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Spectral CUSUM for Online Network Structure
Change Detection

Minghe Zhang, Liyan Xie™, Student Member, IEEE, and Yao Xie, Member, IEEE

Abstract— Detecting abrupt changes in the community struc-
ture of a network from noisy observations is a fundamental
problem in statistics and machine learning. This paper presents
an online change detection algorithm called Spectral-CUSUM
to detect unknown network structure changes through a gen-
eralized likelihood ratio statistic. We characterize the average
run length (ARL) and the expected detection delay (EDD)
of the Spectral-CUSUM procedure and prove its asymptotic
optimality. Finally, we demonstrate the good performance of the
Spectral-CUSUM procedure and compare it with several baseline
methods using simulations and real data examples on seismic
event detection using sensor network data.

Index Terms— Change-point detection, false-alarm control,
graph community change detection, spectral method.

I. INTRODUCTION

ETECTING network structure change from sequential

data is a fundamental problem in high-dimensional data
analysis, emerging from multiple applications, including seis-
mic sensor networks [1], traffic networks [2], swarm behavior
monitoring [3], and social network change detection [4].
A community corresponds to a subset of nodes with much
higher connectivity within the group than across groups. Real-
world communication structure changes can be complicated.
In various settings, the change may correspond to the emer-
gence of a community, switching community memberships,
changes in the number of communities, etc.

The need for community structure change detection is
high for high-dimensional sequential data, which tend to
have complex inter-dependent relationships between different
dimensions. Such interdependence structure can be explicit,
where the network topology be inferred from data. In the
network settings, the characteristic of the changes will be a
shift in structures of the underlying parameters, which is fun-
damentally different from a simple mean-shift considered in
the change-point detection literature. As has been recognized,
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it is possible to exploit the underlying dependence structures
to design asymptotically optimal detection algorithms [5].
In addition, we typically need a detection procedure to be
computationally and memory efficient, as the data streams in
this setting are often very high-dimensional and generated at
high speed.

We first give a few examples of detecting changes exploring

community structures:

« Seismic sensor networks: The seismic research has been
based on the massive amount of continuous data recorded
by ultra-dense seismic sensor arrays, and many such
data are publicly available on IRIS (https://www.iris.edu).
In the old days, network seismology treated seismic
signals individually - one sensor at a time - and detected
an earthquake when multiple impulsive arrivals were
consistent with a source within the Earth [6]. Recently,
with advances in sensor technology, which bring densely
sampled data and high-performance computing and com-
munication, we may be able to use a network-based
detection by exploiting correlations between sensors to
extract coherence signals. This will enhance the system-
atic detection of weak and unusual events that currently
go undetected using individual sensors. Detecting such
weak events is very crucial for earthquake prediction [7],
[8], oil field exploration, volcano monitoring, and deeper
earth studies [9].

o Social networks: The widespread use of social networks
leads to a large amount of user-generated continuous
data, which is quite valuable in studying many social
phenomena. One important application is to detect change
points using social network data. These change points
may represent the collective anticipation of or response
to external events or system “shocks” [10]. Detecting such
changes can provide a better understanding of patterns of
social life. In other cases, early detection of change-point
can predict or even prevent social stress due to disease
or international threats. In social network data [11], each
node represents one individual, and the edge represents
the relationship between two individuals.

o Manifold is a common low-dimensional structure that
lies in high-dimensional data, which can be captured
using a similar network such as Isomap and Laplacian
Eigenmaps [12]. Thus, change in the manifold structure
can be detected from similar graphs.

In this paper, we present a new online change-point detec-

tion procedure, the Spectral CUSUM, to detect network
structure changes by observing node features. We model the
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network structure through the inverse covariance of the noisy
Gaussian features. Based on such a model, Spectral CUSUM
is derived based on generalized likelihood ratios, where the
unknown post-change parameters are estimated sequentially.
This approach enables us to detect general types of structural
changes, including the emergence of community and switching
membership. The main theoretical contribution is to show
the first-order asymptotic optimality of Spectral CUSUM and
characterize the optimal choice of the parameters. We also
present an online scheme for computing the detection statistic
based on subspace tracking that is computationally and mem-
ory efficient. We demonstrate the meritorious performance of
Spectral CUSUM through simulated and real-data examples
of detecting changes in Yellowstone seismic sensors data.
The rest of the paper is organized as follows. Section II
provides a detailed formulation of the emerging communi-
ties problem as well as the switching membership problem.
Section III introduces the exact-CUSUM and the proposed
Spectral-CUSUM procedure. Section IV presents the asymp-
totic analysis of the proposed detection scheme together with
parameter optimization and proof of the first-order asymptotic
optimality. Section V presents an efficient gradient-based
algorithm to keep track of the underlying community structure.
Section VI gives simulation and real data examples to verify
the theoretical findings and show the good performance of the
proposed method. We delegate all proofs to the appendix.

A. Literature

Community detection in the offline setting (i.e., when the
samples are collected beforehand and inference is made in
one-shot) is a well-studied problem (see [13] for a survey).
For example, spectral methods based on eigenvectors of the
graph Laplacian are used in [14] and [15]. Besides, there
are many practical algorithms for community detection (see,
e.g., [16]), including the so-called Kernighan andLin algorithm
[17], which uses a greedy algorithm to improve an initial
division of the network and a genetic algorithm named Ga-
net [18] to detect the community structure by calculating
the community score. However, offline community detection
cannot be used to detect community changes if the graph is
dynamic.

Online community detection has also been considered in
the literature. Peel and Clauset [10] first formalized the
change-point detection problem as identifying the times at
which the large-scale patterns of interaction change fundamen-
tally. They choose from a parametric family of probability dis-
tribution to describe the data and then use the Bayesian method
to detect the change. A Markov-process-based approach is
presented by [19], which is based on MCMC. Each graph
snapshot depends on the current generative model and the pre-
viously observed snapshot. Moreover, [20] proposes a method
called Spotlight to detect anomalies in streaming graphs by
composing a K-dimensional sketch containing K subgraphs to
detect changes inside the dynamic graph. Recently, a Laplacian
anomaly detection method for dynamic graphs is presented in
[21], which uses the spectrum of the Laplacian matrix of the
graph structure at each snapshot to obtain low dimensional
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embeddings. However, none of these works gives a statistical
perspective and asymptotic analysis for the quickest change
detection in communities. While estimating the community
structure through a dynamic network, our paper presents novel
methods of handling estimation and change detection, which
are supported by theoretical asymptotic optimality.

Spectral graph change detection is also related to our work.
The spectral property of the graph is one of the essential
theories that can capture the community structure of the graph.
The spectral method proposed by [22] is used to detect changes
in Noisy Dynamic Networks efficiently by transforming a
graph to a lower-dimensional latent Euclidean space. In our
work, we also use the spectral method to get a reduced
dimensional representation for each node, and our procedure
can detect different types of changes and has theoretically
proved optimally.

Change Detection of Gaussian Graphical Model is similar
to our work as well. We consider the Gaussian graphical model
to capture the network structure through the inverse covariance
matrix of the nodal features. The Gaussian model is useful
for modeling the correlation between observations at different
nodes. There are many previous works that are focused on
the estimation of the Gaussian graphical model. For instance,
penalized likelihood method is proposed by [23] for estimating
the concentration matrix in the Gaussian graphical model
while [24] presents an alternative tuning-insensitive approach
to efficiently choose the tuning parameter in finite sample
settings. But none of these estimation methods of the Gaussian
graphical model can be directly used to detect the structure
change. Recently, a piecewise stationary graphical model has
been presented in [25], and it is able to detect the change of
the graph by monitoring the conditional log-likelihood of all
nodes in the network. However, this method does not consider
the community structure of the network and thus is unable to
distinguish different types of changes inside the network.

Manifold change detection is another type of related work.
In the work of [26], multi-scale online manifold learning
is used to extract change-point detection test statistics from
high-dimensional data. But they do not consider the network
property for the high-dimensional data and thus cannot be
applied directly to graph scenarios.

