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Abstract. We consider the sequential anomaly detection problem in the one-class setting 
when only the anomalous sequences are available and propose an adversarial sequential 
detector by solving a minimax problem to find an optimal detector against the worst-case 
sequences from a generator. The generator captures the dependence in sequential events 
using the marked point process model. The detector sequentially evaluates the likelihood 
of a test sequence and compares it with a time-varying threshold, also learned from data 
through the minimax problem. We demonstrate our proposed method’s good performance 
using numerical experiments on simulations and proprietary large-scale credit card fraud 
data sets. The proposed method can generally apply to detecting anomalous sequences.
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1. Introduction
Spatio-temporal event data are ubiquitous nowadays, 
ranging from electronic transaction records and earth-
quake activities recorded by seismic sensors to police 
reports. Such data consist of sequences of discrete events 
that indicate when and where each event occurred and 
other additional descriptions such as its category or vol-
ume. We are particularly interested in financial transaction 
fraud, which is often caused by stolen credit or debit card 
numbers from an unsecured website or due to identity 
theft. Collected financial transaction fraud typically con-
sists of a series of anomalous events: unauthorized uses of 
a credit or debit card or similar payment tools (Automated 
Clearing House, Electronic Funds Transfer, recurring 
charge, etc.) to obtain money or property (FBI 2021). As 
illustrated in Figure 1, such events sequence corresponds 
to anomalous transaction records, typically including the 
time, location, amount, and type of the transactions.

Early detection of financial fraud plays a vital role in 
preventing further economic loss for involved parties. 
In today’s digital world, credit card fraud and ID theft 
continue to rise in recent years. Losses to fraud incurred 
by payment card issuers worldwide reached USD$19.21 
billion in 2019. Card issuers accounted for 68.97% of 
gross fraud losses (The Nilson Report 2019) because the 

liability usually comes down to the merchant or the 
card issuer, according to the “zero-liability policies”1: 
merchants and banks could face a significant risk of 
economic losses. Credit card fraud also causes much 
loss and trouble to the customers with stolen identities 
have been stolen: victims need to report unauthorized 
charges to the card issuer, canceling the current card, 
waiting for a new one in the mail, and subbing the 
new number into all auto-pay accounts linked to the 
old card. The entire process can take days or even 
weeks.

For applications such as financial fraud detection, we 
usually only have access to the anomalous event seq-
uences. This can be due to protecting consumer privacy, 
so only fraudulent transaction data are collected for the 
study. The resulting one-class problem makes the task 
of anomaly detection even more challenging. However, 
there are distinctive patterns of anomalies that enable 
us to develop powerful detection algorithms. For in-
stance, Figure 2(a) shows an example of a sequence of 
fraudulent transactions that we extracted from real 
data. A fraudster used a stolen card 12 times in just six 
days and made electronic transactions at stores that are 
physically far away from each other, ranging from Cali-
fornia to New England. The types of transactions are 
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also different from the regular spending pattern. Figure 
2(b) illustrates the distribution of a collection of fraudu-
lent transactions for location (store ID), season, and the 
number of transactions. We can observe a significant 
portion of transactions at the department store in San 
Francisco and New York.

Although there has been much research effort in 
machine learning and statistics for anomaly detection 
using sequential data (Chandola et al. 2010, Xu 2010, 
Chung et al. 2015, Doshi and Yilmaz 2020), we cannot 
use existing methods here directly for the following rea-
sons. First, many existing works consider detecting 
anomalous sequences “as a whole” rather than detect-
ing in an online fashion. Second, the one-class data situ-
ation requires an unsupervised approach for anomaly 
detection; however, most sequential anomaly detection 
algorithms are based on supervised learning.

This paper presents an adversarial anomaly detection 
algorithm for one-class sequential detection, where only 
anomalous data are available. The adversarial sequen-
tial detector is solved from a minimax problem to find 
an optimal detector against the worst-case sequences 
from a generator that captures the dependence in seq-
uential events using the marked point process model. 
The detector sequentially evaluates the likelihood of 
a test sequence and compares it with a time-varying 
threshold, which is also learned from data through the 
minimax problem. We demonstrate the proposed meth-
od’s good performance by comparing state-of-the-art 
methods on synthetic and proprietary large-scale credit 
card fraud data provided by a major department store 
in the United States.

On a high level, our minimax formulation is in-
spired by imitation learning (Hussein et al. 2017), which 

Figure 1. (Color online) Examples of a Sequence of Ordinary Events (left) and a Sequence of Anomalous Events (right) That Are 
Dependent: One Leads to Another 

Notes. The events on the left show an ordinary pattern of transactions for a consumer. For the events on the right, it is unusual for a consumer to 
execute a transaction at a movie theater in the early morning and then a high-volume transaction at a coffee shop. It indicates the events are 
abnormal.

Figure 2. (Color online) Sequential Fraud Credit Card Transactions Data Set Provided by a Major Department Store in the 
United States 

Notes. (a) Sequence of transactions made by one stolen credit card; each bar represents a fraudulent transaction, the bar’s height indicates the 
transaction amount in dollars, and the color of the bar indicates the location of the transaction. (b) Overview of how these fraudulent transactions 
were distributed over stores and seasons. (c) Overview of how these fraudulent transactions were distributed over the amount of purchase for 
different loss types.
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minimizes the maximum mean discrepancy (Gretton et al. 
2012) (MMD). In particular, the generator is built on long 
short-term memory (LSTM) (Hochreiter and Schmidhu-
ber 1997), which specifies the conditional distribution of 
the next event. We parameterize the detector by compar-
ing the likelihood function of marked Hawkes processes 
with a deep Fourier kernel (Zhu et al. 2021b, c) with a 
threshold. The resulted likelihood function is computa-
tionally efficient to implement in the online fashion and 
can capture complex dependence between events in ano-
malous sequences. A notable feature of our framework is 
a time-varying threshold learned from data by solving the 
minimax problem, which achieves tight control of the 
false-alarms and hard to obtain precisely in theory. This is 
a drastic departure from prior approaches in sequential 
anomaly detection.

