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We study the structure of the solution sets in universal differential fields of certain differential equations of order two,
the Poizat equations, which are particular cases of Liénard equations. We give a necessary and sufficient condition for
strong minimality for equations in this class and a complete classification of the algebraic relations for solutions of
strongly minimal Poizat equations. We also give an analysis of the non strongly minimal cases as well as applications
concerning the Liouvillian and Pfaffian solutions of some Liénard equations.

1 Introduction

Our manuscript deals with three prominent topics in algebraic differential equations and their connections to
each other, especially interpreted in the context of rational planar vector fields with constant coefficients.

1.1 Model theory

Strong minimality is an important notion emerging from stability theory, and in the context of differential
equations of order n, the notion has a concrete interpretation in terms of functional transcendence. The zero
set, X, of a differential equation with coefficients in a differential field K is strongly minimal if and only if (1)
the equation is irreducible over K9 and (2) given any solution f in X and any differential field extension F of
K

7

tr.deg.pF(f) =0 or n.

Here K(f) denotes the differential field extension of K generated by f.

To the non-model theorist, it likely isn’t obvious from the definition, but strong minimality has played a
central role in the model theoretic approach to algebraic differential equations. Two factors seem to be important
in explaining the centrality of the notion. First, once strong minimality of an equation is established, the
trichotomy theorem, a model theoretic classification result, along with other model theoretic results can often
be employed in powerful ways [27, 48]. Second, among nonlinear differential equations, the property seems to
hold rather ubiquitously; in fact there are theorems to this effect in various settings [13, 28]. Even for equations
which are not themselves minimal, there is a well-known decomposition technique, semi-minimal analysis’ [46],
which often allows for the reduction of questions to the minimal case.

Establishing the notion has been the key step to resolving a number of longstanding open conjectures
[6, 48]. Despite these factors, there are few enough equations for which the property has been established that
a comprehensive list of such equations appears in [13]. In this manuscript, we generalize results of Poizat [58]
and Brestovski [4] by showing that

Theorem A. The set of solutions of
Z=2f(z), Z#0

where f(z) € C(z) is strongly minimal if and only if f(z) is not the derivative of some g(z) € C(z). O
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Notice that in Theorem A, the differential field K (in the above definition) is taken to be C, the field of
complex numbers with the trivial derivation. In addition to giving a complete characterization for this class of
equations, our proof gives a new technique for establishing strong minimality which relies on valuation theoretic
arguments about the field of Puiseux series. In the strongly minimal case, we give a precise characterization of
the algebraic relations between solutions (and their derivatives) of equations in our class (discussed in the third
part of this introduction).

When the equation is not strongly minimal, we show that it must be nonorthogonal to the constants. The
solution set X is orthogonal to the constants if, perhaps over some differential field extension F' of K, there is a
solution a of X such that F'(a) contains a constant which is not in F*9. Again, to non-model theorists, it likely
isn’t obvious that this condition should play a such a central role as it does.

With respect to the semi-minimal analysis of the generic type p(z) of the equation, three possibilities are a
priori possible in this case:

1. p(z) is internal to the constants (this is a strengthening of nonorthogonality to the constants).

2. p(z) is 2-step analyzable in the constants.

3. For generic c € C, 2’ = f f(2)dz + ¢ is orthogonal to the constants, and in the semi-minimal analysis of
p(z) there is one type nonorthogonal to the constants and one trivial type.

In Section 7, we show that any of the three possibilities can occur within the non-minimal equations in our
family, providing concrete examples of each case. This type of analysis is done in Section 7 and is similar to the
results of [31] (who did this analysis for a different class of order two equations). Our analysis involves work
along the lines of the techniques of [26, 62], and there are a number of results of independent interest developed
in the course of this analysis.

1.2 Special solutions and integrability

One of the fundamental problems of algebraic differential equations is to express the solutions of a differential
equation or the first integral of a vector field by some specific known functions! and arbitrary constants or to
show that this is impossible. In this manuscript, we develop the connection between various such impossibility
results for solutions and the notions coming from model theory described above. In particular, we establish
results for equations of Liénard type:

2"(t) + f(2)a' () + g(=) =0,

for f(z),g(x) rational functions. Notice that the equations of this type generalize the Brestovski-Poizat type
equations described above. This family of equations has its origins in the work of Liénard [35, 36] and has been
the subject of study from a variety of perspectives in large part due to its important applications in numerous
scientific areas. See [23] and the references therein for numerous applications. The class of equations has been
intensely studied with respect to finding explicit solutions and integrability, mainly from the point of view of
Liouvillian functions. We give a review of the existing results in Section 4.3. The connections between these
model theoretic notions and the equation having certain special solutions are known to some experts, but there
does not seem to be any account of these connections in the literature. Our approach makes use of model
theoretic notions and, in particular, a recent specialization theorem of the second author [29].

1.3 Algebraic relations between solutions

Though establishing the strong minimality of a differential equation is itself sometimes a motivational goal,
in many cases it is just the first step in a strategy to classify the algebraic relations between solutions of the
equation. See for instance [28], where this strategy is employed for generic planar vector fields. In [6], this
strategy is used to prove the Ax-Lindemann-Weierstrass theorem for the automorphic functions associated with
Fuchsian groups. Sections 5 and 6 are devoted to classifying the algebraic relations between the strongly minimal
equations of Brestovski-Poizat type.

Theorem B. Let fi(2),..., fn(2) € C(2) be rational functions such that each f;(z) is not the derivative of a
rational function in C(z) and consider for i =1,...,n, y; a solution of

() 9" [y = fi(y)

Then tr.deg.cC(yi, Y1, ..., Yp, Yn) = 2n unless for some i # j and some (a,b) € C* x C, y; = ay; +b. In that
case, we also have f;(z) = f;j(az + ). O

Te.g. rational, algebraic, elementary, Liouvillian.



Much of the analysis of Section 5 is of independent interest. Indeed, in Section 5.1 we set up the formalism
of volume forms, vector fields, and Lie derivatives quite generally. In Section 5.2 we give a proof of a result of
Hrushovski and Itai [26] using our formalism. In Section 5.3, we develop and use formalism around the Lie algebra
of volume forms to show that for equations in our class, characterizing algebraic relations between solutions
and their derivatives follows from characterizing polynomial relations between solutions (with no derivatives).
Following this, in Section 6, we give a precise characterization of the polynomial relations which can appear. In
Section 7 we turn towards the nonminimal case and characterize the type of semi-minimal analysis which can
appear for the equations from the class and make some remarks regarding the implications of this analysis on
the dimension order property (DOP).

1.4 Organization of the paper

Section 2 contains the basic definitions and notions from model theory and the model theory of differential
fields that we use throughout the paper. The basic setup of other topics is mostly carried out in the respective
sections throughout the paper. In Section 3 we characterize strong minimality for equations of a generalized
Brestovski-Poizat form. In particular, Theorem A (Theorem 3.1 in the text) is proven there. In Section 4, we
give a brief introduction to integrability and various special classes of solutions, overview the extensive previous
work for equations of Liénard type, and prove our results on the existence of Liouvillian solutions to Liénard
equations. In Sections 5 and 6 we classify the algebraic relations between solutions of strongly minimal equations
in the generalized Brestovski-Poizat class. This is where a proof of Theorem B (Theorem 6.1 in the text) can
be found. Finally, in Section 7 we analyze the nonminimal equations of the class.

2 Preliminaries

Throughout, (U,d) will denote a saturated model of DCFj, the theory of differentially closed fields of
characteristic zero with a single derivation. So U will act as a “universal” differential field in the sense of
Kolchin. We will also assume that its field of constants is C. We will be using standard notations: given a
differential field K, we denote by K9 its algebraic closure and if y is a tuple from U, we use K (y) to denote
the differential field generated by y over K, i.e. K (y) = K(y,(y),5%(y),...). We will sometimes write 3’ for
5(y) and similarly 3™ for 6 (y).

Recall that a Kolchin closed subset of U™ is the vanishing set of a finite system of differential polynomials
equations and by a definable set we mean a finite Boolean combination of Kolchin closed sets. In the language
Ls = (+,—,%,0,1,0) of differential rings, these are precisely the sets defined by quantifier free L;s-formulas.
Since DCFy has quantifier elimination, these are exactly all the definable sets. If a definable set X in U™ is
defined with parameters from a differential field K, then we will say that X is defined over K. Given such an X,
we define the order of X to be ord(X) = sup{tr.deg.pF(y) : y € X} where F is any differential field over which
X is defined. We call an element y € X generic over K if tr.deg. i K (y) = ord(X).

As mentioned in the introduction, strong minimality is the first central notion that is studied in this paper:

Definition 2.1. A definable set X is said to be strongly minimal if it is infinite and for every definable subset
Y of X, either Y or X \ Y is finite. O

It is not hard to see that C, the field of constants, is strongly minimal.

Remark 2.2. Strong minimality has nice characterizations in DCFy:

1. The zero set X of a differential equation with ord(X) = n and with coefficients in a differential field K is
strongly minimal if and only if (1) the equation is irreducible over K9 (as a polynomial in several variables)
and (2) given any solution y € X and any differential field extension F of K, tr.deg.pF (y) =0 or n.
Moreover, if the constant field C C C of K is algebraically closed, it is enough to consider in (2) all the
differential field extensions F' of K which are both finitely generated over K and with constant field C.

2. We will be mainly concerned with equations of Liénard type and in that case we can reformulate
1 as follows: Let C C C be a finitely generated subfield. Let X be defined by an ODE of the form

y™ = f(y,y,...,y" V), where f is rational over C. Then X (or the equation) is strongly minimal if
and only if for any differential field extension K of C and solution y € X, we have that tr.deg. K (y) =0
or n.

3. If X is given as a vector field on the affine plane, then if X is strongly minimal there are no invariant
algebraic curves of the vector field (if there were, the generic solution of the system of equations given
by X and the curve would violate the transcendence condition we describe in the previous paragraph).
For instance, the equation z” = z - 2’ studied by Poizat [58] is not strongly minimal, but the definable set
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2" =z-72', 2/ # 0 is strongly minimal. So, strong minimality precludes the existence of invariant curves,
but this is not sufficient. For instance, the system

¥ =1
"= wy+ta
is not strongly minimal, but when « # 0 the system has no invariant curves.” It is easy to see that the
system violates the transcendence criterion over the field C(¢) with the solution 2 = ¢ and y a generic
solution to ¢’ = ty + a.

O

As already alluded to in the introduction (see also the discussion below), in DC'F, strongly minimal sets
determine, in a precise manner, the structure of all definable sets of finite order. Furthermore, establishing strong
minimality of a definable set X usually ensures that we have some control over the possible complexity of the
structure of the set X. As an example, if X is defined over C, that is the differential equations involved are
autonomous, then the following holds (cf. [49, Section 2] and [6, Section 5]).

Fact 2.3. Assume that a strongly minimal set X is defined over C and that ord(X) > 1. Then

1. X is orthogonal to C.

2. X is geometrically trivial: for any differential field K over which X is defined, and for any ¥, ..,y € X,
denoting y; the tuple given by y; together with all its derivatives, if (g1, ..., %) is algebraically dependent
over I, then for some i < j, y;,y; are algebraically dependent over K.

3. If Y is another strongly minimal set that is nonorthogonal to X, then it is non-weakly orthogonal to X.

O

Recall that if X; and Xs are strongly minimal sets, we say that X; and X, are nonorthogonal if there
is some infinite definable relation R C X; x X9 such that TR and T2|R are finite-to-one functions. Here for
1=1,2, we use m; : X1 X Xo — X; to denote the projections maps. Generally, even if the sets X; and X, are
defined over some differential field K, it need not be the case that the finite-to-finite relation R witnessing
nonorthogonality is defined over K (instead it will be defined over a differential field extension of K). We say
that X is non-weakly orthogonal to X if they are nonorthogonal and the relation R C X; x X5 is defined over
Kalg.

Remark 2.4. Notice that in Fact 2.3(2) we can replace “K” in the conclusion by “C”, that is one can state the
conclusion as “then for some ¢ < j, y;, y; are algebraically dependent over C”. This follows using the non-weak
orthogonality statement given in Fact 2.3(3) (taking ¥ = X). O

In the next section, we will show that strong minimality holds in some special cases of equations of Liénard
type. Since these equations are autonomous of order 2, it then follows that all three conclusions of Fact 2.3 hold
in those cases. This will allow us to make deeper analysis of the algebraic property of the solution sets.

