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Abstract Given an algebraic differential equation of order greater than one, it
is shown that if there is any nontrivial algebraic relation amongst any number
of distinct nonalgebraic solutions, along with their derivatives, then there is
already such a relation between three solutions. In the autonomous situation
when the equation is over constant parameters the assumption that the order
be greater than one can be dropped, and a nontrivial algebraic relation exists
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already between two solutions. These theorems are deduced as an application
of the following model-theoretic result: Suppose p is a stationary nonalgebraic
type in the theory of differentially closed fields of characteristic zero; if any
three distinct realisations of p are independent then p is minimal. If the type is
over the constants then minimality (and complete disintegratedness) already
follow from knowing that any two realisations are independent. An algebro-
geometric formulation in terms of D-varieties is given. The same methods yield
also an analogous statement about families of compact Kéhler manifolds.

Mathematics Subject Classification 03C45 - 12HO05 - 11J81 - 32J27
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1 Introduction

Understanding algebraic relations between solutions of a differential equation
is, perhaps along with understanding solutions of a particular form, the central
problem in algebraic differential equations. Characterizing algebraic relations
between solutions is an important output of various approaches to differential
Galois theory [4,16,34], while work using the model theory of differential
fields frequently applies techniques from stability theory to obtain conclusions
in this vein [11,28,29]. A number of recent transcendence results for analytic
functions (equivalently, problems of bi-algebraic geometry [14]) have played
an important role in diophantine geometry and have natural interpretations in
terms of characterizing algebraic relations between solutions of differential
equations and their derivatives [3,6,30].

To state our main theorem let us fix a differential field (k, §) of characteristic
zero, as well as an order n algebraic differential equation

P(y,8y,....8™My) =0, (1)

where P € k[Xo, ..., X,] is irreducible. For each m > 1, consider the fol-
lowing condition:

@ Springer



When any three solutions are independent 1251

(C,y) For any m distinct solutions ay, ..., a, ¢ k*€ of (1), the sequence
0Va;ji=0,....,n—1,j=1,...,m)

is algebraically independent over k.

In [5], as a byproduct of working on a related problem, the first and third
authors showed that as long as n > 1, one always has (C,+2) — (C,,) for
all m. We can now do much better:

Theorem A (a) Ifn > 1 then (C3) — (Cy,) for all m.
(b) If § is trivial on k then (C2) — (C,) for all m.

Algebraic differential equations over constant parameters, as is assumed in
part (b), often go by the name autonomous.

Part (a) of the theorem is sharp in both natural ways: there are (non-
autonomous) equations in every order greater than 1 that satisfy (C;) but not
(C3), and there are (non-autonomous) order 1 equations that satisfy (C3) but
not (C4). See Examples 3.7 and 3.8 below, respectively. However, in order 1
we do have (C4) =— (C),) for all m, as we will explain later. Part (b) is also
sharp, for example §y — 1 = 0 is an autonomous equation satisfying (C1) but
not (C»).

Let us consider some specific examples that have been studied recently.

Example 1 In [11], the second author studied the special case of autonomous
equations of order two and degree at least 3 where the coefficients of P form
an algebraically independent set. He showed that the equation is then strongly
minimal and geometrically trivial, from which it follows that (C2) =— (Cy,).

Example 2 Consider a Painlevé equation from the families P;; through Py
with generic coefficients. For instance, one might take y” = 2y3 +ry + 7
over the differential field (C(z), %). Nagloo and Pillay [29] show that (C,;)
holds of all m.

Example 3 Consider the following autonomous equation satisfied by the j-
function

y2 — 1968y + 2654208, ,

S
W+ =030 — 172872

=0,

AU 7\ 2
where S is the Schwarzian derivative: S(y) = <§> - % (%) . It follows
from results of [6] that (C») fails of this equation. In fact, if y;, y, are non-
algebraic solutions then (y1, y{, ¥{, ¥2, y5, ¥5) are algebraically dependent if

and only if a modular polynomial vanishes at (y, y2). A generalisation of
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this equation and setting is considered in [3], where the j-function is replaced
by the uniformisation function of the quotient of the upper half plane by an
arbitrary genus zero Fuchsian group I' of the first kind. For such equations,
it is shown that (C,) fails if and only if (C,,) fails for some m, if and only
if I' is a proper subgroup of its commensurator. This analysis of the alge-
braic relations amongst the solutions and their derivatives, in [3], is key to
proving the Ax—Lindemann—Weierstrass theorem for uniformising functions
of Fuchsian groups and answering an old open question of Painlevé (1895).
Ax-Lindemann—Weierstrass results for the uniformizing functions of Shimura
varieties are an essential component of the resolution of a number of recent
diophantine conjectures and can naturally be phrased in terms of algebraic rela-
tions between solutions of differential equations (see [14] and the references
therein).

