃

and a minimization step in P̃.

C. Forward-Backward Splitting Step in S̃

Forward-backward splitting (FBS) [28], also called proximal
gradient descent, is an iterative method that solves convex
optimization problems of the form

arg min
s̃

f(s̃) + g(s̃), (13)

where f is convex and differentiable, and g is convex but not
necessarily differentiable, smooth, or bounded. Starting from
an initialization vector s̃

(0), FBS solves the problem in (13)
iteratively by computing

s̃
(t+1) = proxg

�
s̃
(t) � ⌧ (t)rf(s̃(t)); ⌧ (t)

�
. (14)

Here, rf(s̃) is the gradient of f(s̃), ⌧ (t) is the stepsize at
iteration t, and proxg is the proximal operator of g [29].
For a suitably chosen sequence of stepsizes {⌧ (t)}, FBS
solves convex optimization problems exactly (provided that
the number of iterations is sufficiently large). FBS can also
be utilized to approximately and efficiently solve non-convex
problems, even though there are typically no guarantees for
optimality or even convergence [28].

For the optimization problem in (12), we define f and g as

f(S̃) =
��P̃Y(IK � S̃

†
S̃)
��2
F
, (15)

and

g(S̃) =

(
0 if S̃[1:T ] = ST and S̃[T+1:K] 2 CU⇥D

1 else.
(16)

The gradient of f in S̃ is given by

rf(S̃) = (S̃†)H
Y

H
P̃Y(IK � S̃

†
S̃) (17)

and the proximal operator for g is simply the orthogonal
projection onto the constraint set, which is

[proxg(S̃)]u,k =

(
[ST ]u,k if k 2 [1 : T ]

projC([S̃u,k]) else,
(18)
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where (for QPSK) projC acts entry-wise on [S̃]u,k as

projC(x) = min{max{<(x),�
p

Es/2},
p

Es/2}
+ imin{max{=(x),�

p
Es/2},

p
Es/2}. (19)

For the selection of the stepsizes {⌧ (t)}, we use the Barzilai-
Borwein method [30] as detailed in [28], [31].

D. Minimization Step in P̃

After the FBS step in S̃, we minimize (12) with respect
to the vector p̃. Defining Ẽ , Y(IK � S̃

†
S̃) and performing

standard algebraic manipulations yields

p̂ = arg min
p̃2SB1

��P̃Ẽ
��2
F

(20)

= arg max
p̃2SB1

p̃
H
ẼẼ

H
p̃. (21)

This implies that the minimizer p̂ is the unit vector which
maximizes the Rayleigh quotient of ẼẼ

H. The solution to this
problem is the eigenvector v1(ẼẼ

H) belonging to the largest
eigenvalue of ẼẼ

H, normalized to unit length [32, Thm. 4.2.2],

p̂ =
v1(ẼẼ

H)��v1(ẼẼH)
��
2

. (22)

Calculating this eigenvector for every iteration is computation-
ally expensive, so we only do it for the very first iteration.
In all subsequent iterations, we then approximate its value with
a single power method step [33, Sec. 8.2.1], i.e., we estimate

p̂
(t+1) =

Ẽ
(t+1)(Ẽ(t+1))H

p̂
(t)

kẼ(t+1)(Ẽ(t+1))Hp̂(t)k22
, (23)

where we initialize the power method with the subspace
estimate p̂

(t) from the previous iteration.

E. The MAED Algorithm

We now have all the building blocks for MAED, which is
summarized in Algorithm 1. Its only input is the receive matrix
Y. MAED is initialized with S̃

(0)
D = 0U⇥D, P̃(0) = IB , and

⌧ (0) = ⌧0 = 0.1, and runs for a fixed number of tmax iterations.