It is worth mentioning that if a strongly minimal set is not necessarily defined over C, then there still is a
strong classification result called the Zilber trichotomy theorem:

Fact 2.5 ([25],[57]). Let X be a strongly minimal set. Then exactly one of the following holds:

1. X is nonorthogonal to C,

2. X is nonorthogonal to the (unique) smallest Zariski-dense definable subgroup of a simple abelian variety
A which does not descend to C,

3. X is geometrically trivial.

O

Notice that nonorthogonality to the constants is simply a version of algebraic integrability after base change.
We will now discuss several other variations of this notion but first need to say a few words about “types” and
“forking” in DC'Fy.

Let K be a differential field and y a tuple of elements from U, the type of y over K, denoted tp(y/K), is
the set of all Ls-formulas with parameters from K that y satisfies. It is not hard to see that the set I, = {f €
K{X}: f(X)=0€ep}={f € K{X}: f(y) =0} is a differential prime ideal in K{X} = K[X,X ,...], where
p =tp(y/K). Indeed, by quantifier elimination, the map p — I, is a bijection between the set of complete types
over K and differential prime ideals in K {X }. Therefore in what follows there is no harm to think of p = tp(y/K)

fThanks to Maria Demina for this example.



as the ideal I,,. If X is a definable set over K, then by the (generic) type of X over K we simply mean tp(y/K)
for y € X generic over K. We say that a complete type p over a differential field K is of finite rank (or order)
if it is the generic type of some definable set over K of finite order.

Definition 2.6. Let K be a differential field and y a tuple of elements from . Let F' be a differential field
extension of K. We say that tp(y/F) is a nonforking extension of tp(y/K) if K (y) is algebraically disjoint from
Fover K, ie.,ifyy,...,yx € K (y) are algebraically independent over K then they are algebraically independent
over F'. Otherwise, we say that tp(y/F’) is a forking extension of tp(y/K) or that tp(y/F') forks over K. O

It is not hard to see from the definition that tp(y/K%9) is always a nonforking extension of tp(y/K).
A complete type p = tp(y/K) over a differential field K, is said to be stationary if tp(y/K%9) is its unique
nonforking extension, i.e., whenever z is another realization of p (so tp(y/K) = tp(z/K)), then z is also a
realization of tp(y/K9) (so tp(y/K™9) = tp(z/K™9)). We say that it is minimal if it is not algebraic and
all its forking extensions are algebraic, that is if ¢ = tp(y/F) is a forking extension of p, where F' O K, then
y € F9. If X is strongly minimal and p is its generic type, then if follows that p is minimal.

Using forking, one obtains a well-defined notion of independence as follows: Let K C F' be differential fields
and y a tuple of elements from U. We say that y is independent from F over K and write y J/K F,if tp(y/F)
is a nonforking extension of tp(y/K). We now give the first variation of nonorthogonality to the constants.

Definition 2.7. A complete type p over a differential field K is said to be internal to C if there is some
differential field extension F' O K such that for every realisation y of p there is a tuple cy,...,c; from C such
that y € F(c1,...,ck). O

Fact 2.8. [66, Lemma 10.1.3-4]

1. A complete type p over a differential field K is internal to C if and only if there is some differential field
extension I O K and some realisation y of p such that y € F(C) and y | . F.

2. A definable set X is internal to C if and only if there is a definable surjection from C" (for some n € N)
onto X.

O

Using Fact 2.8(2) it is not hard to see that homogeneous linear differential equations are internal to C.
Indeed in this case, the solution set is simply a C-vector space V. If (v1,...v,) is a basis for V, then the
map f(z1,...2n) = Y, T;v; is the surjective map C™ — V witnessing that V is internal to C. Clearly, Fact
2.8(2) also shows that internality to the constants is closely related to the notion of algebraic integrability (i.e.
enough independent first integrals). We also have a more general but closely related notion of analysability in
the constants:

Definition 2.9. Let y be a tuple from I and K a differential field. We say that tp(y/K) is n + 1-step analysable
in the constants (or analysable in the constants for short) if there is a sequence (yo, ..., yn) such that

alg

e ye K (yo,y1,...,yn)"? and

e for each i, either y; € K (yo, . .. ,yi,1>alg or tp(yi/K (yo,--.,yi—1)) is stationary and internal to C.
O

It follows that if tp(y/K) is analysable in the constants, then the sequence (yo,...,¥y,) in the definition
above can be chosen to be from K (y). Furthermore, it follows that analysability of p in the constants is equivalent
to the condition that every extension of p is nonorthogonal to C. Differential equations that have Liouvillian
solutions provide the most studied example of equations that are analysable in the constants. We will say quite
a bit more in Section 4. Let us now turn our attention to the semi-minimal analysis of complete types, a notion
which has been mentioned a few times in the introduction.

Definition 2.10. Let p be a complete stationary type over a differential field K. Then p is said to be semiminimal
if there is some differential field extension F' O K , some z realising the nonforking extension of p to F' and
Z1y...,2n each of whose type over F is minimal and such that z € F (zq,...,z,). O

Semiminimal (and hence minimal) types are the building block all finite rank types in DCFy via the
following construction

¥So p = tp(y/K) for some tuple y from U.
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Definition 2.11. Let p = tp(y/K) be a complete type over a differential field K. A semiminimal analysis of p
is a sequence (y1,...,Yn) such that

* y € Kyn),
e for each 4, y; € K (Yit1),
e for each 4, tp(yi+1/K (y;)) is semiminimal.

O

The following is a fundamental result and is obtained by putting together Lemma 2.5.1 in [55] and Lemma
1.8 in [5] (See aslo Proposition 5.9 and 5.12 in [56]).

Fact 2.12. Every complete type of finite rank in DCFj has a semiminimal analysis. O

Finally, recall that for a field K, we denote by K ((X)) the field of formal Laurent series in the variable X,
while K ((X)) denotes the field of formal Puiseux series, i.e., the field [J;oy K ((X*/)). It is well know that if
K is an algebraically closed field of characteristic zero, then so is K ((X)) (cf. [15, Corollary 13.15]).

Puiseux series traditionally appear in the study of algebraic solutions of differential equations, however they
have also been used by Nishioka (cf. [50] and [52]) in his work around proving transcendence results for solutions
of some classical differential equations. Inspired by those ideas, Nagloo [47] and Casale, Freitag and Nagloo [6]
have also use these techniques to study model theoretic and transcendence properties of solutions of well-known
differential equations generalizing the results of Nishioka. In a different direction, Leén-Sdnchez and Tressl [34]
also used Puiseux series in their work on differentially large fields. We will make use of Puiseux series in our
proof of strong minimality of special cases of equations of Liénard type.

3 Strong minimality

The set of solutions of the equation
22" =2, Z#0

in a differentially closed field of characteristic zero were shown by Poizat (see [44] for an exposition) to be
strongly minimal.

Poizat’s method of proof relies in an essential way on the specific form of the equation being extremely
simple.t A similar but more complicated variant of the strategy of Poizat was employed in Kolchin’s proof of
the strong minimality of the first Painlevé equation (originally in an unpublished letter from Kolchin to Wood);
an exposition appears in [44]. In [19, Chapter 9], another elaboration of the above strategy was employed to
show that the set defined by

22" — 2" =0, and 2" #0

is strongly minimal.
In [4], Brestovski generalized Poizat’s theorem to include equations of the form:

z”z’(Bf;ng>, Z/7é0

for polynomials f,g, A, B over C satisfying very specific conditionst We are interested in the case that the
derivatives of z appear linearly in the equation (i.e. f is a constant). Then Brestovski’s family of equations
becomes:

2 =2f(z), Z#0 ()
where f(z) € C(z). In this case, we give a definitive characterization of the strong minimality:

Theorem 3.1. The solution set of equation (x) is strongly minimal if and only if for all g € C(z), we have that

fz) # 9. m

TThe proof is direct; taking an arbitrary differential polynomial p(z) of order one, if the polynomial determines a subvariety, it must
be that the vanishing of p(z) implies the vanishing of 2z — 2’. Considering z§(p(z)) one can apply the relation zz"/ = 2’ to obtain
a new differential polynomial g(z) of order one such that the vanishing of p(z) implies the vanishing of g(z). It follows that p(z)
must divide ¢(z), and this fact can be used to show that p(z) itself must be of a very restrictive form. One ultimately shows that
p(z) = 2.

fWhen f, g are constant, B =1, A = z the theorem yield’s Poizat’s result and these choices satisfy Brestovski’s assumptions. The
assumptions in Brestovski’s theorem are calibrated just so that the strategy of Poizat can be successfully carried out. A complete
characterization of strong minimality via this method seems unlikely, due to the complexity of the calculations which appear in the
course of the proof in [4].



Proof. Clearly, if f(z) = % for some g € C(z), then any solution of 2’ = ¢g(z) + ¢, ¢ € C, is also a solution to

27 — f(z). Hence the solution set of equation () is not strongly minimal and indeed has rank 2.

Z/
Now assume that f(z) has partial fraction decomposition

n

d i
FE) =24+ 3

=

where the a;’s are distinct and some ¢; # 0. Without loss of generality assume ¢; # 0. Then f(z) has a nonzero
residue at a;. Considering the change of variable z — z — a; we may assume that f(z) has a nonzero residue at
0.

Arguing by contradiction, let us assume that the solution set of equation (%) is not strongly minimal. Then
for some K, a finitely generated differential field extending C' with derivation &, and y a solution of () we have
that u = d(y) € K(y)*9.

We can think of u as living in the field of Puiseux series K9 ((y)) with the usual valuation v and the

derivation _ _ _
d (Z az‘yz) = 25(%)@1 + (Z iaz‘ykl> 6(y)-
So -
u= Z aiyr-‘r#?
i=0

where v(u) = r and m is the ramification exponent. Differentiating we get

S(u) =" dla;)y" 7 +u <Z(T + ;)aiy“*_l) :
=0

=0

Since
v (Z 6(ai)yr+%> >,
i=0

we have that

5(“) - { ’I"+l71

” —a+;(r+m)azy :
where v(a)) > 0. The right hand side of this equation is equal to f(y) and so there should be a nonzero residue.
But the coefficient of y~! on the right hand side is 0. This is a contradiction. ]

Since Equation (%) has constant coefficients, it follows from Theorem 3.1 and Fact 2.3(2) (see [6, Proposition
5.8] for a proof) that:stminthmtriviality

Corollary 3.2. The solution set of equation (x) for f(z) not the derivative of any rational function is
geometrically trivial. O

The previous corollary already gives strong restrictions on the possible algebraic relations between solutions
of Equation (x), but sections 5 and 6 are devoted to giving a complete classification. Following this, we turn to
similar questions in the case that f(z) is the derivative of a rational function. Before we do so let us describe
the connection between Theorem 3.1 and (non)integrability of equations of Liénard type.

4 Solutions and integrability

Equations of the form:

a"(t) + f(2)2' (t) + g(x) =0, (1)
for f(z), g(x) rational functions have their origins in the work of Liénard [35, 36] and have important applications
in numerous scientific areas. For instance, the solutions can be used to model oscillating circuits; see page 2 of
[23] for numerous references. Numerous recent works are devoted to giving explicit solutions or first integrals of
Equation 1 in special cases or showing that none can be expressed in terms of special functions in some class
(e.g. Liouvillian, elementary). In this section, we first point out some general connections between solutions in
special classes of solutions, first integrals, and the model theoretic notions we study. Following this, we describe
some existing results for Liénard equations and then give some results based on model theoretic ideas and our
work in Section 3.

fFormally, we work with C C C a subfield finitely generated over Q by the coefficients of the equation.
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4.1 Special classes of solutions

In this section, we give results connecting our model theoretic notions to several classically studied classes of
solutions.