In fact, our proof of Theorem A works more generally with finite-
dimensional systems of algebraic differential equations in several variables.
In the autonomous case this is best expressed in terms of algebraic vector
fields; namely algebraic varieties V equipped with a polynomial section s to
the tangent bundle. To study the algebraic relations between the solutions of
the corresponding system of equations amounts to looking at subvarieties of
cartesian powers of V that are invariant under the vector field. (Here we put
on V'™ the canonical vector field induced by s, obtained by identifying 7 (V")
with the m-fold fibred product of 7'V with itself.) We can formulate our main
theorem, in the autonomous case, as follows:

Theorem B Suppose (V, s) is an algebraic vector field over a field k of char-
acteristic zero. If V? admits no proper invariant subvarieties over k projecting
dominantly onto each co-ordinate, other than the diagonal, then the same holds
of V" for all m, that is, the various diagonals in V" are the only invariant
subvarieties over k projecting dominantly onto each co-ordinate.

In the non-autonomous setting one works with algebraic “D-varieties” in
the sense of Buium [2] rather than algebraic vector fields; where the tangent
bundle is replaced by the prolongation, a natural torsor of the tangent bundle
that takes into account the twisting induced by § on k. See Sect. 4 below for
a discussion. We have an analogue of Theorem B in that setting, but, as one
might expect from part (a) of Theorem A, we have to assume that dim V > 1
and the assumption on invariant subvarieties has to be made about V3 in order
to conclude it for all V™. See Corollary 4.2 below for the general statement
that includes both the autonomous and non-autonomous setting.

There is an apparent discrepancy between Theorems A and B. The latter is
really about relations among generic solutions to the differential equation—
this is the meaning of only considering invariant subvarieties that project
dominantly on each co-ordinate—while Theorem A seems to be stronger,
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When any three solutions are independent 1253

making conclusions about all nonalgebraic solutions. In fact, however, (C1)
already rules out the possibility of lower order equations, so that all nonalge-
braic solutions are generic.

These theorems are applications of a more fundamental theorem about the
model theory of differentially closed fields (DCFg), which we now state. We
work model-theoretically, assuming familiarity with geometric stability theory
as well as the particular case of DCFy. We suggest [31] as a general reference
for the former, and [20] as an introduction to the latter.

The following combines the main clauses of Theorems 3.6 and 3.9 below:

Theorem C Suppose p is a stationary nonalgebraic type in DCFy.

(a) If any three distinct realisations of p are independent then p is minimal.
(b) If p is over the constants, and any two distinct realisations of p are inde-
pendent, then p is minimal.

Once we have a minimal generic type we can apply the Zilber trichotomy
in differentially closed fields and deduce Theorems A and B quite readily. The
proof of minimality itself goes via reducing to the case when p is internal
to the constants and with a binding group that acts 3-transitively, in the case
of part (a). As the binding group is an algebraic group action, a theorem of
Knop [15] implying that the only 3-transitive algebraic group action is that
of PGL, on PP now applies, and settles the matter. For the autonomous case,
namely part (b), we do not require Knop’s classification, but make use of a little
differential Galois theory implying that the binding group cannot be centerless.

Other than standard facts from geometric stability theory and the model
theory of differentially closed fields, as well as the theorem of Knop just
mentioned, the paper is self-contained. In particular, the results of [5] are not
used here, though the approach taken there does inform what we do.

