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Mismatched Data Detection in Massive MU-MIMO

Charles Jeon

Abstract—We investigate mismatched data detection for massive
multi-user (MU) multiple-input multiple-output (MIMO) wireless
systems in which the prior distribution of the transmit signal used
in the data detector differs from the true prior. In order to minimize
the performance loss caused by the prior mismatch, we include a
tuning stage into the recently proposed large-MIMO approximate
message passing (LAMA) algorithm, which enables the develop-
ment of data detectors with optimal as well as sub-optimal pa-
rameter tuning. We show that carefully-selected priors enable the
design of simpler and computationally more efficient data detection
algorithms compared to LAMA that uses the optimal prior, while
achieving near-optimal error-rate performance. In particular, we
demonstrate that a hardware-friendly approximation of the exact
prior enables the design of low-complexity data detectors that
achieve near individually-optimal performance. Furthermore, for
Gaussian priors and uniform priors within a hypercube covering
the quadrature amplitude modulation (QAM) constellation, our
performance analysis recovers classical and recent results on linear
and non-linear massive MU-MIMO data detection, respectively.

Index Terms—Approximate message passing, data detection,
equalization, massive MU-MIMO.

1. INTRODUCTION

ATA detection in multiple-input multiple-output (MIMO)
D systems deals with the recovery of the data vector sy €
OMr_where O is a finite constellation (e.g., QAM or PSK), from
the noisy input-output relation y = Hsy + n. In what follows,
M+t and Mg denotes the number of transmit and receive anten-
nas, respectively, y € CMr is the receive vector, H € CMr*Mr
is the known MIMO system matrix, and n € CMr is i.i.d.
circularly symmetric complex Gaussian noise with variance Ng.
In order to minimize the symbol error rate, we are interested in
solving the following individually-optimal (IO) data detection
problem [2]-[4]:

(10) si° = argmax p(5,|y,H), £=1,...
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Here, s)° denotes the /th 10 estimate and p(5, | y, H) is the
conditional probability density function of 5I° given the receive
vector and the channel matrix.

Since the IO data detection problem is of combinatorial
nature [2]-[4], an exhaustive search or sphere-decoding meth-
ods [5] would result in prohibitive complexity for systems
where Mr is large. To alleviate this complexity bottleneck, the
algorithm proposed in [6], referred to as large MIMO approxi-
mate message passing (LAMA), achieves the error-rate perfor-
mance of the IO data detector using a simple iterative procedure
in the large-system limit, i.e., fori.i.d. Gaussian channel matrices
with a fixed system ratio 5 = Mt/ Mg and Mt — co. Although
the theoretical performance guarantees for LAMA only hold in
the large-system limit, the algorithm delivers near-IO perfor-
mance for practical (finite-dimensional) systems at low com-
plexity [6]. Despite all of these advantages, LAMA requires re-
peated computations of transcendental functions (e.g., exponen-
tials) at excessively high arithmetic precision, which render the
design of high-throughput hardware implementations that rely
on finite precision (fixed-point) arithmetic a challenging task.

A. Contributions

In order to address these hardware-limitation aspects, we
develop a mismatched version of the complex Bayesian approx-
imate message passing (cB-AMP) framework proposed in [6]
that includes a tuning stage to minimize the performance loss
caused by a mismatch in the signal prior. To enable a precise
performance analysis in the large-system limit, we develop
a mismatched state-evolution (SE) framework. The proposed
framework enables the design of new data detection algorithms
and their exact performance analysis in the large-system limit.
Our key contributions are as follows.

® We propose a mismatched version of the LAMA al-

gorithm [6] (short M-LAMA), which allows carefully-
selected mismatched priors that enable near-IO perfor-
mance while avoiding the computation of transcendental
functions and relaxing numerical precision requirements.
® We show that M-LAMA is a generalization of LAMA [6]
by proving that M-LAMA reduces to LAMA when there
is no mismatch in the prior distribution.
® We demonstrate that M-LAMA with a Gaussian prior
recovers classical results for linear data detectors in [7].

® We demonstrate that M-LAMA with a uniform prior within
a hypercube covering PAM/QAM constellations recovers
recent results from convex-optimization-based data detec-
tion methods analyzed in [8]-[11].

® We demonstrate that a novel Gray-coding based approx-

imation for PAM/QAM constellations enables near-10
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performance at significantly reduced complexity. The re-
sulting approximation has been implemented recently in a
digital integrated circuit prototype [12], which showcases
the practicality of our framework.

® We provide simulation results in finite-dimensional sys-
tems to confirm that the developed theory accurately
characterizes the performance of mismatched data de-
tectors even for moderately-sized massive MU-MIMO
systems.

B. Related Work

Linear data-detection algorithms for MIMO systems, such
as zero forcing (ZF) or minimum mean-square error (MMSE)
equalization, are well-known instances of mismatched data de-
tectors. The performance of such linear data detectors in the
asymptotic large-system limit has been investigated twoin [7],
[13]-[15]. Another instance of mismatched data detection is the
so-called box-relaxation data detector, which relaxes the discrete
constellation to its convex hull [8], [16]-[18]. Corresponding
theoretical results in [19], [20] for noiseless systems show that
a system ratio of § < 2 enables perfect signal recovery. The
recovery performance for the noisy case was analyzed recently
in [8]-[11]. The framework presented in our paper recovers all
of these results while enabling the design of novel, more general,
and computationally efficient algorithms.

The mismatched LAMA (M-LAMA) algorithm proposed
in this paper relies upon approximate message passing
(AMP) [21]-[26], which was developed for sparse signal
recovery and compressive sensing. The case of mismatched
estimation of sparse signals via AMP was first studied in [27],
where the performance of AMP was analyzed when the true
prior is unknown. The AMP algorithm in [27], [28] includes a
tuning stage for optimal parameter selection, which minimizes
the output mean-squared error (MSE). The key differences
between the results in [27], [28] and M-LAMA as proposed
here are that (i) we consider data detection in MU-MIMO
systems and (ii) we know the true signal prior but intentionally
select a mismatched prior in order to design hardware-friendly
data detection algorithms that enable near-1O performance.

C. Notation

Lowercase and uppercase boldface letters stand for vectors
and matrices, respectively. We define the adjoint of a matrix H
as H". We use (-) to abbreviate (x) = & S0, z. A multi-
variate zero-mean circular symmetric complex-valued Gaussian
probability density function (PDF) is denoted by CA/(0, K),
where K the covariance matrix. Ex[-] and Varx[:] denotes the
expectation and variance operator with respect to the PDF of
the random variable X, respectively. We define ® () and Q(x)
as the cumulative density function (CDF) and @Q-function for a
standard real-valued Gaussian, i.e., ®(z) = ffoc e 112/ \/ordt
and Q(z) =1 — ®(z).