Definition 4.1. Let (F, A) be a differential field (generally we are interested in the case F' = C(x,y) with the
derivations d‘i, 4-). We say that a finitely generated differential field extension (K, A) of I' is elementary if there
is a tower of dlﬂ%rentlal field extensions F' = Fy C Fy...,C F, = K such that for all i = 1,...n we have that
F;, = F;_1(«) where « is such that:

1. Sa =46f/f for some f € F;_1 and for all § € A or
2. da/a =4 f for some f € F;_; and for all § € A or
e F.
We say that y € U is an elementary function if it is contained an elementary differential field extension of some
differential field (F, ). O

The class of Liouvillian functions is more general than the class of elementary functions:

Definition 4.2. Let (F,A) be a differential field. We say that a finitely generated differential field extension
(K, A) of Fis Liowvillian if there is a tower of differential field extensions F' = Fy C Fy ..., C F,, = K such that
for all i =1,...n we have that F; = F;_1(«) where « is such that:

1. Saw € F;_1 for all 6 € A or
2. dafa € F;_4 forall § € A or
3. acF™.

We say that y € U is a Liouvillian function if it is contained a Liouvillian differential field extension of some
differential field (F?). O

We next give several more special classes of functions generalizing Liouvillian and elementary functions.

Definition 4.3. T Let fi,..., f; be complex analytic functions on some domain U C C". We will call (f1,..., fi)
a C-Pfaffian chain if there are polynomials p;;(u1, ..., un,v1,...,v;) with coefficients in C such that

Ofi
8(Ej

=pij (T, f1(Z),.... fi(T))

for 1 <i<land1<j<n.Wecall a function C-Pfaffian if it can be written as a polynomial (coefficients in

C) in the functions of some C-Pfaffian chain. O
Finally, we come to the most general notion we consider, a condition that was developed by Nishioka [50, 51]:

Definition 4.4. Let y be differentially algebraic over a differential field K. We say y is r-reducible over K if
there exists a finite chain of K-finitely generated differential field extensions,

K=RyCRyC...Rp,

such that y € R, and tr.deg.p,_ R; <. O
Remark 4.5. 1. By definition, each of the classes Pfaffian, Liouvillian, and elementary are 1-reducible.

2. Recent work of Pila and Tsimerman [54] introduces the notion of B-strictly elementary for B =

(B1,...,Bg) a sequence of polynomials in C[X,Y]. The notion has an inductive definition much like

all of the other above definitions, allows for algebraic extensions but also for extensions obtained by
postcomposition by solutions of equations of the form B;(z, d 2) = () as well as by their local inverses.
When we consider sequences B coming from a set of polynomials, S, then we call the resulting functions
S-elementary.
For instance, when S consists of instances of a single polynomial XY — 1, S-elementary matches the
classical notion of elementary given above in definition 4.1. On the other hand, it is easy to see that
for any set S, S-elementary implies 1-reducibility. As the notions of Liouvillian and C-Pfaffian functions
both lie in between being elementary and being 1-reducible, it would be interesting to understand their
relationship with the notion of S-elementary functions in the sense of [54] for various set S of poynomials.
O

TThe notion of a Pfaffian function is most commonly defined for a real-valued function of a real variable, but we formulate the
complex analog as well which fits more naturally with the results of this paper. Both notions are closely connected to model theoretic
notions from the theory of differentially closed fields. See [20].



Theorem 4.6. If X is a strongly minimal differential equation of order n defined over a finitely generated
differential field K, then any nonalgebraic solution f of X is not d-reducible over K for any d < n. It also
follows that f is not Pfaffian, Liouvillian, or elementary. O

Proof. First notice that in the case n = 1, we have to show that any nonalgebraic solution f is not O-reducible
over K. However by definition, O-reducibily over K implies that in particular f € K9 and so this is automatically
impossible. In what follows, we may hence assume that n > 1.

Recall, from Remark 2.2 that the zero set X of our differential equation with coefficients in a differential
field K is strongly minimal if and only if (1) the equation is irreducible over K9 (as a polynomial in several
variables) and (2) given any solution f of X and any differential field extension F of K,

tr.deg.p F(f) =n or 0.

If f were d-reducible for d < n, as witnessed by some chain K = Ry C R; C ... R,,, then we can assume
that f is transcendental over R,,, for some m; < m and algebraic over R,,,. But then the differential field R,,,
has the property that tr.deg.p, (Rm,(f)) < d <n, contradicting strong minimality of X. As pointed out in
Remark 4.5, each of the classes Pfaffian, Liouvillian, and elementary are 1-reducible, so f can not be in any of
these classes either. [ ]

Assuming a weaker model theoretic notion about X allows one to rule out Liouvillian solutions, but not
Pfaffian solutions:

Theorem 4.7. Let X be a differential equation of order n defined over a finitely generated differential field
K. Suppose the generic type of X is not analyzable in the constants; then the generic solution of X is not
Liouvillian.

Suppose further that X is orthogonal to the constants. Then any nonalgebraic solution f of X is not
Liouvillian. O

Proof. Recall from Fact 2.12 that every finite rank type has a semiminimal analysis. The extensions appearing
in the definition of f being Liouvillian are either algebraic or generated by the generic solution of an order one
linear differential equation. The type of the generator of this extension is internal to the constants’ over the
previous field in the tower, so the type of f over K is analyzable in the constants.

If X (as a definable set) is orthogonal to the constants, then any type ¢ in X not algebraic over K has
the property that ¢ is orthogonal to the constants. This implies ¢ is not analyzable in the constants, so any
realization of ¢ is not Liouvillian. n

In contrast with the strong minimality condition, non-analyzability or even orthogonality to the constants
does not rule out the more general Pfaffian or d-reducible solutions as above. The relationship to S-elementary
functions in the sense of [54] depends closely on the collection S. For instance, when S = {XY — 1}, the class
of S-elementary functions is the class of elementary functions ruled out by the properties of non-analyzability
or orthogonality to the constants. On the other hand, even when the collection S only consists of polynomials
linear in Y (of the form f(X) + Yg(X)), if follows from [62] that if S contains a polynomial such that the
rational function f(X)/g(X) is neither a derivative nor a constant multiple of a logarithmic derivative in C(X)
(e.g. f(X)=1and g(X)= X2(X — 1)) then there exist differential equations orthogonal to the constants whose
solutions are S-elementary functions.

The connection between integrability in Liouvillian or elementary terms and our model theoretic notions is
more subtle than the connection to the existence of solutions, as we explain in the next subsection.

4.2 Notions of integrability

We will begin by describing some general notions around integrability. Consider a system of autonomous
differential equations

7' = P(7) (2)

where P = (P,...,P,) are polynomial or rational functions in the variables T = (x1,...,x,) with coeflicients

in C™.

TSee Fact 2.8(2) (and the comment after) which applies here since the equation is linear.
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A first integral of the system is a non constant meromorphic function of T which is constant along solution
curves of the system, i.e., F': U C C® — C defined on some non-empty analytic open set U of C™ with

" OF
;Pi(x) or = 0.

Meromorphic (and even holomorphic) first integrals always exist in an analytic neighborhood of a non-singular
point of the equation; furthermore if F' is a first integral of the system on some open set U then it is a first
integral on any open set U C V where F' can be analytically continued. In particular, if F' is a rational function
then the open set U can be taken to be the Zariski-open set of C™ where F' is well-defined.

Usually, one is interested in first integrals from various special classes of functions. For instance, a Darboux
integral [40] of the system is one of the special form:

F@) . fi(@)reh /o)

for polynomials f;,g,h and r; € C.
Associated with the polynomials P(Z) = (P (Z), ..., P,(T)) is the vector field

0

Tp = Pl(i)i +... —|—Pn(f)@.

8961
A Darbouz polynomial of the system is f(Z) € C[z] such that 7p(f) divides f. This condition is equivalent to
the zero set of f being an invariant algebraic hypersurface for the vector field 7. The connection to integrability
is given by results originally due to Darboux and Jouanolou, see [42, Theorem 3].

Fact 4.8. Suppose that a polynomial vector field 7 of degree at most d has irreducible invariant hypersurfaces
given by the zero set of f; for i = 1,... k% and suppose that the f; are relatively prime. Then:

1. If k> (7L+T‘f_1) + 1 then 7 has a Darboux integral.
2. If k> ("+z_1) + n then 7 has a rational first integral.

O

In model theoretic terms, even in the nonautonomous case, there is a close connection between co-order
one differential subvarieties of a differential algebraic variety and nonorthogonality to the constants, see [21].
Of course, the relation to the previous section is: strong minimality of a second order (or higher) system of
differential equations implies that the system has no Darboux polynomials. In fact strong minimality and the
other model theoretic notions we study go a good deal further, but as we will see, our model theoretic notions
are more closely connected to the existence of solutions in various special classes rather than integrability in
those classes.

Definition 4.9. We call a first integral F elementary (Liouvillian) if F is an elementary (Liouvillian)
function.t O

We first remark that one can reduce the study of algebraic integrals to the study of rational integrals.

Lemma 4.10. Let X be a vector field on some algebraic variety over C. If X has an algebraic first integral
then X has a rational first integral O

Proof. We denote by V' the algebraic variety supporting X and by 0 the derivation induced by X on C(V).
First remark that since ¢ extends uniquely to a derivation 6 on C(V)%9, we have

oo =000 for all 0 € Gal(C(V)*/C(V))

as 0~ 0§ oo is another derivation on C(V)*9 extending &.

Assume now that X has no rational first integrals and consider f € C(V)®9 such that 6(f) = 0. Then by the
remark above, we also have d(o(f)) = 0 for all o € Gal(C(V)*9/C(V)). Hence the coefficients a1, ..., a, € C(V)
of the minimal polynomial of f over C(V') satisfy §(a;) = 0(a;) = 0 and therefore by assumption ay, ..., a, € C.
Since C is algebraically closed, we conclude that f € C and that X does not have any algebraic integral either. B

T Any of the special classes of functions we mention in the previous subsection might be used to develop notions of integrability, but
to our knowledge there is no development of integrability in terms of Pfaffian or r-reducible functions.
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Theorem 4.11. Let X be a vector field on some algebraic variety over C. If X has an algebraic first integral,
then X is not orthogonal to the constants. O

Proof. An algebraic first integral f gives a map from the solution set of X to C as f is constant on solutions.
When f is algebraic, this yields a definable map from X to C, implying X is nonorthogonal to C. n

For the remainder of the section we work with more general first integrals, but we will assume the differential
equation we work with, X is given by a planar vector field with coefficients in C.

Theorem 4.12. Let X as above be an order two differential equation given by a rational planar vector field
over C. If X has an elementary first integral, then X has an integrating factor of the form:

H(Cl)pb

for polynomials C; and integers p;. If X is strongly minimal then all of the C; must be poles of the vector field.
If X is regular and strongly minimal, then X has no elementary first integral. O

Proof. If the system X has an elementary first integral, results of [60] show that the integrating factor is of
the form
I(C;)P

for polynomials C; and integers p;."

It follows that if the C; are not poles of the vector field, then the system has nontrivial invariant algebraic
curves (an explanation of this can be found in various place, e.g. the second page of [8] following the statement of
the main theorem). Strongly minimal systems have no invariant curves, and regular systems have no poles. W

The connection between Liouvillian first integrals and strong minimality is more subtle, but we can say
something about the form of the integrating factor:

Theorem 4.13. If X is a strongly minimal planar vector field with coefficients in C, then X has a Liouvillian
first integral if and only if X has an integrating factor of the form II(C;)Pie€/? for polynomials C;, D which
are poles of the vector field and C a polynomial. If X is a strongly minimal regular vector field, then if X has
a Liouvillian first integral, it has an integrating factor of the form . O

Proof. By results of Singer [65] and Christopher [8, Theorem 2], if there is a Liouvillian first integral of X,
then there is an integrating factor of the form:

eC/P L TI(Cy)P

where C, D, C; are polynomial functions of the two variables of the system. Their proofs take place in the regular
setting, but can be adapted to rational vector fields; see [14]. The zero sets of the C; and the zero set of D give
invariant algebraic curves for the vector field as long as they are not poles of the vector field X, contradicting
strong minimality. u

We now describe two examples. The first ones shows that Liouvillian integrability does not in general imply
the existence of invariant algebraic curves.

Example 4.14. Consider the system
=1
e (3
2
where o # 0. The system has integrating factor e™2 | so the system has a Liouvillian first integral, but no
invariant algebraic curve. O

Notice that the system 3 is not strongly minimal (see Remark 2.2) and that more precisely the solutions
of this system are all Liouvillian. On the other hand, Rosenlicht constructed examples of order two equations
having a Liouvillian first integral but no nonconstant Liouvillian solution [61, introduction] [40, Proposition 3].
Our second example shows that there exist order two equations having a Liouvillian first integral but no Pfaffian
solution.