The rest of the paper is organized as follows. We first 
discuss the related work in sequential anomaly detection 
and revisit some basic definitions in imitation learning. 
Section 3 sets up the problem and introduces our sequen-
tial anomaly detection framework. Section 4 proposes a 
new marked point process model equipped with a deep 
Fourier kernel to model-dependent sequential data. Sec-
tion 5 presents the adversarial sequence generator and 
learning algorithms. Finally, we present our numerical 
results on both real and synthetic data in Section 6. Proofs 
to all propositions can be found in the online appendix.

1.1. Related Work
Several research lines are related to this work, including 
imitation learning, the LSTM architecture for modeling 
sequence data, one-class anomaly detection, and fraud 
detection, which we review here.

Imitation learning (Hussein et al. 2017) aims to mimic 
the expert’s behavior in a given task. An agent (a learn-
ing machine) is trained to perform a task from demon-
strations by learning a mapping between observations 
and actions. Landmark works by Abbeel and Ng (2004) 
and Syed and Schapire (2007) attack this problem via 
inverse reinforcement learning (IRL). In their work, the 
learning process is achieved by devising a game-playing 
procedure involving two opponents in a zero-sum game. 
This alteration not only allows them to achieve the same 
goal of doing nearly as well as the expert as in Abbeel 
and Ng (2004) but achieves better performances in various 
settings. However, this strategy cannot be directly applied 
to event data modeling without adaptation. A recent 
work (Li et al. 2018) filled this gap by introducing a 
reward function with a nonparametric form, which mea-
sures the discrepancy between the training and generated 
sequences. Their proposed approach models the events 
using a temporal point process, which draws similarities 
in our work’s spatio-temporal point process model. How-
ever, our work differs from Li et al. (2018) in two major 
ways. Rather than constructing a generative model, we 

focus on sequential anomaly detection, which is a differ-
ent type of problem. Besides, we design a structured 
reward function that is more suitable for modeling the 
triggering effects between events and more computation-
ally efficient to carry out.

There is another work on inverse reinforcement learn-
ing related to our work. The work in Ziebart et al. (2008) 
first proposed a probabilistic approach to the imitation 
learning problem via maximum entropy. The work pro-
posed an efficient state frequency algorithm that is com-
posed of both backward and forward passes recursively. 
A more recent similar article by Oh and Iyengar (2019) 
seeks to integrate IRL with anomaly detection based on 
the above maximum entropy IRL framework. They aim 
to learn the unknown reward function to test a given 
sequence. The significant difference, however, is they 
focus on time series data instead of event data. Also, we 
formulate the problem as a minimax optimization, 
whereas they used a Bayesian method to estimate the 
model parameters.

A large body of recent works performs sequential 
anomaly detection using LSTM, similar to the proposed 
stochastic LSTM used as the adversarial generator in 
our work. In Malhotra et al. (2016), the authors pro-
posed an encoder-decoder scheme using LSTM to learn 
the normal behavior of data and used reconstruction 
errors to find anomalies. The work of Nanduri and 
Sherry (2016) built a recurrent neural network (RNN) 
model with LSTM structure to conduct anomaly detec-
tion for multivariate time series data for flight opera-
tions. Another paper from Luo et al. (2017) looks into 
anomaly detection in videos by convolutional neural 
networks with the LSTM modeling. It is clear that the 
LSTM model is versatile for various applications and 
can model unknown complex sequential data. How-
ever, the LSTM used here in this paper is stochastic (as 
a generative model to capture data distribution), whereas 
most LSTM architectures are deterministic. Specifically, 
the input at each time step in the stochastic LSTM is 
drawn from a random variable whose distribution is spe-
cified by the LSTM’s parameters.

There is a wide array of existing research in anomaly 
detection. Principle component analysis (PCA) has tra-
ditionally been used to detect outliers, which naturally 
fits into anomaly detection. In Chalapathy et al. (2017), 
the authors propose a robust auto-encoder model, which 
is closely related to PCA for anomaly detection, and a 
deep neural network is introduced for the training pro-
cess. Additionally, Chalapathy et al. (2018) proposed a 
one-class neural network to detect anomalies in complex 
data sets by creating a tight envelope around the normal 
data. It is improved from the one-class singular value 
decomposition formulation to be more robust. A closely 
related work is Ruff et al. (2018), which looks into one- 
class anomaly detection through a deep support vector 
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data description model that finds a data-enclosing hyper- 
sphere with minimum volume. However, most previous 
studies on one-class anomaly detection assumed indepen-
dent and identically distributed data samples, whereas 
we consider data dependency.

As an important application of anomaly detection, 
credit card fraud detection has also drawn a lot of re-
search interest (Bolton and Hand 2002, Kou et al. 2004). 
Most commonly, supervised methods have been adopted 
to use a database of known fraudulent/legitimate cases to 
construct a model that yields a suspicion score for new 
cases. Traditional statistical classification methods, such as 
linear discriminant analysis (Wang and Xu 2018), logistic 
classification (Sahin and Duman 2011), and k-nearest 
neighbors (Malini and Pushpa 2017), have proved to be 
effective tools for many applications. However, more 
powerful tools (Ghosh and Reilly 1994, Maes et al. 2002), 
especially neural networks, have also been extensively 
applied. Unsupervised methods are used when there are 
no prior sets of legitimate and fraudulent observations. A 
large body of approaches (Bolton et al. 2001, Srivastava 
et al. 2008, Tran et al. 2018) used here is usually a combi-
nation of profiling and outlier detection methods, which 
models a baseline distribution to represent the normal 
behavior and then detect observations departure from 
this. Compared with the previous unsupervised studies 
in credit card fraud detection, the most notable feature of 
our approach is to learn the fraudulent behaviors by 
“mimicking” the limited amount of anomalies via an 
adversarial learning framework. Our anomaly detector 
equipped with the deep Fourier kernel is more flexible 
than conventional approaches in capturing intricate 
marked spatio-temporal dynamics between events 
while being computationally efficient.

Our work is a significant extension of the previous 
conference paper (Zhu et al. 2020), which studies the 
one-class sequential anomaly detection using a framework 
of generative adversarial network (GAN) (Goodfellow 
2014, Goodfellow et al. 2014) based on the cross-entropy 
between the real and generated distributions. Here, we 
focus on a different loss function motivated by imitation 
learning and MMD distances that is more computationally 
efficient. In addition, we introduce a new time-varying 
threshold, which can be learned in a data-driven manner.