II. MISMATCHED COMPLEX BAYESIAN AMP

We start by presenting a mismatched version of the complex
Bayesian approximate message passing (cB-AMP) framework
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in [29] (short mcB-AMP), which enables the use of different
prior distributions p(-) than the true signal prior p(-). To mini-
mize the performance loss caused by the mismatched prior, we
include a tuning stage into the mcB-AMP framework.

A. The mcB-AMP Framework
Given an i.id. prior distribution p(so) = [o, p(s0¢) of
the true signal sy and a mismatched prior distribution p(8) =

Hévzl p(5¢), the mismatched cB-AMP algorithm corresponds
to the following iterative procedure:

N 1 2
o7 = A ][ (D
7t = arg min U™ (57, 7), 2)
>0
s1‘,+1 — me (St + HHI‘t77~'t)7 (3)

rtJrl =y - Hst+1 + ﬂl‘t <F/mm(st + HHrt,%t)> ’ (4)

which is carried out for t,. iterations t =1,...,tna. The
algorithm is initialized by s; = Eg,[So] forall £ = 1,..., Mr,
where S is a random variable distributed as Sy ~ p(so), r! =
y — Hs!, and "™ is the derivative of F™™ in the first argument.
The functions F™ and F"™ operate element-wise on vectors (in
their first argument). In (2), the variance parameter 7 is selected
to minimize the mean-squared error when using the mismatched

prior defined by
U™ (02, 1) = Eg, 2| [F™(So + 0 Z,7) — Sol*|. (5

Here, expectation is taken with respect to the true prior
distribution of Sy and Z ~ CN(0,1).

In what follows, the function F™" (s, 7) is the posterior mean
with respect to the mismatched prior distribution p(§,) and
variance parameter 7 that is given by

F™ sy, 7) = E4[S]se] = [C p(ilse, 7)ds. ()

Here, p(8|s¢, T) is the posterior PDF defined as p(3|s;, 7) =
~p(se|3,7)p(5) with p(s¢|5,7) ~ CN(5,7) and Z is a normal-
ization constant.

We emphasize that the mcB-AMP algorithm differs from the
original cB-AMP algorithm in [29] by the additional steps in (1)
and (2). At every iteration, step (1) estimates the decoupled
noise variance o (see Section II-C for a discussion) and step (2)
optimally tunes the variance parameter 7* based on the estimate
for o7. The tuning stage in (2) ensures that the mcB-AMP
algorithm converges to the solution that minimizes the so-called
decoupled noise variance o7 in every algorithm iteration; see
Section II-C for the proof.

B. Decoupling Property of AMP-based Algorithms

In what follows, we make the following assumption.

Assumption 1: For a system with Mt transmit antennas
and MR receive antennas, we assume entries of the My x My
channel matrix H be i.i.d. circularly symmetric complex Gaus-
sian (CSCG) with variance 1/Mg.

For the subsequent analysis, we use the following definition.
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Definition 1: We define the large-system limit by fixing the
system ratio § = My /Mg and by letting Mt — oo.

As shown in [22], [29], [30], AMP-based algorithms effec-
tively decouple the MIMO system into parallel AWGN channels
in the large-system limit, i.e., the quantity s* + H"r® can be
expressed as sg + w’, where w! ~ CN(0,021,,) and o7 is
the decoupled noise variance. A key property of AMP-based
algorithms is that the decoupled noise variance o7 can be
tracked exactly by the state evolution (SE) framework. The
mismatched SE framework for mcB-AMP algorithm is detailed
in Theorem 1. We note that the mismatched SE framework is
an instance of the SE framework analyzed in [22], where we
use the posterior mean function derived from the mismatched
prior in (6). twoThe proof follows from [22], [Thm. 1] (see [22],
[Sec. 3.4] for the proof), where we define the function 1) as
follows: 1 (zith ;) = |2t — 20 4.

Theorem 1: [Thm. 1, 22] Suppose that p(sg) = H?fl p(s0¢)
and j(8) = [, 5(5¢). Assume the large-system limit and that
F™™ is a Lipschitz-continuous function. Then, the decoupled
noise variance o7 "1 after t iterations of mcB-AMP is given by
the following coupled recursion:

021 = No + BU™ (a2, 7t), (7)

which is initialized by 0% = Ny + 3 Varg,[So]. Here, Sy ~
p(s0) and the MSE function is defined (5). Here, 7¢ is a tuning
parameter that can, in principle, be chosen arbitrarily in each
iteration ¢.

We note that SE framework from [22] is valid for any
Lipschitz-continuous function F™™ with a fixed 7¢. Since the
function F™ is dependent on its second argument 7¢ via (6),
the choice of 7¢ at each iteration ¢ influences the SE recursion
in (7). We now move on to discussing how to properly select the
tuning parameter 7¢ at every iteration.

C. Optimal Tuning of the Variance Parameter T

The purpose of the tuning stage in (2) is to optimally set
the variance parameter 7° in every iteration ¢, which is used to
compute the posterior mean in (6). Before we discuss the tuning
procedure in detail, we define what we mean by optimally-tuning
the variance parameter 7¢. For ¢t = 1,...,tma iterations, our
goal is to minimize the decoupled noise variance afmx 41 given
by Theorem 1 as the smallest arfmax 1 that minimizes the MSE
of our algorithm. To achieve this goal, the optimal choice is to
tune the parameters {71, . .., 7m} so that mcB-AMP ultimately
leads to the smallest O‘?max 1. We next show that the tuning stage
(2), which is carried out separately at every iteration, in fact
achieves the smallest afmx 11, 1.e., optimally tunes the variance
parameters 7', i.e.,

7t = arg min U™ (07, 7). (8)

7>0

We note that suboptimal choices of 7¢ can either lead to a

higher Ufmax 11 or converge more slowly to the minimal ofmx 11
In addition, if the true prior is identical to the mismatched prior,
i.e., p(sg) = p(8), then cB-AMP in [6] selects optimally-tuned
parameters according to (2). Therefore, mcB-AMP results in the
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same decoupled noise variance as that given by cB-AMP. The
proof of the following result is given in Appendix A.

Lemma 2: 1If there is no prior mismatch, i.e., p(sg) = p(8),
then the decoupled noise variance o7, ; of mcB-AMP is equiv-
alent to crtz_s_1 of cB-AMP [6], [Eq. 3].

We now define “optimally-tuned” parameters using the defi-
nition of [28].

Definition 2: Assume the large-system limit and denote the
decoupled noise variance of mcB-AMP obtained from the se-
quence {r',... 7t} aso? | (7!,... 7', A sequence of
parameters {7},...,7!mx} is optimally-tuned at the iteration
tmax, if and only if for all {71, ... 7imx} € [0, 00)tm,

2 1 t 2 1
op (T ) <op (T,

e N (%))
In words, a sequence of optimally-tuned parameters mini-
mizes the decoupled noise variance afmax 11 defined in Theorem
1 given by mcB-AMP after ¢, iterations. We note that the
sequences {7},..., 7!} are computed recursively for each it-
eration ¢ so that different {71,..., 7'} sequences will lead to
different values of o2. Since our theoretical results are primarily
for optimal tuning, we will drop the {},..., 7} sequences in
o?(rl,...,7!), and use o7 throughout this paper.