II. PROBLEM SETUP

Consider a dynamic network with n nodes. Assume at each
time ¢, we observe a feature value vy; for each node ¢, 1 =
1,...,n. We collect all features at each time into one vector
and denote as vy € R™, ¢t = 1,2,.... We will focus on the
online setting where we observe feature values sequentially.
Such a setting is widely applicable in real datasets, see below
for some examples.

« In sensor networks, the feature {vy;,t = 1,2,...} rep-

resent a sequence of signals recorded by the i-th sensor.
The sensors may form communities, and thus the features
can be correlated. It can be the observed seismic/solar
activity measurement from each sensor at each time in a
seismic/solar system.

« In social networks, a vector of features represents user

activities at each time. For instance, it can be social
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activities such as twittering at time ¢ from each user in
the Twitter network.

Assume the features for nodes within the same community
have a higher correlation than those that are not in the same
community. The correlation can be estimated using observed
nodal features [27]. The underlying community structure may
change at some time, which leads to a change in the correla-
tions between the affected nodes and, thus the distribution of
feature vectors. We aim to detect such a change as quickly as
possible from sequential observations.

In the following, we first give the community definition
in Section II-A and statistical modeling for the community
structure within graphs, then discuss two kinds of changes
respectively in Section II-B.

A. Adjacency Matrix for Community

Suppose there are m communities within a network with n
nodes. Denote these communities as m sets {Cy,---,Cp},
where the k-th community is represented using the index set
C}, of the nodes belonging to this community. Assume the
communities do not overlap with each other, i.e., the index
sets are mutually disjoint. For each node ¢, we introduce an
indicator vector a; € {0,1}™ representing its true member-
ship: the k-th entry equal to 1 and all other entries equal to O
if node 7 belongs to the k-th community Cy, i.e.,

a;=1[0 - 1 ---0]",VieC.

~—
k-th entry

Define the global indicator matrix as

A=lay, - ,a,] " € {0,137 (1)

Notice that we have

1 if 3k s.t. nodes i, j € Cy,

a;-r aj = A
0 otherwise.

Therefore, the matrix AAT € {0,1}"*™ defines an adjacency
matrix, whose (i, j)-th entry equals to 1 if and only if nodes 4
and 7 belong to the same community. This setup for A can also
be generalized beyond 0-1 matrices. For example, we may let
a; € R™ represent a feature embedding vector for node 7, and
each entry of a; represents the weight/probability for node @
belonging to the corresponding community.

B. Community Change-Point Detection

We aim to monitor two types of structural changes in
dynamic networks:

i) The emergence of new communities: Before the change
happens, there is no clear community formed in the graph,
and the community structure emerges after the change,
as indicated in Figure 1(a).

ii) Switching membership: Some community members are
switched after the change, such as the increase or decrease
of a single community or the membership flow from one
community to another, as indicated in Figure 1(b).

We now formulate such change detection problems based

on the adjacency matrix representation in Section II-A.
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A Sequence of Graph (V, , E,)

(a) Emergence problem illustration

A Sequence of Graph (V; , E;)

(b) Switching membership problem illustration

Fig. 1. Case of the emergence of communities after change time 7 as shown
in (a) and switching membership case shown in (b). Three communities are
marked as red, blue, and green dots. For the emergence problem, it can be
seen that there is no community or one single community before changes
happen, then after that, three separate communities emerge. For the switching
membership case, it can be seen that before the change happens, the blue
community is the biggest one, while after the change, the membership of it
begins switching to the other two communities.

1) Emerging Community: In many applications, the change
can be modeled as the emergence of several disjoint communi-
ties; the nodes inside the same community are more correlated
with each other. Thus, we start by considering the emerging
community detection problem, which assumes that the network
has no community structure at the beginning but forms m
communities (C1,--- , Cy,) after the change where C}, is the
node index set for the k-th community.

With the indicator matrix A defined in (1), we assume
the feature observations v; are multivariate Gaussian and its
covariance matrix is modeled based on the adjacency matrix
AAT. More specifically, we cast the emerging community
problem as follows.

Ho: o N0, 51), t=1,2,...
Hi: o SN0, L), t=1,2,...,7,

iid.

v N0, (AAT + o217,

—~

t=7+1,74+2,...
2)

Here we introduce o] as a noise term since the network
is usually not perfectly separable in practice. Note that in
the formulation here and below for the switching subspace,
we consider the structure of the inverse covariance matrix,
which is a common approach for Gaussian graphical models
[28]. Following this, we can regard AA" as the underlying
community structure of the graph and o2 as the noise level.
The above representation can be related to the Gaussian
graphical model, which is a common approach to exploring the
relationships between nodes in an undirected graph through the
inverse covariance matrix. Given a Gaussian graphical model
with covariance matrix X, there is an edge between node ¢ and
node j, if and only if Ei_jl # 0. Note that this can be related
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to our model: the zero-valued entry in the inverse covariance
matrix means that the corresponding edge does not exist in
the graphical model. As the inverse covariance matrix changes
from 021 to AAT + ¢%I in a model (2), the corresponding
off-diagonal entries change from zero to non-zero after the
community emerges.

2) Switching Membership: Another type of community
change is called the switching membership problem. As shown
in Figure 1(b), some of the nodes belong to one community
at first and switch to a different one after the change happens
at time 7. Similar to (2), the switching membership problem
can be formulated as follows:

Hot Uti.’i\.-cfl.N(O,(AlAI—‘rUQI)_l), t:1,2,
Hi: w i'iA'(}'./\/'(O, (ALA] +02D)7Y, t=1,2,...,7,
v BN, (A2A] +021)7Y), t=741,742,...
(3)

Here A; represents the pre-change community structure while
Ag represents the post-change community structure. This
general model can denote cases when the sizes of certain
communities change. It can also model the case when the
total number of communities increases (one community splits
into smaller ones) or decreases (several small communities
merge into a bigger one). As a result, the emergence problem
can be seen as a special case of the switching membership
problem, which is capable of detecting various types of graph
structure changes. We will show later the detecting procedure
of switching membership can also be equivalently treated as
a community emergence problem.

III. DETECTION PROCEDURES

In this section, we first review the well-known cumu-
lative sum (CUSUM) detection rule and then propose
the Spectral-CUSUM procedure under both emergence and
switching membership scenarios.

A. Exact-CUSUM Procedure

Let fo () and fo(-) denote the pre- and post-change prob-
ability density function (pdf) of the observations, and E., and
Eqy denotes the expectation under f., and fy, respectively.
The CUSUM statistic [29] is defined by maximizing the
log-likelihood ratio statistic over all possible change-point
locations:

S folw)
- 0(V;
5= max, Zi:k o8 )"

S; has a recursive formulation with Sy = 0 as follows:

fo(Ut)
%8 (o)

where ()% := max{x,0}. The corresponding CUSUM stop-
ping time 7T is defined as:

St == (Stfl)—‘r +1

,t2>1,

Tc =inf{t >0: S, > b}, )
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where b is a pre-set constant threshold. Under the model (2),
we have that

folv) 1
Joo (Ut) 2

Since the multiplicative factor 1/2 is positive, we can omit
it from the log-likelihood ratio when forming the CUSUM
statistic, thus yielding an equivalent formulation:

det(AAT + 021
%)’ (5)
g

d

where d is a drift parameter that is fixed in the CUSUM
procedure.

Similarly, for the switching membership problem under the
model (3), the log-likelihood ratio is:

det(AAT + o)

o-2n

log

1
o] AATv, + 3 log

S =(S;_1)t — vtTAATvt + log

fo(ve) I T T T
lo =— —v, (A4, — A1A; v
gfoo(vt) 2 t ( 2419 1 1) t
T 2
N llog det(A2 Ay + 0°1)

2 " det(A1A] + 02I)
Therefore, the CUSUM statistic in this case becomes:
det(Az Ag +0%1)
& det(A,A] +021)

d’

Si=(S;_1)T—v] (AsA] — AL A] )v;+1o

(6)

We note that in the exact CUSUM procedure, all the param-
eters are assumed known so that the drift terms d and d’ can
be computed explicitly beforehand.

