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Abstract. We consider the sequential anomaly detection problem in the one-class setting
when only the anomalous sequences are available and propose an adversarial sequential
detector by solving a minimax problem to find an optimal detector against the worst-case
sequences from a generator. The generator captures the dependence in sequential events
using the marked point process model. The detector sequentially evaluates the likelihood
of a test sequence and compares it with a time-varying threshold, also learned from data
through the minimax problem. We demonstrate our proposed method’s good performance
using numerical experiments on simulations and proprietary large-scale credit card fraud
data sets. The proposed method can generally apply to detecting anomalous sequences.
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1. Introduction

Spatio-temporal event data are ubiquitous nowadays,
ranging from electronic transaction records and earth-
quake activities recorded by seismic sensors to police
reports. Such data consist of sequences of discrete events
that indicate when and where each event occurred and
other additional descriptions such as its category or vol-
ume. We are particularly interested in financial transaction
fraud, which is often caused by stolen credit or debit card
numbers from an unsecured website or due to identity
theft. Collected financial transaction fraud typically con-
sists of a series of anomalous events: unauthorized uses of
a credit or debit card or similar payment tools (Automated
Clearing House, Electronic Funds Transfer, recurring
charge, etc.) to obtain money or property (FBI 2021). As
illustrated in Figure 1, such events sequence corresponds
to anomalous transaction records, typically including the
time, location, amount, and type of the transactions.

Early detection of financial fraud plays a vital role in
preventing further economic loss for involved parties.
In today’s digital world, credit card fraud and ID theft
continue to rise in recent years. Losses to fraud incurred
by payment card issuers worldwide reached USD$19.21
billion in 2019. Card issuers accounted for 68.97% of
gross fraud losses (The Nilson Report 2019) because the
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liability usually comes down to the merchant or the
card issuer, according to the “zero-liability policies”:
merchants and banks could face a significant risk of
economic losses. Credit card fraud also causes much
loss and trouble to the customers with stolen identities
have been stolen: victims need to report unauthorized
charges to the card issuer, canceling the current card,
waiting for a new one in the mail, and subbing the
new number into all auto-pay accounts linked to the
old card. The entire process can take days or even
weeks.

For applications such as financial fraud detection, we
usually only have access to the anomalous event seq-
uences. This can be due to protecting consumer privacy,
so only fraudulent transaction data are collected for the
study. The resulting one-class problem makes the task
of anomaly detection even more challenging. However,
there are distinctive patterns of anomalies that enable
us to develop powerful detection algorithms. For in-
stance, Figure 2(a) shows an example of a sequence of
fraudulent transactions that we extracted from real
data. A fraudster used a stolen card 12 times in just six
days and made electronic transactions at stores that are
physically far away from each other, ranging from Cali-
fornia to New England. The types of transactions are
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Figure 1. (Color online) Examples of a Sequence of Ordinary Events (left) and a Sequence of Anomalous Events (right) That Are

Dependent: One Leads to Another
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Notes. The events on the left show an ordinary pattern of transactions for a consumer. For the events on the right, it is unusual for a consumer to
execute a transaction at a movie theater in the early morning and then a high-volume transaction at a coffee shop. It indicates the events are

abnormal.

also different from the regular spending pattern. Figure
2(b) illustrates the distribution of a collection of fraudu-
lent transactions for location (store ID), season, and the
number of transactions. We can observe a significant
portion of transactions at the department store in San
Francisco and New York.

Although there has been much research effort in
machine learning and statistics for anomaly detection
using sequential data (Chandola et al. 2010, Xu 2010,
Chung et al. 2015, Doshi and Yilmaz 2020), we cannot
use existing methods here directly for the following rea-
sons. First, many existing works consider detecting
anomalous sequences “as a whole” rather than detect-
ing in an online fashion. Second, the one-class data situ-
ation requires an unsupervised approach for anomaly
detection; however, most sequential anomaly detection
algorithms are based on supervised learning.

This paper presents an adversarial anomaly detection
algorithm for one-class sequential detection, where only
anomalous data are available. The adversarial sequen-
tial detector is solved from a minimax problem to find
an optimal detector against the worst-case sequences
from a generator that captures the dependence in seq-
uential events using the marked point process model.
The detector sequentially evaluates the likelihood of
a test sequence and compares it with a time-varying
threshold, which is also learned from data through the
minimax problem. We demonstrate the proposed meth-
od’s good performance by comparing state-of-the-art
methods on synthetic and proprietary large-scale credit
card fraud data provided by a major department store
in the United States.

On a high level, our minimax formulation is in-
spired by imitation learning (Hussein et al. 2017), which

Figure 2. (Color online) Sequential Fraud Credit Card Transactions Data Set Provided by a Major Department Store in the

United States
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Notes. (a) Sequence of transactions made by one stolen credit card; each bar represents a fraudulent transaction, the bar’s height indicates the
transaction amount in dollars, and the color of the bar indicates the location of the transaction. (b) Overview of how these fraudulent transactions
were distributed over stores and seasons. (c) Overview of how these fraudulent transactions were distributed over the amount of purchase for

different loss types.
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minimizes the maximum mean discrepancy (Gretton et al.
2012) (MMD). In particular, the generator is built on long
short-term memory (LSTM) (Hochreiter and Schmidhu-
ber 1997), which specifies the conditional distribution of
the next event. We parameterize the detector by compar-
ing the likelihood function of marked Hawkes processes
with a deep Fourier kernel (Zhu et al. 2021b, c) with a
threshold. The resulted likelihood function is computa-
tionally efficient to implement in the online fashion and
can capture complex dependence between events in ano-
malous sequences. A notable feature of our framework is
a time-varying threshold learned from data by solving the
minimax problem, which achieves tight control of the
false-alarms and hard to obtain precisely in theory. This is
a drastic departure from prior approaches in sequential
anomaly detection.