The following theorem shows that mcB-AMP leads to the
tmax optimally-tuned parameters {7},...,7/m}. For the sake
of brevity, we skip the proof details as it closely follows the
proof given in [28], [Sec. 4.4] with minor modifications.

Theorem 3: [28], [Thm. 3.7] Suppose {r},...,7im} are
optimally-tuned for iteration ty,,x. Then, for any ¢ < ¢y, the
parameters {7}, ..., 7.} are also optimally-tuned for iteration .
Thus, one can obtain ¢, optimally-tuned variance parameters
by optimizing 7} at t = 1, and then proceeding iteratively by
optimizing 7% until ¢ = tax.

The exact value of the decoupled noise variance o7 that is
needed for the tuning stage in (2) to select 7! is, in general,
unknown at iteration ¢. three In place of the decoupled noise
variance o7, we use the estimate 67 = 5—[|r’[|* in step (1),
which convergences the true decoupled noise variance o7 in the
large-system limit. The following lemma, with proof given in
Appendix C, establishes this fact.

Lemma 4: For Assumption 1 and the large-system limit, the
estimate &; = y—||r*[|* converges to o7

We note that Lemma 4 holds even when mismatched priors
are used, as long as F™" is a Lipschitz-continuous function.
One consequence of Theorem 3 and threeLemma 4 is that the
tmax tuning parameters not only achieve the minimal value of
op (r},...,7im) with mcB-AMP, but also do so at the fastest
convergence rate. This observation is a consequence of the
following argument: If 7} is optimal for t = 1, then 72 obtained
via 7} is optimal for t = 2. We can repeat the same argument
until £, to arrive at 7/, which implies that {7, } yields the
fastest convergence rate.

D. Decomposing Complex-Valued Systems

We now briefly discuss properties of mcB-AMP in complex-
valued systems that will be necessary for our analysis of
mcB-AMP in massive MU-MIMO systems. In particular, we
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show that for certain constellations, the complex-valued set O
can equivalently be characterized by the real-valued set Re{O}.

Definition 3: For all s € O, express s as s = a + ib, where
a € Re{O}, b € Im{O}. Then, the constellation O is called
separable if p(s) = p(a)p(b) holds for all s € O and Re{O} =
Im{ O}.

An example of a separable constellation is M2-QAM with
equally likely transmit symbols. For such a separable set O, the
following lemma (with proof given in [29]) shows that the MSE
UMM can be equivalently computed from an equivalent MSE
from a corresponding real-valued system.

Lemma 5: [29], [Lem. 8] Let the constellation O be separable.
Define Sk = Re{S}and denote the real-part of O as OR. Define
Fr as the message mean function with Sg ~ p(Re{S}). Also
define the MSE function W for the real-valued prior Sy as:

U™ (02, 7) = Eg, 2 [(FR(SR Y oZr,T) — sRﬂ . (10)

where Zg ~ N(0,1). Then, we have the following relation for
™™ between the complex-valued constellation O and the real-
valued constellation OR:

2
P (52 1) = 2gmm (U T). (11)

272
Therefore, the recursions in (7) can be simplified to:

o2 7t
02 = Ny + BU™ (02, 7%) = Ny + 230p™ (; 2). (12)
Lemma 5 shows that the tuning stage in (2) and message
mean (3) of the mcB-AMP algorithm can be computed (often
more efficiently) in parallel for real and imaginary dimensions.

E. Fixed-Point Analysis

While the performance of mcB-AMP at every iteration ¢ =
1,...,tmax in the large-system limit can be characterized by
the SE recursion equations in Theorem 1, we can analyze the
performance of mcB-AMP for t;,,x — o0. In this case, the mis-
matched SE in Theorem 1 converges to the following fixed-point
equation:

o} = No + fmin U™ (o7, 7) = No + SUI™(07),  (13)

where we defined the minimum mean-square error for the mis-
matched prior with noise variance o2 as follows:

Y (g2) = min (g2 7). (14)

Thus, as tp. — o0, the decoupled noise variance by
mcB-AMP converges to o2 determined by (13). If there are
multiple fixed points, then mcB-AMP, in generall, converges to
the largest fixed-point solution to (13), which ultimately leads to
a higher probability of error than that of the smallest fixed-point
solution. In order to provide conditions on the MIMO system to
ensure a unique fixed-point solution to (13), we use the following
definition from [6], [Def. 2].

! The algorithm may converge to another fixed-point if mcB-AMP is initialized
sufficiently close to such a fixed point [31].
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Definition 4: Fix the true prior p(so) and the mismatched
prior $(3). Then, the minimum recovery threshold (MRT) g™"

is defined by
min : d\IITm (02 ) -
= ot 12% { < do? '

By the definition of 3™, for all system ratios 3 < 3™ re-
gardless of the noise variance Ny, the fixed-point solution in (13)
is unique. To see this, we can rewrite the fixed point equation as
0% — BU(0?) = Ny. Then, it suffices to show that the function
g(0?) = 0? — BU(c?) is astrictly increasing sequence in 0. If
B < B™ then we have:

dg(Uz) d\II(U2) min
902 =1-p = <1-8 = > 0.

The following lemma details the existence of a unique fixed-
point at 3 = 3™". Lemma 6 follows from the state-evolution
framework by noting that only one unique value of o2 satisfies
the fixed-point equation when 3 = g™in,

Lemma 6: Fix the true prior p(sp) and the mismatched
prior p(S). Let

) dlpmm(0_2) -1
2 _ *
g, = arfzggn{<d02 .

Then, if for any other o2 # o2, f™"dU™(02)/do? < 1,
M-LAMA has a unique fixed point at 3 = ™" regardless of
the noise variance Nj.

In Section IV, we will use Lemma 6 to extract conditions
for which mcB-AMP has a unique fixed-point solution for
PAM/QAM constellation sets—uniqueness of the fixed-point
enables us to precisely characterize the MSE of mcB-AMP [22].

15)

d¥(o?)

(16)

III. MISMATCHED DATA DETECTION WITH
OPTIMAL TUNING: GENERAL CASE

We now apply the mismatched cB-AMP framework to mis-
matched data detection in massive MIMO systems, and refer to
the algorithm as mismatched large MIMO AMP (M-LAMA).
As noted in Section II-A, M-LAMA differs from LAMA by
the additional tuning stage. We will first discuss optimal tuning,
and then present sub-optimal tuning that allows us to remove the
tuning stage completely. We start by introducing M-LAMA and
then, present the M-LAMA algorithm for a Gaussian priors.