2. Background: Inverse 
Reinforcement Learning

Because imitation learning is a form of reinforcement 
learning (RL), in the following, we will provide some 
necessary background about RL. Consider an agent in-
teracting with the environment. At each step, the agent 
selects an action based on its current state, to which the 
environment responds with a reward value and the 
next state. The return is the sum of (discounted) rewards 
through the agent’s trajectory of interactions with the 

environment. The value function of a policy describes 
the expected return from taking action from a state. The 
inverse RL (IRL) aims to find a reward function from the 
expert demonstrations explaining the expert behavior. 
Seminal works (Ng and Russell 2000, Abbeel and Ng 
2004) provide a max-min formulation to address the 
problem. The authors propose a strategy to match an 
observed expert policy’s value function and a learner’s 
behavior. Let π�denote the expert policy, and π� denote 
the learner policy, respectively. The optimal reward 
function r can be found as the saddle-point of the fol-
lowing max-min problem (Syed and Schapire 2007), 
that is,

max
r2F

min
�2G

(

Ex~π
"
XNx

ià1
r(xi, si)

#

�Ez~π�
"
XNz

jà1
r(zj, sj)

#)

, 

where F is the family class for reward function and G is 
the family class for learner policy. Here, x à {x1, : : : , 
xNx} is a sequence of actions generated by the expert 
policy π, z à {z1, : : : , zNz} is a roll-out sequence gener-
ated from the learner policy π�, and Nx and Nz are the 
numbers of actions for sequences x and z, respectively. 
The formulation means that a proper reward function 
should provide the expert policy a higher reward than 
any other learner policy in G. The learner can also 
approach the expert performance by maximizing this 
reward.

3. Adversarial Sequential 
Anomaly Detection

We aim to develop an algorithm to detect anomalous 
sequences when the training data set consists of only 
abnormal sequences and without normal sequences. In 
particular, the algorithm will process data sequentially 
and raise the alarm as soon as possible after the sequ-
ence has been identified as anomalous. Denote such a 
detector as "�with parameter θ. At each time t, the 
detector evaluates a statistic and compares it with a 
threshold. For a length-N sequence x, define x1:i :à
[x1, : : : , xi]>, i à 1, 2, : : : , N be its first i observations. We 
define the detector as a stopping rule, which stops and 
raises the alarm the first time that the detection statistic 
exceeds the threshold:

T à inf{t : "(x1:i;θ) > ηi, ti  t < ti+1}, i à 1, : : : , N:

Once an alarm is raised, the sequence is flagged as an 
anomaly. If there is no alarm raised until the end of the 
time horizon, the sequence is considered normal. The 
test sequence can be an arbitrary (finite) length.

3.1. Proposed: Adversarial Anomaly Detection
Assume a set of anomalous sequences drawn from an 
empirical distribution π. Because normal sequences are 
not available, we introduce an adversarial generator, which 
produces “normal” sequences that are statistically similar 
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to the real anomalous sequences. The detector has to 
discriminate the true anomalous sequence from the 
counterfeit “normal” sequences. We introduce compe-
tition between the anomaly detector and the generator 
to drive both models to improve their performances 
until anomalies can distinguish from the worst-case 
counterfeits. We can also view this approach as finding 
the “worst-case” distribution that defines the “border 
region” for detection. Formally, we formulate this as a 
minimax problem as follows:
min
�2G

max
θ2Θ

J(θ,�) :à Ex~π "(x;θ)� Ez~Gz(�) "(z;θ), (1) 

where Gz is an adversarial generator specified by the 
parameter � 2 G, and G is a family of candidate genera-
tors. Here the detection statistic corresponds to "(θ), the 
log-likelihood function of the sequence specified by θ 2
Θ�and Θ�is its parameter space. The choices of the 
adversarial generator and the detector are further dis-
cussed in Section 4. The detector compares the detection 
statistic to a threshold. We define the following.
Definition 1 (Adversarial Sequential Anomaly Detector). 
Denote the solution to the minimax problem (1) as 
(θ⇤,�⇤). A sequential adversarial detector raises an 
alarm at the time i if

"(x1:i;θ
⇤) > η⇤i , 

where the time-varying threshold η⇤i /Ez~Gz(�⇤) "(z1:i;θ
⇤).

3.2. Time-Varying Threshold
We choose the time-varying threshold η⇤i /Ez~Gz(�⇤)
"(z1:i;θ

⇤). Because the value of log-likelihood function 
"(x1:i;θ

⇤) for partial sequence observation x1:i may vary 
over the time step i (the ith event is occurred), we need 
to adjust the threshold accordingly for making decisions 
as a function of i. Our time-varying threshold η⇤i is dif-
ferent from sequential statistical analysis, where the 
threshold for performing detection is usually constant or 
preset (not adaptive to data) based on the known distri-
butions of the data sequence (e.g., set the threshold 
growing over time as 

ÇÇ
t
p

; Siegmund 1985). The rationale 
behind the design of the threshold η⇤i is that, at any 
given time step, the log-likelihood of the data sequence 
is larger than that of the generated adversarial sequence; 
therefore, η⇤i provides the tight lower bound for the like-
lihood of anomalous sequences "(x;θ⇤) due to the mini-
mization in (1). That is, for any � 2 G,

0  Ex~π "(x1:i;θ
⇤)� η⇤i

 Ex~π "(x1:i;θ
⇤)�Ez~Gz(�) "(z1:i;θ

⇤):

The adversarial sequences drawn from Gz(�⇤) can be 
viewed as the normal sequences that are statistically 

“closest” to anomalous sequences. Therefore, the log- 
likelihood of such sequences in the “worst-case” scenario 
defines the “border region” for detection. In practice, the 
threshold η⇤i can be estimated by 1=n0

Pn0
là1 "(zl

1:i;θ
⇤), 

where {zl}là1,: : : ,n0 are adversarial sequences sampled 
from Gz(�) and n0 is the number of the sequences. As 
a real example presented in Figure 3, the time-varying 
threshold in the darker dashed line can sharply separate 
the anomalous sequences from the normal sequences. 
More experimental results are presented in Section 6.

