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We study the structure of the solution sets in universal di↵erential fields of certain di↵erential equations of order two,

the Poizat equations, which are particular cases of Liénard equations. We give a necessary and su�cient condition for

strong minimality for equations in this class and a complete classification of the algebraic relations for solutions of

strongly minimal Poizat equations. We also give an analysis of the non strongly minimal cases as well as applications

concerning the Liouvillian and Pfa�an solutions of some Liénard equations.

1 Introduction

Our manuscript deals with three prominent topics in algebraic di↵erential equations and their connections to
each other, especially interpreted in the context of rational planar vector fields with constant coe�cients.

1.1 Model theory

Strong minimality is an important notion emerging from stability theory, and in the context of di↵erential
equations of order n, the notion has a concrete interpretation in terms of functional transcendence. The zero
set, X, of a di↵erential equation with coe�cients in a di↵erential field K is strongly minimal if and only if (1)
the equation is irreducible over Kalg and (2) given any solution f in X and any di↵erential field extension F of
K,

tr.deg.FF hfi = 0 or n.

Here Khfi denotes the di↵erential field extension of K generated by f .
To the non-model theorist, it likely isn’t obvious from the definition, but strong minimality has played a

central role in the model theoretic approach to algebraic di↵erential equations. Two factors seem to be important
in explaining the centrality of the notion. First, once strong minimality of an equation is established, the
trichotomy theorem, a model theoretic classification result, along with other model theoretic results can often
be employed in powerful ways [27, 48]. Second, among nonlinear di↵erential equations, the property seems to
hold rather ubiquitously; in fact there are theorems to this e↵ect in various settings [13, 28]. Even for equations
which are not themselves minimal, there is a well-known decomposition technique, semi-minimal analysis

† [46],
which often allows for the reduction of questions to the minimal case.

Establishing the notion has been the key step to resolving a number of longstanding open conjectures
[6, 48]. Despite these factors, there are few enough equations for which the property has been established that
a comprehensive list of such equations appears in [13]. In this manuscript, we generalize results of Poizat [58]
and Brestovski [4] by showing that

Theorem A. The set of solutions of

z00 = z0f(z), z0 6= 0

where f(z) 2 C(z) is strongly minimal if and only if f(z) is not the derivative of some g(z) 2 C(z).
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Definitions of model theroetic notions can be found in section 2.
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Notice that in Theorem A, the di↵erential field K (in the above definition) is taken to be C, the field of
complex numbers with the trivial derivation. In addition to giving a complete characterization for this class of
equations, our proof gives a new technique for establishing strong minimality which relies on valuation theoretic
arguments about the field of Puiseux series. In the strongly minimal case, we give a precise characterization of
the algebraic relations between solutions (and their derivatives) of equations in our class (discussed in the third
part of this introduction).

When the equation is not strongly minimal, we show that it must be nonorthogonal to the constants. The
solution set X is orthogonal to the constants if, perhaps over some di↵erential field extension F of K, there is a
solution a of X such that F hai contains a constant which is not in F alg. Again, to non-model theorists, it likely
isn’t obvious that this condition should play a such a central role as it does.

With respect to the semi-minimal analysis of the generic type p(z) of the equation, three possibilities are a
priori possible in this case:

1. p(z) is internal to the constants (this is a strengthening of nonorthogonality to the constants).
2. p(z) is 2-step analyzable in the constants.
3. For generic c 2 C, z0 =

R
f(z)dz + c is orthogonal to the constants, and in the semi-minimal analysis of

p(z) there is one type nonorthogonal to the constants and one trivial type.

In Section 7, we show that any of the three possibilities can occur within the non-minimal equations in our
family, providing concrete examples of each case. This type of analysis is done in Section 7 and is similar to the
results of [31] (who did this analysis for a di↵erent class of order two equations). Our analysis involves work
along the lines of the techniques of [26, 62], and there are a number of results of independent interest developed
in the course of this analysis.

1.2 Special solutions and integrability

One of the fundamental problems of algebraic di↵erential equations is to express the solutions of a di↵erential
equation or the first integral of a vector field by some specific known functions

† and arbitrary constants or to
show that this is impossible. In this manuscript, we develop the connection between various such impossibility
results for solutions and the notions coming from model theory described above. In particular, we establish
results for equations of Liénard type:

x00(t) + f(x)x0(t) + g(x) = 0,

for f(x), g(x) rational functions. Notice that the equations of this type generalize the Brestovski-Poizat type
equations described above. This family of equations has its origins in the work of Liénard [35, 36] and has been
the subject of study from a variety of perspectives in large part due to its important applications in numerous
scientific areas. See [23] and the references therein for numerous applications. The class of equations has been
intensely studied with respect to finding explicit solutions and integrability, mainly from the point of view of
Liouvillian functions. We give a review of the existing results in Section 4.3. The connections between these
model theoretic notions and the equation having certain special solutions are known to some experts, but there
does not seem to be any account of these connections in the literature. Our approach makes use of model
theoretic notions and, in particular, a recent specialization theorem of the second author [29].

1.3 Algebraic relations between solutions

Though establishing the strong minimality of a di↵erential equation is itself sometimes a motivational goal,
in many cases it is just the first step in a strategy to classify the algebraic relations between solutions of the
equation. See for instance [28], where this strategy is employed for generic planar vector fields. In [6], this
strategy is used to prove the Ax-Lindemann-Weierstrass theorem for the automorphic functions associated with
Fuchsian groups. Sections 5 and 6 are devoted to classifying the algebraic relations between the strongly minimal
equations of Brestovski-Poizat type.