IV. SIMULATION RESULTS

A. Simulation Setup

We simulate a massive MU-MIMO system as described in
Section IV-A with B = 128 BS antennas, U = 32 single-
antenna UEs, and with one single-antenna jammer. The UEs
transmit for K = 96 time slots. The first T = 32 time slots are
used to transmit orthogonal pilots ST in the form of a 32⇥ 32
Hadamard matrix (scaled to symbol energy Es). The remaining
D = 64 time slots are used to transmit QPSK payload data
(also with symbol energy Es). The channels of the UEs and
the jammer are modelled as i.i.d. Rayleigh fading. We define
the average receive signal-to-noise ratio (SNR) as follows:

SNR , ES

⇥
kHSk2F

⇤

EN[kNk2F ]
. (24)

Algorithm 1 MAED

1: input: Y
2: initialize: S̃(0) = [ST ,0U⇥D] , P̃(0) = IB , ⌧ (0) = ⌧0
3: for t = 0 to tmax � 1 do
4: rf(S̃(t)) =

�
S̃
(t)†�H

Y
H
P̃

(t)
Y(IK � S̃

(t)†
S̃
(t))

5: S̃
(t+1) = proxg

�
S̃
(t) + ⌧ (t)rf(S̃(t))

�
(cf. (18))

6: Ẽ
(t+1) = Y(IK � S̃

(t+1)†
S̃
(t+1))

7: if t = 0 then
8: p̂

(t+1) = v1(Ẽ(t+1)
Ẽ

(t+1)H)/kv1(Ẽ(t+1)
Ẽ

(t+1)H)k2
9: else

10: p̂
(t+1) = Ẽ

(t+1)
Ẽ

(t+1)H
p̂
(t)/kẼ(t+1)

Ẽ
(t+1)H

p̂
(t)k2

11: end if
12: P̃

(t+1) = IB � p̂
(t+1)

p̂
(t+1)H

13: ⌧ (t+1) = Barzilai-Borwein(⌧ (t), S̃(t), S̃(t+1), . . .
rf(S̃(t)),rf(S̃(t+1))) [28]

14: end for
15: output: S̃(tmax)

[T+1:K]

In our evaluation, we consider four different types of jammers:
(J1) barrage jammers that transmit i.i.d. jamming symbols
during the entire coherence interval, (J2) pilot jammers that
transmit i.i.d. jamming symbols during the pilot phase but do
not jam the data phase, (J3) data jammers that transmit i.i.d.
jamming symbols during the data phase but do not jam the pilot
phase, (J4) sparse jammers that transmit i.i.d. jamming symbols
during some fraction ↵ of randomly selected bursts of unit
length (i.e., one time slot), but do not jam the remaining time
slots. The jamming symbols are either circularly symmetric
complex Gaussian or selected uniformly at random from the
QPSK constellation. Unless stated otherwise, the jamming
symbols are also independent of the UE transmit symbols S.
We quantify the strength of the jammer’s interference relative
to the strength of the average UE, either as the ratio between
total receive energy

⇢E , Ew

⇥
kjwk22

⇤

1
U ES[kHSk22]

, (25)

or as the ratio between receive power during those phases that
the jammer is jamming

⇢P =
⇢E

�
, (26)

where � is the jammer’s duty cycle and equals 1, T
K , D

K , or ↵
for barrage, pilot, data, or sparse jammers, respectively.

B. Performance Baselines

Unless stated otherwise, we run MAED with tmax = 30
iterations and compare it with the following baseline methods:
The first baseline called “LMMSE” does not mitigate the
jammer in any way and separately performs least-squares
channel estimation and LMMSE data detection. The second
baseline called “geniePOS” represents a jammer-robust variant
of LMMSE that is furnished with ground-truth knowledge of
the jammer channel j and projects the receive signals Y onto
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(a) strong barrage jammer (J1)
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(b) strong pilot jammer (J2)
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(c) strong data jammer (J3)
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Fig. 2. Uncoded bit error-rate (BER) for different detectors in the presence of a strong jammer. The jammer transmits Gaussian symbols either (a) during the
entire coherence interval, (b) during the pilot phase only, (c) during the data phase only, or (d) in random unit-symbol bursts with a duty cycle of ↵ = 20%.
The jammer receive energy over the whole coherence interval is ⇢E = 25 dB higher than that of the average UE.
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(a) weak barrage jammer (J1)
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(b) weak pilot jammer (J2)
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(c) weak data jammer (J3)
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Fig. 3. Uncoded bit error-rate (BER) for different detectors in the presence of a weak jammer. The jammer transmits QPSK symbols either (a) during the
entire coherence interval, (b) during the pilot phase only, (c) during the data phase only, or (d) in random unit-symbol bursts with a duty cycle of ↵ = 20%.
The jammer receive power during the jamming phase is as high as that of the average UE (⇢P = 0 dB).