3.3. Connection to Imitation Learning
The problem formulation (1) resembles the minimax 
formulation in IRL proposed by seminal works (Ng 
and Russell 2000, Abbeel and Ng 2004). As shown in 
Figure 4, an observed anomalous samples x ~ π�can be 
regarded as an expert demonstration sampled from the 
expert policy π, where each x à {x1, : : : , xN} is a sequ-
ence of events with length of N and the sequences may 
be of different lengths. Each event xi, i à 1, : : : , N of the 
sequence is analogous to the ith action made by the 
expert given the history of past events {x1, x2, : : : , xi�1}
as the corresponding state. Accordingly, the generator 
can be regarded as a learner that generates convincing 
counterfeit trajectories.

The log-likelihood of observed sequences can be in-
terpreted as undiscounted return, that is, the accumulated 

Figure 3. (Color online) Adversarial Anomaly Detection 
and Threshold Using Synthetic Data with 1,000 Synthetic 
Sequences 

Notes. The two lighter dashed lines represent mean detection statis-
tics ((θ⇤)) for anomalous and normal sequences. The dashed line in 
the middle corresponds to the time-varying threshold suggested by 
our model. Clearly, the threshold can separate the anomalous 
sequences from the normal sequences.
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sum of rewards evaluated at past actions, where the 
logarithm of the conditional probability of each event 
(action) can be regarded as the event’s reward. The 
ultimate goal of the proposed framework (1) is to close 
the gap between the return of the expert demonstra-
tions and the return of the learner trajectories so that 
the counterfeit trajectories can meet the lower bound 
of the real demonstrations.

3.4. Connection to MMD-Like Distance
The proposed approach can also be viewed as minimiz-
ing a MMD-like distance metric (Gretton et al. 2012) as 
illustrated in Figure 5. More specifically, the maxi-
mization in (1) is analogous to an MMD metric in 
a reduced function class specified by Θ, that is, supθ2Θ�
Ex~π "(x;θ)�Ez~� "(z;θ), where Θ�may not necessarily 
be a space of continuous, bounded functions on sample 
space. As shown in Gretton et al. (2012), if Θ�is sufficiently 
expressive (universal), for example, the function class on 

reproducing kernel Hilbert space (RKHS), then maxi-
mization over such Θ�is equivalent to the original defi-
nition. Based on this, we select a function class that 
serves our purpose for anomaly detection (characteriz-
ing the sequence’s log-likelihood function), which has 
enough expressive power for our purposes. Therefore, 
the problem defined in (1) can be regarded as minimiz-
ing such an MMD-like metric between the empirical 
distribution of anomalous sequences and the distribu-
tion of adversarial sequences. The minimal MMD dis-
tance corresponds to the best “detection radius” that 
we can find without observing normal sequences.

4. Point Process with Deep 
Fourier Kernels

In this section, we present a model for the discrete 
events, which will lead to the detection statistic (i.e., the 
form of the likelihood function "(x;θ)). We present a 
marked Hawkes process model that captures marked 
spatio-temporal dynamics between events. The most 
salient feature of the model is that we develop a novel 
deep Fourier kernel for Hawkes process (see section 6.6 
in Mohri et al. (2012) for discussion of Fourier kernel), 
where the deep Fourier kernel empowers the model to 
characterize the intricate nonlinear dependence bet-
ween events while enabling efficient computation of the 
likelihood function by leading to a closed-form expres-
sion of an integral in the likelihood function: a notori-
ous difficulty in evaluating the likelihood function for 
Hawkes processes.

Assume each observation is a marked spatio-temporal 
tuple that consists of time, location, and marks: xi à
(ti, mi), where ti 2 [0, T) is the time of occurrence of the 
ith event, and mi 2M ✓ Rd is the d-dimensional mark 
(here we treat location as one of a mark). The event’s 
time is important because it defines the event’s order 
and the time interval, which carry the key information.

Figure 4. (Color online) Imitation Learning Interpretation 

Figure 5. (Color online) Empirical Distribution of Anoma-
lous Sequences Is π�

Notes. The assumed family of candidate generators is G. Our pro-
posed framework aims to minimize the maximum mean discrepancy 
(MMD) in a reduced function class Θ�between π�and � 2 G.
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4.1. Preliminary: Marked Temporal 
Point Processes

The marked temporal point processes (MTPPs) (Hawkes 
1971, Reinhart 2018) offer a versatile mathematical frame-
work for modeling sequential data consisting of an ord-
ered sequence of discrete events localized in time and 
mark spaces (space or other additional information). They 
have proven useful in a wide range of applications 
(Embrechts et al. 1997, Clifton et al. 2011, Luca et al. 2014, 
Rambaldi et al. 2018, Li et al. 2017). Recent works (Du et al. 
2016; Mei and Eisner 2017; Xiao et al. 2017a, b; Li et al. 
2018; Upadhyay et al. 2018; Zhu et al. 2020) have achieved 
many successes in modeling temporal event data (some 
with marks) correlated in the time domain using RNNs.

Let {x1, x2, : : : , xNT} represent a sequence of observa-
tions. Denote NT as the number of the points generated 
in the time horizon [0, T). The events’ distributions in 
MTPPs are characterized via a conditional intensity 
function λ(t, m |Ht), which is the probability of observ-
ing an event in the marked temporal space [0, T) ⇥M 
given the events’ history Ht à {(ti, mi) |ti < t}, that is,

λ(t, m |Ht) à
E[N([t, t + dt) ⇥ B(m, dm)) |Ht]

|B(m, dm) |dt , (2) 

where N(A) is the counting measure of events over the 
set A ✓ [0, T) ⇥M and |B(m, dm) | is the Lebesgue mea-
sure of the ball B(m, dm) centered at m with radius dm. 
Assuming that influence from past events are linearly 
additive for the current event, the conditional intensity 
function of a Hawkes process is defined as

λ(t, m |Ht) à µ+
X

ti<t
g(t� ti, m�mi), (3) 

where µ � 0 is the background intensity of events, 
g(·, ·) � 0 is the triggering function that captures spatio- 
temporal and marked dependencies of the past events. 
The triggering function can be chosen in advance, for 
example, in one-dimensional cases, g(t� ti) à αexp{�β�
(t� ti)}.