B. Spectral-CUSUM Procedure

The implementation of the exact CUSUM procedure
requires that all parameters are known, and it has been proved
to be optimum [30], [31]. However, if the post-change distribu-
tion is unknown, the exact-CUSUM is not applicable. Usually,
we can estimate the pre-change distribution using historical
data (training data), but the post-change community structures
are unknown since it represents anomaly information and
cannot be predicted. Therefore, the post-change distribution,
i.e., the post-change structure A, has to be estimated sequen-
tially from data. A natural estimate for the post-change covari-
ance matrix (AAT +02I)~! is the sample covariance matrix.
To eliminate the matrix inversion computation in estimat-
ing A, we use eigendecomposition on the sample covariance
matrix to estimate A directly. Therefore, we propose the
Spectral-CUSUM procedure below, where we approximate the
covariance matrix by rank-m eigendecomposition.

Define U € R"*™ and A € R™*™ as the eigenvectors
and eigenvalues of the term AAT within the post-change
covariance matrix, i.e., AAT = UAU". Here A is a diagonal
matrix corresponding to the eigenvalues of the matrix AAT
defined using (1):

|C1|
A =
|Com|
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where |C}| denotes the number of nodes inside the
k-th community. This shows that the eigenvalue decompo-
sition of the adjacency matrix would reflect the commu-
nity structure of a graph, which can also provide empirical
guidance on how to determine the potential number m of
communities.

We can then jointly estimate matrices U and A. Using
observations {v¢41, ..., Uty } in a future sliding window with
length w, we define

Gi = (Vp104y + -+ Vepwtly) /0. (7

Note that @t serves as an approximation for the covariance
matrix (AAT 4+ o2I)~! if samples {vii1,...,0i 10} are
drawn from post-change distribution; for ease of presentation,
we assume eigenvalues are distinct. Let {41, .. ., s | be the
m unit-norm eigenvectors corresponding to the m smallest
eigenvalues {S\tl << Xgm} of G;. Let

77 ~ N nxm
Ut:[utlv"'7ut7n] GR )

and R . A
At = diag()\tl, ey )\fm) € Rmxm'

Then A can be approximately estimated using A, = [AftjA\t_ 12

as the noise term o? is usually relatively small. Then we
can substitute the estimate A; into (5) to obtain alternative
detection statistics, which we call Spectral-CUSUM, when the
post-change distribution is unknown:

St = (St_l)Jr - ’l];rA\tA\;r’Ut +d. (8)

Here d is a tunable drift parameter that plays a similar role
as the last term in (5). And the stopping time is defined as
follows

To =inf{t > 0:S; > b}. ©)]

Similarly, for the switching membership problem, the alterna-
tive to (6) is:

S = (Si—1)t — o] (A A] — AL A v+ d. (10)

In the proposed Spectral-CUSUM procedure, the drift
parameter d should be chosen to ensure the detection statistics
are capable of detecting the change. More specifically, the
CUSUM type procedure requires the increment term in S to
have a negative mean under the pre-change distribution, and
a positive mean under the post-change distribution. Therefore,
for the emerging community problem, we need:

Eo[v) At A vy] < d < Eoolv] AiA] vy). (11)

For the switching membership problem, the same rule means
that we need:

Eo[v, (A A] — A1 A vy <d' <Eoo[v] (A A] — A1 AT )vy).
(12)

Since A; is a constant matrix known beforehand from his-
torical data, we can calculate the expectations E[v,” A; A{ vy]
explicitly. Thus, the switching membership problem can be
treated as an emerging community problem. Therefore, the
theoretical analysis for the switching membership problem is
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similar to the emerging community problem, and we will only
discuss the emergence problem in Section IV.

Due to the above property (11), which is also mentioned in
[32] and [33], the detection statistic in (8) will deviate from
0 and increase gradually after the change happens.

Algorithm 1 Spectral-CUSUM Procedure

Input: Sequence of observations {v;,t = 1,2,...}, number
of communities m, sliding window size w, carefully
selected drift parameter d (or d’), detection threshold b.

Output: Stopping time Z¢.

1: Initialize 7¢ = oo, t =0, Sy = 0.
2: while S; < b do

3: Calculate sample covariance matrix ét from future
observations using (7);
4: Compute U; and A; through the eigenvalue decompo-

sition of Gy;
Estimate community structure Et = Utf\;l/ 2.
: Let t =t + 1 and update Spectral-CUSUM statistics
S; following (8) or (10).
7. Set 7o = t.
8: return 7¢

IV. THEORETICAL ANALYSIS

This section provides a theoretical analysis of the proposed
Spectral-CUSUM procedure under the emerging community
setting. The main result is presented in Theorem 2, which
shows the asymptotic optimality of Spectral-CUSUM under
the optimal choices of parameters. We also derive the form
of the optimal parameters. The analysis techniques are related
and extended to those used in prior works in [34], [35] and
[36] for subspace change detection.

A. Preliminary

We first state the following assumptions that are being made
in order to derive the main results.

Assumption IV.1: We make the following assumptions for
the true community structure.

(1) The total number of post-change communities remains a
constant m.

(2) (Community sizes are comparable but not not identical)
The size of different communities are not identical and is
ordered as |Cy| > |Ca| > -+ > |Cyy|, and |C1]/|Chn| <
(1+ 6)? for some 6 > 0.

(3) (Noise variance bounded)

1/2

o2 - 1+7) m—1 1
— - o/ — . 5 _
|C;] 4 n—m (1+9_ 1)

| —

1460

, Vi, for a small constant 0 < n < 1.

We remark that Assumption IV.I(1) can be treated as
a pre-defined number of communities to detect. Assump-
tion I'V.1(2) assumes that the community sizes are comparable.
Assumption IV.1(3) requires that the noise variance relative
to the community sizes is not too large, but we do not
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need the noise variance to be 0. In fact, when 6 — 0,
i.e., when the community size is very similar to each other,

the ratio ————5—5 — oo and thus the condition can be
(1+6—135)

easily satisfied; we can even allow high noise o2 when the
community sizes are comparable.

Define the following quantities to simplify the presentation
of the main results:

- ik
B; = Tk >,
D v e
k=1,k#i
WY B;  3B?
D= -~ _(1-2 :
m
~ Ai B;
D = 1——); 13
Siwl-T) @

1

recall that \; = |C;| is the i-th largest eigenvalue of the
matrix AAT (thus we always have )\; > 0), w is the sliding
window size, and o is the noise level. For theoretical analysis
purposes, we assume the eigenvalues are distinct, i.e., no com-
munity sizes are exactly the same (see Assumption IV.1(2));
not that when this does not hold, we can still apply the
algorithm although the theory needs to be extended. Because
of Assumption IV.1(2), we have

-1 -1
- < Bi< e 3 AR
1 Ci|+1 C1
<1+9_1Te) ( [Cil — \cl\+1)
Vi=1,...,m. (14)
Moreover, a basic bound can be derived: D >

% o ﬁ > 0 based the~property of the quadratic
equation, and 13 > /\i’fﬁ <D<D<Y", /\iiio?
when w is sufficiently large.

We start with a useful result from [37].

Theorem 1 (Asymptotic Property of Sample Covariance,
[37]): The asymptotic distribution of eigenvectors and eigen-
values of sample covariance matrix (7) from w samples
under post-change distribution (2) are: (i) independent and
(ii) has the following distribution under the assumption that
the eigenvalues are distinct:

<m

m

O v Wl L

k=1,k#i
Ai) —5 N(0,2)2),

\/E(ﬂl - ul) i> N(O,
V(hi -

where —% denotes convergence in distribution when w — oc.
Here @; and )\; denotes the sample eigenvectors and eigenval-
ues, while u; and \; denotes the eigenvectors and eigenvalues
of the true covariance matrix, and n is the data dimension.
For the emerging community problem in (2), the
post-change covariance matrix is (AAT +¢21)~!. Recall that
we use the window size w to construct the post-change sample
covariance matrix in (7) and then estimate the eigenvalues
and eigenvectors. Denote p; < --- < p,, as the smallest m
eigenvalues of (AAT + 02I)~!; based on the eigendecom-
position AAT = UAUT, we can show p; = 1/(0? + |Cy]).
Let u;, © = 1,...,m denote the corresponding eigenvectors.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 7, JULY 2023

Let p; and 4;, ¢ = 1,...,m, be the smallest m eigenvalues
and corresponding eigenvectors obtained from the sample
covariance matrix G;. By Theorem 1, we have

Va(pi — pi) =2 N0, 2p7),
and

S PP ]
kel koti (pi — pr)
pi/o* T
2 )
We can show in the above estimation error covariance
matrix (IV-A), the second term in the summation is negligible
compared with the first term under AssumptionIV.1, when 7 is
sufficiently small (e.g., 0.1, 0.2) — 5 is desired upper bound
for the ratio of the second term relative to the first term. The
derivation can be found in the appendix.
With the help of Theorem 1 we can show the following
properties for Spectral-CUSUM.
Lemma 1 (Properties of Detection Statistic for Spectral-
CUSUM): When w — oo, the expected drifts under the pre-

and post-change distributions for Spectral-CUSUM are given
by

V(i — u) —% N(o,

+

Eoo [ngtgtTvt] =1m, D< Eo[v;;l\tgjvt] <D.