A. Why Should One Use a Mismatched Prior?

In MIMO systems, the true signal prior is typically known at
the receiver. It is therefore natural to ask why the use of a mis-
matched prior should be useful, especially since the true prior,
which leads to the LAMA algorithm [6], [29], will minimize
the probability of error. To answer this question, we highlight
the following practically-relevant advantages of mismatched
detectors: (i) For the LAMA algorithm where there is no prior
mismatch, the posterior mean function is given by [6]:

Y aco aexp(—ﬂr - a|2)

T S om(~Hr—aF)

A7)

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on July 24,2023 at 17:25:54 UTC from IEEE Xplore. Restrictions apply.



JEON et al.: MISMATCHED DATA DETECTION IN MASSIVE MU-MIMO

Calculating this expression with double-precision floating
point arithmetic becomes numerically unstable for small val-
ues of 7. Hence, the design of high-performance application-
specific integrated circuits (ASICs) that deploy finite-precision
(fixed-point) arithmetic is extremely difficult. Suitably-chosen
mismatched priors can alleviate the need for high arithmetic
precision and large dynamic range. (ii) While in some situations,
the true prior may be unknown to the receiver, some information
on the prior may be available (e.g., the energy). We will show in
Section III-B that mcB-AMP with a mismatched Gaussian prior
enables optimal tuning as in (2) but only requires knowledge of
the energy of the true prior distribution.

B. Optimally-Tuned Data Detection with a Gaussian Prior

We now derive a M-LAMA algorithm variant using a mis-
matched Gaussian prior when the true signals are taken from
a constellation set @ with equally likely symbols assuming
Es,[|So|?] = Es. We assume a standard complex Gaussian dis-
tribution for the mismatched prior, i.e., p(3¢) ~ CN (0, 1) as the
variance parameter 7' will be scaled accordingly to E, in the
tuning stage (2). For the mismatched Gaussian prior, the message
mean function (6) is given by F™™(r,7) = EE+T r, which is a
Lipschitz-continuous function. Substituting F™ (7. 7) into (7)
and optimally tuning 7, we can derive the following mismatched
SE recursion for Theorem 1:

ots1 = No + BUI"(07)

E?0? Et
{(ES+T)2 + (ES+T)2}. (18)

We note that the SE recursion in (18) allows us to compute the
decoupled noise variance, i.e., the inverse of post-equalization
signal-to-interference-and-noise ratio, analytically from the M-
LAMA algorithm described in Section II-A without numerical
simulations. By doing so, we can obtain a full performance
characterization of M-LAMA’s performance in the asymptotic
regime, and measure the performance degradation in practical
finite-dimensional systems (see Section V for the details).

The mismatched SE recursion (18) only depends on the signal
energy F and no other properties of the true prior p(sg). This
fact allows us to optimally tune the variance parameters only
by knowing FE. Therefore, if the true prior is unknown, but
we know the signal energy, one may use M-LAMA to perform
data detection. Before we proceed to the fixed-point analysis,
the following lemma, with proof given in Appendix B, connects
the tuning stage of M-LAMA in (2) and (18).

Lemma 7: Assume a mismatched Gaussian prior p(8) ~
CN(0,1) and the power of the true prior is Eg,[|So|?] = Es.
Then, the optimal choice in the tuning stage (8) is 7} = o7 which
is the global minimizer to (18) for a fixed o2 > 0.

Thus, the mismatched SE recursion (18) reduces to

E 9
E, +o? Tt

:N 1
o+ iy

of1 = No+f (19)
and by Lemma 6, M-LAMA has a unique fixed point when
£ <1 regardless of the noise variance Nj. Interestingly, the
fixed-point equation of (18) of this algorithm corresponds to the
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decoupled noise variance given by the linear MMSE (L-MMSE)
detector in [7], [13]. If we define signal-to-interference ratio
(SIR) as SIR = 1/02, and let #, — 00, then the fixed-point
solution of (19) coincides with the SIR given by the linear
MMSE detector in the large-system limit [7], [13], [14]. Hence,
for a mismatched Gaussian prior, M-LAMA achieves exactly
the same performance as the linear MMSE detector. We note
that the proofs given in [7], [13], [14] use results from random
matrix theory, whereas our analysis uses the mismatched SE
framework proposed in Theorem 1. Furthermore, our result
is constructive, i.e., M-LAMA is a computationally efficient
algorithm that implements linear MMSE detection without the
need of computing an explicit matrix inversion.

C. Suboptimal Data Detection with a Gaussian Prior

We can replace the optimal tuning stage in (8) by a fixed (and
predetermined) variance parameter choice for 7%, which leads to
a suboptimal, mismatched algorithm, referred to as suboptimal
M-LAMA (short SM-LAMA). We now show that this approach
leads to other well-known linear data detectors. In particular,
by considering the following two variance parameter choices
7t — 0and 7 — ocoin (8), we obtain the following mismatched
SE recursions:

(ZF) o},1= No+ mimoxpmm(af, ) = No + fBo?,
Tt

(MF) U?+1 = No+ ﬂfl@mgmm(af’ Tt) = No + ﬂ Val‘so [SO]’

respectively. As a result of Lemma 6, (ZF) and (MF) have a
unique fixed point when 3 < 1 and for any finite 5, respectively,
regardless of the noise variance Nj. The solution to the fixed-
point equation (ZF) when 5 < 1 and (MF) coincides exactly to
the SIR given by ZF and matched filter (MF) detector in the large-
system limit [7], [13], [14], [32], respectively. Hence, the use of
suboptimal variance parameter choices for 7¢ in SM-LAMA
results in data detectors whose performance matches that of the
well-known ZF and MF data detectors.

IV. MISMATCHED DATA DETECTION WITH
OPTIMAL TUNING: PAM/QAM CONSTELLATIONS

We now propose a variant of the M-LAMA algorithm that
improves upon M-LAMA for Gaussian priors presented in Sec-
tion III for PAM and QAM constellations, which are frequently
used in practice—the premise is to select a mismatched prior
that more closely resembles the true prior. Concretely, we will
present two algorithms of M-LAMA that assume (i) a uniform
hypercube prior and (ii) a Gray coding based approximation. For
each algorithm variant, we describe the optimal tuning procedure
and also present a suboptimal method that avoids parameter
tuning. In what follows, we assume that the true prior is for
QAM or PAM constellation sets O with equally likely symbols,
i.e., p(soe) = Gy Ygeo 0(s0e — @), where |O] is the cardinality
of O.
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A. Optimally-Tuned Uniform Hypercube Prior

We start by deriving an M-LAMA algorithm variant assuming
a uniform hypercube prior, which can be visualized by placing
a hypercube with length 2« around the true prior distribution
of square constellations (e.g., QPSK and QAM). For example,
for QPSK, the mismatched hypercube prior corresponds to a
uniform distribution on the interval [—1,+1] where o =1,
rather than using equally-likely symbols from {—1,+1}, for
both the real and imaginary parts.