Let tn denote the last occurred event before time t. 
The conditional probability density function of a point 

process is defined as

f (t, m |Ht) à λ(t, m |Ht) exp
�
�
Z t

tn

Z

M
λ(t0, m0 |Ht0 )dm0dt0

⌧
:

The log-likelihood of observing a sequence with NT 
events denoted as x à {(ti, mi)}NT

ià1 can be obtained by

"(x;θ) à
XNT

ià1
logλ(ti, mi |Hti)�

Z T

0

Z

M
λ(t, m |Ht)dmdt: (4) 

4.2. Hawkes Processes with Deep Fourier Kernel
One major computational challenge in evaluating the log- 
likelihood function is the computation of the integral in 
(4), which is multidimensional and performed in the 
possibly continuous mark and time-space. It can be in-
tractable for a general model without a carefully crafted 
structure.

To tackle this challenge, we adopt an approach to 
represent the Hawkes process’s triggering function via 
a Fourier kernel. The Fourier features spectrum is 
parameterized by a deep neural network, as shown in 
Figure 6. For the sake of notational simplicity, we 
denote x :à (t, m) 2 X as the most recent event and x0 :à
(t0, m0) 2 X , t0 < t as an occurred event in the past, 
where X :à [0, T] ⇥M ⇢ Rd+1 is the space for time and 
mark. Define the conditional intensity function as

λ(x |Ht;θ) à µ+α
X

t0<t
K(x, x0), (5) 

where α�represents the magnitude of the influence from 
the past, and µ � 0 is the background intensity of 
events. The kernel function K(x, x0) measures the influ-
ence of the past event on the current event x, x0 2 X , 
and we will parameterize its kernel-induced feature 
mapping using a deep neural network θ 2Θ.

The formulation of deep Fourier kernel function relies 
on Bochner’s theorem (Rudin 1962), which states that any 
bounded, continuous, and shift-invariant kernel is a Fou-
rier transform of a bounded nonnegative measure:
Theorem 1 (Bochner (Rudin 1962)). A continuous ker-
nel of the form K(x, x0) à g(x� x0) defined over a locally 

Figure 6. (Color online) Fourier Kernel Function K(x, x0) and Its Fourier Representation 

Note. A deep neural network represents the spectrum of Fourier features.

Zhu et al.: Sequential Adversarial Anomaly Detection for One-Class Event Data 
INFORMS Journal on Data Science, 2023, vol. 2, no. 1, pp. 45–59, © 2023 INFORMS 51 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[7

5.
80

.7
1.

39
] o

n 
24

 Ju
ly

 2
02

3,
 a

t 1
2:

57
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



compact set X is positive definite if and only if g is the Fou-
rier transform of a nonnegative measure:

K(x, x0) à g(x� x0) à
Z

⌦
pω(ω)eiw>(x�x0)dω, (6) 

where i à
ÇÇÇÇÇÇÇ
�1
p

, pω�is a nonnegative measure, ⌦ is the Fou-
rier feature space, and kernels of the form K(x, x0) are called 
shift-invariant kernel.

If a shift-invariant kernel in (6) is positive semidefi-
nite and scaled such that g(0) à 1, Bochner’s theorem 
ensures that its Fourier transform pω�can be viewed 
as a probability distribution function because it nor-
malizes to one and is nonnegative. In this sense, the 
spectrum pω�can be viewed as the distribution of r- 
dimensional Fourier features indexed by ω 2⌦ ⇢ Rr. 
Hence, we may obtain a triggering function in (5) 
between two events x, x0 2 X ⇢ Rd+1, which satisfies the 
“kernel embedding.”

Proposition 1. Let the triggering function K be a continu-
ous real-valued shift-invariant kernel and pω�a probability 
distribution function. Then

K(x, x0) :à Eω~pω[φω(x) ·φω(x0)], (7) 

where φω(x) :à
ÇÇÇ
2
p

cos(ω>Wx + u) and W 2 Rr⇥(d+1) is a 
weight matrix. These Fourier features ω 2⌦ ⇢ Rr are sam-
pled from pω, and u is drawn uniformly from [0, 2π].

In practice, Expression (7) can be approximated em-
pirically, that is,

K̃(x, x0) à 1
D
XD

kà1
φωk

(x) · φωk
(x0) à Φ(x)>Φ(x0), (8) 

where ωk, k à 1, : : : , D are D Fourier features sampled 
from the distribution pω. The vector Φ(x) :à [φω1

(x), : : : , 
φωD

(x)]> can be viewed as the approximation of the 
kernel-induced feature mapping for the score. In the 
experiments, we substitute exp{iw>(x� x0)} with a 
real-valued feature mapping, such that the probability 
distribution pω�and the kernel K are real (Rahimi and 
Recht 2008).

The next proposition shows the empirical estimation 
(8) converges to the population value uniformly over all 
points in a compact domain X as the sample size D 
grows. It is a lower-variance approximation to (7).
Proposition 2. Assume σ2

p à Eω~pω[ω>ω] <1 and a com-
pact set X ⇢ Rd+1. Let R denote the radius of the Euclidean ball 
containing X . Then for the kernel-induced feature mapping Φ�
defined in (8), we have

P
�

sup
x,x02X

���Φ(x)>Φ(x0)�K(x, x0)
��� � ✏

⌧

 48Rσp

✏

◆ 2
exp � D✏2

4(d + 3)

� ⌧
: (9) 

The proposition ensures that kernel function can be 
consistently estimated using a finite number of Fourier 
features. In particular, for an error bound ✏, the number 
of samples needed is on the order of D àO((d + 1)
log(Rσp=✏)=✏2), which grows linearly as data dimension 
d increases, implying the sample complexity is mild in 
the high-dimensional setting.

To represent the distribution pω, we assume it is a 
transformation of random noise ζ ~ pζ�through a non-
linear mapping ψ0 : Rq! Rr, as shown in Figure 6, 
where ψ0 is a differentiable, it is represented by a deep 
neural network, and q is the dimension of the noise. 
Roughly speaking, pω�is the probability density function 
of ψ0(ζ), ζ ~ pζ. The triggering kernel is jointly con-
trolled by the deep network parameters and the weight 
matrix W. We represent the Fourier feature generator as 
Gζ�and denote its parameters as θ 2Θ.

Figure 7 gives an illustrative example of representing 
the conditional intensity given sequence history using our 
approach. We choose q à r à 2 to visualize the noise prior 
pζ�and the optimal spectra p⇤ω�in a two-dimensional space. 
The optimal spectrum learned from data uniquely spe-
cifies a kernel function capable of capturing various 
nonlinear triggering effects. Unlike Hawkes processes, 
underlying long-term influences of some events, in this 
case, can be preserved in the intensity function.