T Technically, [60] works in the setting of regular vector fields, but an easy argument shows that the results apply to rational vector
fields as well; see page 8 of [14].
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Example 4.15. Consider the vector field associated with the Poizat equation which originally motivated our
work: ,
=y
4
Y =y/x @
Note that the first integrals of the system are unaffected by multiplying both rational functions by z to clear
the denominator of the second equation. One then obtains the system:

' =xy
Y=y

(5)

It is easy to check that the function H(z,y) = % is a first integral of this second system (hence of the first one
t00), which has two invariant curves given by = 0 and y = 0. It is also easy to see that the generic solution of
system 5 is not strongly minimal or orthogonal to the constants (it is 2-step analyzable in the constants and has
a Liouvillian generic solution), while the generic solution of system 4 is strongly minimal by the arguments of
the previous section. So, by Theorem 4.6, system 4 is a system with a Liouvillian first integral but no Pfaffian
solution. O

Furthermore, this example illustrates the following observation of independent interest: transformations
which scale both coordinates of the vector field by some polynomial

e preserve first integrals,

e do not preserve the model theoretic notions we study (e.g. strong minimality, orthogonality to the
constants),

e do not preserve the property of the system having Liouvillian solutions.

The examples given above also show that the Theorem 4.13 can not be improved to give a direct connection
between strong minimality and the existence of Liouvillian first integrals, at least not in complete generality.
However, in the case that one can rule out an exponential integrating factor by some other argument, one can
use strong minimality to show that no Liouvillian first integral exists. For instance, an argument ruling out
exponential integrating factors in the case of certain Liénard equations is contained in [40, Section 2].

4.3 Overview of previous results for Liénard equations
Equation 1 is equivalently expressed by the vector field on AZ:

=y
Y = —f(@)y - 9(x) (6)

The study of algebraic solutions of Equation 6 seems to begin with Odani [53], who shows that Equation
6 has no invariant algebraic curves when f, g # 0, deg(f) > deg(g) and g/f is nonconstant. Numerous authors
attempted to generalize Odani’s results on invariant curves [67, 41]. Many recent works utilize the results of
Odani and generalizations to characterize Liouvillian first integrals of Liénard equations in various special cases
[37, 38,7, 39,9, 12, 11]. Many of the special cases considered make assumptions about the degrees of f(x), g(z)
in equation 6, while others make detailed assumptions not unlike the criteria employed by Brestovski [4]. Demina
[10] has recently completely classified the systems 6 which have Liouvillian first integrals for polynomial f, g.

Explicit exact solutions (all Liouvillian) for the Equation 6 in very special cases are the subject of many
additional papers in the literature [16, 17, 18, 23, 32]. Our results in the next subsection show in numerous
wide-ranging cases Equation 6 has no Liouvillian solutions, so formulas for explicit exact solutions such as those
of [16, 17, 18, 23, 32] do not exist.

Numerous other order two systems of differential equations can be transformed analytically or algebraically
to solutions of a system in the form of Equation 6. In most cases, it is apparent that the transformations preserve
the property of being Liouvillian. For instance, this applies to the transformations in Propositions 2 and 3 of
[22]. There it is shown that the solutions of the system

' = folz) — fil2)y,

/

v = go(@) +g1(x)y + g2(x)y"

can be transformed to solutions of the Liénard family 1 by means of the transformation
Y = (fola) - fu(ay)els (2O=H @A)

It is easy to see that when the functions appearing in the system are Liouvillian, this analytic transformation
preserves the property of solutions being Liouvillian. Similar more complicated analytic transformations have
been developed for various particular order two systems of higher degree (e.g. Proposition 3 of [22]). There are
numerous additional works showing particular systems can be transformed into equations of Liénard form (see
e.g. [1] or the references of [22]).
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4.4 Solutions of Liénard type equations

Theorem 4.16. [29, Theorem C] Let k be a countable field of characteristic 0, let S be a smooth irreducible
algebraic variety over k and let 7 : (X,v) — (S,0) be a smooth family of autonomous differential equations
indexed by S defined over k. Assume that all the fibres of m are absolutely irreducible and that

(O) : for some sy € S(k), the generic type of the fibre (X, v)s, := 7~ 1(sq) is orthogonal to the constants.

Then for some/any realization s € S(C) of the generic type of S over k, the generic type of (X,v)s is also
orthogonal to the constants. O

By Theorem 4.7 and the conclusion of Theorem 4.16, when condition (O) holds and the system (X, v); is
two-dimensional, the system (X, v), has only finitely many Liouvillian solutions. Note that because the theorem
only says that the generic type is orthogonal to the constants, there might be finitely many other types of order
one coming from the finitely many algebraic invariant curves.

We fix k a countable field of characteristic 0 (for example, k = Q). Set S = A" the affine space of dimension
n. By an k-algebraic family of rational functions indexed by S, we mean a rational function g(s, z) € k(S)(2).

Lemma 4.17. Let g(s,z) € k(S)(z). There is a dense open set Sy C S such that g(s, z) € C[Sp](2). O

Proof. Write )
u(s, z ai(s)z*
o2y = D) Tailo)z
v(s,2)  Disibi(s)2 + 1
where the a;’s and the b;’s are in k(S). Denote by Z the proper closed subset of S obtained as the finite union
of the poles of the a;’s and the b;’s and set Sp = S\ Z. n

Corollary 4.18. Let k be a countable field of characteristic 0, let g(s,z) € k(S)(z) be a k-algebraic family
of rational functions indexed by S = AP and let f(z) € k(z) be a rational function with at least one non-zero
residue. Assume that

for some sg € S(k), the rational function g(so, z) is identically equal to 0.

Then for every realization s € S(C) of the generic type of S over k , the generic type of

v+ fy) +a(s,y) = 0.
is orthogonal to the constants. O
Notice that the conclusion is equivalent to: the property
O(s): the generic type of ¥ + ' f(y) + g(s,y) = 0 is orthogonal to the constants

holds on a set of full Lebesgue measure of the parameter space S(C).

Proof. Without loss of generality, we can replace S by an open set Sy such that g € C[Sp](z): since S is
irreducible, so is Sy and sg € Sp. Denote by (z,2’) the standard coordinates on A2, P the (finite) set of poles of
f(z) and by U C A? the Zariski open set defined by

U=A2\(PxA)

Consider 7 : X =U x Sy — Sy which is obviously smooth and with the notation of the previous lemma
consider the closed subset Z of X defined by:

1+ sz(s)zl =0

i>1

describing the set of poles of g(s, z) when s varies in Sy. Since the restriction of a smooth morphism is smooth,
the restriction of 7 to the open set Xy = X'\ Z

7T0:X0—>So.

is also smooth. Moreover, the fibres of 7y are absolutely irreducible since the fibres of 7 are absolutely irreducible
and a dense open set of an absolutely irreducible variety is also absolutely irreducible.
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Consider the vector field on Xy given in the coordinates (z, 2, s) by

;0 Y, B 0 0 0
v(zwz,s)—z&—}-( Z' f(z) g(z,s))g—kOa—Sl—ﬁ—‘..—kOa—Sp.

By definition, the vector field v is tangent to the fibres of 7y so that
o : (X07U) - (5070)

is a morphism of D-varieties and it satisfies the “geometric” assumptions of Theorem 4.16 by the discussion
above.

Claim 4.19. Let s € Sy(C) and denote by (Xp,v), := 7~ 1(s). There is a k(s)-definable bijection between (Xj, v)°
and the solution set of y” + v’ f(y) + g(y, s) = 0. In particular, the generic type of one is interdefinable over k(s)
with the generic type of the other. O

Indeed, this is the standard correspondence between D-varieties and differential equations: the definable
bijection is given by:
(2,2) — 2

For sy € Sy, we have shown that the definable set y” + 3’ f(y) = 0 has Morley rank 1 (and Morley degree
2). Hence the generic type of this equation — the unique type p € S(k) of maximal order living on the solution
set of this equation — is a strongly minimal type of order 2, hence orthogonal to the constants. The claim above
shows that s = s satisfies the property (O).

By Theorem 4.16, we conclude that for generic s € So(C) (equivalently, for generic s € S(C)) the generic
type of (Xp,v)s is orthogonal to the constants. Hence using the claim above in the other direction, we obtain
that the generic type of

v +y'fy) +9(sy) =0
for generic values of s € S(C) over k is orthogonal to the constants. u

Example 4.20. Let ag, ..., ay, by, -..b, € C be Q-algebraically independent. Then the generic type of

! n n—1
Y any"” + an—1y +...+ap
+=+ =0 7
Y Yy bmym+bm—lym71 +‘i“bO ( )

is orthogonal to the constants. By Theorem 4.7, the generic solutions of this equation are not Liouvillian and
more precisely, this equation has at most finitely many nonconstant Liouvillian solutions which are all supported
by algebraic invariant curves of the equation. O

Example 4.21. Let a ¢ Q%9 be a transcendental number and g(y) € Q(y) arbitrary. The generic type of
y/
M+5+W@:0 (8)

is orthogonal to the constants. By Theorem 4.7, the generic solutions of this equation are not Liouvillian and
more precisely, this equation has at most finitely many nonconstant Liouvillian solutions which are all supported
by algebraic invariant curves of the equation. O

Remark 4.22. Systems satisfying condition (O) from Theorem 4.16 yield wide classes of examples generalizing
Equations 7 or 8. For instance, one can replace %, the coefficient of 3’ in Equations 7 or 8, by any rational
function h(y) which has no rational antiderivative while drawing the same conclusions. By Corollary 4.18 and
Claim 4.19, one can replace ag(y) in Equation 8 by g(a,y) where g(s,y) is a k-algebraic family of rational
functions indexed by AP and a € CP is a point such that for some k-specialization ag of a, g(ag,y) = 0. O

5 Algebraic relations between solutions and orthogonality in the strongly minimal case

Let x1,...,x, be solutions of Equation (x). Since Equation (x) is strongly minimal by Theorem 3.1 and has
constant coefficients, by Fact 5.7 and Proposition 5.8 of [6], if 21, . . . , #,, are not independent over some differential
field k extending C, then there is a differential polynomial in two variables (of order zero or one) with coefficients
in C such that p(x;, z;, x;) = 0.7 In this section, we go farther, showing that in our case p can be taken to be
a polynomial relation between x; and z; not involving any derivative. Then in the following section, we give
a precise characterization of what the possible polynomial relations between solutions are in terms of basic
invariants of the rational function appearing in Equation (%) (e.g. singularities, residues).

TNote here we are already using strong minimality and triviality to deduce that the relation witnessing non-independence involves
the derivative of only one of the solutions.
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5.1 Differential forms

We give some background on differential forms as this will be used heavily in this section. A general reference
on the subject is [33, Chapter 5] in the context of real differential geometry. Recall that throughout, i is a
saturated model of DCFy with constants C.

Let V be an irreducible (affine) variety over C and let F' = C(V) be its function field. We identify Der(F'/C)
with the vector space of rational vector fields of V(C), that is a derivation D € Der(F/C) corresponds to a
rational map

V(C) 22 TV (C).

We let Q, = Q}(F/C) be the space of rational differential 1-forms on V(C) endowed with the universal
derivation
d:F — Q.

For every derivation D € Der(F/C), there exists a unique linear map D* : Q‘l/ — F such that D* od = D. In
particular, the F-vector spaces Der(F/C) and 3, are dual to each other. It is well known (see [24, Chapter 2,
Section 8]) that any transcendence basis &1, .. ., &, of F over C gives rise to a F-basis d¢1, ..., d¢, of 4, so that

dim(V) = ldimp(QL).

In particular, notice that if v = (vy, ..., v,) is a generic point of V() then F' = C(v) and {dvy, ..., dv,} includes
a basis for Qy.

For each n € N we define Qf,, the space of rational differential n-forms, to be the exterior algebra A" Q..
It is the F-vector space of all alternating n-multilinear maps

w : Der(F/C)" — F.