For the uniform hypercube prior, we use Lemma 5 to compute
the posterior mean function independently for the real and
imaginary part; the posterior mean function F™ and its first
derivative are given by:

Fo(r, ) = oR + %L(TR,T/Q)
+ i(rI + gu,(rl, 7/2)) (20)
F™(r, 1) =1- % (rRv_(r*,7/2) + av (PR, 7/2))
— % ( v (' 7/2) + au+(rl,7'/2))
- LR ) 20 T/), @D
where we use the following shorthand notations: r® = Re{r},

r! = Im{r}, and

%(r-&-(y) e—%(r—(x)Q
vo(r7) = - ,
2”(‘1’( =) -e(#))
) 4 oA (ra)?
vi(r,T) =

w(a() ()

It can be shown that ™™ is bounded above to establish its
Lipschitz continuity. The mismatched SE recursion is obtained
by Theorem 1 and can be evaluated numerically.

This mismatched data detection algorithm suffers from two
main disadvantages in practical systems: (i) The M-LAMA
algorithm with a hypercube prior is not efficient from a hard-
ware perspective as the function in (20) involves transcenden-
tal functions. In fact, this algorithm must evaluate the func-
tions v (r,7) and v_(r,7) in every iteration and for every
antenna, which require—similar to that of the optimal LAMA
algorithm [6]—high numerical precision and a large dynamic
range; see, e.g., [33] for a detailed discussion of implementation
aspects. (ii) The tuning stage in (2) turns out to be non-trivial—
while a grid search or bisection method are viable methods to
find a minimum numerically, implementing such methods in
hardware is impractical.

B. Suboptimally-Tuned Uniform Hypercube Prior

Analogously to the ZF detector in Section III-C, which used
a suboptimal tuning parameter, we can derive a sub-optimal
variant of M-LAMA (SM-LAMA) with the uniform hypercube
prior from Section IV-A, where we replace the tuning stage
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in (2) by the fixed choice 7t — 0. This suboptimal, but fixed,
choice leads to a much simpler algorithm compared to the
optimally-tuned M-LAMA algorithm and in addition, makes the
performance analysis more accessible. First, the posterior mean
function simplifies to

71_ILI(I) F™ (7, 7) = r® + sign(r®) min{a — ’rR’ ,0}

+1(r + sign(r mln{af ‘7’ | O}) (22)
which can be evaluated efficiently. Compared to (20) and (21),
computing (22) is much simpler as it does not require the com-
putation of (i) a sum and difference of Gaussian PDFs (which
requires exponential functions) and (ii) the inverse of difference
of Gaussian CDFs. Instead, minimum and sign operations can be
computed efficiently in hardware as they merely require a sub-
traction of two numbers. Second, computing lim, o F"™" (7, 7)
is straightforward, which is simply given by the following result:

(r,7) =

lim F'™

T7—0 lH(|TR‘ <a)+

%]I(|7’I| < ).

Third, by letting 7 — 0, the tuning stages in (1) and (2) are
no longer required as the variance parameter 7 is fixed.

Since F™ is composed of piece-wise linear functions, we
can explicitly state the mismatched SE recursion in (7) for
SM-LAMA under M?2-QAM constellations with the aid of
Lemma 5 (see Appendix D for the derivation):

ot (7 v
TNEIE

whereo« = M — 1, ap=a—(2k— 1) and o, = a + (2k — 1).

We now present conditions on the system ratio /5 where
SM-LAMA has a unique fixed point. The following Lemma
8, with proof in Appendix F, shows that the MRT of SM-LAMA
for M2-QAM is given by ™" = (1 — 1/M)~!

Lemma 8: Assume that S is selected from M2-QAM with
equally likely symbols. Then, the minimum recovery threshold
(MRT) [6] for SM-LAMA is given by g™" = (1 — 1/M)~!
Moreover, Lemma 6 holds for SM-LAMA at 3 = ™", i.e.,
SM-LAMA has unique fixed point at 3 = ™" regardless of
the noise variance Ng.

With Lemma 8, we also obtain the same MRT for M-PAM
by Lemma 5. We omit the proof and refer to [29].

Corollary 9: SM-LAMA has the same MRT for M2-QAM
and M-PAM in a real-valued system.

We now show that this SM-LAMA variant achieves the same
performance as a well-known relaxation of the maximum like-
lihood data detection problem [8], [16]-[18]. This algorithm,
known as box-relaxation (BOX, for short) detector, solves the

o = No+ pU™(a7)

M/2
2

:NO+,8 0t+

J

iw

(23)
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following convex problem [8], [10], [34]-[36]:

§ = arg ming.¢ ||y — HS|2 subjectto ||S|lc <o  (24)

and slices the individual entries of § onto the M?2-QAM (or
M-PAM) constellations. The next result shows that SM-LAMA
achieves the same error-rate performance as the BOX detector,
while providing a simple and computationally efficient algo-
rithm. The proof is given in Appendix E.

Lemma 10: For a complex-valued MIMO system with M2-
QAM constellations (or a real-valued MIMO system with M -
PAM constellations), SM-LAMA achieves the same perfor-
mance as the BOX detector [9], [10] in the large-system limit.

We emphasize that in precise performance analysis of the
BOX detector for real-valued systems was shown in [9], and
was extended to that of complex-valued systems in [ 10], whereas
our analysis connects both complex-valued M?2-QAM and real-
valued M-PAM systems via SE. In addition, the authors in [10]
were able to recover identical results of the MRT of M?2-QAM
shown in Lemma 8. Moreover, we note that our analysis is
constructive, i.e., the SM-LAMA algorithm can be used to detect
both QAM and PAM constellations.

C. Optimally-Tuned Gray-Coding-Based Approximation

We note that for certain systems, it may be of interest to
directly postulate a posterior mean function, rather than as-
suming a mismatched prior distribution in the first place. In
this section, we will derive an M-LAMA algorithm variant
that exploits Gray mapping (from bits to constellation points),
which is used in many practical communication systems. For
the sake of brevity, we will derive the posterior mean function
and analysis for 16-QAM and uniform priors only. However,
the proposed approach can easily be generalized to higher-order
QAM constellations and non-uniform priors.