The rest of the paper is organized as follows. We first
discuss the related work in sequential anomaly detection
and revisit some basic definitions in imitation learning.
Section 3 sets up the problem and introduces our sequen-
tial anomaly detection framework. Section 4 proposes a
new marked point process model equipped with a deep
Fourier kernel to model-dependent sequential data. Sec-
tion 5 presents the adversarial sequence generator and
learning algorithms. Finally, we present our numerical
results on both real and synthetic data in Section 6. Proofs
to all propositions can be found in the online appendix.

1.1. Related Work

Several research lines are related to this work, including
imitation learning, the LSTM architecture for modeling
sequence data, one-class anomaly detection, and fraud
detection, which we review here.

Imitation learning (Hussein et al. 2017) aims to mimic
the expert’s behavior in a given task. An agent (a learn-
ing machine) is trained to perform a task from demon-
strations by learning a mapping between observations
and actions. Landmark works by Abbeel and Ng (2004)
and Syed and Schapire (2007) attack this problem via
inverse reinforcement learning (IRL). In their work, the
learning process is achieved by devising a game-playing
procedure involving two opponents in a zero-sum game.
This alteration not only allows them to achieve the same
goal of doing nearly as well as the expert as in Abbeel
and Ng (2004) but achieves better performances in various
settings. However, this strategy cannot be directly applied
to event data modeling without adaptation. A recent
work (Li et al. 2018) filled this gap by introducing a
reward function with a nonparametric form, which mea-
sures the discrepancy between the training and generated
sequences. Their proposed approach models the events
using a temporal point process, which draws similarities
in our work’s spatio-temporal point process model. How-
ever, our work differs from Li et al. (2018) in two major
ways. Rather than constructing a generative model, we

focus on sequential anomaly detection, which is a differ-
ent type of problem. Besides, we design a structured
reward function that is more suitable for modeling the
triggering effects between events and more computation-
ally efficient to carry out.

There is another work on inverse reinforcement learn-
ing related to our work. The work in Ziebart et al. (2008)
first proposed a probabilistic approach to the imitation
learning problem via maximum entropy. The work pro-
posed an efficient state frequency algorithm that is com-
posed of both backward and forward passes recursively.
A more recent similar article by Oh and Iyengar (2019)
seeks to integrate IRL with anomaly detection based on
the above maximum entropy IRL framework. They aim
to learn the unknown reward function to test a given
sequence. The significant difference, however, is they
focus on time series data instead of event data. Also, we
formulate the problem as a minimax optimization,
whereas they used a Bayesian method to estimate the
model parameters.

A large body of recent works performs sequential
anomaly detection using LSTM, similar to the proposed
stochastic LSTM used as the adversarial generator in
our work. In Malhotra et al. (2016), the authors pro-
posed an encoder-decoder scheme using LSTM to learn
the normal behavior of data and used reconstruction
errors to find anomalies. The work of Nanduri and
Sherry (2016) built a recurrent neural network (RNN)
model with LSTM structure to conduct anomaly detec-
tion for multivariate time series data for flight opera-
tions. Another paper from Luo et al. (2017) looks into
anomaly detection in videos by convolutional neural
networks with the LSTM modeling. It is clear that the
LSTM model is versatile for various applications and
can model unknown complex sequential data. How-
ever, the LSTM used here in this paper is stochastic (as
a generative model to capture data distribution), whereas
most LSTM architectures are deterministic. Specifically,
the input at each time step in the stochastic LSTM is
drawn from a random variable whose distribution is spe-
cified by the LSTM’s parameters.

There is a wide array of existing research in anomaly
detection. Principle component analysis (PCA) has tra-
ditionally been used to detect outliers, which naturally
fits into anomaly detection. In Chalapathy et al. (2017),
the authors propose a robust auto-encoder model, which
is closely related to PCA for anomaly detection, and a
deep neural network is introduced for the training pro-
cess. Additionally, Chalapathy et al. (2018) proposed a
one-class neural network to detect anomalies in complex
data sets by creating a tight envelope around the normal
data. It is improved from the one-class singular value
decomposition formulation to be more robust. A closely
related work is Ruff et al. (2018), which looks into one-
class anomaly detection through a deep support vector
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data description model that finds a data-enclosing hyper-
sphere with minimum volume. However, most previous
studies on one-class anomaly detection assumed indepen-
dent and identically distributed data samples, whereas
we consider data dependency.

As an important application of anomaly detection,
credit card fraud detection has also drawn a lot of re-
search interest (Bolton and Hand 2002, Kou et al. 2004).
Most commonly, supervised methods have been adopted
to use a database of known fraudulent/legitimate cases to
construct a model that yields a suspicion score for new
cases. Traditional statistical classification methods, such as
linear discriminant analysis (Wang and Xu 2018), logistic
classification (Sahin and Duman 2011), and k-nearest
neighbors (Malini and Pushpa 2017), have proved to be
effective tools for many applications. However, more
powerful tools (Ghosh and Reilly 1994, Maes et al. 2002),
especially neural networks, have also been extensively
applied. Unsupervised methods are used when there are
no prior sets of legitimate and fraudulent observations. A
large body of approaches (Bolton et al. 2001, Srivastava
et al. 2008, Tran et al. 2018) used here is usually a combi-
nation of profiling and outlier detection methods, which
models a baseline distribution to represent the normal
behavior and then detect observations departure from
this. Compared with the previous unsupervised studies
in credit card fraud detection, the most notable feature of
our approach is to learn the fraudulent behaviors by
“mimicking” the limited amount of anomalies via an
adversarial learning framework. Our anomaly detector
equipped with the deep Fourier kernel is more flexible
than conventional approaches in capturing intricate
marked spatio-temporal dynamics between events
while being computationally efficient.