As usual, QF = {0} for n > dim(V') and otherwise 1dimp(QY,) = (di“;fv)). In particular, Q(‘i/im(v) is an F-vector
space of dimension one and an element w € Q(‘i/im(v) will be called a (rational) volume form on V.

The finite dimensional F-vector space

C—FoQba... oo™

is endowed with the structure of an anticommutative graded F-algebra given by the wedge product characterized
by the two properties:

(i) A is F-bilinear.
(ii) for every 1-forms wy,...,wx € Qi

(Wi Ao Awg) (D1, ..., D) — det((wi(Dj)ii<k)

On top of that, the universal derivative d : F — Q}, extends uniquely into a complex (that is d o d = 0) of
F-vector spaces:

0-FSal 4024  Lon o
characterized by the following compatibility condition with A: for every p-form w; and g-form wy

d(w1 A CUQ) =wi A dUJQ + (*l)pwl A dCUQ.

We refer to [33] for more details on the construction outlined above.

Definition 5.1. Given a derivation D € Der(F/C), we describe two operations on €}, naturally attached to D
initially considered by E. Cartan:

(1) the interior product ip : Q% — Q7" is the contraction by the derivation D:
ti(Dl, PN 7Dn—1) = w(D, Dl, ey Dn—1)~
(2) The Lie derivative Lp : Qf, — QF, is defined using “Cartan’s magic formula”

Lp=ipod+doip.
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Notice that one can use a different approach to define the Lie derivative based on the Lie bracket of vector
fields as described in the first section of [30]. Moreover, the Lie derivative Lp corresponds to the derivation D
defined on 3, by Brestovski on page 12 of [3].

Fact 5.2. For f € F, w,wi,ws € O and D € Der(F/C), we have the following well-known identities:

Lp(fw) = D(f)w+ fLp(w),
(wl /\OJQ) = LD(wl)/\wg + wq /\LD(LUQ)
LD(dUJ) = dLD(UJ),
Lip = [fLpw)+df Nip(w),
ip(wl /\wg) = iD(wl)/\wQ—i-(—l)"wl AiD(WQ)
O
See [33, Proposition 5.3 pp. 142] for a proof of these identities. The main definition of this section is
Definition 5.3. Let (E) : 4™ = f(y,v/,...,y" 1) be a complex autonomous equation of order n where f is

a rational function of n variables. If V' = C™ with coordinates x, ...z,_1, the equation (E) defines a derivation
Dy € Der(C(V)/C) given by:

Dy(z;) = ziq1 for i <n —1and Dy(zp—1) = f(x0,...,ZTn-1)-
We say that a volume form w € Qf; is an invariant volume form for the equation (E) if
Lp,(w)=0.
O

Before going in further details, we first give an analytic interpretation explaining the terminology although
it will not be needed in our analysis. Consider

(B):y™ = fly,y/,....y"™)

a differential equation as above and w a (rational) volume form on V = C™. Denote by U the (dense) open set
of V obtained by throwing away the poles f and the poles of w. As described above, the derivation D gives
rise to a vector field sy on U namely the section sy : U — T(U) ~ U x C" given by

Sf(il'(), s 7x’n71) = (1'07 sy Tp—13L15 - - ';xnfl,f(x(h s axnfl))

By definition, every point in @ € U is a non singular point of the vector field sy. The classical analytic theorem
of local existence and uniqueness for the integral curves of a vector field implies that there exists an analytic
function:

(bZUEXDCUXC—)U.

where Uz is an analytic neighborhood of @ and D a complex disk such that for every b € Ug, the function
t — ¢(b,t) is the local analytic solution of the initial value problem

d¢

5 = (m2057)((t)) and 6(0) = b.

We will call ¢ the local flow of the vector field v around @. The germ of ¢ at (a,0) is determined by the
vector field sy.

Fact 5.4. With the notation above, the volume form w is invariant for the equation (F) if and only if for every
a € U, the local flow ¢ around @ preserves the volume form w: namely

for every t € D, ¢fwy, (@) = wa

where ¢ : Uz — U is the function defined by ¢;(b) = ¢(b,t) and w,, denotes the germ of w around p. O
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This follows from the formula on pp. 140 of [33]: for every p-form w,

d

Low) = dt |t=0

piw
using the same proof as the proof of [30, Proposition 3.2.1]. We don’t give more details here since this analytic
interpretation will not be needed in the rest of the paper.

Instead, in the following subsections, we will use invariant volume forms together with the following result
which follows from the work of Ax [2] that can be found explicitly in [63, Proposition 4] or [43, Lemma 6.10].

Fact 5.5. Let V be an irreducible affine variety over C and let F' = C(V') be its function field. Let wuy, ..., u,,v €
F be such that all the u;’s are non zero. Suppose ¢y, ..., ¢, € C* are linearly independent over Q and let

n
dui
w=dv+ E G .
° Uy
=1

Then w = 0 in Qv if and only if duy = ... =du, =dv =0, i.e uy,...,u,,v € C. O

5.2 A warm-up case

The techniques we will use in our setting already have (known) strong consequences for order one differential
equations, where the arguments are often simpler. For instance, the method we use allows us to give a proof a
result of Hrushovski and Itai [26, 2.22].

Lemma 5.6. Let V be an irreducible (affine) algebraic variety of dimension n and let D € Der(C(V)/C) be
a derivation. Assume that the constant field C(V)? of (C(V), D) is equal to C. The space of invariant volume
forms

O p={weQy|Lp(w) =0}

is a complex vector space of dimension < 1. O
Proof. Clearly, Q2f, , is a complex vector space. It remains to show that any two non-zero invariant volumes

forms wy,wy € QF, ;, are linearly dependent. Since {1y, is a C(V) vector space of dimension one, there exists
f € C(V) such that w; = fwy. Computing Lp on both side, we get:

0= Lp(w1) = Lp(fwa) = D(f)w2 + fLp(w2) = D(f)wa.

Since wy # 0, we get D(f) = 0 which implies f € C. [ |

In general, this vector space may very well be the trivial vector space but when V = P! (or more generally
when V is a curve), an easy computation shows that the Hrushovski-Itai 1-form is always an invariant volume
form, so that this vector space is always one-dimensional.

Lemma 5.7. Consider two differential equations of order one of the form:

(Er) : 2’ = f(z) and (E2) : y' = g(y).

and denote by c1, ..., ¢, the residues of 1/f(z) and by dy, ..., ds the residues of 1/g(z). We assume that 1/ f(x)
and 1/¢(y) have at least one non zero residue and that ¢y, ..., ¢, are Q-linearly disjoint from dy, ..., ds. That is:

ldimg(eq, ..., ¢r) + dimg(ds, . .., ds) = ldimg(c1, ..., ¢, d1, .. ., ds).

Then (E) and (E2) are weakly orthogonal. O

Proof. First notice that both the equations (F1) and (F2) admit an invariant volume form which are respectively
the 1-forms
de and w dy
2= ——~
f(z) 9(y)

associated by Hrushovski and Itai to the equations (F;) and (F3). By Lemma 5.6, every invariant volume form
will be a constant multiple of these forms. So w; and wq are the unique invariant volume forms of (E£;) and (Es)
normalized by

w1 =

wi(s;))=1fori=1,2.
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where s1(z) = f(z)-4L and s3(y) = g(y)% are the vector fields associated with the derivation Dy on C(z) and

D, on C(y) respectively.

For the sake of a contradiction, assume that these two equations are not weakly orthogonal: this means
that there exists a closed generically finite to finite correspondence Z C P! x P! which is invariant under the
derivation Dy x D, associated with the product vector field s (x) X s2(y) on P* x P*. Without loss of generality,
we can assume that Z is irreducible.

Consider the two pull-backs of the two 1-forms w; and wy (by the respective projections) to P! x P! which
are still given by the formulas above in the coordinates (x,y) on P! x PL. Since

Lp;xp,(w1) =Lp,(w1) =0
and similarly for ws, both w; and wy are invariant 1-forms for the derivation Dy x Dy on P! x PL. It follows
that their restrictions wi|z and wy|z are two invariant volume forms on Z endowed with the derivation induced
by Df x Dy on C(Z). By Lemma 5.6, we conclude that for some ¢ € C,
(w1 — cwa)jz = 0.
Noting the normalization in our case, we see

1 =wi(s1 X $2) = cwa(s1 X 82) =¢

so that in fact ¢ = 1 and the one-form w; — ws vanishes identically on Z. Write

1 dF C;
f(x) _E_sz—ai

1 dG d;
== J__.
(y) dy Zy—bj

Applying this notation to w; — wy, we have an equality of 1-forms on Z

dF —dG =Y —¢; 20 4 5 g, b

) y—bj
df; dg;
22042']{_ +Zﬁjgij

where the «; forms a Q-basis of c1,. .., ¢y, the §; form a Q-basis of dy,...,ds and f;i(z) € C(x), g;(y) € C(y).
Note that a linear combination of logarithmic derivatives can always be rewritten as a sum of logarithmic
derivatives in which the coefficients are linearly independent over Q. See Remark on page 76 of [43].

The assumption on the linear disjointness of the ¢;’s and d;’s gives that the a;’s and the §;’s form a Q-
linearly independent set. By Fact 5.5, fi(z) is constant on Z for all ¢ and g;(y) is constant on Z for all j. Since
f(z) and g(y) have at least one non-zero residue, we conclude that Z cannot project dominantly on the solution
sets of (Ep) and (Es3). Contradiction. u

5.3 Our setting

Let f € C(z) be a rational function and consider the associated equation (). Let V = C?\ Z; in coordinates
(x,y), where Zy is the union of horizontal line y = 0 and, for each pole a of f, the vertical line x = a. Consider
the section of the tangent bundle sy : V — T'(V)

sp(r,y) = (2, 9,9, 9f(x)).

Let mosf(x,y) := (y,yf(z)). Then we showed, in Section 3 (Theorem 3.1 and Corollary 3.2), that if f(z) is
such that for any h € C(z) f(z) # 9, it follows that (V,s;)# = {(z,y) € V;(U) 2’ =y Ay =yf(z)} is a
geometrically trivial strongly minimal set.

This section sy gives rise to the derivation Dy € Der(C(V')/C) given by

oh Oh
Dy(h) =yo_ + yf(m)a—y.
In particular, Ds(x) =y, D¢(y) = yf(z) and Df(%) — —fy(w).
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Lemma 5.8. For any f € C(z), the derivation (or vector field) D preserves the volume form

w:dx/\dy ca?

and Lp,(w) = 0. O

Proof. We only need to show that Lp,(w) = 0.

dx Nd
LDf(OJ) = LDf y

—~

)
= Dy(—)(dz Ndy) + iLDf(dm A dy)

—f(=

< | =

~

(dz A dy) + i [dy A dy + dx A (f (x)ydz + f(x)dy)]

y
_ _fy(x (dz A dy) + i [f'(@)yda A do + f(x)dz A dy)]

~—

Il
o

Now assume that f(z),g(z) € C(z) are such that for any h € C(2), we have that neither f(z) # 2 nor
g(z) # 9. We do not exclude here the possibility that f(z) = g(z). Let V =C?\ Z; and W = C?\ Z, with
coordinates (z1,y1) and (zg,y2) respectively. Assume that the two strongly minimal definable sets (V,s)#
and (W, s,)# are nonorthogonal. Then since they are geometrically trivial, they are non-weakly orthogonal. So
there is Z C V x W a closed complex Dy x D, invariant generically finite to finite correspondence witnessing
nonorthogonality. We write

dri Nd dro N d
_dn Ay gp g, = 2N

QQ
Y1 Y2 W

w1

for the corresponding 2-forms. From Lemma 5.8, we have that Lp, (wy) = Lp, (w2) = 0. We will now view wy
and wq as 2-forms on Z, which are volume forms since Z is a finite to finite correspondence (tr.deg.cC(Z) = 2).
More precisely we let wy be the 2-form on Z defined as the pullback of wy by the projection map 7 : Z — V.
The form ws is defined similarly. By construction we have that

LDfxDG(al) = LDf(wl) =0.
A similar expression holds for wo.

Lemma 5.9. Let Z be as above, then there exist ¢ € C* such that

. dxy A dyy dxzo A dyso -0
1Dy x D, T—C'T =

where ip sxD, 18 the interior product. O

Proof. Since Z is 2-dimensional, the space of rational 2-forms on Z is a C(Z)-vector space of dimension one.
So there exists h € C(Z) such that
w1 = hws.