The proof of Theorem C(a) works in any totally transcendental theory where
one has the following strong form of the Zilber dichotomy: every non locally
modular minimal type over A is nonorthogonal to an A-definable pure alge-
braically closed field. So, for example, we could just as easily have worked with
several commuting derivations in partial differentially closed fields (DCF ;).
Or in the theory CCM of compact complex manifolds. Indeed, concerning the
latter, a short final section is dedicated to articulating the result as a theorem in
bimeromorphic geometry that may be of independent interest, see Theorem 5.1
below.

This paper, and Theorem C in particular, exhibits a recurring theme in
geometric stability theory; how a careful analysis of certain definable group
actions can lead to structural results which are on the face of it not about
groups. As such, it owes a debt to the fundamental work of Hrushovski, see
[8, Theorem 1] for example.
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A note on authorship The first and third authors initially circulated a ver-
sion of this paper that did not consider the autonomous case separately. So, for
example, it did not include part (b) of Theorems A and C. The second author,
upon reading the preprint, realised that the method would, with the addition of
some differential Galois theory, yield stronger results in the autonomous case.
The current paper incorporates his improvements.

Throughout, except when otherwise specified, we work in a sufficiently
saturated model I/ |= DCF with field of constants C.

2 Generic transitivity and degree of nonminimality

Recall from [1] that a definable group action (G, S) of finite Morley rank is
generically transitive if the action of G on S admits an orbit O such that

RM(S \ O) < RM(S).

Assuming that dM(S) = 1, this is equivalent to asking that any two generic
elements of S over A are conjugate.
Actually, we are interested in the multiple-transitivity version:

Definition 2.1 A finite rank definable group action (G, S) is generically k-
transitive if the diagonal action (G, S¥) is generically transitive.

Generic k-transitivity, and the Borovik-Cherlin conjecture about such group
actions (articulated in [1]), played an important role in recent work [5] on
bounding the size of a witness to the nonminimality of a type in DCF. Recall:

Definition 2.2 The degree of nonminimality of p € S(A) is the least d such
that there are distinct realisations ay, ..., ag of p and a nonalgebraic forking
extension of p to Aaj ---ay.

The main result of [5] was that nmdeg(p) < U(p) + 1. One step in that
proof was the following observation, which we repeat here for the sake of
completeness.

Proposition 2.3 Suppose p is a stationary type with U(p) > 1 that is C-
internal and weakly C-orthogonal. Let d := nmdeg(p). Then the binding
group of p acts transitively and generically d-transitively on p(U).

Proof Denote the binding group by G := Auts(p/C). It acts definably and
faithfully on S := p(U). Weak orthogonality implies that the action is transi-
tive and p is isolated. So (G, §) is a definable homogeneous space. To show
that the action is generically d-transitive is precisely to show that G acts tran-
sitively on p@. As G is also the binding group of the C-internal type p(?, it
suffices to show that p@ is weakly orthogonal to C.
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When any three solutions are independent 1255

Let r > 1 be least such that p) is not weakly orthogonal to C. (This
exists by C-internality.) Fix @ = (a1, ...,a,—1) = p" ™V and let ¢ be the
nonforking extension of p to Aa. Then ¢ is not weakly orthogonal to C. It
follows (using elimimination of imaginaries for the structure induced on C;
namely that of a pure algebraically closed field) that there is @ = ¢ and a
constant ¢ € C such that ¢ € dcl(Aaa) \ acl(Aa). Write ¢ = f(a) where
f is a partial Aa-definable function from S to C. The fibre f~!(c) is infinite
as U(q) > 1, and so we may assume that all the fibres are infinite. Let ¢y €
Im(f) N Q, which exists as Im( f) is an infinite and hence cofinite subset of
C. Let ag be generic in f ~1(¢cp) over Aa. Then U (ag /Aa) > 0as f (o) is
infinite. On the other hand, U (ag/Aa) < U(p), as otherwise ag = ¢, which is
impossible as f(a) ¢ acl(Aa) while f(ag) € Q = dcl(@). Hence tp(ap/Aa)
is anonalgebraic forking extension of p witnessing thatd < r — 1. By minimal
choice of r, it follows that p(?©) is weakly C-orthogonal, as desired. O

3 Distinct solutions being independent

We are interested in the following condition on a stationary type p € S(A).

Definition 3.1 (The condition D,,) Given m > 1, let us say that p € S(A)
satisfies Dy, if every m-tuple of distinct realisations of p is independent over
A.