Figure 7. (Color online) Instance of Calculating the Conditional Intensity λ�Through Performing Inverse Fourier Transform 

Notes. (1) Generate random noise. (2) Map the noises to the frequencies according to the optimal spectrum. (3) Perform inverse Fourier transform 
(IFT) in the frequency domain and obtain the triggering function. (4) Calculate the intensity function based on the triggering function.
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4.3. Efficient Computation of 
Log-Likelihood Function

As discussed in Section 4.2, the technical difficulty of 
evaluating the log-likelihood function is to perform the 
multidimensional integral of the kernel function. In par-
ticular, given a sequence of events x, the log-likelihood 
function of our model can be written by substituting the 
conditional intensity function in (4) with (5), and thus we 
need to evaluate 

R
Xλ(x |Ht;θ)dx. In many existing works, 

this term is carried out by numerical integration, which 
can be computationally expensive. For instance, if we ran-
domly sample κ�points in a d-dimensional space and the 
total number of events is N, the computational complexity 
will be O(κDN) (κ�Nd) using common numerical inte-
gration techniques. Here we present a way to simplify the 
computation by deriving a closed-form expression for the 
integral as presented in the following proposition: a bene-
fit offered by the Fourier kernel.

Proposition 3 (Integral of Conditional Intensity Func-
tion). Let tNT+1 à T and t0 à 0. Given ordered events 
{x1, : : : , xNT} in the time horizon [0, T]. The integral term 
in the log-likelihood function can be written as
Z

X
λ(x |Ht;θ)dx à µT(b� a)d + 1

D
XD

kà1

XNT

ià0

X

tj<ti

cos(�ω>k Wxj)cos ti+1 + ti
2

◆ 
sin ti+1� ti

2

◆ 
cosd b + a

2

◆ 

sind b� a
2

◆ Yd+1

"à1

2eω>k w"

ω>k w"
, (10) 

where w", " à 1, : : : , d is the "th column vector in the matrix 
W, and [a, b] are the range for each dimension of the mark 
space M. The computational complexity is O(DN).

Remark 1. From the right-hand side of (10), the sec-
ond term only depends on the weight matrix W, D 
randomly sampled Fourier features, the time of events 
that occurred before t, and the region of the marked 
space. If we rescale the range of each coordinate of 
the mark to be [0, 2π], that is, b à 2π�and a à 0, then 
the second term of the integral equals to zero, and the 
integral defined in (10) can be further simplified as

Z

X
λ(x |Ht;θ)dx à µT(2π)d:

In particular, when we only consider time (d à 0), the 
integral becomes
Z

X
λ(x |Ht;θ)dx

à µT + 1
D
XD

kà1

XNT

ià0

X

tj<ti

cos(�ω>k Wxj)cos ti+1 + ti
2

◆ 

sin ti+1 � ti
2

◆ 
2eω>k W

ω>k W :

4.4. Recursive Computation of 
Log-Likelihood Function

Leveraging the conditional probability decomposition, 
we can compute of the log-likelihood function "(x1:i;θ

⇤)
recursively:
"(x1:1;θ⇤) à log f (x1 |Ht1);
"(x1:i;θ

⇤) à "(x1:i�1;θ⇤) + log f (xi |Hti ;θ
⇤), ∀i > 1, (11) 

where

f (xi |Hti ;θ) à λ(xi |Hti ;θ)e�µ(ti�ti�1)(2π)d
:

This recursive expression makes it convenient to eval-
uate the detection statistic sequentially and perform 
online detection, which we summarize in Algorithm 1.
Algorithm 1 (Online Detection Algorithm)

Input: An unknown sequence x with NT events and 
optimal model parameters θ⇤,�⇤;

Generate D Fourier features from Gζ(θ⇤) denoted as 
b⌦ à {ωk}kà1,: : : ,D;

Generate n0 adversarial sequences from Gz(�⇤)
denoted as bZ à {zl}là1,: : : ,n0 ;

while i NT do
Compute the log-likelihood "(x1:i;θ

⇤) given b⌦
according to (11);
η⇤i  1=n0

Pn0
là1 "(zl

1:i;θ
⇤);

if "(x1:i;θ) � η⇤i then
Declare that it is an anomaly and record the 
stopping time ti; 

end 
i i + 1;

end
Declare that it is not an anomaly;

5. Adversarial Sequence Generator
Now we describe the parameterization for the adversar-
ial sequence generator. To achieve rich representation 
power for the adversarial generator Gz, we borrow the 
idea of the popular RNN structure.

In particular, we develop an RNN-type generator 
with stochastic neurons (Chung et al. 2015, Li et al. 
2018) as shown in Figure 8, which can represent the 
nonlinear and long-range sequential dependency struc-
ture. Denote the ith generated adversarial event as 
zi :à (ti�1 + �ti, mi), where �ti is the time interval bet-
ween event zi�1, zi. The generating process is described 
here:

[�ti, m>i ]> ~ N (!i�1, diag("i�1)),
[!i, "

>
i ]> à ψ1(hi),

hi à ψ2(hi�1, zi), i à 1, : : : , NT,
h0 à 0, 

where the hidden state hi 2 Rp encodes the sequence 
of past events {z1, : : : , zi�1}, zi 2 X , and N (!,Σ) stands 
for the multivariate Gaussian distribution with mean 
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! 2 Rd+1 and covariance matrix Σ 2 R(d+1)⇥(d+1); here, 
we only consider variance terms, and thus the covari-
ance matrix is diagonal with diagonal entries specified 
by a vector "i, and diag(x) means to convert the vector 
x to a diagonal matrix. Here we adopt the (two-sided) 
truncated normal distribution in our adversarial se-
quence generator by bounding the support of each 
mark to the interval (a, b). The probabilistic density 
function (p.d.f.) therefore is given by N (x |µ,σ, a, b) à
(1=σ)φ((x�µ)=σ)=(Φ((b�µ)=σ)�Φ((a�µ)=σ)), where 
φ(x) is the p.d.f. of a standard normal distribution, and 
Φ(x) is the corresponding cumulative density function 
(c.d.f.); µ,σ�are represented by the LSTM structure, and 
a, b are determined such that the percentage of density 
that lie within an interval for the normal is 99.7% (the 
so-called three-sigma rule-of-thumb). The process stops 
running until ti < T and ti + �ti+1 � T.