‘We hence have that

0 = Lp;xpe(w1)
= Lp;xpg(hwz)
= (Df x Dg)(h)wz 4+ hLp,(w2)
= (Dy x Dy)(h)we

So h is in the constant field of Dy x D, in C(Z). Since the equations are orthogonal to C, we have that h € C.
By construction we have that w; = cws, for ¢ € C.

Hence on Z, the two form wy — cwy = dxlAldyl —c- d“/;dyz is identically 0. Furthermore, on Z, the 1-form
obtained by applying the interior product ip,xp, is 0 and the result follows. u
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Lemma 5.10. Let Z be as above, then there is ¢ € C* such that on Z
dy1 — f(x1)dzy — c(dys — f(x2)dxs) =0 € Q

O
Proof. We will use the formula
iD(’U1 A Ug) = iD(Ul) ANvg — v A iD(Ug)
where D is any derivation and v, vs are 1 forms. Starting with lemma 5.9
) <d:c1 A diyy dxa A dy2>
0 = ip;xp, —c-
U Y2
- <dl‘1/\dy1)_c ; (dl‘g/\dyg)
b N P Yo
_ in(d:vl) ANdyy —dxy A in(dyl) .. in(de) A dys — dxo /\’in,(dyg)
U Y2
_ yidyr — y1f(171)dl”1 . y1dya — yzf(xz)dxz
Y1 Y2
= dy; — f(x1)dzy — c(dy2 — g(x2)dzs)
| ]

Proposition 5.11. Let Z be as above. Then Z is contained in a closed hypersurface of V' x W of the from
Z(p) for some p € Clz,y]. O

Proof. Recall that by assumption for some fi,g; € C(z), we have that

f(fﬂl) — @ + Z &

d.’l?l

and

d d;
glm) = 0 4 30
where at least one of the ¢;’s and one of the d;’s are non-zero. Multiplying the above equations by dz; and dzs
respectively and using
dyr — f(z1)dx1 — c(dys — g(z2)dxs) =0
we get
d(.’,EQ — bz)
Ty —b;

d(yr — cy2 — fi(x1) + cgi(z2)) = _Zci cda —a) +chr

1 — a4
We use here that d(z; — a;) = dzy and d(z2 — a;) = dzs. Consider the Q-linear span of {¢;,cd;} - which is a
non-trivial vector space since f(z) (and on top of that g(z)) has at least one simple pole - and extract {ej,...,es}
a Q-basis (so s > 1).
For some fixed N > 0, we can take each e; to be e;/N so that the ¢;’s and cd;’s are in the Z-span of
{e1,...,es}. We then get that

. 4
khk

d(yr — cyz — fr(@1) + cgr(x2)) = Y
where hy, € Clx1, 23] has the specific form

i = [T = @)= T Gy — b))

and n(c;, k)(resp. n(cbj, k)) denotes the coefficient of ¢; (resp. cb;) relatively to ey in the basis eq, ..., e;. But
by Fact 5.5, it must be that

d(yr — cy2 — f1(x1) + cg1(z2)) =0 and dhy = 0.

Hence for £k =1 as an example, we get that
hi(z1,22) = ¢

for some constant ¢ € C. Since Z projects dominantly on V and W, we get a non-trivial polynomial relation
between x1 and x5 as required.
|
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To summarize, in this subsection, we have shown

Proposition 5.12. Let f(2),g(z) € C(z) be such that for any h € C(z), we have that neither f(z)# 9% nor

qg(z) # %. Suppose that z and y are solutions to the strongly minimal equations
Z// Z//

o f(z) and o =9(2)

respectively. Let K be any differential extension of C such that K (y)*Y = K (2)®9. Then C(z)%9 = C(y)*9. O

In the next section we classify the algebraic relations between solutions in details in the case that
C(z)9 = C(y)*, in particular showing that there are only finitely many, depending on basic invariants of
the rational functions f, g.

6 Algebraic relations between solutions

Theorem 6.1. Let f1(z),..., fn(2) € C(z) be rational functions such that each f;(z) is not the derivative of a
rational function in C(z) and consider for i = 1,...,n, y; a solution of

(Ei) 9"y = fiy)

Then tr.deg.cC(y1,91,.-.,Yh,Yn) = 2n unless for some i # j and some (a,b) € C* x C, y; = ay; + b. In that
case, we also have f;(z) = fj(az + D). O

Notice that we do not exclude the case where some of the f;(z) are equal in this statement.

Proof. By Theorem 3.1 and Corollary 3.2, we already know that each of the equations
(B:) "1y = fily)

is strongly minimal and geometrically trivial. It follows that if y1,...,y, are solutions of (Ey),..., (F,) such
that tr.deg.cC(y1,y1, - -, Y, Yn) < 2n then for some i # j,

tr.deg.cC(yi, ¥;, ;> y;») <4

Since all the equations (E;) do not admit any constant solution, y; and y; must realize the generic type of (E;)
and (E;) respectively and using strong minimality we can conclude that

tr.deg.cC(yi, i, yj,¥5) = 2 and C(ys, y))*? = Cly;, ;).

Proposition 5.12 now implies that in fact C(y;)*9 = C(y;)*9. To simplify the notation, set f(z) = fi(z),
9(z) = fj(2), ys = x and y; = y and so we have that z and y are interalgebraic over C.
First note that the derivation on C(x)# has image in the module C(z)8z’. If F(x, z) = 0 for some z, then

we have that 2’ = — ?Eiigx’ Thus there are a, 3 € C(z)2!# such that ¥’ = az’ and o/ = B2’. Then

y// — 5(3}/)2 +Oé($//) — 5(33/)2 +Oéf($(})l'/

but also

Since z’ # 0,
Bz’ = a(g(y) - f(x)).

If B8#0, then 2’ = % € C(x)™& contradicting strong minimality. Hence 8 = 0. Since o/ = B2’ and
y'(=ax’) is not zero, we get that a € C*. Using y’ = aa’ we also obtain that y = ax + b for some b € C. Finally,
B = 0 also implies that f(z) — g(y) = 0 and hence f(x) = g(y) = g(ax + b). |

In the rest of this section, we will derive some consequences of Theorem 6.1 on the structure of the solution
sets of these equations. First let us recall the definitions of what it means for an equation to have no or little
structure.

Definition 6.2. Suppose that X is a geometrically trivial strongly minimal set defined over some differential
field K. Then, X is said to be w-categorical if for any y € X, the set X N K (y)™? is finite. Moreover, if
X NK ()™ = {y}, then we say that X is strictly disintegrated. O
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1 1

Example 6.3. In the Poizat example, that is when f(z) = 1, the requirement — +5 = > gives that a =1 and

b = 0. Hence, the Poizat example is strictly disintegrated. O

1 1

z—a z—b?

where a,b € C. Then it is not hard to see

that f(—z+a+b) = f(z). Hence it follows that the strongly minimal equation ZZ—/,/ =L _ _L_ s not strictly

z—a z—b
disintegrated. Moreover we will show that it is w-categorical. O

Example 6.4. Consider now the case where f(z) =

We now focus on the case when f(z) = g(z) and will further study the condition f(ax + b) = f(x). Recall
that f(z) is such that ZZ—/,/ = f(z) is strongly minimal. We write f(z) = % +>, =4 and so f(ax +b) = f(z)
gives

where 8(z) = ax + b. Since 8 has such a simple form, it is easy to see that 5 must permute the set of a;, points
at which f has a nonzero residue or else f(ax + b) # f(z). So, bounding the size of the setwise stabilizer of the
collection of a; will bound the number of nontrivial algebraic relations between solutions. In what follows, we
let A be the collection of a; at which f(z) has a nontrivial residue and G; be the stabilizer of A. We assume
that the points of A have a unique orbit under G - otherwise replace A by one of the orbits. Our arguments
below will only depend on the size of any particular set stabilized by the affine transformations which induce
algebraic relations.

For some n, 5™ is in the pointwise stabilizer any of the collection of a; € A. If there is more than one a;, then
£™ is the identity, since the pointwise stabilizer of two distinct points under the group of affine transformations
is trivial (e.g. directly from the stabilizer condition, one gets two linearly independent equations for a,b and of
course a = 1,b = 0 is a solution to the system - thus the unique solution). So, 8 is torsion in the group of affine
transformations. We will represent the group of affine transformations in the standard manner:

)

The natural action on z € C is given by matrix multiplication on the vector <x> One can show that the

a,bEC}.

1
elements of finite order in this group are precisely those in which a is a root of unity of some order greater than
one together with the identity element. When a is a primitive k" root of unity, the cyclic subgroup of the affine

generated by <8 l{) is of order k. If |A| = 1, then a simple argument shows that there are no nontrivial affine

transformations which preserve f(x). In the case that |A| > 1, there is an upper bound on the number of affine
transformations preserving f in terms of |A| (the same argument works with any set known to be stabilized by
the action).

Claim 6.5. When |A| =n, |G| < n(n—1). O
Proof. First, note that the action of the affine group on the affine line is sharply 2-transitive, meaning that

for any pairs of distinct elements (ci, co) and (dy,ds) in C2, there is precisely one affine transformation which
maps (c1,c2) to (di,ds). Thus, the action of the setwise stabilizer on the collection of a; will be determined

by determining the image of a; and ay. Since their images are in the collection {ay,...,a,} there are at most
n(n — 1) choices for their images, of which at most n(n — 1) — 1 correspond to nontrivial affine transformations.
Thus the setwise stabilizer is of size at most n(n — 1). ]

Corollary 6.6. Let f(z) € C(z) which is not the derivative of a rational function. Then the solution set of the
equation (F):y"/y = f(y) is w-categorical. O

Proof. We already proved that the equation is strongly minimal and geometrically trivial. All we need to show
is that if y is a solution of (E), then C <y>alg only contains finitely many solutions of (F). By Theorem 6.1

applied to fi(y) = f2(y) = f(y), we see that if y; € C ()™ is a solution of (E), then y; = ay + b for some
(a,b) € C* x C such that z — az + b belongs in the stabilizer of f(z) by the action of Aff3(C) on C(z) by

precomposition. It follows that if k is the number of solutions of (E) in C (y)alg , then
k = |Stab(f(2))] < n(n—1)

where n is the number of non-zero complex residues of f(z). u
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Actually, the previous bound for k obtained above is not sharp. Before improving the bound, we first give
an example for which & will be maximal based on the number of non zero residues of f(y).

Example 6.7. Let n > 2, let ¢ € C*, let £ be a primitive n-th root of unity and let g(z) € C(z) be a rational

function. Consider
n—1

gk
f@)=cd +g(z") € C(z).

_ ¢k
k:OZ g

We claim that f(£z) = f(z). Indeed, obviously ¢g((£2)™) = g(2™) and moreover

Z_:l k n—1 5k-1
—ck _ k1
k=0 §2—¢ =0 © 3
-1 n_l gh-1
= +
1 — k1
z—& —z 13
n—2
gn—l gk
- Y
n—1 _ ¢k
z=£ —~z—¢
= — ¢k
=0~ §

It follows that f(£F2) = f(z) for all k < n — 1 and therefore that the stabilizer f(z) under the action of the affine
group has cardinal > n. Consequently, there at least n polynomial relations for the solutions of the differential

Ly
equation ¥ = f(y). O
The following lemma shows that this equality in fact holds:

Lemma 6.8. Let f(z) € C(z) be a function with at least one non zero residue. Denote by G the stabilizer of
f(2) under the action of the affine group by precomposition and by n > 1 the number of complex points where
f(2) has a non zero residue. Then

|G| < n.

We already know by Claim 6.5 that G is finite.