the orthogonal complement of span(j) as in (4). The method
then separately performs least-squares channel estimation and
LMMSE data detection in this projected subspace. The third
baseline called “JL-JED” serves as a performance upper bound
and operates in a jammerless but otherwise equivalent scenario.
JL-JED performs joint channel estimation and data detection
by approximately solving (2) (with S relaxed to its convex hull
C) using the same FBS procedure as MAED (cf. Section III-C),
except that it misses the projection P̃.

C. Mitigation of Strong Gaussian Jammers

We first investigate the ability of MAED to mitigate strong
jamming attacks. For this, we simulated Gaussian jammers
with ⇢E = 25 dB of all four jamming types introduced in Sec-
tion IV-A and evaluated the performance of MAED compared
to the baselines of Section IV-B (Fig. 2). We point out that the
performance of geniePOS and JL-JED is independent of the
considered jammer: geniePOS uses the genie-provided jammer
channel to null the jammer perfectly, and JL-JED operates
on a jammerless system from the beginning. Unsurprisingly,
the jammer-oblivious LMMSE baseline performs significantly
worse than the jammer-robust geniePOS baseline under all at-
tack scenarios. MAED succeeds in mitigating all four jamming
attacks with very high effectiveness, even outperforming the

genie-assisted geniePOS method by a considerable margin.4
The efficacy of MAED is further reflected in the fact that its
BER approaches the BER of the jammerless reference baseline
JL-JED to within 1 dB in all considered scenarios.

D. Mitigation of Weak QPSK Jammers

We now turn to the analysis of more restrained jamming
attacks in which the jammer transmits QPSK symbols with
relative power ⇢P = 0 dB during its on-phase (to pass itself off
as just another UE, for instance [7]). For now, we still make the
assumption that the jamming symbols are independent of the
UE transmit matrix S. (We will consider an alternative scenario
in Section IV-F.) Simulation results for all four jammer types
are shown in Fig. 3. The baseline performance of geniePOS and
JL-JED are again independent of the jammer and mirror the
curves of Fig. 2. Because of the weaker jamming attacks, the
jammer-oblivious LMMSE baseline performs much closer to
the jammer-resistant geniePOS baseline. MAED again mitigates
all attack types successfully, outperforming geniePOS and
approaching the JL-JED baseline to within 1 dB.

Comparing Fig. 3 with Fig. 2 reveals an interesting phe-
nomenon. MAED achieves better absolute performance under

4The potential for MAED to outperform geniePOS is a consequence of the
superiority of JED over separating channel estimation from data detection.
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strong jamming attacks than under weak ones, even if the
difference is subtle. The reason for this behavior is the
following: MAED searches for the jamming subspace by
looking for a dominant dimension of the iterative residual
error Ẽ(t), see (21). If the received jamming energy is small
compared to the received signal energy, then it becomes harder
to distinguish the residual errors due to the jammer’s impact
from those that are caused by the errors in the channel and
transmit matrix estimates H̃

(t)
P

and S̃
(t).