Our work is a significant extension of the previous
conference paper (Zhu et al. 2020), which studies the
one-class sequential anomaly detection using a framework
of generative adversarial network (GAN) (Goodfellow
2014, Goodfellow et al. 2014) based on the cross-entropy
between the real and generated distributions. Here, we
focus on a different loss function motivated by imitation
learning and MMD distances that is more computationally
efficient. In addition, we introduce a new time-varying
threshold, which can be learned in a data-driven manner.

2. Background: Inverse

Reinforcement Learning
Because imitation learning is a form of reinforcement
learning (RL), in the following, we will provide some
necessary background about RL. Consider an agent in-
teracting with the environment. At each step, the agent
selects an action based on its current state, to which the
environment responds with a reward value and the
next state. The return is the sum of (discounted) rewards
through the agent’s trajectory of interactions with the

environment. The value function of a policy describes
the expected return from taking action from a state. The
inverse RL (IRL) aims to find a reward function from the
expert demonstrations explaining the expert behavior.
Seminal works (Ng and Russell 2000, Abbeel and Ng
2004) provide a max-min formulation to address the
problem. The authors propose a strategy to match an
observed expert policy’s value function and a learner’s
behavior. Let 7w denote the expert policy, and 7, denote
the learner policy, respectively. The optimal reward
function r can be found as the saddle-point of the fol-
lowing max-min problem (Syed and Schapire 2007),
that is,

max min< E,
reF  @eg

Ny N,
zr(xi/ Si)] —E;p, 27(21‘/ Sj)‘| },
i= j=

where F is the family class for reward function and G is
the family class for learner policy. Here, x = {xy,...,
xn,} is a sequence of actions generated by the expert
policy m, z={z1,...,zn.} is a roll-out sequence gener-
ated from the learner policy 7y, and N, and N are the
numbers of actions for sequences x and z, respectively.
The formulation means that a proper reward function
should provide the expert policy a higher reward than
any other learner policy in G. The learner can also
approach the expert performance by maximizing this
reward.

3. Adversarial Sequential

Anomaly Detection

We aim to develop an algorithm to detect anomalous
sequences when the training data set consists of only
abnormal sequences and without normal sequences. In
particular, the algorithm will process data sequentially
and raise the alarm as soon as possible after the sequ-
ence has been identified as anomalous. Denote such a
detector as ¢ with parameter 0. At each time ¢, the
detector evaluates a statistic and compares it with a
threshold. For a length-N sequence x, define xj.:=
[x1,....x;]",i=1,2,...,N be its first i observations. We
define the detector as a stopping rule, which stops and
raises the alarm the first time that the detection statistic
exceeds the threshold:

T= il’lf{t : t’(xl:i; 9) > 1 ti<t< ti+1}, i=1,...,N.

Once an alarm is raised, the sequence is flagged as an
anomaly. If there is no alarm raised until the end of the
time horizon, the sequence is considered normal. The
test sequence can be an arbitrary (finite) length.

3.1. Proposed: Adversarial Anomaly Detection

Assume a set of anomalous sequences drawn from an
empirical distribution 7t. Because normal sequences are
not available, we introduce an adversarial generator, which
produces “normal” sequences that are statistically similar
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to the real anomalous sequences. The detector has to
discriminate the true anomalous sequence from the
counterfeit “normal” sequences. We introduce compe-
tition between the anomaly detector and the generator
to drive both models to improve their performances
until anomalies can distinguish from the worst-case
counterfeits. We can also view this approach as finding
the “worst-case” distribution that defines the “border
region” for detection. Formally, we formulate this as a
minimax problem as follows:

min max J(0,9) = Exor (x;0) — . (z0), (1)

where G, is an adversarial generator specified by the
parameter ¢ € G, and G is a family of candidate genera-
tors. Here the detection statistic corresponds to €(6), the
log-likelihood function of the sequence specified by 0 €
© and O is its parameter space. The choices of the
adversarial generator and the detector are further dis-
cussed in Section 4. The detector compares the detection
statistic to a threshold. We define the following.

Definition 1 (Adversarial Sequential Anomaly Detector).
Denote the solution to the minimax problem (1) as
(0", ¢%). A sequential adversarial detector raises an
alarm at the time i if

U(x1;0") > 1;,
where the time-varying threshold 17; < E._¢_(,+) {(z1.;0").

3.2. Time-Varying Threshold

We choose the time-varying threshold nj«E, ¢ (o)
£(z1.;0"). Because the value of log-likelihood function
£(x1:4; 0%) for partial sequence observation x;.; may vary
over the time step i (the ith event is occurred), we need
to adjust the threshold accordingly for making decisions
as a function of i. Our time-varying threshold 7; is dif-
ferent from sequential statistical analysis, where the
threshold for performing detection is usually constant or
preset (not adaptive to data) based on the known distri-
butions of the data sequence (e.g., set the threshold
growing over time as V#; Siegmund 1985). The rationale
behind the design of the threshold 7n; is that, at any
given time step, the log-likelihood of the data sequence
is larger than that of the generated adversarial sequence;
therefore, i provides the tight lower bound for the like-
lihood of anomalous sequences £(x; 0%) due to the mini-
mization in (1). That is, for any ¢ € G,

0 <Eyor l(x1.507) — 17}
SEyop O(x1:;0") — E2~Gz(((7) U(z1;0")-

The adversarial sequences drawn from G.(¢*) can be
viewed as the normal sequences that are statistically

“closest” to anomalous sequences. Therefore, the log-
likelihood of such sequences in the “worst-case” scenario
defines the “border region” for detection. In practice, the
threshold 71} can be estimated by 1 S (2 6),
where {z'},_; , are adversarial sequences sampled
from G;(¢) and n’ is the number of the sequences. As
a real example presented in Figure 3, the time-varying
threshold in the darker dashed line can sharply separate
the anomalous sequences from the normal sequences.
More experimental results are presented in Section 6.