We say that p is completely disintegrated it D,, holds for all m > 1.
Note that when U (p) > 1, the condition D,, implies that nmdeg(p) > m.

Indeed, suppose d = nmdeg(p) is witnessed by ay, ..., ag, distinct realisa-
tions of p, and g a nonalgebraic forking extension of p to Aaj - - - ag4. Letting
aj+1 =g weseethatay, ..., az41 witnesses the failure of Dy 1. Note, how-

ever, that d = nmdeg(p) says something more than the failure of D as it
insists that the witness a1 not be algebraic over Aay - - - aq.
We begin with a few straightforward consequences of D;.

Lemma 3.2 Every type satisfying Dj is of finite rank.

Proof As some co-ordinate of any realisation of an infinite rank type must be
d-transcendental, it suffices to observe that the 1-type of a §-transcendental
element does not satisfy D;. Indeed, if a is §-transcendental over a differential
field k then so is §(a), which is distinct for a, and a j/k da. O

Lemma 3.3 No type satisfying D> can be a nontrivial finite cover. That is,
if p = tp(a/A) is a nonalgebraic stationary type satisfying D, and a is
interalgebraic with b over A, then a € dcl(Ab).

Proof If a € acl(Ab)\dcl(Ab) then we can find a’ # a such thattp(a’/Ab) =

tp(a/Ab). By D, we must have a’ L 4 a.Buta € acl(Ab) = acl(Aa’), which
forces a € acl(A) and contradicts nonalgebraicity of p. m|
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1256 J. Freitag et al.

Lemma 3.4 If p = tp(a/A) is a nonalgebraic stationary type satisfying D>
then it satisfies the following form of exchange: if b € acl(Aa) \ acl(A) then
a € dcl(Ab).

Proof Note that the conclusion is a strengthening of the property called admit-
ting no proper fibrations in [26]. In any case, by Lemma 3.3, it suffices to show
that @ € acl(Ab). Suppose a ¢ acl(Ab), and seek a contradiction. It follows
that if a’ realises the nonforking extension of tp(a/Ab) to Aa thena # a’. On
the other hand, using the Lascar inequality, U (a/Aa’) = U(a/Ab) < U(a/A)
as b € acl(Aa) \ acl(A). So a and a’ are dependent over A, contradicting D5.

O

Proposition 3.5 Every stationary type of U -rank > 1 satisfying D» is internal
and weakly orthogonal to the constants.

Proof Suppose p = tp(a/A) is stationary, nonminimal, and satisfies D;. As
p is of finite rank it is nonorthogonal to some minimal type r € S(B) for some
B O A. We first show that r is not locally modular. Indeed, in [26, Proposi-
tion 2.3], it is shown that, because p has no proper fibrations (Lemma 3.4),
if r is locally modular then in fact p is interalgebraic with some ¢*) where
q € S(A) is a locally modular minimal type and k > 1. Now, k = 1 is impos-
sible by the assumption that U(p) > 1. But k > 1 is also impossible: taking
(b1, ..., by) = q™%, we obtain

by € acl(Aby ---by) \ acl(A) = acl(Aa) \ acl(A)
while
acl(Aa) = acl(Ab; - - - by) € acl(Aby)

contradicting Lemma 3.4.

We have shown that p is nonorthogonal to a non locally modular minimal
type. In DCFy this means that p is nonorthogonal to the constants C. It follows
by [31, Corollary 7.4.6] that there is ¢ € dcl(Aa) \ acl(A) such that g :=
tp(c/A) is C-internal. By Lemma 3.4, a € dcl(Ac). That is, p and g are
interdefinable, and hence p is also C-internal.

If p were not weakly orthogonal to C then there would be ¢ € C such
that ¢ € dcl(Aa) \ acl(A). Lemma 3.4 would then imply that a € dcl(Ac),
contradicting nonminimality of p (and also D). O

Here is our main theorem.
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When any three solutions are independent 1257

Theorem 3.6 Suppose p is a stationary nonalgebraic type satisfying D3. Then
p is minimal. Moreover, there are in this case exactly two possibilities:

(1) Either p is completely disintegrated, or,
(i1) p is nonorthogonal to the constants and Dy fails.