Function ψ2 : Rp+d+1! Rp is an extended LSTM cell, 
and function ψ1 : Rp! R(d+1)2+d+1 can be any nonlinear 
mappings. There are two significant differences from 
the vanilla version of RNNs: (1) the outputs are sam-
pled from hidden states rather than obtained by de-
terministic transformations (as in the vanilla version; 
randomly sampling will allow the learner to explore the 
events’ space); and (2) the sampled time point will be 
fed back to the RNN. The model architecture for ψ1 
may be problem specific. For example, ψ1 can be repre-
sented by convolution neural network (CNN) (LeCun 
et al. 1995) if the high-dimensional marks are images 
and can be represented by LSTM or Bidirectional 
Encoder Representations from Transformers (Devlin 
et al. 2019) if the marks are text. In this paper, because 
the mark is three-dimensional, we use a fully connected 
neural network to represent ψ1, which achieves signifi-
cantly better performance than baselines. The set of all 
trainable parameters in ψ1,ψ2 are denoted by � 2 G.
Algorithm 2 (Adversarial Learning Algorithm)

input: data set X à {xi}ià1,: : : ,n;
initialization: model parameters θ,�;

for 1, : : : , M0 do
(1) Randomly draw n00 training sequences from X 

denoted as bX à {xl 2 X}là1,: : : ,n00 ;
(2) Generate n0 adversarial sequences from Gz(�)

denoted as bZ à {zl}là1,: : : ,n0 ;
(3) Generate D Fourier features from Gζ(θ) de-

noted as b⌦ à {ωk}kà1,: : : ,D;
Update � by descending gradient given bX, bZ, b⌦:

r�
1

n00
Xn00

là1
"(xl;θ)� 1

n0
Xn0

là1
"(zl;θ);

for 1, : : : , M1 do
Redo steps (1), (2), (3) to obtain new bX, bZ, b⌦;
Update θ�by ascending gradient given bX, bZ, b⌦:

rθ
1

n00
Xn00

là1
"(xl;θ)� 1

n0
Xn0

là1
"(zl;θ);

end
end

We learn the adversarial detector’s parameters in an 
offline fashion by performing alternating minimization 
between optimizing the generator Gz(�) and optimiz-
ing the anomaly discriminator "(θ), using stochastic 
gradient descent. Let M0 be the number of iterations, 
and M1 be the number of steps to apply to the discrimi-
nator. Let n0, n00 < n be the number of generated adver-
sarial sequences and the number of training sequences 
in a mini-batch, respectively. We follow the convention 
of choosing mini batch size in stochastic optimization 
algorithm (Li et al. 2014) and only require use of the 
same value for both n0 and n00. There is a clear tradeoff 
between the model generalization and the estimation 
accuracy. Large n0 and n00 tend to converge to sharp 
minimizers of the training and testing functions, which 
lead to poorer generalization. In contrast, small n0 and 
n00 consistently converge to flat minimizers due to the 
inherent noise in the gradient estimation. Large n0 and 

Figure 8. (Color online) RNN-Based Adversarial Sequence Generator 
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n00 may cause the training to be computationally expen-
sive. The learning process is summarized in Algorithm 2.

6. Numerical Experiments
In this section, comprehensive numerical studies are 
presented to compare the proposed adversarial anom-
aly detector’s performance with the state-of-the-art.

6.1. Comparison and Performance Metrics
We compare our method (referred to as AIL) with four 
state-of-the-art approaches: the one-class support vector 
machine (Zhang et al. 2007) (One-class SVM), the 
cumulative sum of features extracted by principal com-
ponent analysis (Page 1954) (PCA+CUMCUM), the local 
outlier factor (Breunig et al. 2000) (LOF), and a recent 
work leveraging IRL framework for sequential anomaly 
detection (Oh and Iyengar 2019) (IRL-AD).

The performance metrics are standard, including pre-
cision, recall, and F1 score, all of which have been widely 
used in the information retrieval literature (Michael et al. 
2002). This choice is because anomaly detection can be 
viewed as a binary classification problem, where the 
detector identifies if an unknown sequence is an anom-
aly. The F1 score combines the precision and recall. Define 
the set of all true anomalous sequences as U and the set 
of positive sequences detected by the optimal detector 
as V. Then precision P and recall R are defined by

P à |U \ V |= |V | , R à |U \ V |= |U | , 
where | · | is the number of elements in the set. The F1 
score is defined as F1 à 2PR=(P + R) and the higher F1 
score the better. Because positive and negative samples 
in real data are highly unbalanced, we do not use the 
receiver operating characteristic curve (true-positive 
rate versus false-positive rate) in our setting.

6.2. Experiments Setup
Consider two synthetic and two real data sets. (1) Sin-
gleton synthetic data consist of 1,000 anomalous sequ-
ences with an average length of 32. Each sequence is 
simulated by a Hawkes process with an exponential 
kernel specified in (3), where β�à 3 and µ à 10,α à 1. (2) 
composite synthetic data consist of 1,000 mixed anoma-
lous sequences with an average length of 29. Every 200 
of the sequences are simulated by five Hawkes pro-
cesses with different exponential kernels, where µ à 10, 
α à 1, and β à 1, 2, 3, 4, 5, respectively. (3) Real credit 
card fraud data consist of 1,121 fraudulent credit trans-
action sequences with an average length of 21. Each 
anomalous transaction in a sequence includes the occur-
rence geolocation (latitude and longitude), time, and 
corresponding transaction amount in the dollar. (4) 
Robbery data contain the 911-calls-for-service events in 
Atlanta from 2015 to 2017 (Zhu and Xie 2018, 2019a, b; 

Zhu et al. 2021a). We consider each crime series as a 
sequence of events: each event consists of the time (in 
seconds) and the geolocation (in latitude and longi-
tude), indicating when and where the event occurred. 
We extract a series of events in the same category iden-
tified by the police detectives and treat them as one 
sequence. There exists intricate spatial and temporal 
dependency between these events with the same cate-
gory. As indicated by Zhu and Xie (2019b), the 911 
calls of some crime incidents committed by the same 
individual share similar crime behaviours (e.g., forced 
entry) and tend to aggregate in time and space. This 
phenomenon is called modus operandi (M.O.) (Wang 
et al. 2015). Within two years of data, this gives us 44 
sequences with the subcategory of robbery. We test 
whether the algorithm can discriminate a series that is 
a robbery series or not. To create such an experiment, 
we also created 391 other types of crime series, which con-
sist of randomly selected categories mixed together. We 
treat them as “anomalous” and “normal” data, respec-
tively. In the experiments, we under-sample the Fourier 
features, where D à 20, to improve training efficiency. In 
addition, we select n0 à n00 à 32 empirically based on the 
computational resource of the experimental setup on a 
standard laptop with a quad-core 4.7-GHz processor. The 
model obtains its convergence around M0 à 1, 000 itera-
tions with M1 à 5.