The proof of this Lemma is shown in the Appendix.
By Lemma 1, the necessary condition for the drift parameter
d in (11) translates into D < d < m. Later in Section IV-C,
we can show that by construction Eo [vtT AtAtT ve] >
Eo [vtTAt/Ttrvt] (i.e., m > D) can be satisfied, and hence we
can choose a suitable drift parameter d in between such that
the Spectral-CUSUM procedure work. Indeed, we emphasize
that we focus on the regime that w is sufficiently large such
that D < m is guaranteed.

B. ARL/EDD Performance Analysis

The standard performance of change detection procedures
is measured by average run length (ARL) and expected detec-
tion delay (EDD). ARL represents the average time interval
between two consecutive false alarms, while EDD measures
the worst-case detection delay. When ARL is fixed, it is known
that the exact CUSUM procedure minimizes EDD, which
can be calculated directly. In the following, we will analyze
ARL and EDD for the proposed Spectral-CUSUM procedure
given in (8) for the emerging community problem, under the
assumption that the window size w* scales in order /log~y
in the asymptotic analysis as v — oo. In this case, D/D
approaches to 1, and then we can approximate g [v,” ﬁt;l\: o
by D in our derivation.

Given a constant v > 1 as the desired lower bound of
ARL, we need to set the threshold b in (4) (and similarly
in (9) for Spectral-CUSUM) accordingly such that ARL > .
Recall that T~ denotes the stopping time for the exact CUSUM
procedure. Thus Ey[T¢] and E,[T¢] are EDD and ARL of
CUSUM. Similarly, E¢[Z¢] and Eo[Z¢] are the EDD and
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ARL of Spectral-CUSUM. According to classic results from
[38], we have the following:

eb

T. T
where Z; and Z, are the Kullback-Leibler (KL) divergence:

Zoo =Eoo{logfoo(2)/ fo(2)]},  Zo=Eofloglfo(z)/ foo(2)]},

The constraint ARL > ~ will be satisfied with threshold b =
(logv)(1 + o(1)) according to (15).

Lemma 2 (KL Divergence for Emerging Subspace Case):
For emerging subspace problem (2), we have the
Kullback-Leibler divergence (K-L) divergence

_ fow)] 1 i
IoEo{log foo(U)] 2;h<02+)\i>,

where h(z) = z 4 log(1 — ).

Note that h(z) < 0, for z € (0, 1), so this also verifies that
Ty > 0.

Using the K-L divergence in Lemma 2, we can obtain the
EDD expression:

Eo[Te] = = (14 0(1)), Eo[Tc] = —(1+0(1)), (15)

logy
(14 o(1).

For performance analysis of Spectral-CUSUM, we follow
a similar strategy as [35], where the analysis is done for a
different subspace detection problem under the special rank-
one case; here, to generalize the analysis, we extend 1t for rank
more than one. Since the increment term —wv, UtA U v +d
in (8) is not a log-likelihood ratio. Thus we cannot use
the ARL and EDD expressions in (15) directly, which are
derived for log likelihood-ratio based CUSUM procedures.
To compute the ARL and EDD of 7o, we introduce an
equalizer 6o, € R such that:

Eo[Tc] = (16)

Eoo [exp{ém(—v:ﬁtx;lﬁ:vt + d)}} =1 17
And then when (17) holds, 590[—v:(7tx;1[7;vt + d] is the
log-likelihood ratio between fy and f,, where

fo = exp{éoo[—vt—rﬁtxflﬁt—rvt +d)} oo

This allows us to compute the threshold b asymptotically
as b = (logv)(1 4+ o(1))/60o- Slmllarly, we can find a
do > 0 and define foo = exp{do[v, UtA U ve—d]} fo so
that &[] U, A U, vi—d] is  the  log-likelihood
ratio between fo and fo, leading to Eg [7c] =
b(1+0(1))/(Eo[—v, U;A; U,  v;] +d) where the dependence
on dp being an o(1) term. Now after substituting b, using
the ARL and EDD expression for the likelihood-ratio based
CUSUM in (15), we obtain:

logy(1 +o(1))
S0 (Eo[—v, UA; U 0] + d)
logv(1 + o(1
_logy(to)

where the second equality is due to Lemma 1; and the window
length w is added for the reason that we are using additional

Eo(7c) = +w

(18)
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data to perform estimation to detect the potential change at
time t; thus, the actual detection time is ¢ + w.

Now would like to find the equalizer d., that satisfies (17)
and thus can lead to the desired likelihood ratio construction
above. Using standard computations involving Moment Gen-
erating Function for Gaussian random variables, we can write:

Eoo [65“ [—1)tT AfA;r i +d]}

:eéde |:]Eoo [e*&m [v:AtAtTvt] At]:|

T 02
:eéoodE /e—éoo(UtTAtA:Ut)Wd’Ut]
(2m)"(1/a%)"

— Sl [\I—i— 20—2500AtAI|—1/2}
oPood

VI (O + 20 Zowps)

In evaluating the integral above, we use the standard technique
of “completing the square” in the exponent for Gaussian distri-
bution. With proper normalization, we generate an alternative
Gaussian probability density function which integrates to 1.
Solving (19) we obtain that the drift term d is related to
the equalizer doo: d = (2000) 7! D0 log(1 + 202650/ ps).
We notice that under the pre-change measure, all eigenvalues
pi of the covariance matrix are equal to 1/ o2, thus the drift
parameter can be further written as:
mlog(l+ 2000)

d= BT S (20)

19)

Using (20), we can eliminate d from the EDD expression
and only leave ., dependence. We will later validate that
the drift d in (20) under the optimal choice 7%, will indeed
satisfy the condition (11) to ensure a valid CUSUM procedure.
Combining Equation (18) and Equation (20) we have the
expression for EDD is:

2log (1 + o(1))
—2000D +mlog(l + 20)

Eo(7c) = + w. (21)
In the following, we will further derive the optimal value of
Joo (thus the optimal value of the drift parameter since they are
equivalent through (20)) to minimize the EDD, as a function

of w.

C. Optimal Parameters for Spectral-CUSUM to Minimize
EDD

Note that the formulation (21) contains two parameters: the
drift d (or the equalizer d,) and the window size w. We will
first optimize over these parameters to minimize EDD, then
show that the Spectral-CUSUM procedure based on optimal
window size and draft is first-order asymptotically optimum.

We first find the optimal value of d., and the corresponding
drift parameter d (according to (20)). We observe that the
denominator in (21) is a concave function of d., therefore,
it exhibits a single maximum. Setting the derivative of the
denominator as a function of ., to be 0, we obtain the
optimum value of ., (we omit the high order terms of
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0 0.5 1 1.5 2

Fig. 2. Plot of g(z) =  — 1 — log(z) in the expression of EDD (24)
with 6%_; note that g(z) > 0 which ensures (24) is meaningful; g(z) — oo
when z — 0.

eigenvalue in the product):

N m 1
Note that the optimal drift d* = % corresponding

to the optimal 0%, satisfies the condition (11). Substitute the
optimal d% , we can show that
mlog(1l+26%)

D =
ST

1 m
mmog(D) <m,  (23)
o]

where we have used that xlogz > x —1 for z > 1. By letting
x =m/D, we have > 1 and prove the left hand side of the
inequality; similarly by log(z) <  — 1 for z > 1, we have
the right hand side of the inequality.