We first start by noting that the posterior mean function (17)
for 16-QAM for uniform priors corresponds to

F16—QAM(7,, 7_) _ I:4—PAM(TR7 7_/2) + iF4_PAM(7’I, 7_/2),
where we used the separability property of 16-QAM in Defini-
tion 3. We now introduce the following shorthand notation for
the posterior mean for 4-PAM:

- —3673 — 1671 +e1+ 363
e_3+e_1+e +es

€q = Xp (—21(7“ - 0)2)>~

T

FPAM (. 1) , (25)

(26)

Here, we omit r and 7 from e, (r, 7) for the ease of notation.
We note that the function F*PAM can be rewritten as

FPAM (1) = Z we (1, 7)a,
a€04—PAM
where O*PAM — [ +3 41} and w, (r, ) is a weight distribution
so that ) eran W (7, 7) = 1. For 4-PAM, we have
€a

. (27)
e_3+e_1+e +es

we(r,7) =

6077

The high arithmetic precision requirement of computing the
posterior mean mainly stems from the computation of (27); this
is due to the fact that e, decays exponentially fast to zero for
small 7. Thus, computing (27) requires excessively high numer-
ical precision, which makes the design of efficient integrated
hardware implementations challenging.

We now propose an approximation of (27) that not only alle-
viates the arithmetic precision requirements, but also achieves
better performance than the hypercube prior discussed in Sec-
tion IV-A. To do so, we exploit Gray coding [37], which is used
in most communication standards.

We begin by assuming that all the bits mapped to a constel-
lation point are independent. Given this assumption, we can
decompose the symbol-domain weight distribution in (27) into
products of bit-domain probabilities as

w_z = (1—p1)(1 =po), w-_1=(1-p1)po,

w1 = P1Po, ws :Pl(l —P0)7

where we omit the indices (r, 7) for simplicity. Here, we intro-
duced py, for b € {0,1} that represent the probability that bth
bit is equal to 1. For Gray coding and bit-wise independence
assumption, we have p; = wj + w3 and py = w_1 + w;. Thus,
we can simplify FERM (r, 7) = (2po — 3)(1 — 2p1).

Now, instead of computing p; and pg directly, we compute the
log-likelihood ratio (LLR) A, = log(2 ;b ) and use the relation
pp = 2(1+ tanh(3A,)) for bits b = 0,1, which can be com-
puted efficiently and in a numerically stable manner in hardware
via look-up tables [38]. With this formulation, the derivative

becomes
Fé;f;*M(r, 7) = (2 — tanh(Ag))(1 — tanh?(A1))A)
— (1 — tanh?(Ag))Aj tanh(A;)
= 4(3 = 2po)p1 (1 — p1) A}
+4(1 = po)(1 — 2p1)poAp,

where we use the shorthand notation A, = A, /2 for both b =
0,1, and A} is the first derivative of A, with respect to 7. Given
fXZ and the bit probabilities pj, the above expression of F' can
be evaluated in a straightforward manner. Since | tanh(-)| < 1,
we can see that FG2MV (r, 7) is bounded and thus, Lipschitz
continuous.

1) Computation of the Log-Likelihood Ratio: We now elab-
orate how to compute the log-likelihood ratio (LLR) values Ag
and A;. Again, we assume 16-QAM. We propose two methods
to compute Ay and Aj: (i) a direct approach and (ii) a low-
complexity approach via the max-log approximation.

(i) A direct computation of LLR values is straightforward
and is computed by noting the fact that p; = w; + w3 and
po = w_1 +wy. Based on py and p;, we can rewrite the
LLR expressions by using w, in (27) and e, defined in (26)

as
Ay = log<Po) _ 10g<w)
1—po w_3 + w3
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~os(i) — (e )
cosh(2p(r — 2))>
cosh(2p(r + 2))

where we defined the shorthand notation p = 1/7.

(ii) Although the expressions for Ay and A; are straightfor-
ward, computing them in hardware can be challenging due to
the transcendental nature of the ratio term of hyperbolic cosine
functions. Thus, to simplify hardware designs, we propose a
low-complexity method to approximate the exact LLRs Ay
and A via the max-log approximation [38]. The idea is to realize
that log(exp(a) + exp(—a)) = a + log(1 + exp(—2|a|)) ~ a
for large values of a as exp(—2|al) quickly converges to 0. Thus,
applying the max-log approximation to Ag results in

Ay = 8pr + log(

h(2
(M) = log(cosh(2pr)) — log(cosh(6pr)) (28)
= 2p|r| + log(1 + exp(—4p|r|))
— 6p|r| —log(1 + exp(—12p|r])) (29)
2 2plr| — 6plr| = —4p|r|. (30)

Similarly, for A; we have

cosh(2p(r — 2))
Og(cosh(?p(r +2))

We note that in the approximations (a) and (b), we have ig-
nored the correction term log(1 + exp(—c|r|)); one may include
an approximated value of the correction term to mitigate the loss
of max-log approximation at a moderate overhead in complexity.
However, we will show in Section V that the proposed max-log
approximation does not result in an error-rate performance loss.
The max-log LLR values Ag and A; are given by

b
) Qoplr —21—2fr+21. (31

AGPRE(r, p7t) = 4p(2 — Ir]),
AP (o) = 2p(dr + |r — 2| — |r + 2|)
8p(r+1), re(—o0,—2),
=< 4pr, € [-2,2],
8p(r —1), 7€ (2,00).

We note that computing the resulting LLR values does not
require any transcendental functions and only requires boundary
checks and multiplications, which can be implemented effi-
ciently in hardware.

D. Suboptimal Tuning of the Gray-coding Based
Approximation

As described in Section II-C, optimal tuning minimizes
the performance loss of mismatched priors. Optimal tuning for
the Gray-coding based approximation requires one to solve the
optimization problem in (8). For the Gray-coding based approx-
imation, the posterior mean with the exact LLR computation is
given by

F‘gg;M(r, p 1) = (2 —tanh(Ag)) tanh(A;)
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= (2 — tanh <4P + 5 log COSEEEZ; )>
comptr 2,
sh(2p(r + 2)) 32)

1
X tanh <4pr + 3 log

We note that the Gray-coding based approximation (32) sub-
stantially mitigates numerical precision requirements compared
to the exact posterior mean from (25), as no exponential func-
tions and the inverse of their sum are required. However, evaluat-
ing (32) still requires the computation of ratios of cosh(-). These
calculations can be avoided by using the max-log approximation
[38] as follows:

F4 -PAM

max- log(r P ) (2 - tanh(2p(2 - |’I“|)))

x tanh(p(4dr + |r — 2| — |r +2])). (33)

Compared to (25) and (32), the max-log approximation in (33)
significantly reduces hardware complexity as no cosh(-) and
their ratios are required, and cosh(-) is approximated by sums
of differences of absolute values. We will show in Section V that
this proposed max-log approximation yields virtually no loss in
error-rate performance while reducing complexity.

We note that solving the optimization problem in (8) with
the posterior mean functions above is difficult. Analogously to
optimal tuning for the uniform hypercube prior in Section IV-A,
a grid search or bisection methods would be viable methods but
are impractical in hardware. Based on numerical calculations for
optimization of (8) for 16-QAM constellation, and M?2-QAM
constellations, more generally, we have observed that using a
suboptimal choice of the tuning parameter and simply setting
7 = p~! = o2 results in excellent performance that performs
extremely close to the optimally-tuned value 7 without any
overhead in complexity.