Our evaluation procedure is described as follows. We 
consider two sets of simulation data and two sets of 
real data, respectively. Each data set is divided into 80% 
for training and 20% for testing. To evaluate the perfor-
mance of the fitted model, we first mix the testing set 
with 5,000 normal sequences, which are simulated by 
multiple Poisson processes, and then perform online 
detection. We do not simulate normal sequences for the 
robbery data experiment because we treat other types 
of crime as the alternative. The precision, recall, and F1 
score will be recorded accordingly. The method with 
higher precision, recall, and F1 score at an earlier time 
step is more favorable than the others.

6.3. Results
First, we summarize the performance of our method on 
three data sets in Figure 9 and confirm that the pro-
posed time-varying threshold can optimally separate 
the anomalies from normal sequences. To be specific, 
the fourth column in Figure 9 shows the average log- 
likelihood (detection statistics) and its corresponding 
1σ�region for both anomalous sequences and normal 
sequences. As we can see, the anomalous sequences 
attain a higher average log-likelihood than the normal 
sequences for all three data sets. Their log-likelihoods 
fall into different value ranges with rare overlap. Addi-
tionally, the time-varying threshold indicated by darker 
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dash lines lies between the value ranges of anomalous 
and normal sequences, which produces an amicable 
separation of these two types of sequences at any given 
time. The first three columns in Figure 9 present more 
compelling evidence that the time-varying threshold is 
near-optimal. Colored cells of these heat maps are cal-
culated with different constant thresholds η�at each step 
i by performing cross-validation. The brightest regions 
indicate the “ground truth” of the optimal choices of 

the threshold. As shown in the third column, the time- 
varying thresholds (dashed line) are very close to the 
optimal choices found by cross-validation.

We also compare the stepwise F1 scores of our 
method with the other four baselines in Figure 10. The 
results show that (1) from an overall standpoint, our 
method outperforms other baselines with significantly 
higher F1 scores, and (2) our method allows for easier 
and faster detection of anomalous sequences (before 10 

Figure 9. (Color online) Performance of Our Method (AIL) on Four Data Sets 

(a)

(b)

(c)

(d)

Notes. The first three columns correspond to the precision, recall, and F1 score of our method using different thresholds. The dashed lines in the 
third column indicate our time-varying thresholds. The fourth column shows the step-wise detection statistics for both anomalous and normal 
sequences. (a) Singleton synthetic data. (b) Composite synthetic data. (c) Real credit card fraud data. (d) Real robbery data.
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events being observed in our experiments), which is 
critically vital in sequential scenarios for most of the 
applications.

Finally, we present an ablation study to investigate 
the performance of our method using different genera-
tors. As shown in Table 1, the proposed generator based 
on an extended LSTM structure significantly outper-
forms other generators in stepwise F1 score. As a sanity 
check, the generator using the vanilla Hawkes process 
achieves competitive performances on the singleton 
synthetic data because the true anomalous sequences 
are from a Hawkes process. However, we can observe a 
dramatic performance deterioration on the composite 
synthetic data. The anomalous sequences are generated 
by multiple distributions and can hardly be captured 
by the vanilla Hawkes process. This result confirms that 
using a generic generative model cannot achieve the 
best performance.

7. Conclusion and Discussions
We presented a novel unsupervised anomaly detection 
framework on sequential data based on adversarial 
learning. A robust detector can be found by solving a 

minimax problem, and the optimal generator also helps 
define the time-varying threshold for making decisions 
in an online fashion. We model the sequential event 
data using a marked point process model with a neural 
Fourier kernel. Using both synthetic and real data, we 
demonstrated that our proposed approach outperforms 
other state-of-the-art. In particular, the experimental re-
sults suggest that the proposed framework has achieved 
excellent performance on a proprietary large-scale credit- 
card fraud data set from a major department store in the 
United States, which shows the potential of proposed 
methods to apply to real-world problems.

Given the prevalence of sequential event data (in 
many applications, there is only one-class data), we 
believe our proposed method can be broadly applicable 
to many scenarios. Such applications include financial 
anomaly detection, Internet intrusion detection, and 
system anomaly detection such as power systems cas-
cading failures, all of which are sequential discrete 
events data with complex temporal dependence. On the 
methodology side, we believe the proposed framework 
is a natural way to tackle the one-class anomaly detec-
tion problem, leveraging adversarial learning advances. 

Figure 10. (Color online) Performance of Our Method (AIL) and Four Baselines on Three Data Sets 

(a) (b) (c) (d)

Notes. The marks show the average F1 score tested on testing sequences when decisions are made with observing part of the sequences. (a) Sin-
gleton synthetic. (b) Composite synthetic. (c) Credit card fraud. (d) Robbery.

Table 1. F1 Score Before ith Event Using Different Adversarial Generators in the 
Proposed Framework

Generator in AIL

Singleton synthetic data Composite synthetic data

ià 5 ià 10 ià 15 ià 5 ià 10 ià 15

Vanilla Hawkes process 0.821 0.889 0.911 0.421 0.411 0.370
Vanilla LSTM 0.761 0.830 0.878 0.594 0.542 0.519
Proposed extended LSTM 0.888 0.916 0.916 0.658 0.623 0.566
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It may provide a first step toward bridging imitation 
learning and sequential anomaly detection.

Endnote
1 See https://usa.visa.com/pay-with-visa/visa-chip-technology- 
consumers/zero-liability-policy.html.
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