Substituting §7, to (21), we obtain the optimized EDD (with
respect to do,) as a function of w:

B 210g'y(1 + 0(1))

IEO(/TC) - mg(D/m) 24

where g(z) = v — 1 —log(z). From (23) we know D/m < 1.
It should be noted that in the expression above, the dependence
on w also comes from D defined in (13).

Now, using (24) we can further find the optimized window
size w* (for a finite ~y) such that the EDD in (24) is minimized.
After taking the derivative with respect to w, note that 1/w? is
in the order of o(1/w) and thus can be ignored when w is
large. Thus we omit all the higher-order terms of w in D and
obtain the following result:

Lemma 3 (Optimal Window Size and Drift Parameter):
For each ARL level v, the optimal window size w* which
minimizes the Expected Detection Delay (EDD) in (21) is
given by:

J2a -1 (S0, A5 8)
mg (A)

w* =

-4/logvy.  (25)
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where A := L 37" —2i € (0,1). Substituting the optimal

w* and J7%, back into (20) gives the optimal value for drift
parameter:

mlog(m/D*)
dr = 225\ ) 2
m/D—1 (26)
where D* = "7, 2 (1 — Bi/w* + 3B} /w*?).

The implication of the lemma above is that the optimal
window length w* grows in the order of /log~. Clearly, w*
in (25) is positive; in particular, the denominator in (25) is
non-negative, since g(z) > 0 for z € (0,1) and A € (0,1).
Moreover, it can be shown that when w* goes to infinity (since
the optimal w* = +/log~y, v — oo in our asymptotic analysis),
then D* — mA, and d* in (26) tends to —177A170§1A_ Figure 4
shows numerical examples of choosing the optimized window
size w.

D. First-Order Optimality

Finally, we show the asymptotic property of Spectral-
CUSUM, the EDD ratio relative to the exact CUSUM, under
the same ARL constraint; since the exact CUSUM is shown
to be optimal and achieves the smallest EDD under a constant
ARL constraint as shown in the classic results [30] and [31].
Note that for the ‘“equalizer” argument to work, thus we
can obtain ARL and EDD expressions for Spectral CUSUM,
we only need the drift term d to be related to §, through (20).
In the following Theorem, we show the resulted EDD under
optimal window w* matches the order of EDD of the Exact
CUSUM.

Theorem 2 (Asymptotic Optimality of Spectral-CUSUM):
Given an ARL lower bound +, the ratio between the EDD
of the Spectral-CUSUM and the EDD of the exact CUSUM

satisfies:
E() [Tc] Iow ( < 1 >)
=0(1) + 1+0 .
Eo[T¢] M 2logy logy

When v — oo, for fixed m, n, o2 bounded away from zero,
and w = +/log~, this ratio Eq[Z¢]/Eo[T¢] tends to an abso-
lute constant, and then the Spectral-CUSUM is asymptotically
first-order optimum.

V. EFFICIENT COMPUTATION BY SUBSPACE TRACKING

In this section, we present an efficient algorithm to keep
track of the underlying community structure even if we do not
assume the form of the graph structure. This can be treated as
a complementary approach to the proposed Spectral-CUSUM
method when we have low confidence or lack of pre-change
observations. Inspired by the GROUSE algorithm [39], which
implements stochastic gradient descent on the Grassmann
manifold to update subspaces at each time slot, we design a
subspace tracking algorithm to update the estimated subspace,
denoted as (), each time a new graph observation G arrives.
Here we consider graph observation instead of vector observa-
tion v; on nodes. Similar to (7), the graph observation at time ¢
can be represented using vector observation as Gy = v;v, .

If we treat each observation as a static graph and apply the
spectral clustering method in [40] at each time, we would get a
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sequence of @t independently, which is quite time-consuming
and not guaranteed to converge if considering noisy cases.
Instead, we can perform an updating procedure each time on
Q@ € R™™ on a Grassmann manifold. The Grassmannian
denoted as Gr(m, n) is a space that contains all m-dimensional
linear subspaces of the n-dimensional vector space. As a com-
pact Grassmann manifold, its geodesics can be computed as
indicated in [41]. Our target matrix () can then be represented
as a point in the Grassmann manifold. Thus the optimization
problem becomes finding optimized () such that:
@ = arg min tr(Q'G,Q), st. QTQ=1.
QERmXm &

We consider the problem for every time slot and define
function f;(Q) = tr(QT G;Q) and the derivative of f; with
respect to () is [42]:

4, _ dr(Q7G.Q))

dQ dQ
Then we use Equation (2.70) in [41] to get the gradient of
function f;(Q) on Grassmann manifold from (27):

V=~ QQT);% =(I-QQ")(G:i+G)Q.

Gradient descent algorithm along a Grassmann manifold is
given by equation (2.65) in [41], proving that it is a function of
the singular values and vectors of V f;, so suppose we have got
the reduced Singular Value Decomposition (rSVD) of —V f; =
UXV' T where only the top-k eigenvalues and eigenvectors are
kept so that the computational cost is much reduced, we can
write the updating function with a step size 7 as:

am=(@v ) (G SV

= (G +GQ. Q27)

(28)

Here we update () with a step size 1 to get closer to the local
minimum on the Grassmann manifold. The complete algorithm
is shown in Algorithm 2.

Algorithm 2 Subspace Tracking for Spectral-CUSUM
Input: Weighted adjacency matrix at time ¢ denoted as Gy,
the total number of iterations 7°, number of communities
m, a set of step sizes 7.
Output: Subspace Representation @) of the graph.
1: Initialize @ randomly, introduce y as a 7T-dimensional
vector with all entries equal to O.
2:fort=1,...,7T do
3: Observe current adjacency matrix Gy.
4 Compute Vf; = (I — QQ ") (Gt + G])Q.
5. Compute SVD of —Vf; =UXV .
6: Update @) using (28) with step size 7;.
7
8

: Update y(t) = tr(Q T G+Q)
: Run CUSUM detection procedure on y and get detection
statistic S.
9: return S

Choice of Step Size. For our problem, constant step size
and decreasing step size can be efficient. The constant step
is slower initially, but it is more stable to detect changes in
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community structures. In our numerical experiments, we take
constant step size 1 = 0.01.

Complexity. In practice, we notice that in this algorithm,
we have to perform SVD for each iteration, which is quite
time-consuming. To accelerate the whole algorithm, we use
the incremental SVD algorithm [43] in each iteration.

VI. NUMERICAL EXPERIMENTS

In this section, we compare our method with the state-of-
the-art and discuss their numerical results on both synthetic
and real data sets. Since a graph can be considered as a discrete
approximation to a manifold [44], we also show that our model
can achieve promising performance on dynamic manifold data.

A. Methods for Comparison

In our experiments, we compare our method with four other
baseline approaches, including (1) Generalized Likelihood
Ratio procedure based on vectorized data (Vectorized
GLR) (2) Hotelling’s T-squared CUSUM (Hotelling);
(3) Single eigenvector procedure (SC, m = 1); (4) Rank-m
Subspace Tracking of Section V (SGD); and (5) Exact CUSUM
as a sanity check. The detailed explanation of these baseline
methods is as follows:

(1) Generalized Likelihood Ratio (GLR) procedure based on
vectorized data. This baseline method completely ignores the
topology properties of the adjacency graph G, and vectorizes
it as g; = vec(G¢) such that the previous hypothesis test (2)
becomes:

Hozgtiif\(}./\/((),JQInz) t=1,2,...,7

Hy: g SN (ho?l:) t=r1+1,7+42,...  (29)

where h = vec(AAT). Then classical result from [30], [45]
gives the optimal stopping criteria for GLR procedure:

t 112
Ellnl)” ) o

(2) Hotelling’s T-squared CUSUM. We also compare our
method with Hotelling’s 7T-squared statistic, which was intro-
duced in [460]. The way to implement this is to calculate a
pre-change sample mean [iy and sample covariance X, then
keep track of the current sample mean fi;—,,; via a sliding
window. We also need to pre-define the drift parameter d'’,
which can be obtained from historical data. Thus the detection
statistic is given by:

S = (S{2) T + (e — f10) " Eg (i —w — fro) — ™,

Then the optimal stopping time for Hotelling’s statistics is
given by:

Tgir = inf<t: max
t—w<k<t

TH2 inf{t>O:StH2 zb}. (31)

(3) Single eigenvector procedure of Spectral-CUSUM.
This baseline method is almost the same as the proposed
Spectral-CUSUM with the only difference of fixing commu-
nity size m = 1. We use it to illustrate the importance of
finding the optimal community size.
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Fig. 3. Comparison of the single eigenvector procedure and Exact-CUSUM
procedure for emergence problem. Community size fixed and o is set to be 5.