3.3. Connection to Imitation Learning
The problem formulation (1) resembles the minimax
formulation in IRL proposed by seminal works (Ng
and Russell 2000, Abbeel and Ng 2004). As shown in
Figure 4, an observed anomalous samples x ~ 7t can be
regarded as an expert demonstration sampled from the
expert policy 7, where each x = {x1,...,xn} is a sequ-
ence of events with length of N and the sequences may
be of different lengths. Each event x;,i=1,...,N of the
sequence is analogous to the ith action made by the
expert given the history of past events {x1,x2,...,x;_1}
as the corresponding state. Accordingly, the generator
can be regarded as a learner that generates convincing
counterfeit trajectories.

The log-likelihood of observed sequences can be in-
terpreted as undiscounted return, that is, the accumulated

Figure 3. (Color online) Adversarial Anomaly Detection
and Threshold Using Synthetic Data with 1,000 Synthetic
Sequences
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Notes. The two lighter dashed lines represent mean detection statis-
tics ((0%)) for anomalous and normal sequences. The dashed line in
the middle corresponds to the time-varying threshold suggested by
our model. Clearly, the threshold can separate the anomalous
sequences from the normal sequences.
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Figure 4. (Color online) Imitation Learning Interpretation
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sum of rewards evaluated at past actions, where the
logarithm of the conditional probability of each event
(action) can be regarded as the event’s reward. The
ultimate goal of the proposed framework (1) is to close
the gap between the return of the expert demonstra-
tions and the return of the learner trajectories so that
the counterfeit trajectories can meet the lower bound
of the real demonstrations.

3.4. Connection to MMD-Like Distance

The proposed approach can also be viewed as minimiz-
ing a MMD-like distance metric (Gretton et al. 2012) as
illustrated in Figure 5. More specifically, the maxi-
mization in (1) is analogous to an MMD metric in
a reduced function class specified by ©, that is, sup,_o
Ex-r {(x;0) — E.., £(2;0), where ® may not necessarily
be a space of continuous, bounded functions on sample
space. As shown in Gretton et al. (2012), if © is sufficiently
expressive (universal), for example, the function class on

Figure 5. (Color online) Empirical Distribution of Anoma-
lous Sequences Is 7t

Empirical | °
\ distribution 1
\ ]
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~
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Anomalous sequence Adversarial sequence

Notes. The assumed family of candidate generators is G. Our pro-
posed framework aims to minimize the maximum mean discrepancy
(MMD) in a reduced function class © between t and ¢ € G.

Update 6

reproducing kernel Hilbert space (RKHS), then maxi-
mization over such © is equivalent to the original defi-
nition. Based on this, we select a function class that
serves our purpose for anomaly detection (characteriz-
ing the sequence’s log-likelihood function), which has
enough expressive power for our purposes. Therefore,
the problem defined in (1) can be regarded as minimiz-
ing such an MMD-like metric between the empirical
distribution of anomalous sequences and the distribu-
tion of adversarial sequences. The minimal MMD dis-
tance corresponds to the best “detection radius” that
we can find without observing normal sequences.

4. Point Process with Deep
Fourier Kernels

In this section, we present a model for the discrete
events, which will lead to the detection statistic (i.e., the
form of the likelihood function £(x;60)). We present a
marked Hawkes process model that captures marked
spatio-temporal dynamics between events. The most
salient feature of the model is that we develop a novel
deep Fourier kernel for Hawkes process (see section 6.6
in Mobhri et al. (2012) for discussion of Fourier kernel),
where the deep Fourier kernel empowers the model to
characterize the intricate nonlinear dependence bet-
ween events while enabling efficient computation of the
likelihood function by leading to a closed-form expres-
sion of an integral in the likelihood function: a notori-
ous difficulty in evaluating the likelihood function for
Hawkes processes.

Assume each observation is a marked spatio-temporal
tuple that consists of time, location, and marks: x; =
(t;,m;), where t; € [0, T) is the time of occurrence of the
ith event, and m; € M CR? is the d-dimensional mark
(here we treat location as one of a mark). The event’s
time is important because it defines the event’s order
and the time interval, which carry the key information.
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4.1. Preliminary: Marked Temporal
Point Processes

The marked temporal point processes (MTPPs) (Hawkes
1971, Reinhart 2018) offer a versatile mathematical frame-
work for modeling sequential data consisting of an ord-
ered sequence of discrete events localized in time and
mark spaces (space or other additional information). They
have proven useful in a wide range of applications
(Embrechts et al. 1997, Clifton et al. 2011, Luca et al. 2014,
Rambaldi et al. 2018, Li et al. 2017). Recent works (Du et al.
2016; Mei and Eisner 2017; Xiao et al. 2017a, b; Li et al.
2018; Upadhyay et al. 2018; Zhu et al. 2020) have achieved
many successes in modeling temporal event data (some
with marks) correlated in the time domain using RNNS.

Let {x1,x2,...,xNn,} represent a sequence of observa-
tions. Denote N7 as the number of the points generated
in the time horizon [0, T). The events’ distributions in
MTPPs are characterized via a conditional intensity
function A(t,m|H;), which is the probability of observ-
ing an event in the marked temporal space [0,T) x M
given the events’ history H; = {(t;, m;)|t; < t}, that is,

E[N([t,t +dt) X B(m,dm))|H;]
| B(m, dm)|dt ’

At,m|Hy) = @)
where N(A) is the counting measure of events over the
set AC[0,T) x M and |B(m,dm)| is the Lebesgue mea-
sure of the ball B(m, dm) centered at m with radius dm.
Assuming that influence from past events are linearly
additive for the current event, the conditional intensity
function of a Hawkes process is defined as

Altm|He) = p+ Y g(t—ti,m —m), 3)

ti<t

where >0 is the background intensity of events,
g(-,-) >0 is the triggering function that captures spatio-
temporal and marked dependencies of the past events.
The triggering function can be chosen in advance, for
example, in one-dimensional cases, g(t — t;) = aexp{—p
(t—t)}.