Claim 6.9. Any finite subgroup G of Aff5(C) is cyclic and conjugated to a finite subgroup of rotations (for the
usual action of Aff3(C) on the complex plane). O

Proof. Since the additive group G,(C) has no non-trivial finite subgroup, using the exact sequence
0 — G,(C) = Aff5(C) —» G,,(C) — 1,

we see that G is isomorphic to its image u(G) in G,,,(C) and therefore that G is cyclic. Moreover, in the matrix
representation of Affo(C), G is generated by an element of the form

_ (& 0

T \0 1

where £ is a root of unity. A direct computation shows that
1 —c\ (& 0\ (1 ¢\ (& (£—1)
0 1 0 1/\o 1) \o 1

Hence, if £ # 1 (i.e. G is not the trivial group) then taking ¢ = 5%1 conjugates G to a subgroup of S! = {z €

(1]

C|| z|=1} € G, (C) (i.e. a subgroup of rotation of the complex plane). u

Claim 6.10. Let f(z) € C(z) be a rational function stabilized by a non-trivial finite group G of rotations of
the complex plane then f(z) has a trivial residue at z = 0. O
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Proof. The finite group G is generated by the rotation z — £z where £ # 1 is a root of unity. Write
a
fe) =2 +g(2)

where 0 is not a simple pole of g(z). Therefore, 0 is not a simple pole of g(£z) either and

z

f(&2) + 9(£2).
Comparing the residues of f(£2) and f(z) at 0, we get a = a¢~! and therefore a = 0. Hence, f(z) has a trivial
residue at z = 0. [ ]

Proof of Lemma 6.8. Denote by G the stabilizer of f(z). We already know that G is finite by Claim 6.5. Using
Claim 6.10, up to replacing f(z) by f(z + ¢), we can assume that G is a subgroup of the group of rotations
of the complex plane since this transformation does not affect the number of complex points where f(z) has a
non-zero residue.

In particular, G is a subgroup of G,,(C) acting on the complex plane by multiplication. Denote by
A={ay,...,a,} # 0 the set of complex points where f(z) has a non-zero residue. Claim 6.10 ensures that
A C C*. Since the action of G,,(C) on C* is 1-sharply transitive, the same argument as in Claim 6.5 gives

|G| < n.

Since G is a group of rotations, the proof gives in fact a bit more: if the upper bound is achieved (|G| = n)
then all the complex numbers where f(z) has a non zero residue must lie on a common circle of the complex
plane.

Coming back to Example 6.7, since n > 2, g(z) does not have non zero residues and therefore f(z) has a
non-zero residue exactly at the n' roots of unity. It follows that the stabilizer of f(z) is exactly the group of
rotations of the complex plane with angles 27k/n with k =0,...n — 1.

Lemma 6.11. Let f(z) € C(z) be a rational function with at most simple poles. Assume that f(z) has a
non-zero residue at n > 2 complex points and that equality occurs in the previous lemma:

the stabilizer of f(z) under the action of the affine group by precomposition has cardinality n.

Then f(z) is conjugated to one of the examples of Example 6.7: there exist a,b € C such that

where g(z) € Clz] is a polynomial. O

Proof. As for the proof of the previous lemma, replacing f(z) by f(z + ¢), we can assume that the stabilizer
G of f(z) is the subgroup of rotations with angles 2wk/n for k =0,...,n — 1. As noticed after the proof of the
previous lemma, after this translation, all the poles of f(z) lie (in a single orbit hence) on a circle centered at 0
(say of radius r). Replacing f(z) by f(rz), we can assume that all the poles of f(z) lie on the unit circle. Finally,
replacing f(z) again by f(e?’z), we can assume one of the pole of f(z)is z = 1.

After this combination of affine substitutions, the n simple poles of f(z) are located at n** roots of unity
L,¢, ..., 671 We claim that

n—1

gk
f(z)=c. Z P + g(z").
k=0

§

Indeed, writing the partial fraction decomposition of f(z) as

we get (by uniqueness of the partial fraction decomposition) that both terms are preserved under the action of

G.
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e Looking at the polynomial part, if a is a root of P then
P(a) = P(éa) = --- = P(¢"'a) = 0.
Since these are all distinct roots, we get that
(z—a)(z—&a)- (2= &"'a) = (2" —a")
divides P(z). Iterating the argument, we obtain that P(z) is of the form
P(z) = (" — a}) -+ (" — a}}) = g(=")

e Looking at the simple poles part: we compute as in Example 6.7

n—1 n—1 -1
YatE = L
= _ gi—1
i=0 §z=¢ im0 ~ ¢
_ —2 _
T nz i€l
2 — fn—l . 2 — gz
=0
which gives a;11 = ;€ for i =1,...(n—2) and ag = a,—1&. In particular, ap = ¢ can be chosen freely and

a; = &c for i > 1. The last equality is automatically satisfied since ¢ is a n**-root of unity.

Putting everything together, we showed that after these substitution, we obtain

fk
z— &k

) =g e Y
k=0

Example 6.12. If we consider the functions given in Example 6.4 by

f&) = - —

z—a z-—0b

and z — %52z 4+ 2£ is the unique affine transformation sending (1, —1) to (a,b) then

a—2b a+b 2 1 1

Mgt ) =1~ o1

)

are all of the form prescribed by the lemma.
On the other hand, it is necessary to assume that f(z) has only simple poles for the conclusion of the lemma
to hold. For instance,

PR S S B SR 1

SN R | (z—a)?2 (z4+a)? (2403 (2-0)3

is not of the form given by Example 6.7 and satisfies f(z) = f(—=2). O
Corollary 6.13. Let f(z) € C(z). Denote by ay, ..., a, the non-zero zero complex residues of f(z) and assume

n > 1. For a solution y of (E) : y”/y’ = f(y), denote by acl(y) the set of solutions of (E) which are algebraic
over C (y). Then |acl(y)| does not depend on the chosen solution y and

1< |acl(y)| <n
Moreover,

(1) Jacl(y)]=1if n=1 or if n > 3 and the only affine transformation which preserves the set of complex
residues of f(z) is the identity. In that case, the equation is strictly disintegrated.
(ii) Assume that f(z) does not have higher order poles. Then |acl(y)| = n if and only if for some (a,b) € C* x C,

k
flaz +b) = C'Z zfifk +g(z")

k=0

n—1

where g(z) € Clz] is a polynomial and ¢ is a primitive n-root of unity.
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7 Observations about the non-minimal case

Theorem 3.1 tells us that the solution set of ZZ—/,/ = f(z) has rank 2 precisely when we can write f(z) as the
derivative of a rational function g(z). In that case, a family of order one subvarieties fibers our equation and is
given by 2’ = g(z) 4 ¢ for ¢ € C. A priori, three options might arise:

1. The equation ZZ—/// = f(z) is internal to the constants.
2. The fibers 2/ = g(z) + ¢ are internal to the constants, but the equation z—,,, = f(z) is 2-step analyzable in
the constants.

3. For generic ¢, 2z’ = g(z) + ¢ is orthogonal to the constants.

The goal of this section is to show that all three possibilities can arise in our family of equations.

7.1 The generic fiber and nonorthogonality to the constants

The following slightly restated theorem of Rosenlicht gives conditions for a rational order one differential equation
to be nonorthogonal to the constants, see [62, 45].

Theorem 7.1. Let K be a differential field with algebraically closed field of constants. Let f(z) € Cx(z) and
consider the differential equation 2’ = f(z). Then 2’ = f(z) is nonorthogonal to the constants if and only if ﬁ
can be written as:

ou
e ov
0Oz -
e o Co
where ¢ € Cx and u,v € Ck(2). O
Lemma 7.2. Suppose that g(z) € C(z). Then for ¢ € C generic over the coefficients of g(z), m can not be
written as ¢1 92 for any ¢; € C and 92 € C(z). O

Proof. We first establish the following claim:

Claim 7.3. For any p(z),q(z) € C[z] nonzero, sharing no common roots, with at least one of p, ¢ nonconstant,
and c¢ generic over the coefficients of p, g, the polynomial p(z) — c¢q(z) has only simple roots. O

Proof of Claim 7.3. Assume for contradiction that the claim is false. Then for some b € C, the polynomial

f(z) =p(z —b) —cq(z —b)

has no constant or linear term (i.e. has at least a double root at zero). Then f(0) = f/(0) = 0. It follows that
p(—b) = cq(—b) and p’(—b) = c¢q’(—b). Now, since p, g share no common roots and ¢ is generic over the coeflicients
of both, we must have g(—b) # 0 and p(—b) # 0. Now by a simple computation, it follows that

p(2)

Again, since p, g are relatively prime, the function o) is nonconstant and so b is algebraic over the coefficients
of p, q. But now 5 E:llj; = ¢, which is impossible as c¢ is generic. This proves the claim. |

From the claim it follows for g(z) € C(z) and ¢ generic over the coefficients of g, W can not be written

as ¢y %Z - indeed by the above claim it follows that m has only simple poles while cl% has poles of order 2
or more. |

Now, combining Lemma 7.2 and Theorem 7.1, we obtain:

Corollary 7.4. If ZZ—,,/ = f(z) has rank 2 and the family of order one subvarieties is given by 2’ = g(z) + ¢, then

the generic solution of % = f(z) is analyzable in the constants if and only if for generic ¢ can be written

1
) ? g(z)+c
as ¢ 2= for ¢; € Cx and u € Cx(2). O
Remark 7.5. The condition that a rational function can be written as a constant times a single logarithmic

derivative is known to be non-constuctible in the coefficients of the rational function - see for instance Corollary
2.10 of [45]. O
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7.2 Internality to the constants

Consider the case ZZ—/,/ = ¢ where ¢ € C. In this case, regarding z as a function of ¢ and assuming ¢ # 0, solutions
of the equation can be seen by an elementary calculation, to be given by

aet + b,

for some a,b € C. Then, the equation is internal to the constants (with the internality realized over a single
solution). This fits into case 1) of the classification given at the beginning of this section.

Question 7.6. Is there any nonconstant rational function f(z) such that ZZ—',' = f(2) is internal to the

constants? O

7.3 Analyzability to the constants

’

We first fix some notation for this subsection: 27’/ = f(z) with g(z) a rational antiderivative of f(z) so that

2" = g(2) + c is a family of order one subvarieties of 2 = f(z).

Lemma 7.7. Suppose that g(z) is a degree 2 polynomial a;2? + a1z + ag. Then for generic’ ¢ € C, 2/ = g(z) + ¢
is nonorthogonal to the constants. O

Proof. We have that

1 d
9(z)+c  (z—a)z—p)
with a # 8. Then writing A = r, B = 5_%,
1 A B
= —+ .
gz)+c z—a z-p
If we take u(z) =
1w
9(z) +¢ u
and so it follows by Theorem 7.1 that 2’ = g(z) + ¢ u

We next show that the equation ZZ—I/I = z falls under case 2 of the classification mentioned at the beginning

of this section:

Lemma 7.8. The generic type of the equation

z
P 9)
is 2-step analyzable in the constants and is not internal to the constants. O

Proof. For a generic solution z of equation 9, set ¢(z) = 2% — 22’ € C(z, 2). The equation 9 implies that

c(2)' =0
and set
2 —\/c(
z+ Vel

20 = 29

A direct computation shows that

2 (z—\/c<z )’

_ GtV

20 z—+/c(z)

z++/c(z)

—z_ﬁ‘

z
z+4/c(2z)

zzfc(z) =Ve

2
ay

for more specifically, as long as ¢ # ag — Tas
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where we used the exact formula for ¢(z) in the computation of the denominator for the last equality. Since ¢(z)

2\
0
20) =9 10
(2) (10)
Since for z generic, y/c(z) ¢ C, zp realizes the generic type of equation 10 so that there is an algebraic

correspondence between the equations 9 and 10. The equation 10 is known to be analyzable in exactly two steps
in the constants by [31] and therefore so is the equation 9. u

and hence \/c(z) are constants, it follows that

A linear change of variables z; = 2=% can be used to give a bijective correspondence between equation 9

and any such equation with the right hand side an arbitrary linear function of z over C:

Corollary 7.9. For any a,b € C, the generic type of the equation

"

z
— = 0% +5b
is 2-step analyzable in the constants and is not internal to the constants. O

7.4 Orthogonality to the constants

We remind the reader of our general notation: ZZ—/,/ = f(z) with g(2) an antiderivative of f(z) so that 2’ = g(z) + ¢
is a family of order one subvarieties of ZZ—/,/ = f(2). In this subsection, we consider the case that g(z) is a degree
three polynomial over C.

Lemma 7.10. There is no polynomial P(z) of degree 3 such that

1
fe(z) = m
is a constant multiple of a logarithmic derivative in C(z) for generic values of c. O

Proof. By contradiction, assume that such a polynomial P(z) exists. Without loss of generality, we can assume
that P(z) is monic and the constant coefficient of P(z) is 0. So we write:

P(z) = 22 4+ az® + bz.