Proof We assume p € S(A) is not minimal and seek a contradiction. By
Proposition 3.5 we have that p is C-internal and weakly C-orthogonal. Denote
the binding group by G := Aut4(p/C) and set S := p(U). Proposition 2.3
tells us that (G, S) is a generically d-transitive definable homogeneous space,
where d is the degree of nonminimality of p. As we have already observed,
since p is not minimal and D3 holds, we must have d > 3. In particular, G
acts generically 3-transitively on S. But D3 tells us that every tuple of three
distinct elements is generic. Hence (G, S) is outright 3-transitive.

As (G, §) is the binding group action of a C-internal type, it is definably
isomorphic (over possibly additional parameters) with a definable homoge-
neous space in the induced structure on C. That induced structure being a pure
algebraically closed field, and using the Weil group-chunk theorem, we have
that (G, S) is definably isomorphic to an algebraic group action (G, S) in the
constants. So (G, S) is 3-transitive. But the only 3-transitive algebraic group
action is PGL; acting naturally on PP. Indeed, Knop [15, Satz 2] classifies the
(faithful) 2-transitive actions of algebraic groups as being of only two kinds:

e The standard action of PGL,, 1| on P".
e Certain subgroups of the affine group of transformations on a vector space.

In both cases, the action preserves colinearity of three points, and hence the
only possibility for 3-transitivity is if we are in the first case and n = 1. So
(G, S) is isomorphic to (PGL;(C), P(C)). This contradicts nonminimality of
p.

We have proven that p is minimal. The “moreover” clause now follows by
applying the Zilber trichotomy as it is manifested in DCF. That trichotomy
says that exactly one of the following must hold:

(D p is geometrically trivial;
(II) p is nonorthogonal to the generic type of the Manin kernel G of a simple
abelian variety over acl(A) that does not descend to the constants; or,
(II) p is nonorthogonal to the constants.

This is originally an unpublished theorem of Hrushovski and Sokolovic [10].
Published references and explanations can be found in various places, see for
example the discussion around Fact 4.1 of [18].

We first point out that D3 rules out case (II). Indeed, assuming we are in
case (II), and setting g to be the nonforking extension of p to Aa, it would
follow that ¢ is interalgebraic with the generic type r of G over Aa. This is
because both ¢ and r would be modular minimal types, and for such types
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1258 J. Freitag et al.

weak orthogonality implies orthogonality (see [31, Corollary 2.5.5]). As p
satisfies D3, ¢ satisfies D>, and hence Lemma 3.4 implies that r is a finite
cover of ¢, say w : r — ¢q. Given g |= r, since G has finite n-torsion, ng also
realises r for all n, and hence we can find n > 1 such that 7 (g) # m(ng). But
these two elements are distinct realisations of g that are dependent over Aa.
It follows that {a, 7 (g), m(ng)} witnesses the failure of p to satisfy Dj3.

We must, therefore, be in case (I) or (III); either p is geometrically trivial
or it is nonorthogonal to the constants. In the trivial case, D, already implies
D,, for all m, and so p is completely disintegrated. So it remains to consider
the case when p is nonorthogonal to the constants, and show that D fails.

From nonorthogonality to the constants, and using D», exactly as in the
proof of Proposition 3.5, we conclude that p is actually C-internal and either
interdefinable with the generic type of the constants or weakly C-orthogonal.
In the former case D, would clearly fail, so p is weakly C-orthogonal. The
failure of D4 can now be deduced from the classification of strongly minimal
homogeneous spaces (see [8, Theorem 1]). But we can also finish as before:
exactly as at the beginning of this proof, the associated binding group action is
definably isomorphic to an algebraic homogeneous space, with D4 implying
that that action is outright 4-transitive, while the Knop classification rules out
any 4-transitive algebraic homogeneous spaces. So D4 must fail. |

The following example shows that Theorem 3.6 is sharp in the sense that
D> would not suffice for minimality.