Let t, denote the last occurred event before time f.
The conditional probability density function of a point

process is defined as
t
Ft,mIH:) = At m|Hy) exp{ _ / / )\(t’,m’|Ht/)dm’dt’}.
ty, JM

The log-likelihood of observing a sequence with Nr
events denoted as x = {(¢;, m,')}?f1 can be obtained by

Nt T
fmm=§)%MmegiAAf@mHMmtw
i=1

4.2. Hawkes Processes with Deep Fourier Kernel
One major computational challenge in evaluating the log-
likelihood function is the computation of the integral in
(4), which is multidimensional and performed in the
possibly continuous mark and time-space. It can be in-
tractable for a general model without a carefully crafted
structure.

To tackle this challenge, we adopt an approach to
represent the Hawkes process’s triggering function via
a Fourier kernel. The Fourier features spectrum is
parameterized by a deep neural network, as shown in
Figure 6. For the sake of notational simplicity, we
denote x := (f,m) € X as the most recent event and x’ :=
(,m)eX, t' <t as an occurred event in the past,
where X :=[0,T] x M c R%*! is the space for time and
mark. Define the conditional intensity function as

Ax|Hp 0)=u+ ozz K(x,x'), (5)

<t
where a represents the magnitude of the influence from
the past, and >0 is the background intensity of
events. The kernel function K(x,x’) measures the influ-
ence of the past event on the current event x,x’ € X,
and we will parameterize its kernel-induced feature
mapping using a deep neural network 0 € ©.

The formulation of deep Fourier kernel function relies
on Bochner’s theorem (Rudin 1962), which states that any
bounded, continuous, and shift-invariant kernel is a Fou-
rier transform of a bounded nonnegative measure:

Theorem 1 (Bochner (Rudin 1962)). A continuous ker-
nel of the form K(x,x") = g(x —x") defined over a locally

Figure 6. (Color online) Fourier Kernel Function K(x, ") and Its Fourier Representation

t
K(x,x")
triggering
X @
x' ®
events

Note. A deep neural network represents the spectrum of Fourier features.

Pw
density
Fourier random
feature noise
w~Po  §~Pg
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compact set X is positive definite if and only if g is the Fou-
rier transform of a nonnegative measure:

K(x,2) = g(x —x') = / Po(@)e® dw,  (6)
Q

where i = V-1, p,, is a nonnegative measure, (3 is the Fou-
rier feature space, and kernels of the form K(x,x") are called
shift-invariant kernel.

If a shift-invariant kernel in (6) is positive semidefi-
nite and scaled such that g(0) =1, Bochner’s theorem
ensures that its Fourier transform p,, can be viewed
as a probability distribution function because it nor-
malizes to one and is nonnegative. In this sense, the
spectrum p, can be viewed as the distribution of r-
dimensional Fourier features indexed by w € QCR’".
Hence, we may obtain a triggering function in (5)
between two events x,x’ € X C R¥! which satisfies the
“kernel embedding.”

Proposition 1. Let the triggering function K be a continu-
ous real-valued shift-invariant kernel and p,, a probability
distribution function. Then

K(x,x') := Eoop, [0,(0) - D, ()], )

where ¢, (x):= V2cos(w Wx +u) and WeR™ D s g
weight matrix. These Fourier features w € Q CR" are sam-
pled from p,,, and u is drawn uniformly from [0,27].

In practice, Expression (7) can be approximated em-
pirically, that is,

D
K(e2) =530 6,,000,,0¢) =00 0w), @
k=1

where wy, k=1,...,D are D Fourier features sampled
from the distribution p,,. The vector ®(x) := [}, (x)....,
qbwD(x)]T can be viewed as the approximation of the
kernel-induced feature mapping for the score. In the
experiments, we substitute exp{iw'(x —x’)} with a
real-valued feature mapping, such that the probability
distribution p,, and the kernel K are real (Rahimi and
Recht 2008).

The next proposition shows the empirical estimation
(8) converges to the population value uniformly over all
points in a compact domain & as the sample size D
grows. It is a lower-variance approximation to (7).

Proposition 2. Assume 05 =Eyp, 0" w] < co and a com-
pact set X € R, Let R denote the radius of the Euclidean ball
containing X. Then for the kernel-induced feature mapping @
defined in (8), we have

2 e}

48R0\ 2 De?

<(56") ol -ant ¥
The proposition ensures that kernel function can be
consistently estimated using a finite number of Fourier
features. In particular, for an error bound €, the number
of samples needed is on the order of D= 0O((d+1)
log(Ra, /€)/€?), which grows linearly as data dimension
d increases, implying the sample complexity is mild in
the high-dimensional setting.

To represent the distribution p,, we assume it is a
transformation of random noise C ~ p; through a non-
linear mapping 1, :R7 — R’, as shown in Figure 6,
where 1) is a differentiable, it is represented by a deep
neural network, and g is the dimension of the noise.
Roughly speaking, p,, is the probability density function
of ¢,(C), C~pc. The triggering kernel is jointly con-
trolled by the deep network parameters and the weight
matrix W. We represent the Fourier feature generator as
G¢ and denote its parameters as 0 € ©.