(4) Rank-m Subspace Tracking. This is proposed in
Section V as a numerical alternative method for our Spectral
CUSUM. So we list it as another baseline.

For synthetic data, we study the relationship between ARL
and EDD. For real data, we study EDD only since we cannot
implement simulation to decide the average run length if the
history data under pre-change distribution is not sufficient.

B. Synthetic Experiments

We devise three synthetic experiments to study the perfor-
mance of our method on the emergence and the switching
membership problems.

Synthetic data 1 is used for evaluating our method of
detecting emerging communities. In this experiment, we set
o = 5 and assume a dynamic graph that contains 50 nodes
without any community structure in the beginning. When the
change occurs at time ¢t =, three communities are formed,
containing 10, 10, and 15 nodes, respectively. In other words,
we have m = 0 before ¢t and m* = 3 after {. The optimal
window size can be found according to (25), where w = 5.

The experimental result shows that our method significantly
outperforms other baselines. Figure 3 presents the ARL of all
the methods on the synthetic data 1 with different choices of
community density and window size. As can be observed, our
method (blue line) works much better (the lower, the better)
than the baselines and is closest to the sanity check method
Exact-CUSUM. A comparison of how community size would
affect the choice of optimal window size is also shown in
the figure 4(b) where we increase the size of each emerging
community by 5, referred to as larger emerging communities.
It can be inferred that the change becomes easier to detect in
larger communities. Thus, the optimal window size decreases
correspondingly. In figure 5, we show how different noise
levels could infect the general detection delay, which leads
to the conclusion that a larger noise level leads to a longer
average detection delay. Moreover, when ARL is relatively
small, a large noise level would not have much effect on
the EDD. However, if the ARL is larger, the EDD will be
increased significantly for higher noise levels.

Synthetic data 2 is used for evaluating our method of detect-
ing switching membership. For the design of the switching
membership experiment, the number of nodes is 50, and the
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Fig. 4. ARL vs. EDD plot for optimized window size for Spectral-CUSUM
with smaller (a) and larger (b) emerging communities.
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Fig. 5. Comparison of the different noise levels for emergence problem.
Community size is fixed, and values of o are set to be 1,2,3,5,8, respectively.

size of the three communities remains the same: 10, 10, and
15 nodes. However, the membership for all three communities
will change. A comparison between SGD, Exact-CUSUM, and
Spectral-CUSUM is shown in Figure 6. We can see that the
single eigenvector procedure (m = 1) performs much worse
than Spectral-CUSUM using the correct potential community
size (m = 3). The performance gain of spectral-CUSUM
in the switching membership setup is larger than that in
the emerging subspace problems compared with the Exact-
CUSUM procedure. Moreover, the EDD of SGD is growing
quite fast with the increase of ARL, which indicates that it is
noise-sensitive.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 24,2023 at 19:50:38 UTC from IEEE Xplore. Restrictions apply.



ZHANG et al.: SPECTRAL CUSUM FOR ONLINE NETWORK STRUCTURE CHANGE DETECTION

40 T T

—SGD, m=3

| |== =Exact CUSUM

===SC,win=5,m=3
SC,win=5 m=1

@
&

W
8

N
b

@

Expected Detection Delay (EDD)

102 10° 10* 10°

Average Run Length (ARL)

Fig. 6. Comparison of the single eigenvector procedure and Exact-CUSUM
procedure for switching membership problem. Community Size fixed to be 3.
The total number of nodes in the network is set to 50. Before the change,
each community has a size of 10, and after the change, each community’s
size increases to 15 by absorbing nodes that do not belong to any community
before the change happens.
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Fig. 7. Relationship between the community density and EDD under different
settings of the number of communities m = {1,2...,5}. for emergence
community problem. Smaller m leads to higher EDD, and a larger community
density 7 after the change would have also decreased the EDD.

Here we do not compare with the vectorized GLR procedure
since it does not work in the switching membership problem.
The reason is that the switching membership change does not
lead to the increase or decrease of average edge weights; thus,
the change cannot be detected without considering the graph
topology.

Synthetic data 3 is used to study the impact of network
topology. We also explore the influence of community density
by assuming that for community ¢, the probability of forming
an edge within the community is p;. Then by changing the
value of p; under an emergence community scenario, the
density of the community can change. From Figure 7 we
see that a denser community structure after the change leads
to a more accurate detection. However, we can also observe
from the drastically decreasing curve that the detection can be
performed more accurately if the community density p; > 0.4.
This provides an approach to discovering a community through
the Spectral CUSUM method. In addition, we can see that the
detection power increases with a larger m and the increase in
community density. This result is consistent with our intuition
since we can always collect more useful information when
m < k, and the denser the community is, the more signal
that reveals the structure would be much stronger, leading to
quicker change detection.
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Fig. 8. A case that two separate rings have some overlapping nodes by a
bridge after the change: (a) Before the change, there are two rings structures
that form two communities; (b) After the change, two communities remain
the same, but some of their members join another community, leading to the
overlapping of two communities. (¢) The ARL VS EDD results show that
Spectral-CUSUM when m = 4 outperforms other procedures under larger
ARL, but SGD is better for smaller ARL.

C. Detecting Changes of Manifold Structure

This section shows that our detection algorithm also works
for detecting structural changes in the manifold. We first con-
sider a one-dimensional manifold on two-dimensional rings.
Before the change happens at time ¢ = 200, the two rings
are separately located, while after the change, there forms a
bridge between the two rings, as shown in Figure 8.

We use the Isomap [47] to calculate the adjacency graph,
which is sparse. Given the adjacency matrix, we set the
threshold to eliminate all the edges whose distances run
below the threshold. Thus, inside one community, any pair of
members can be reached via a few steps. Using the Spectral-
CUSUM, we show that, in this case, we can detect the change
quite quickly in figure 8(c).

Another classical manifold is Swiss Roll data [48], which
is a two-dimensional structure lying in a three-dimensional
space. The experiment is designed such that four Swiss rolls
merge into two Swiss rolls after the change, as shown in
Figure 9. We aim to use this to show that our method can
deal with various data topological structure changes based on
a choice of similarity measure. We see from the result that
when m equals its potential community size, the performance
is quite close to the optimal Exact-CUSUM.

D. Yellowstone Seismic Sensor Network Data

We further consider a seismic sensor network data set
adapted from [49]. The sensors are placed in different loca-
tions to measure signals around the Old Faithful Geyser in
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TABLE I
DETECTION DELAYS UNDER DIFFERENT # COMMUNITIES (m) FOR SEISMIC DATA

# communities (m) 1 2

3 4 5 6 7 8 9

Detection Delay 23 20

17 4 3 3 2 2 2

(a) before change (b) after change

8
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(c) ARL VS EDD plot

Fig. 9. A case that four Swiss rolls merge into two communities after the
change: (a) Before the change, there are four swiss roll structures which
form four different communities; (b) After the change, two communities
disappear and merge into the other communities. Note that in this experiment,
Hotelling’s T-squared statistics cannot detect the change at all.
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Fig. 10. Correlation matrix for seismic sensors at different times
t = 10, 180, 205, 250. We can see clearly from the above matrices that there’s
a big change before and after ¢ = 200, which is the ground-truth change-point
in the seismic network, causing an emergence community scenario.