Example 3.7 In [5, §4.2] the first and third authors gave an example, for each
n > 3, of a C-internal type p of U-rank n — 1 whose binding group action is
that of PGL,, on P"~! In particular, the binding group action is 2-transitive,
and hence D> holds for these nonminimal types. The construction is based on
one from [13] when n = 2. Essentially, p is the generic type of the projec-
tivisation of the space of solutions to § X = BX where B is an n X n matrix
whose entries form a differentially transcendental set, and X is an n-column of
variables. In fact, using the solution to the inverse differenital Galois problem
for connected linear algebraic groups in the non-autonomous case [22], such
examples will exist over arbitrary finitely generated differential fields as long
as the transcendence degree over the constants is positive.

Let us point out that both cases of the “moreover” clause of Theorem 3.6
actually occur. That there are minimal completely disintegrated types is well
known, with constructions appearing in [9,21,33]. The following shows that
case (ii) also occurs: there are minimal types nonorthogonal to the constants
satisfying D3.

Example 3.8 Consider the order 1 Riccati equation 8y = y> + ¢ with ¢ €
C(¢) a transcendental rational function. The generic type p of this equation
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When any three solutions are independent 1259

is minimal and C-internal. Nagloo [27] has shown that it does satisfy Ds.
(Another argument is by [5, §4.3] where it is shown that the binding group
acts 3-transitively on p.)

3.1 The autonomous case

When the type in Theorem 3.6 is over the constants then the theorem is not
sharp. This is because the inverse differential Galois problem fails in the
autonomous case. Indeed, we get a stronger result:

Theorem 3.9 Suppose A C C and p € S(A) is a stationary nonalgebraic
type satisfying Dy. Then p is minimal and completely disintegrated.

Proof We first argue that p must be orthogonal to the constants. Assume,
toward a contradiction, that p is nonorthogonal to C. Then, by the proof
of Proposition 3.5, D; forces p to be C-internal and weakly C-orthogonal.
Moreover, exactly as in the proof of Theorem 3.6, the binding group G :=
Auty4 (p/C) will act outright 2-transitively on the set S := p(Uf).

The first thing we observe is that 2-transitivity implies G is centerless.
Indeed, this is an elementary argument about group actions, and is in fact the
first paragraph of the proof of Knop’s Satz 2 from [15] referred to above.

We deduce a contradiction by showing that for types over constants the
binding group can never be centerless, unless the binding group itself is trivial.
This uses some differential Galois theory. Let k = acl(A) C C, and denote
also by p the unique extension to k. We can find a fundamental system of
solutions ay, ..., a, = p witnessing C-internality of p in the prime model M
over k. This means that there exists a k-definable function ¢ (x, ¥) such that
every realization of p is of the form ¢ (ay, . .., a,, ¢) forsome ¢ € C. The type
q = tp(ai, ..., ay/k) is also internal to the constants and weakly orthogonal
to the constants and ay, ..., a, generate a strongly normal extension K :=
k{ai, ..., ay,) of k in the sense of Kolchin (see [19, §3.2]). Moreover, we have
a natural identification

Autg(q/C) >~ Auty(p/C) = G
given for o € Autg(q/C) by
O'(¢(611, ceey anv E)) = d’(a(al)v L G(aﬂ)9 E)

It follows that G is definably isomorphic to the set of C-points of the differential
Galois group Gal(K / k) of the strongly normal extension K | k. Since G has
a trivial center, so does the algebraic group Gal(K /k). By [32, Theorem 13],
centerless algebraic groups are linear, and hence Gal(K / k) is alinear algebraic
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1260 J. Freitag et al.

group and K | k is a Picard—Vessiot extension. We claim that Gal(K/k) is
commutative (this was already observed in the end of the proof of Proposition
4.9 of [12]): indeed assume that K is generated over k by a fundamental system
of solutions of ¥' = AY. After changing the basis, we can assume that A is
given in Jordan’s normal form. For a Jordan block J (X, m) with eigenvalue A
and size m, a fundamental system of solutions is given by:

e te
e)»t te)»t
0 :
o= .|, o= ... wor=|,,
. . ﬁe
0 : :
0 r-
;zem

Hence the entries of a fundamental system of solutions of Y/ = AY belong to
the differential field L = k(z, e*'?, ..., e*") where A1, ..., A, are the eigen-
values of A. It follows that K | k is a subextension of L | k and by Galois
correspondence that:

Gal(K /k) ~ Gal(L/k)/ Gal(L/K).