V. NUMERICAL RESULTS

We now compare the error-rate performance of the proposed
M-LAMA algorithm variants in Fig. 1 via Monte—Carlo sim-
ulations. Although the mismatched SE framework Theorem 1
enables an exact error-rate analysis in the large-system-limit,
we also provide numerical simulations in a finite dimensional
massive MU-MIMO system with My = 128 basestation and
My = 64 single-antenna users for two constellations: QPSK
and 16-QAM. The error-rate performance predicted by the
SE framework in the large-system limit is shown with either
solid, dashed, or dotted lines, whereas the error-rate perfor-
mance obtained by numerical simulations are represented by
the markers. For both simulations, we also compare our results
to the LAMA algorithm proposed in [6], which was shown
to achieve near-IO performance in finite systems and IO per-
formance in the large-system limit for 8 = 0.5 and for both
constellations.

Fig. 1(a) shows the error-rate performance of M-LAMA
with QPSK. We show the performance of three mismatched
LAMA algorithms: optimally-tuned M-LAMA with a Gaus-
sian prior (called “M-LAMA-MMSE”) as well as optimally-

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on July 24,2023 at 17:25:54 UTC from IEEE Xplore. Restrictions apply.



JEON et al.: MISMATCHED DATA DETECTION IN MASSIVE MU-MIMO

10° :
- LAMA
-a- M-LAMA-hypercube
~ w01 -+ SM-LAMA-hypercube | |
= -.|-¢- M-LAMA-MMSE
e v L-MMSE
< Y
= 102} i
=
o
5
ERTE
E 107 =
"
4 I I I *
1075 3 6 9 12

average SNR per receive antenna [dB]

(a) B = 0.5 with QPSK

Fig. 1.

6079

10°

--LAMA
-2 SM-LAMA-Gray

x~ 10T -v-- SM-LAMA-GrayMaxLog | |
= =+~ SM-LAMA-hypercube
2
s
‘g 1072
[}
5
T
E 107
—4 I I I
T 12 14 16 18 20

average SNR per receive antenna [dB]

(b) B = 0.5 with 16-QAM

Symbol-error rate plots for M-LAMA algorithm and its variants for a 128 x 64 massive MU-MIMO system with 10 algorithm iterations. The error-rate

performance predicted by the SE framework in the large-system limit are shown with lines whereas the error-rate performance obtained by numerical simulations
are shown with markers. For QPSK, SM-LAMA with the uniform hypercube prior performs within 1 dB from LAMA [6], which achieves 10 performance in
the large-system limit. For 16-QAM, SM-LAMA with the Gray-coding based approximation performs on part with LAMA. Thus, M-LAMA achieves near-10
error-rate performance at a lower computational complexity by using a carefully designed mismatched prior.

and sub-optimal tuned M-LAMA for hypercube prior; we also
include the error-rate performance of LAMA as a baseline. We
exclude the Gray-coding based approximation as it is optimal
for QPSK. In other words, for QPSK, the Gray-coding based
approximation achieves the same error-rate performance as
LAMA. We see that the proposed M-LAMA algorithms achieve
similar error-rate performance in the finite-dimensional system
as the predicted error-rate performance in the large-system
limit. In particular, M-LAMA with an optimally-tuned Gaus-
sian prior (M-LAMA-MMSE) achieves near-identical error-
rate performance to the exact linear MMSE detector, which
agrees with our SE analysis. The optimally-tuned M-LAMA
algorithm and its ZF variant SM-LAMA for the uniform hy-
percube prior performs within 1 dB of LAMA [6]. Further-
more, as noted in Lemma 10, SM-LAMA-hypercube achieves
identical error-rate performance as that given by the BOX de-
tector, whose performance was analyzed before in [9]-[11],
[36].

Fig. 1(b) shows the error-rate performance of M-LAMA with
16-QAM. We show the performance of both Gray-coding based
approximations as well as the sub-optimally tuned M-LAMA
algorithm with a hypercube prior. Compared to Fig. 1(a),
we observe a slight performance gap between the asymptotic
predictions by SE and numerical simulations—note that the
gap disappears when increasing the system dimension. Among
the simulated methods, we first observe that the Gray-coding
based approximation provides significant performance gains
compared to the hypercube-prior. Our results also show that
there exist no performance loss between the Gray-coding-
based and the max-log approximation, compared to the orig-
inal LAMA algorithm that requires repeated evaluations of
(17). Clearly, Fig. 1(b) demonstrates that M-LAMA with care-
fully designed mismatched priors is able to achieve near-
optimal error-rate performance at (often significantly) lower
complexity and without the need for complicated transcendental
functions that prevent efficient hardware designs—our recent
ASIC prototype [12], which uses the max-log Gray coded

mismatched function, demonstrates the real-world efficacy
of M-LAMA.

VI. CONCLUSION

We have presented the M-LAMA algorithm along with the
mismatched SE recursion. We have shown that for a mismatched
Gaussian prior, optimally-tuned M-LAMA and suboptimally
tuned SM-LAMA achieve the same performance as the linear
MMSE, ZF, and MF detectors. For a QAM constellations, we
have presented two variants of M-LAMA and characterized the
performance for a uniform hypercube prior and a Gray-coding
based approximation. For a mismatched uniform hypercube
prior, we have established conditions on the system ratio /3 for
which SM-LAMA has a unique fixed point under M?-QAM
constellation. In addition, we have shown that the M-LAMA
algorithm achieves identical error-rate performance compared to
convex-relaxation methods. Although the presented theoretical
results are only valid in the large-system limit, our simulations
have shown that M-LAMA and its variants achieve near-10
performance in realistic, finite dimensional massive MIMO
systems.

There are multiple avenues for future work. Our analy-
sis pertains to the large-system limit—a theoretical study in
the finite dimensional setting, e.g., using tools from [39],
would allow a more accurate performance prediction in finite-
dimensional massive MU-MIMO systems. A precise analysis
of the incorrectly-decoded number of bits for mismatched de-
tectors, as developed recently in [11] for the box-relaxation
detector, is left for future work. Furthermore, exploring the fun-
damental connection between SM-LAMA and certain convex
optimization formulations, such as the box-relaxation in (24), is
interesting in its own right.
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APPENDIX A
PROOF OF LEMMA 2
Since there is no prior mismatch, the conditional mean o7 =
7! minimizes the MSE, where the MSE is equivalent to the

conditional variance [40]. As a result, we have

min U™ (02, 7) = Eg, 2 “F(So +01Z,0}%) — Soﬂ.

7>0
Therefore, (8) and (7) are equivalent and reduces to the SE
recursion given by IO-LAMA in [6].