Yellowstone National Park. The total number of sensors is
19 in this case, but we removed four sensor signals since
they failed to work during data collection. We then observe
a sequence of sensor signals and translate each one into a
dynamic cross-correlation graph. At the very beginning, the
cross-correlation between each pair of sensors is low, which

(a) Seismic topology visualization
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(b) Detection statistics

Fig. 11. The topology of seismic sensors and detection statistics for sequential
seismic data with an outburst of community structure changes. In (a), the
total number of 19 seismic sensors roughly forms a circle, and signals can
be observed on each sensor [50]. Thus the community would be formulated
when an earthquake happens, making several sensors correlated. In (b),
we applied our Spectral-CUSUM statistics on sensor signals, and we know
the ground-truth earthquake happens at time 200. The results demonstrate the
ability of the algorithm to detect such changes very quickly.

means they are not related. The emergence of community
happens in the middle of the sequence. Such change will cause
the infected sensors to generate similar signals, which lead
to a higher correlation magnitude between them. In contrast,
an unaffected sensor still generates random noises, thus having
a low correlation with other sensors. Consequently, a com-
munity containing all the affected sensors emerges after the
change happens. We visualize the correlation matrix for better
understanding in Figure 10. In this case, the true changepoint
time is roughly known, corresponding to the geyser eruption
time.

We apply our Spectral-CUSUM procedure to the dataset
with choices of different potential community sizes m.
Figure 11 (a) shows the sensor locations, and the results
of detection statistics using Spectral-CUSUM procedure are
shown in Figure 11 (b). It can be seen clearly that setting
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Fig. 12. Comparison of our Spectral-CUSUM procedure with other baseline
methods, including Hotelling’s statistics, SGD, and vectorized GLR.

potential community size m > 4 gives better performance on
detecting change at around ¢ = 200, which corresponds to a
geyser eruption time — treated as a true change-point time. The
result shows that the event can be detected without false alarms
when m > 4, which reveals that this seismic network’s true
underlying community size is about 4. The detection delay is
shown in Table I. This shows that our detection statistics can
be useful when the underlying graph structure is unknown.

In addition, we compare our Spectral-CUSUM with other
methods on this real data. We can see from Figure 12 that
Spectral-CUSUM and SGD have the most obvious abrupt
change around the true change-point time 200. However,
vectorized GLR and Hotelling’s T-squared statistics can not
detect such a change.

VII. CONCLUSION

We present a novel Spectral-CUSUM procedure for detect-
ing underlying community changes through noisy observa-
tions. We provide the first-order asymptotic optimality of
Spectral-CUSUM under the optimal choice of parameters.
We also present an efficient online computation procedure to
evaluate the Spectral-CUSUM statistic without remembering
all data based on subspace tracking. Experimental results
on both synthetic and real-world data demonstrate the supe-
rior performance of our procedure compared with alternative
methods.

APPENDIX

Deriving the Bounds for Terms in (IV-A): Recall p; = 1/
(6% + |C;]). First, the Frobenius norm for the second term in
the covariance matrix of the estimation error:

pz‘/U2
mHI—UUTHF
a?/pi
= WHI—UUTHF
a*(a® +|Ci))
= WHI—UUTHF

o? [ o? JiTm
= — +1) n—m,
|Cil (|Cz‘|

where we have used |[[-UU'||% = u|[(l — UUT)(I —
UUT) = (I —UUT) = n—m since U is a n-by-m
orthonomal matrix and I — UU" is a projection matrix.

4703

Assume 02 /|C;| < €, € > 0, we have the last equation above
is upper bounded by €(1 + €)y/n — m.

On the other hand, it can be shown that the square Frobenius
norm of the first term »7;%, ; ., %uku; is given by
(and further bounded by)

i P 0i
1
k=1 ki (pi = pr)
s
k#i (/Tk o pf)
-y (0% +1Ci])*(0® + |Ci|)?
2 (G - Gl

0'2 2 0'2 2
(e +1) (e +)
( [Ck| /|Ci\>4
|C,| ‘Ckl

where the last inequality is based on Assumption IV.1(2).
Thus, to have the first term dominate the second term,
we need

F\\ﬂ

ki

m—1 1

(1+9—m)2’

where 7 € (0, 1) controls the relative magnitude of the terms,
which gives us the condition

e(l+e)<n-

n—m

1/2

1 m—1 1
e< | -+n: ‘ 3 -

4 n—m ( a_m)

Together with i 02 < €, we can derive the necessary upper
bound. Note that when 6 is relatively small, this bound can be
easily satisfied. O

Proof of Lemma 1: Since At is estimated using data from
t+ 1 tot+ w, it is independent from v;. This independence
property allows for the straightforward computation of the two
expectations in Lemma 1 and contributes towards the proper
selection of drift d. Recall we denote A; = diag(pe1,-- -, Prm)
as the smallest m eigenvalues of the sample covariance matrix,
and U, as the corresponding eigenvectors. Note that under the
pre-change distribution we can write:

W[U:A\t;{:’l}t]

N | =

s [0 UAT U 0r) = Boolv] (Y st )ve)
i=1 It

- LT - 1 7 T
:ZEOO[ (utzvt) = ZEOO[ Gy Boo [vrvy, ]t

i=1 Pui i=1 ti

1 & 1 1 & 1
=— ) Eo[—dgiu] = — Y Eool—

o? ; [Pn vl 2 ; [pti]

Note that under the pre-change measure, the estimated Ut
and (At) ! are eigenvectors and eigenvalues for the sample
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covariance matrix constructed by samples generated from
N(0,(1/0%)I). We approximate the above expectation as

so|1/pti] = o2 using the eigenvalues of the ground truth
sample covariance matrix. Note that such approximation is
valid when the number of samples (i.e., the sliding window
size w) is large enough, under such cases, the sample eigenval-
ues will highly concentrate around the true eigenvalues. As we
will show later, the optimal window size w is indeed suffi-
ciently large (in the order of y/log~y) in the asymptotic regime
we consider. Following the discussions above, we write:

Eoo[v) A A] 0] = m. (33)

Similarly, we can derive the results for post-change
distribution:

EO [U;r A\t A\;r ’Ut]

m

=Bl (5

i=1

ZEo

=E, [vtTﬁtAt_lﬁtTvt] umul)vt]

Eo vtv:]um]

where 1/p1,...,1/pm are the estimated eigenvalues of AAT
and p1,...,p, are the eigenvalues of the true covariance
matrix (AAT—|—021 )~1 so that it can be written as Eq[vv,'] =
S j=1 Pjuju; . As stated in Theorem 1, the estimated eigen-
value and elgenvector from the sample covariance matrix
are independent, and Theorem 1 characterizes the estima-

. . . . d
tion error e;; = Py — u;, which satisfies Jwe; —

N <07Z7l?_1,k7$i %ukul . Asymptotically, we have
Eolu; eit] = u; Eoleir] — 0 and

Eolu. e;el u; wd Cov(es ) u:

P(u; eirefiu; > €) < ofus eiveyti] _ % (€it)ui

€ €

— 0,

thus w; is perpendicular to the error term e;; with probability 1.
Since the estimated eigenvector is normalized to be unit-
norm, we have the following:
bri Uit ey
@il llui + eal]
First of all, due to the orthogonality of different eigenvectors,
we have:

m n .
ZZEO[{? Utz“] ZEO Utzuz ]7
i=1 j=1

Uit =

p

where u;, ¢ = 1,...,m, are the eigenvectors corresponding to
the smallest m eigenvalues of the true covariance matrix. Then
we examine the term p;/p;;, note that the true eigenvalue of
the covariance matrix is p; = 1/(|Cl+ o?) = 1/(\i + o?)
and the estimated eigenvalues of (AAT)~! is approximately
1/A;. Thus we have Eo[p;/pes] = Ai/ (X +02), and of course
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such approximation is under the asymptotic case where the
window size w is sufficiently large.
Combining these together, we have

EO [Ut—r A\tA\T ’Ut]

P N
—ZEO ! u;ul

N (lwil® + ejui)?
]:.Z/\4+02E0[ 2

i + el
- (1+eju;)? 1
_Z A +02 1 Z i _|_02 1 2
P Hleal* I = + [leatl]
3 [1 — fleall* + ||ez-t|4}
i—1 Ai + 0 1+ ||€itH2

§S A [0 deal)0 = eel) + et
A + o2 0

L+ e
4
EO|: el 2} }

L+ leill
The second equality is by substituting 4, = (u; +
eit)/||u; + eit]|, and the third equality is due to the fact that
u; is an unit-norm vector and wu; is perpendicular to e;; with

probability 1. For the two expectations above, using Gaussian
approximation from Theorem 1, we have

g s
w /\f)\k w’
kl,;féL

i 1_-F ; 2
{1 Bolleal?] +

Eolleil|”]

and to estimate Eg [Heit||4/(1 + ||eit||2)], we provide the fol-
lowing lemma:

Lemma 4: For a multivariate Gaussian random variable z ~
N(0,%) where ¥;; = 07;, we have

E([l2]3) < 3(tr(2))*.