Figure 7 gives an illustrative example of representing
the conditional intensity given sequence history using our
approach. We choose g = r = 2 to visualize the noise prior
pc and the optimal spectra p;, in a two-dimensional space.
The optimal spectrum learned from data uniquely spe-
cifies a kernel function capable of capturing various
nonlinear triggering effects. Unlike Hawkes processes,
underlying long-term influences of some events, in this
case, can be preserved in the intensity function.

p{ sup ]qn(x)%(x')—K(x,x')

x,x'eX

Figure 7. (Color online) Instance of Calculating the Conditional Intensity A Through Performing Inverse Fourier Transform

Optimal spectrum

Noise prior

A
Hawkes 4I\‘/\l\,\

N

A t

Triggering function Intensity function

Notes. (1) Generate random noise. (2) Map the noises to the frequencies according to the optimal spectrum. (3) Perform inverse Fourier transform
(IFT) in the frequency domain and obtain the triggering function. (4) Calculate the intensity function based on the triggering function.
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4.3. Efficient Computation of

Log-Likelihood Function
As discussed in Section 4.2, the technical difficulty of
evaluating the log-likelihood function is to perform the
multidimensional integral of the kernel function. In par-
ticular, given a sequence of events x, the log-likelihood
function of our model can be written by substituting the
conditional intensity function in (4) with (5), and thus we
need to evaluate [, A(x|H;; 0)dx. In many existing works,
this term is carried out by numerical integration, which
can be computationally expensive. For instance, if we ran-
domly sample « points in a d-dimensional space and the
total number of events is N, the computational complexity
will be O(kDN) (k > N“) using common numerical inte-
gration techniques. Here we present a way to simplify the
computation by deriving a closed-form expression for the
integral as presented in the following proposition: a bene-
fit offered by the Fourier kernel.

Proposition 3 (Integral of Conditional Intensity Func-
tion). Let tny+1 =T and ty=0. Given ordered events
{x1,...,xn,} in the time horizon [0, T]. The integral term
in the log-likelihood function can be written as

D Nr
/XA(XIHt;G)dx: HT(b—a)d+%ZZZ

k=1 i=0 t<
byl + 1 tiy1 — b b+a
cos(—w{ Wx;)cos <'+12 1> sin( 1+12 ')cosd< 5 )
b —a\ 4t 2ewiwe
in?( —— 10
sm< . )gw;w[, (10)

where we, =1, ...,d is the {th column vector in the matrix
W, and [a,b] are the range for each dimension of the mark
space M. The computational complexity is O(DN).

Remark 1. From the right-hand side of (10), the sec-
ond term only depends on the weight matrix W, D
randomly sampled Fourier features, the time of events
that occurred before t, and the region of the marked
space. If we rescale the range of each coordinate of
the mark to be [0,27], that is, b =27 and a = 0, then
the second term of the integral equals to zero, and the
integral defined in (10) can be further simplified as

//\(xIHt; O)dx = yT(Zn)d.

In particular, when we only consider time (d = 0), the
integral becomes

/ A Hs; 0)dx
X

= 1 i TV fiv1 + £
=uT + BZ Z Z cos(—wy Wx;)cos —

k=1 i=0 h<t

[t — £ 26
sin .
2 wlW

4.4. Recursive Computation of

Log-Likelihood Function
Leveraging the conditional probability decomposition,
we can compute of the log-likelihood function €(x1.; 6%)
recursively:

U(x1.1;0") = logf(x1|H4,);
U(x1.4;0") = €(x15-1;0") +log f(x;|H,,;07), Vi>1, (11)

where
F(i| M3 0) = (x| Hy; 0)e 1t t-0@0)"

This recursive expression makes it convenient to eval-
uate the detection statistic sequentially and perform
online detection, which we summarize in Algorithm 1.

Algorithm 1 (Online Detection Algorithm)

Input: An unknown sequence x with Ny events and
optimal model parameters 0", ¢*;
__Generate D Fourier features from G¢(6") denoted as
Q ={wil=r,...ps

Generate n’ adversarial sequences from G (¢")
denoted as Z = {z'};_; .

while i < N7 do R
Compute the log-likelihood ¢(x1;0%) given Q)
according to (11);
1/ 025 0°);
if {(x1.4;0) > n; then
Declare that it is an anomaly and record the
stopping time ¢;;
end
i—i+1;
end
Declare that it is not an anomaly;

5. Adversarial Sequence Generator

Now we describe the parameterization for the adversar-
ial sequence generator. To achieve rich representation
power for the adversarial generator G,, we borrow the
idea of the popular RNN structure.

In particular, we develop an RNN-type generator
with stochastic neurons (Chung et al. 2015, Li et al.
2018) as shown in Figure 8, which can represent the
nonlinear and long-range sequential dependency struc-
ture. Denote the ith generated adversarial event as
z; = (t;i_1 + At;,m;), where At; is the time interval bet-
ween event z;_1,z;. The generating process is described
here:

[Atifm;r]-r NN(ILl;l, diag(o-,-,l)),

(i 071" =9, (h),
hi=v,(hi1,z:), i=1,...,Nr,
hy=0,

where the hidden state h; € R? encodes the sequence
of past events {z1,...,zi_1},z; € X, and N(m, X) stands
for the multivariate Gaussian distribution with mean
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Figure 8. (Color online) RNN-Based Adversarial Sequence Generator
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peR™ and covariance matrix ¥ € R#VX@+D; here,
we only consider variance terms, and thus the covari-
ance matrix is diagonal with diagonal entries specified
by a vector ¢, and diag(x) means to convert the vector
x to a diagonal matrix. Here we adopt the (two-sided)
truncated normal distribution in our adversarial se-
quence generator by bounding the support of each
mark to the interval (4, b). The probabilistic density
function (p.d.f.) therefore is given by N(x|u,0,a,b) =
(1/0)p((x — 1)/0)/(@((b — ) /o) — D((@ — 1) /o)), where
¢(x) is the p.d.f. of a standard normal distribution, and
D(x) is the corresponding cumulative density function
(c.d.f.); u,o are represented by the LSTM structure, and
a, b are determined such that the percentage of density
that lie within an interval for the normal is 99.7% (the
so-called three-sigma rule-of-thumb). The process stops
running until t; < T and ¢; + Atj . > T.