APPENDIX B
PROOF OF LEMMA 7

The proof is similar to the steps in [28] to show that
mm (52 7t s quasi -convex in 7¢. To show the quasi-convexity,
we will show that 75 W™ (o7, 7') has only one sign-change.
The proof is stralghtforward as

3
)=o)

d E
__\pmm ty 2 S
RO <E + ot
so ;L U™ (g2 7t) has one s1gn change at 7' = o?. Note that
U™ (of, 74|, < 0so 7t =07 is the global minimizer
for Umm (g2 1),

three

APPENDIX C
PROOF OF LEMMA 4

In order to prove Lemma 4, we borrow results from [22],
[Thm. 2] where we assume that F™™ is a Lipschitz-continuous
function for the mismatched prior. The proof is straightforward
by first setting ¢)(a, b) = |a — b|? in [22], [Eq. 3.7] and noting
that b! — w; in [22], [Eq. 3.10] corresponds to the residual r* in
step (4). For the LHS of [22], [Eq. 3.7], we have

MR ]VIR
lim

T Zw — k) = ZW

For the RHS, we first deﬁne Z ~ CN(0,1) and (scalar) noise
N ~ CN(0, Ny), and use 42 = fU™ (52 | 7t71) 50 that
Ezn[v(Z, N)] =Ez 5[lmZ - N7
= No + BU™ (g2 | 7171 = o2,

lim
Mg—o0 M

where the last equality is an immediate results of (7).

APPENDIX D
DERIVATION OF (23)

We will compute (23) by first evaluating the mismatched SE
recursion for a M-PAM system (under real-valued noise) with
equally likely priors and then, use Lemma 5 to express the
relation for M2-QAM. We start with the sub-optimally tuned
posterior mean (22), which we define as

—Q, TE (_007 —O[),
Fa(r) =3\" re [7(% Oé],
+a, 1€ (a,00).
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Note that for equally likely priors, the M -PAM constellation
canbe expressed by p(s¢) = 77 24_/2M/2+1 d(se — (2k = 1)).
Then, for a given ¢ and Z ~ N (0, 1), for some symbol 2k — 1

we have the following expression:

Ez[(F*((2k —1) +0Z) — (2k — 1))?]
=0+ (af - ﬁ@(%) +(af - Q%)

where we denote oy, = o — (2k — 1), and o, = a + (2k — 1).
Thus, by exploiting symmetry of M -PAM, we have

M/2
PPAM(52) — % S Ez[(F*((2k — 1) +0Z) — (2k — 1))?]
k=1

k=1
o a2 A 2
— —Qp€exX —5 | — —F/—apex —
o k €XP 952 o k €XP 292
(34)

we can obtain WM via Lemma 5 by

From UPAM(52),
2) = 2UPAM (52 /9) with o = M — 1.

rewriting WOAM (52) =

APPENDIX E
PROOF OF LEMMA 10

We start with the following result from [9] that establishes the
error-rate performance of the BOX detector.

Theorem 11 (Thm 3.1 [9]): Assume a real-valued M-PAM
system with 3 < (1 —1/M)~*. The symbol-error rate in the
large-system limit converges to 2(1 — 1/M)Q(1/0. ), where o,
is the unique minimizer to Fj;(o):

_O’ 1 M—1 N() 1
FM(J)—2<ﬂ— i )+2BU+MZS(0,/€), (35)

keK
where K = {2,4,...,2(M — 1)}, and

sto=(r+ £)a(2)- e -L2)

Compared to the exact expression in [9], we have an additional
[ term in the denominator of 212—00 due to our definition of

SNR =3 f,o = N% We now show that the minimizer o, of
(35) coincides exactly to that fixed point solution given by state
evolution.

Since o is the unique minimal solution to Fi; (o), Fy, (o) =

0 where F}, (o) = L Fy/ (o). Straightforward differentiation of
F]\/[ (0’) ylelds

d 1/1 M-1 N

—F e -0

do(0) =3 ( B M ) 2802

20 5)00)  mee(am) |

k
V2mo? P (
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Rearranging F;;(o,) = 0 results in

M-—1 2
o}

o} =No+p i

(36)

where we define the shorthand notation

9 9 k ko k2
T(o,k)=(k"—0o )Q<a> BV exp(—w>.

We now show that (36) corresponds to fixed-point solution
to the SE equation 02 = Ny + SUPAM(52), where UPAM(52) is
derived in (34). We start by partitioning K = K; U Ky U Ky
where K ={2,4,...,M — 2}, Ky = M, and Ky = {M +
2,...,2(M — 1)}. We will use the fact that 7'(c,0) = — 302
For K|, we have

M1
Y T(onk)= > T(o,M—FK)=> T(s.,M-20)
keKy, K eKy /=1
M/2

1
Z T(ow, M —20) + 503.
=1

For Ky, we have

M
Y T(owk)= > T(on,M+K)=> T(o., M+20)
k}EKU ]C'EKL /=1
M/2
=Y T(o,, M +2(L - 1)),
(=2
so that

M/2
> T(owk)+T(ow, M) = T(on, M +2(0—1)).

keKy =1

Therefore, the proof is complete as the RHS of (36) is

M-1, 2
o, + — Z T(U*vk)
M M ke K
o M/2
=02+ = > [T(00,a+1=20)+T(0,, a1+2(k—1))]
k=1
o M2
e B _ q,PAM/ 2
ot LS )+ Tl o] = 9,

We note that the BPSK case, i.e., M = 2, was shown in [§]
and the corresponding proof for M-LAMA was givenin [1]. The
presented proof shows that the BOX-relaxed method in [9] and
SM-LAMA under uniform hypercube prior achieves the same
fixed-point in (13). Moreover, due to the decoupling property of
LAMA detailed in Section II-B, the symbol error-rate of real-
valued M-PAM system is given by 2(1 — M 1Q(1/0,). We
note that by Lemma 5, our result can be generalized to that of
a M?-QAM systems, which was not included in the analysis
provided in [9].
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APPENDIX F
PROOF OF LEMMA 8

By (23), we can compute % as
dPQAM (452 1 2 200 _aa 20
()
do a/V2
a\ , - aj,
apexp| ——5 | tagexp| ——
g ag
Qg Qg
+ + .
Q(wﬂ) Q<a/ﬁ>
All terms on the right-hand side of 1 — 1/M are negative for
o2 > 0 and attain its maximum of 0 as o> — 0. Thus, we have

that
2 -1
— lim (dq’(ﬂ>

020 do?

M M

e
To?

]

M =1 ye

min
o2>0

(d\IIQAM(az) )1

do?

(1—1/M)7 L.

In order to show that M-LAMA also recovers original
signal when 3 = ™", we use Lemma 6 and observe that
(dWMM(52) /do?)~! is maximized only at 02 — 0 and hence
no other o2 > 0 satisfies 4™ = (dUAM(52) /do2) 1.
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