This implies that the quotients of the residues do not depend on ¢ and therefore that there exists fixed
Ay, Az, Az € C* such that for infinitely many values of ¢,

1 A1 A2 A3
=e. + +
P(z)+c z—a1 z—ar zZ—og

(%) : )

for some e # 0, a1, ag, 3. So, choose ¢ such that P(z) + ¢ has simple roots (this holds for any ¢ independent
from a, b, for instance) and A;, As, A are the residues of f.(z). For d close enough to ¢, P(z) + d also as simple
roots f1, e, B3 and if By, Ba, Bs are the residues of f;(z) then

BQ/Bl = AQ/Al and Bg/Bl == Ag/Al.

It follows that

B; n By n Bs

z—=p1 z—p2 z—f3

B A A A
71( LI 2, 3 )
Ai\z—=p1  z2—=P2  z—f3

fa(z) =

Up to replacing e by e.(A; A2A3), we can assume that A, A; and Az have been chosen such that:
(El) . A1A2A3 =1.

With this normalization, we claim that:

Claim 7.11. A;, A; and Aj are the three third roots of unity. In particular, A;/As ¢ Q. O
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Proof. It is enough to show that
A1+ A+ A3=0
AjAs + A1 A3+ As A3 = 0.

since this implies that (z — A;)(z — A2)(z — A3) = 23 — 1. Note that a1, @z, a3 must be the roots of P(z) + ¢ so
we get the two equations:

(S)' o] +oag+a3=a
' Q10 + a3 + a1y =b.

On the other hand, developing (x) gives:

1 ) A (z—az)(z—ag)+Ax(z—a1)(z—a3z)+Az(z—a1) (z—a2)

(z—a1)(z—az2)(z—a3) =€ (z—a1)(z—a2)(z—a3)

(A1+A2+A3> 22— (Al (a2+¢13)+A2(a1+0é3)+A3(0t1+a2)) z+ (A1a2a3+A2¢11063+A30410t2)

(z—a1)(z—az2)(z—a3)

= €.

The coefficients of 22 and z on the right hand side must therefore be 0 and the constant coefficient must
be equal to 1. The last equation defines e implicitly in terms of the other parameters so we won’t be using it.
Next, consider the coefficient of 22

(Ez) A1+ A+ A3 =0.

The sum of the residues is 0. The coefficient of z:

0= Al(ag + Oég) + AQ(O{] + 043) + A3(Oé1 + ag)
aq(Az + As) + a2 (A1 + Az) + az(A1 + Ag)
—0[1A1 — a2A2 - CkgAg

where in the last equality we used (Es).
Together with the system (.S), this yields that ay, as, a3 are solutions of the system of polynomial equations:

X1+ Xo+X3=0a
(9): { X1 X0+ Xo X3+ X1 X3 =0
A X+ A Xo +A3X3=0
This is where we use our assumption: since this is true for infinitely many values of ¢, this system must have
infinitely many solutions so its set of solutions must have dimension > 1 (actually = 1). This will give us our
last equation on Aj, Ay, As:

Consider ¢ = (¢1,¢2,q3) & common solution of the system above (since it has infinitely many solutions).
The first equation and the last equations are equations of planes so they must intersect on a line L of the form

L={q+ M, eC}

where the vector v is given by

1 Ay Az — Asy
v = 1 AN A2 = Al — Ad
1 As Ay — Ay

So in order for the system (S) to have infinitely solutions this line (L) must be contained in the conic given
by the second equation:

(g1 + A1) (g2 + Ava) + (g2 + Ava)(gs + Avs) + (g1 + Avi)(gs + Avg) = b

So the coefficient in A\? must vanish, which gives:

0 = v1v2 + v2u3 + V103
= (A3 — Ag)(A1 — A3) + (A1 — A3) (A — A1) + (A3 — Az) (A — Ay)
= —(A? + A3+ A%) + A1 A3 + A1 Ay + AxAs
= —(A; + As + A3)? + 3(A1 A3 + A1 As + Az A3)
=3(A1A43 + A1 Az + A2 A3)
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where we used (E2) on the last line. We conclude that
(Eg) A1 Ay + Ay As + A1 A3 = 0.
|

To conclude the proof of the lemma, we use the following argument explained in the Example 2.20 of [26]:
every (non constant) f(z) € C(z) can be written as:

(z—a1)...(z—ap)

&) = o =t

By direct calculation, one can see that:

f(z) _ 1 1
f(2) 7Zz—aiizz—bi'

It follows that every logarihmic derivative has only simple poles with integer residues. So if ¢g(z) is a constant
multiple of a logarithmic derivative, then all poles are simple are the quotients of the residues are rational, but
we’ve observed that is impossible. [ |

By combining the previous Lemma with Corollary 7.4, we see that

Corollary 7.12. For any polynomial P(z) of degree 3, then for generic ¢ € C independent from the coefficients
of P, 2/ = P(z) + c is orthogonal to the constants. O

Proposition 7.13. Suppose a,b,c,d are algebraically independent over Q. Let g(z) = 2% + az? + bz. The
strongly minimal sets defined by 2z’ = g(z) 4+ ¢ and 2’ = g(z) + d are orthogonal. O

Proof. Let ay,as, as be the zeros of g(z) + ¢. Then a1, as, ag are algebraically independent.

1 A;
g(z)—i—c_Zz—ai

i=1

where
1

Hj;éi(ai —aj)
We have the linear relation A; + Ay + A3 = 0.
Claim 7.14. If my,m2,m3 € Q and > m;A; € Q(a,b)?9, then m; = mgy = ms. O

A=

Proof of Claim 7.14. Suppose Y. m;A; = 3 € Q(a, b)s.

/BH(OZi—O[j) = ml(ag —Olg) —TTLQ(OQ —a3)+m3(a1 —0[2)
7<i
= (m3 —ma)ag + (M1 — m3)as + (Mo — my)as

If m; = mgo = mg, then we are left with the equation Hj<i(aj — ;) = 0. Since a1, a2, ag are algebraically
independent we must also have 3 = 0. Otherwise we have a degree 3 polynomial over Q(a,b)*® vanishing at
(ah Q2, Ckg).

Let’s write the linear term > n;a;. We now have the following system of equations over Q(a, b)®!® satisfied
by a1, as, as.

—a = 21+ 224 23
b = 2122 + 2123 + 2223
Ié; 1_[(2'z —zj) = mnz +nezo +ngzs

7<i

Let H be the hyperplane z; + 2o + 23 = —a, V the surface 2129 + 2123 + 2023 = b, and W the surface
HKJ.(zi — z;) =nz1 + nezo + ngzg. We will show HNV NW is finite. But then ai, a9, a3 € Q(a,b)¥s, a
contradiction.
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We make the substitution z3 = —z; — 29 — a into the defining equation for V to get F(z1, 22) = 0 where
F(z1,29) = zf + z% + 2129 + az; + aze + b.

This is an irreducible polynomial.
Making the same substitution into the defining equation for W we get G(z1, 22) = 0 where

G(z1,20) = B[22} — 225 + 32225 — 32125] + lower degree terms

If F(z1,22) = G(z1,22) = 0 has infinitely many solutions, then, since F' is irreducible, we must have F|G.
But comparing the homogeneous parts of F' and G of highest degree we see that is impossible, so we’ve established
the claim. -

Now suppose the strongly minimal set 2z’ = g(z) 4+ ¢ and 2’ = g(z) + d are non-orthogonal. Let By,..., B,
be the residues for ¢g(z) + d.
By Lemma 5.6 (or [26, 2.22]),
ldlmQ(Al, AQ, 1437 Bh BQ, Bg) < 1d1mQ(A1, AQ, Ag) —|— ldlmQ(Bl, BQ, B3) = 4

where neither m; = ms = ms or ny = ny = ns.

Thus we have an equation

Since Ap, . A, are algebraic over Q(a, b, c) and c J/Q(a b)algd,
tp(Ay, Aa, A3/Q(a,b)™8, By, By, B3) is finitely satisfiable in Q(a,b)*8. Thus we have Y. m;A; € Q(a,b)*®
contradicting Claim 7.14. u

We now derive the following model-theoretic consequence of Corollary 7.12 and Proposition 7.13.

Corollary 7.15. Let f(z) = 2? + az + b be a complex polynomial of degree 2. Then the theory of the solution
set of

(x) 1 2"/2 = f(2)
has the dimensional order property (DOP) and hence 2% isomorphism classes of models of cardinal & for every
uncountable cardinal . O

Recall that a complete totally transcendental theory T has the dimensional order property (DOP) if there
are models My C My, My with My | My M> and a regular type ¢ with parameters in the prime model over
My U My such that ¢ is orthogonal to M; and Ms. It is well-known that if 7" has the DOP then T has 2"
isomorphism classes of models of cardinal x for every K > N+ | T'|.

Proof. First note that if @ # 0 then y — «y gives a definable bijection between the solution sets of 2" /2" = f(2)
and 2" /2" = f(z/a). Choosing a = 1/+/3, we can assume that f(z) is of the form

f(2) =322 +V3az+b

Set g(z) = 23 + “T\/ng + bz and let ¢ be a transcendental constant over Q(a, b). We claim that the generic type

qc € S(Q(a,b,c)) of
2 =g(z) +ec

is orthogonal to Q(a,b)™9: assume that q. is non-orthogonal to Q(a,b)%9. Since q. is strongly minimal and
orthogonal to the constants by Corollary 7.12, ¢, is one based. It follows that there exists a minimal type
qo0 € S(Q(a,b)™9) non-orthogonal to q.. Moreover, any copy qq of g. for every transcendental constant d over
Q(a, b) is also non-orthogonal to g¢q.

By transitivity of the non-orthogonality relation for minimal types, the types ¢. and g4 are non-orthogonal
whenever ¢ and d are transcendental constant over Q(a,b). This contradicts Proposition 7.13, hence p is
orthogonal to Q(a, b)2%9.

We conclude as in Chapter 3, Corollary 2.6 of [44] that the theory of the solution set of (x) has the DOP:
consider My the prime model over Q(a, b), ¢ and d independent transcendental constants over Q(a, b) and denote
by Mj (resp. My) the prime model over Q(a,b,c) (resp. Q(a,b,d)).

Set e =c+ d and ¢ = g.. We claim that ¢, is orthogonal to both M; and Ms: since e is a transcendental
constant over M, we have that:

e | M and g, orthogonal to Q(a, b)*
Q(a’b)alg
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from which it follows that g, is orthogonal to M. Similarly, g. is orthogonal to Ms, hence the theory of the
solution set of (x) has the DOP and hence the maximal number of isomorphism classes of models in any
uncountable cardinal. n

In particular, from our analysis of a specific autonomous second order equation, we recover Shelah’s theorem
in [64] which asserts that the theory DCFy admits the maximal number of isomorphism classes of models in
any given uncountable cardinal. While Shelah’s proof uses differentially transcendental elements, it was already
noticed by Poizat in [59, pp. 10] that the DOP is also witnessed by families of algebraic differential equations
parametrized by constants such as:

/ cT X

' =-——,celC”).

R
Remark 7.16. In the same vein, it is interesting to note that our results allows us to compute effectively the
oldest model-theoretic invariant — the function k +— I(x) which counts the isomorphism classes of models of
cardinal k — for the solution sets of equations of the form (x). More precisely, if Ty denotes the theory of the
solution set of y”/y’ = f(y) and I(k,Ty) counts the number of isomorphism classes of models of T of cardinal
% then:

(1) The rational function f(z) is a derivative in C(z) if and only if I(k,Ty) = 1 for all infinite cardinals .

(2) If f(z) is constant or a linear polynomial then I(k,Ty) = 1 for all uncountable cardinals x but I(Rg,Ty) =
Ro.

(3) If f(2) is a polynomial of degree 2 then I(x,T) = 2" for every uncountable cardinal «.

From this perspective, it would be interesting to show that no other function x — I(x) can occur in the family
(%) or equivalently that the theory of the solution set of any differential equation of the form (x) which is not
analyzable in the constants nor strongly minimal admits the maximal number of isomorphism classes of models
in every uncountable cardinal. O
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