Function ¢, : RF** — R? is an extended LSTM cell,
and function ¢, : R? — RED+41 can be any nonlinear
mappings. There are two significant differences from
the vanilla version of RNNs: (1) the outputs are sam-
pled from hidden states rather than obtained by de-
terministic transformations (as in the vanilla version;
randomly sampling will allow the learner to explore the
events’ space); and (2) the sampled time point will be
fed back to the RNN. The model architecture for 1
may be problem specific. For example, ¢, can be repre-
sented by convolution neural network (CNN) (LeCun
et al. 1995) if the high-dimensional marks are images
and can be represented by LSTM or Bidirectional
Encoder Representations from Transformers (Devlin
et al. 2019) if the marks are text. In this paper, because
the mark is three-dimensional, we use a fully connected
neural network to represent 1, which achieves signifi-
cantly better performance than baselines. The set of all
trainable parameters in 1,, 1), are denoted by ¢ € G.

Algorithm 2 (Adversarial Learning Algorithm)
input: data set X = {x'},_; .
initialization: model parameters 0, ¢;

@ timeline
Lit+2

Zi42

stochastic forward
....... IS S

deterministic forward

forl,...,Mydo

(1) Randomly draw n” training sequences from X
denoted as X = {x € X}, Lo

(2) Generate ns adversarial sequences from G,(¢p)
denoted as Z = {z'},. 1,

(3) Generate D Fourier features from G¢(0) de-
noted as Q = {wyly-1,.. s SN

Update ¢ by descending gradient given X, Z,():

1 & 1¢
Vo "_; £x';0) ;; ((z;0);

forl,...,M; do

Redo steps (1), (2), (3) to obtain new X,Z,Q;
Update 0 by ascending gradient given X, Z, Q):
1, 13,
Vo ;0 —=> " z;0);
= =
end
end

We learn the adversarial detector’s parameters in an
offline fashion by performing alternating minimization
between optimizing the generator G.(¢) and optimiz-
ing the anomaly discriminator €(6), using stochastic
gradient descent. Let M, be the number of iterations,
and M, be the number of steps to apply to the discrimi-
nator. Let n’,n”” < n be the number of generated adver-
sarial sequences and the number of training sequences
in a mini-batch, respectively. We follow the convention
of choosing mini batch size in stochastic optimization
algorithm (Li et al. 2014) and only require use of the
same value for both n” and n”. There is a clear tradeoff
between the model generalization and the estimation
accuracy. Large n’ and n” tend to converge to sharp
minimizers of the training and testing functions, which
lead to poorer generalization. In contrast, small n” and
n’" consistently converge to flat minimizers due to the
inherent noise in the gradient estimation. Large n” and
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n’” may cause the training to be computationally expen-
sive. The learning process is summarized in Algorithm 2.

6. Numerical Experiments

In this section, comprehensive numerical studies are
presented to compare the proposed adversarial anom-
aly detector’s performance with the state-of-the-art.

6.1. Comparison and Performance Metrics

We compare our method (referred to as AIL) with four
state-of-the-art approaches: the one-class support vector
machine (Zhang et al. 2007) (One-class SVM), the
cumulative sum of features extracted by principal com-
ponent analysis (Page 1954) (PCA+CUMCUM), the local
outlier factor (Breunig et al. 2000) (LOF), and a recent
work leveraging IRL framework for sequential anomaly
detection (Oh and Iyengar 2019) (IRL-AD).

The performance metrics are standard, including pre-
cision, recall, and F; score, all of which have been widely
used in the information retrieval literature (Michael et al.
2002). This choice is because anomaly detection can be
viewed as a binary classification problem, where the
detector identifies if an unknown sequence is an anom-
aly. The F; score combines the precision and recall. Define
the set of all true anomalous sequences as U and the set
of positive sequences detected by the optimal detector
as V. Then precision P and recall R are defined by

P=|UNnV|/|V|, R=|UnV]|/|U]|,

where | - | is the number of elements in the set. The F;
score is defined as F; =2PR/(P +R) and the higher F;
score the better. Because positive and negative samples
in real data are highly unbalanced, we do not use the
receiver operating characteristic curve (true-positive
rate versus false-positive rate) in our setting.

6.2. Experiments Setup

Consider two synthetic and two real data sets. (1) Sin-
gleton synthetic data consist of 1,000 anomalous sequ-
ences with an average length of 32. Each sequence is
simulated by a Hawkes process with an exponential
kernel specified in (3), where f =3 and u =10,a =1. (2)
composite synthetic data consist of 1,000 mixed anoma-
lous sequences with an average length of 29. Every 200
of the sequences are simulated by five Hawkes pro-
cesses with different exponential kernels, where 1 = 10,
a=1, and f=1,2,3,4,5, respectively. (3) Real credit
card fraud data consist of 1,121 fraudulent credit trans-
action sequences with an average length of 21. Each
anomalous transaction in a sequence includes the occur-
rence geolocation (latitude and longitude), time, and
corresponding transaction amount in the dollar. (4)
Robbery data contain the 911-calls-for-service events in
Atlanta from 2015 to 2017 (Zhu and Xie 2018, 2019a, b;

Zhu et al. 2021a). We consider each crime series as a
sequence of events: each event consists of the time (in
seconds) and the geolocation (in latitude and longi-
tude), indicating when and where the event occurred.
We extract a series of events in the same category iden-
tified by the police detectives and treat them as one
sequence. There exists intricate spatial and temporal
dependency between these events with the same cate-
gory. As indicated by Zhu and Xie (2019b), the 911
calls of some crime incidents committed by the same
individual share similar crime behaviours (e.g., forced
entry) and tend to aggregate in time and space. This
phenomenon is called modus operandi (M.O.) (Wang
et al. 2015). Within two years of data, this gives us 44
sequences with the subcategory of robbery. We test
whether the algorithm can discriminate a series that is
a robbery series or not. To create such an experiment,
we also created 391 other types of crime series, which con-
sist of randomly selected categories mixed together. We
treat them as “anomalous” and “normal” data, respec-
tively. In the experiments, we under-sample the Fourier
features, where D = 20, to improve training efficiency. In
addition, we select n’ = n"" = 32 empirically based on the
computational resource of the experimental setup on a
standard laptop with a quad-core 4.7-GHz processor. The
model obtains its convergence around My = 1,000 itera-
tions with M; = 5.