This is commutative because Gal(L/k) ~ G, x (G,,)! is commutative. But
that forces Gal(K / k) to be trivial, contradicting the fact that G is not trivial
(as for example it acts transitively on the set of realisations of the nonalgebraic
type p).

We have thus proved that p is orthogonal to the constants. By Propo-
sition 3.5, it is therefore also minimal. Now, every minimal type over the
constants and orthogonal to the constants is geometrically trivial, and hence
D, implies completely disintegrated, as desired. O

3.2 Deducing Theorem A

Let us spell out how Theorem 3.6 implies Theorem A of the Introduction.
This is a standard translation from model-theoretic to differential-algebraic
language.

We are working over a differential field (k, §) of characteristic zero, with
an order n algebraic differential equation

P(y,8y,...,8My) =0,
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where P € k[Xo, ..., X,] is irreducible. We may assume the equation has
nonalgebraic solutions, or there is nothing to prove. Denote by ¥ C U the
Kolchin closed set defined by this equation. Note that (C) already implies
that Y has no infinite Kolchin closed subsets over k of order less than n.
Together with irreducibility of P, this implies that Y is Kolchin irreducible
and that all points of Y \ k2 realise the Kolchin generic type p € S(k). This is
a nonalgebraic stationary type. Moreover, for each m > 1, the condition (C,,)
on the equation translates precisely into condition D,,, on p.

If the equation satisfies (C3) then p is minimal by Theorem 3.6. If, in
addition, n > 1, then p is orthogonal to the constants, so that we are in case (i)
of Theorem 3.6, and p is completely disintegrated. It follows that (C,,) holds
of the equation, for all m.

On the other hand, if § is trivial on k, and the equation satisfies (C»), then
Theorem 3.9 implies that p is minimal and totally disintegrated. Again we
conclude (C,) holds of the equation, for all m. |

4 A formulation for D-varieties

There is a well studied correspondence between types in DCFy and so called
“D-varieties”, and it is worth reformulating Theorem 3.6 in these terms. The
idea goes back to Buium [2], who considered algebraic varieties over a differ-
ential field (k, §) equipped with an extension of the derivation 4 to the structure
sheaf of the variety. Later, an equivalent formulation, paralleling more closely
the language of algebraic vector fields, came into use. We point the reader to
[17, §2] for a more detailed survey with references. We restrict ourselves here
to a very concise explanation.

Fix a differential field (k, §) of characteristic zero. If V C A" is an irre-
ducible affine algebraic variety over k, then the prolongation of V is the
algebraic variety 7V C A?" over k whose defining equations are

P(xl"-~vxn)=05

n
5 oP o
P(xl,...,xn)+g E(xl,...,xn)-yl—o
i=1 !

for each P vanishing on V. Here P® denotes the polynomial obtained by
applying § to the coefficients of P. The projection onto the first n coordinates
gives us a surjective morphismw : TV — V.

Definition 4.1 A D-variety over k is a pair (V, s) where V is an irreducible
algebraic variety overk ands : V — tV isaregular section to the prolongation
defined over k. A D-subvariety of (V, s) is then a D-variety (W, t) where W
is a closed subvariety of V over k and r = s|w.
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Note that if § = 0 on £, then the above equations for tV reduce to the
familiar equations for the tangent bundle TV. A D-variety in that case is
nothing other than an algebraic vector field, and a D-subvariety is an invariant
subvariety of the vector field. In general, TV will be a torsor for 7'V; for each
a €V the fibre 7,V is an affine translate of the tangent space 7,V .

Associated to a D-variety (V, s) over k is a certain complete type over k in
DCFy, namely the generic type of (V, s) over k. This type, p(x), is axiomatised
by asserting that x is Zariski-generic in V over k, and that the following
system of order 1 algebraic differential equations holds: s(x) = (x, §(x)). In
fact, up to interdefinability, all finite rank types in DCFy arise in this way;
as the generic types of D-varieties. Results about finite rank types in DCFy,
such as Theorem 3.6 above, can therefore be translated into algebro-geometric
statements about D-varieties. For example, the condition we called D,, in the
previous section, namely that of having every distinct m-tuple of realisations
being independent, when applied to the generic type of (V, s) translates to the
absence of any proper D-subvarieties of (V", s*) projecting dominantly onto
each co-ordinate, other than the diagonals. In particular, we obtain

Corollary 4.2 Suppose (V, s) is a D-variety over (k, §).