E. What if No Jammer Is Present?
This observation leads to the question of how MAED per-

forms if no jammer is present, or—equivalently—if a jammer
does not transmit for a given coherence interval. Fig. 4(a) shows
simulation results for this scenario. MAED still outperforms
the LMMSE baseline at low SNR, but shows an error floor at
high SNR. This error floor is caused by the slower convergence
of MAED with (infinitely) weak jammers. Fig. 4(b) shows the
jammerless performance of MAED for different numbers tmax

of algorithm iterations. For tmax = 100 iterations, MAED
essentially achieves the excellent performance that it has in
combination with strong jammers. For tmax = 10 iterations,
however, MAED exhibits an error floor as high as 0.2%. In
contrast, in the presence of a ⇢E = 25 dB strong barrage
Gaussian jammer, MAED requires no more than tmax = 10
iterations for optimal performance.

The slow convergence in the absence of a jammer can be ex-
plained by the fact that, in every iteration, the strongest dimen-
sion of the residual error matrix Ẽ

(t) is mistakenly attributed
to a hypothesized jammer instead of to the residual errors in
the channel and transmit matrix estimates H̃

(t)
P

and S̃
(t). This

recurring misattribution prevents fast convergence. Nonetheless,
while MAED was conceived for jammer mitigation, it shows
robust performance even in the absence of jamming.

F. What Happens with a Truly Smart Jammer?
Finally, we turn to a scenario in which the jammer knows the

UE pilot sequences and attacks a specific UE by transmitting
that UE’s pilot sequence during the pilot phase (at ⇢P = 25 dB
higher power). The jammer does not transmit during the data
phase. Fig. 5 shows simulation results for this scenario. The
geniePOS baseline nulls the jammer perfectly using its ground-
truth knowledge. Thus, its performance remains unaffected
regardless of the jammer. In contrast, MAED exhibits an error
floor as high as 1%, only marginally outperforming the LMMSE
baseline. Excluding the attacked UE and evaluating the BER
among the remaining 31 UEs (labeled UEj in Fig. 5(a)) reveals
that the decoding errors are focused entirely on the attacked
UE, and that the BER among the remaining UEs appears to be
unaffected by the jammer. This experiment shows that MAED
cannot identify the jammer’s subspace if the jammer passes
itself off as a UE by transmitting that UE’s pilot sequence.
It is not clear, however, whether such a jammer could be
distinguished from a legitimate UE, even in principle. One way
to prevent smart jammers from utilizing such impersonation
attacks would be to use encrypted pilot sequences [34].
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Fig. 4. Uncoded bit error-rate (a) for different detectors in absence of a jammer
and (b) for MAED with different number tmax of iterations in absence of a
jammer (JL), as well as in the presence of a barrage jammer that transmits
Gaussian symbols at ⇢E = 25 dB higher energy than the average UE (J25dB).
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Fig. 5. Uncoded bit error rate (BER) for a smart jammer that (a) transmits
the pilot sequence of UEj or (b) transmits the average of multiple UE pilot
sequences. The jammer transmits at ⇢P = 25 dB higher power than the average
UE. The UEj curve depicts the BER averaged over all UEs except UEj.

Finally, Fig. 5(b) shows the performance of MAED (over
all 32 UEs) when the jammer transmits the average of multiple
pilot sequences during the pilot phase (and refrains from
transmitting during the data phase). Evidently, a jammer that
targets multiple UEs quickly enables MAED to locate the
jammer’s subspace and mitigate the jammer effectively.

V. CONCLUSIONS

We have proposed MAED in order to mitigate smart jamming
attacks on the uplink of massive MU-MIMO systems. In
contrast to existing mitigation methods, MAED does not rely
on jamming activity during any particular epoch for successful
jammer mitigation. Instead, our method exploits the fact that the
jammer’s subspace remains constant within a coherence interval.
To this end, MAED uses a novel problem formulation that
combines jammer estimation and mitigation, channel estimation,
and data detection. The resulting optimization problem is
approximately solved using an efficient iterative algorithm.
Without requiring any a priori knowledge, MAED is able
to effectively mitigate a wide range of jamming attacks. In
particular, MAED succeeds in mitigating attack types like data
jamming and sparse jamming, for which—to the best of our
knowledge—no mitigation methods have existed so far.
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