We can derive this lemma using the properties of uni-variate
Gaussian distribution where z; ~ N(0,0%) E(z}) = 30},
and Cauchy-Schwarz inequality (details omitted). As a result,
according to Lemma 4, we can conclude that random variable
et that follows a Gaussian distribution have Eq[[|es||!] =
Eo[(lleie]|*)?] < 3[tr(Cov(ei))]? = 3B2Z/w?. Then we have:

4
OS]EO|: He’LtH 2:|
1+ e

3 m
< Eollleu!] < w( >

k=1,k+#i

M \° 3B?
=) w?

Therefore, we get the desired approximation to the post-
change expectation:

A B;
= Z +0’2 (1 — w) < Eo[vt AtA ’Ut]

B; 3B?
L(-BEy

w w

From alaove, we see that when the Win(/i\O\lV\ size w becomes
large, D/D — 1, we then have Eg[v, A; A v;] can be well
approximated by D. O
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Proof of Lemma 2: By definition of KL divergence for
emerging subspace case,

fo(vt)]

foo(vt)
T 2
2 0-277,

I() == EO |:10g

1 1 det(AAT +021)
= 7§E0 {vtTAATvt] + 3 log —
Since A is not a full-rank matrix, the eigendecomposition of
AAT = UAUT has dimension U € R"*™ and A € R™*™,
By adding basis (I € R(™* (=)} from nullspace to make
U’ to be a square matrix, we have the following:

A

U'=[U U] eR™™ A= eR™",

0

where U’ is an orthogonal matrix of rank n where U’'TU’ = I
and AAT = U/A’U’T. Then the first term of Z, can be derived
as:

Eo {UJ AATUt]
=E, [tr(AATvtvtT)] =tr {AAT]EO(UUT)}
=tr _AAT(AAT +0°I )‘1]
=tr [

U/A/U/T(U/(A/ 4 UQ])—lU/T):|

U/A/(A/+021)—1U/T:| :tr|:AI(AI+U2I>_1U/TU/:|

=tr
=tr _A/(A/Jra?I)*l = i Ai
. St

Moreover, the second term becomes

1, det(A4T +o%])

1 & i
2 0g02n:2210g<02+1>

1 m i
To=—= :
0 2;}1(024-)\1)’

where h(z) =z + log(1l — x). O

Proof of Lemma 3: Following previous results, we define
P(w) = Eo(Z¢) in (24) as a function of w and try to find the
w* that minimizes (w). Recall we have

2logy(1+ o(1)
Y(w) = —= Ail/\(_r ) +w
—2000Eo[v, U Ay "U, vy] + mlog(l + 264)

4705

B 2log7(1 + 0(1))
260D +mlog(1l+ 20.)

+w

Substitute D into t(w) gives us the expression for the EDD
as:

2logy
mg(D/m)

B 2logy _
Ylw) = D — m+ mlog(m/D) tw=

Recall we have denoted A = L 37, ﬁ* thus we have

N "ONB 1 N 3B2\ 1
D= - - i -
;02+/\i ;UZ+)\iw+;a2+)\2w2
CNBi 1 K 3B2\ 1
o A — iDL i 17.
m i:102+)\iw+i22102+)\2w2

Note that mA € (0,m) and it is close to close to 0 when
o? is large and close to m when o2 is small. Let

XiB; 3B2)\;
B = . (= (AL
Yoo+ N T 024 N2
We have B o
D =mA — LB + 27;
w w
Then
P(w) = w+
2logy
B’ C’ cry
m(A—1) - =5 4 20 pjeg(a - 2804 26
Note that
ZB/ ZCI ZB/ ZC/
A — =A(1 -
mw mw2 ( Amuw AmwQ)

Apply the Taylor expansion for log(1 — ), we have
B! C! B’ C!
10g<1— by Z )— 2 2 +o(1/w).

Amuw Amw2 Amuw Amw2

Substitute into the EDD ¢ (w) we can obtain that:
ww=w+@bmqum—m—mmym
o= hSme - hisa)

and note that the denominator will be dominated by the term
m(A — 1) —mlog(A). Let the first-order derivative of ¢ (w)
equal to 0 and ignore o(1/w) terms, we obtain

2(log7)(x — DX BY)
[m(A—1)—mlog(A)—(x —1)(3 B))/w]* w?
2(logy)(x — (X BY)
[m(A —1) — mlog(A)]? - w?’

¥/(w) =1+

~ 1 —

The derivation above is approximated by ignoring o(1/w) term
in the denominator in the second step. It can be seen clearly
that when ¢'(w*) = 0 we get the minimum value for ¥ (w).
Thus we have:

~y/2008)(& ~ (X B
— m(A—1) —mlog(A)
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200087) (5 - D(C A
B m(A —1—log(A))

V20087) (5 - D(CE, 250
mg (A) '

Recall g(x) = z — 1 — log(z). Note that the denominator
is always positive since g(xz) > 0 for all x € (0,1) and
A€ (0,1). O

Proof of Theorem 2: To explain the o(1) terms in (15),
note that the result in [38] states Eo[Tc] = €’[1 — (b +
1)e % /Zoo, and Eo[Tc] = b[1 + (e7® — 1)b1]/Zo, and
thus the two o(1) terms are on the order of be=? and b~!
respectively, or equivalently, the two o(1) terms are on the
order of (log~v)/v and 1/log~ respectively. Now using the
more precise version of the EDD for the exact CUSUM (16)
and the Spectral CUSUM (24)

b(1+0(b~Y)

Eo[Tc] = Io (exact CUSUM)
2b(1+ O(b~1))
Eo(Zc) = W + w. (Spectral CUSUM)

Recall g(z) = 2 — 1 — log(z).
Since, to achieve ARL constraint -y, the threshold b for both
procedures are on the order of log~y, we obtain the ratio:

Eo[Tc] _ 210 + on
EolTe]  mg(D/m) ~ b(1+0O(b7)
- 210/m U)IO 1
= 5D/m) +t= (1+00)),

using Taylor expansion 1/(1 +2) =1—x2 + 22/2---. Note

that

m

27, 1
T Tm

_1h(02+)\>—A—Zlog( >

where we recall that h(z) = z + log(l — z), A =
L3 2. Meanwhile we can write

N B; 3B?
DZ)\i—i—ag(lw w2)

" 3B2)\; 1
— mA — et A
Ay ey P

and thus

g(D/m) =g A~ ZJQH

When w is sufficiently large (e.g., in our setting w = +/log,
v — 00), due to monotonicity and continuity of g, we have
g(D/m) — g(A) = A —1—log(A) and

m o2
210/’1% A+ % Zi:l log (02+)\i)
g(D/m) 1—A +log(A)
(which does not depend on w or ) since g(A) > 0 and
A € (0,1) for 0% bounded away from 0. Combining with b

is on the order of log~, w is in the order of y/log~, we are
done.

1 3B 1
mw +;U2+)\2mw2

=0(1), (G4
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We can further evaluate the limiting upper bound, using
the concavity of the logarithm function, (34) can be further
bounded by

At Y log (Ti/\i) _ A+log(l—A)

1— A +1log(A) ~ 1-A+logA’
and the figure above plots the upper bound for
A €(0.4,0.9). O
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