(@) If dimV > 1 and the third cartesian power (V3,s%) admits no proper
D-subvarieties over k projecting dominantly onto each co-ordinate, other
than the diagonals, then the same holds of (V™", s™) for all m.

(b) If 6 is trivial on k and (V2, s2) admits no proper D-subvarieties over
k projecting dominantly onto each co-ordinate, other than the diagonal,
then, for allm, (V'™, s") admits no proper D-subvarieties over k projecting
dominantly onto each co-ordinate other than the diagonals.

Proof Let p € S(k) be the generic type of (V, s) over k. The assumption on
(V3,53 in part (a) tells us that p satisfies D3. Hence, by Theorem 3.6, p is
minimal. Now, the fact that dim V > 1 rules out the possibility of p being
nonorthogonal to the constants. So p is completely disintegrated. This implies
the desired conclusion about D-subvarieties of (V™,s™) over k. Similarly,
applying Theorem 3.9 to p yields part (b). O

Remark 4.3 In the non-autonomous case, if dim V = 1, then one has to make
the assumption on D-subvarieties of (V4, s*) in order to get D4 on p and thus
conclude from Theorem 3.6 that p is completely disintegrated.

Note that Corollary 4.2(b) is Theorem B of the Introduction.

5 The case of compact complex manifolds

As mentioned in the introduction, the main part of Theorem 3.6 holds also
in CCM, the theory of compact complex manifolds. This translates into the
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following statement in bimeromorphic geometry that may be of independent
interest:

Theorem 5.1 Suppose f : X — Y is a fibre space of compact Kdihler man-
ifolds." Suppose that the three-fold fibred product X xy X xy X contains
no proper complex analytic subvarieties that projects onto each co-ordinate,
other than the diagonals. Then the ‘general’ fibre of f is simple.

Let us define the terminology used here. That f is a fibre space means that
off a proper complex analytic subset of Y the fibres are irreducible. A property
holds of the ‘general’ fibre of f if it holds of all fibres off a countable union of
proper complex analytic subsets of Y. Finally, we mean simple in the sense of
[7]; namely, not covered by an analytic family of proper positive-dimensional
analytic subsets.

We will not give a proper proof of this theorem, as it is really the same as
(part of) Theorem 3.6. But let us give some explanations. First of all, we work
in CCM which is the theory of the multisorted structure .4 where there is a sort
for each compact complex analytic variety and a predicate for every complex
analytic subset of a cartesian product of sorts. The role of the constants is
played by the projective line which is a sort on which the induced structure is
bi-interpretable with that of a pure algebraically closed field. The truth of the
Zilber dichotomy in CCM tells us that every non locally modular minimal type
is nonorthogonal to the projective line. We suggest [25] for an introduction to,
and survey of, the subject.

Theorem 5.1 is proved by considering the generic type p of the generic fibre
of f, observing that the assumption on the three-fold fibred product expresses
precisely that p satisfies D3, and then deducing, exactly as in the proof of
Theorem 3.6, that p is minimal. But for a compact complex analytic variety
to be simple is equivalent to its generic type in CCM being minimal.

But there is a subtlety: the structure .4 is not saturated and so “generic” in the
above paragraph has to be understood, a priori, in the sense of a nonstandard
elementary extension of A. See [23, §2] for details about the Zariski geometry
in nonstandard models. The reason for restricting to the Kéhler case is then
precisely so that we can, following [24], find a suitable countable language
in which the standard model is saturated. We can thus conclude simplicity of
the ‘general’ fibre in .4 from simplicity of the generic fibre in an elementary
extension.

Note that we only concluded minimality, and did not state an analogue of
the “moreover” clause in Theorem 3.6. The reason for this is that there remains
some ambiguity about the characterisation of nontrivial locally modular types

I More generally our results apply to compact complex analytic varieties in Fujiki’s class %'.
In fact, all that is needed is that they be essentially saturated in the sense of [24].
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in CCM. It is known that they are nonorthogonal to simple complex tori, but
it seems as yet unclear whether one has the same control over parameters that
one does in DCF. This is related to Question 5.1 of [18].
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