Our evaluation procedure is described as follows. We
consider two sets of simulation data and two sets of
real data, respectively. Each data set is divided into 80%
for training and 20% for testing. To evaluate the perfor-
mance of the fitted model, we first mix the testing set
with 5,000 normal sequences, which are simulated by
multiple Poisson processes, and then perform online
detection. We do not simulate normal sequences for the
robbery data experiment because we treat other types
of crime as the alternative. The precision, recall, and F;
score will be recorded accordingly. The method with
higher precision, recall, and F; score at an earlier time
step is more favorable than the others.

6.3. Results

First, we summarize the performance of our method on
three data sets in Figure 9 and confirm that the pro-
posed time-varying threshold can optimally separate
the anomalies from normal sequences. To be specific,
the fourth column in Figure 9 shows the average log-
likelihood (detection statistics) and its corresponding
1o region for both anomalous sequences and normal
sequences. As we can see, the anomalous sequences
attain a higher average log-likelihood than the normal
sequences for all three data sets. Their log-likelihoods
fall into different value ranges with rare overlap. Addi-
tionally, the time-varying threshold indicated by darker
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Figure 9. (Color online) Performance of Our Method (AIL) on Four Data Sets
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Notes. The first three columns correspond to the precision, recall, and F; score of our method using different thresholds. The dashed lines in the
third column indicate our time-varying thresholds. The fourth column shows the step-wise detection statistics for both anomalous and normal
sequences. (a) Singleton synthetic data. (b) Composite synthetic data. (c) Real credit card fraud data. (d) Real robbery data.

dash lines lies between the value ranges of anomalous
and normal sequences, which produces an amicable
separation of these two types of sequences at any given
time. The first three columns in Figure 9 present more
compelling evidence that the time-varying threshold is
near-optimal. Colored cells of these heat maps are cal-
culated with different constant thresholds 1 at each step
i by performing cross-validation. The brightest regions
indicate the “ground truth” of the optimal choices of

the threshold. As shown in the third column, the time-
varying thresholds (dashed line) are very close to the
optimal choices found by cross-validation.

We also compare the stepwise F; scores of our
method with the other four baselines in Figure 10. The
results show that (1) from an overall standpoint, our
method outperforms other baselines with significantly
higher F; scores, and (2) our method allows for easier
and faster detection of anomalous sequences (before 10



Downloaded from informs.org by [75.80.71.39] on 24 July 2023, at 12:57 . For personal use only, all rights reserved.

Zhu et al.: Sequential Adversarial Anomaly Detection for One-Class Event Data
INFORMS Journal on Data Science, 2023, vol. 2, no. 1, pp. 45-59, © 2023 INFORMS 57

Figure 10. (Color online) Performance of Our Method (AIL) and Four Baselines on Three Data Sets
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gleton synthetic. (b) Composite synthetic. (c) Credit card fraud. (d) Robbery.

events being observed in our experiments), which is
critically vital in sequential scenarios for most of the
applications.

Finally, we present an ablation study to investigate
the performance of our method using different genera-
tors. As shown in Table 1, the proposed generator based
on an extended LSTM structure significantly outper-
forms other generators in stepwise F; score. As a sanity
check, the generator using the vanilla Hawkes process
achieves competitive performances on the singleton
synthetic data because the true anomalous sequences
are from a Hawkes process. However, we can observe a
dramatic performance deterioration on the composite
synthetic data. The anomalous sequences are generated
by multiple distributions and can hardly be captured
by the vanilla Hawkes process. This result confirms that
using a generic generative model cannot achieve the
best performance.

7. Conclusion and Discussions

We presented a novel unsupervised anomaly detection
framework on sequential data based on adversarial
learning. A robust detector can be found by solving a

minimax problem, and the optimal generator also helps
define the time-varying threshold for making decisions
in an online fashion. We model the sequential event
data using a marked point process model with a neural
Fourier kernel. Using both synthetic and real data, we
demonstrated that our proposed approach outperforms
other state-of-the-art. In particular, the experimental re-
sults suggest that the proposed framework has achieved
excellent performance on a proprietary large-scale credit-
card fraud data set from a major department store in the
United States, which shows the potential of proposed
methods to apply to real-world problems.

Given the prevalence of sequential event data (in
many applications, there is only one-class data), we
believe our proposed method can be broadly applicable
to many scenarios. Such applications include financial
anomaly detection, Internet intrusion detection, and
system anomaly detection such as power systems cas-
cading failures, all of which are sequential discrete
events data with complex temporal dependence. On the
methodology side, we believe the proposed framework
is a natural way to tackle the one-class anomaly detec-
tion problem, leveraging adversarial learning advances.

Table 1. F; Score Before ith Event Using Different Adversarial Generators in the

Proposed Framework

Singleton synthetic data

Composite synthetic data

Generator in AIL i=5 i=10 i=15 i=5 i=10 i=15
Vanilla Hawkes process 0.821 0.889 0.911 0.421 0.411 0.370
Vanilla LSTM 0.761 0.830 0.878 0.594 0.542 0.519
Proposed extended LSTM 0.888 0.916 0.916 0.658 0.623 0.566
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It may provide a first step toward bridging imitation
learning and sequential anomaly detection.

Endnote

1 See https://usa.visa.com/pay-with-visa/visa-chip-technology-
consumers/zero-liability-policy.html.
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