Theorem B. Let f1(z), . . . , fn(z) 2 C(z) be rational functions such that each fi(z) is not the derivative of a

rational function in C(z) and consider for i = 1, . . . , n, yi a solution of

(Ei) : y
00/y0 = fi(y)

Then tr.deg.CC(y1, y01, . . . , y0n, yn) = 2n unless for some i 6= j and some (a, b) 2 C⇤ ⇥C, yi = ayj + b. In that

case, we also have fi(z) = fj(az + b).

†
e.g. rational, algebraic, elementary, Liouvillian.
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Much of the analysis of Section 5 is of independent interest. Indeed, in Section 5.1 we set up the formalism
of volume forms, vector fields, and Lie derivatives quite generally. In Section 5.2 we give a proof of a result of
Hrushovski and Itai [26] using our formalism. In Section 5.3, we develop and use formalism around the Lie algebra
of volume forms to show that for equations in our class, characterizing algebraic relations between solutions
and their derivatives follows from characterizing polynomial relations between solutions (with no derivatives).
Following this, in Section 6, we give a precise characterization of the polynomial relations which can appear. In
Section 7 we turn towards the nonminimal case and characterize the type of semi-minimal analysis which can
appear for the equations from the class and make some remarks regarding the implications of this analysis on
the dimension order property (DOP).

1.4 Organization of the paper

Section 2 contains the basic definitions and notions from model theory and the model theory of di↵erential
fields that we use throughout the paper. The basic setup of other topics is mostly carried out in the respective
sections throughout the paper. In Section 3 we characterize strong minimality for equations of a generalized
Brestovski-Poizat form. In particular, Theorem A (Theorem 3.1 in the text) is proven there. In Section 4, we
give a brief introduction to integrability and various special classes of solutions, overview the extensive previous
work for equations of Liénard type, and prove our results on the existence of Liouvillian solutions to Liénard
equations. In Sections 5 and 6 we classify the algebraic relations between solutions of strongly minimal equations
in the generalized Brestovski-Poizat class. This is where a proof of Theorem B (Theorem 6.1 in the text) can
be found. Finally, in Section 7 we analyze the nonminimal equations of the class.

2 Preliminaries

Throughout, (U , �) will denote a saturated model of DCF0, the theory of di↵erentially closed fields of
characteristic zero with a single derivation. So U will act as a “universal” di↵erential field in the sense of
Kolchin. We will also assume that its field of constants is C. We will be using standard notations: given a
di↵erential field K, we denote by Kalg its algebraic closure and if y is a tuple from U , we use K hyi to denote
the di↵erential field generated by y over K, i.e. K hyi = K(y, �(y), �2(y), . . .). We will sometimes write y0 for
�(y) and similarly y(n) for �n(y).

Recall that a Kolchin closed subset of Un is the vanishing set of a finite system of di↵erential polynomials
equations and by a definable set we mean a finite Boolean combination of Kolchin closed sets. In the language
L� = (+,�,⇥, 0, 1, �) of di↵erential rings, these are precisely the sets defined by quantifier free L�-formulas.
Since DCF0 has quantifier elimination, these are exactly all the definable sets. If a definable set X in Un is
defined with parameters from a di↵erential field K, then we will say that X is defined over K. Given such an X,
we define the order of X to be ord(X) = sup{tr.deg.FF hyi : y 2 X} where F is any di↵erential field over which
X is defined. We call an element y 2 X generic over K if tr.deg.KKhyi = ord(X).

As mentioned in the introduction, strong minimality is the first central notion that is studied in this paper:

Definition 2.1. A definable set X is said to be strongly minimal if it is infinite and for every definable subset
Y of X, either Y or X \ Y is finite.

It is not hard to see that C, the field of constants, is strongly minimal.

Remark 2.2. Strong minimality has nice characterizations in DCF0:
1. The zero set X of a di↵erential equation with ord(X) = n and with coe�cients in a di↵erential field K is

strongly minimal if and only if (1) the equation is irreducible overKalg (as a polynomial in several variables)
and (2) given any solution y 2 X and any di↵erential field extension F of K, tr.deg.FF hyi = 0 or n.
Moreover, if the constant field C ⇢ C of K is algebraically closed, it is enough to consider in (2) all the
di↵erential field extensions F of K which are both finitely generated over K and with constant field C.

2. We will be mainly concerned with equations of Liénard type and in that case we can reformulate
1 as follows: Let C ⇢ C be a finitely generated subfield. Let X be defined by an ODE of the form
y(n) = f(y, y0, . . . , y(n�1)), where f is rational over C. Then X (or the equation) is strongly minimal if
and only if for any di↵erential field extension K of C and solution y 2 X, we have that tr.deg.KK hyi = 0
or n.

3. If X is given as a vector field on the a�ne plane, then if X is strongly minimal there are no invariant
algebraic curves of the vector field (if there were, the generic solution of the system of equations given
by X and the curve would violate the transcendence condition we describe in the previous paragraph).
For instance, the equation z00 = z · z0 studied by Poizat [58] is not strongly minimal, but the definable set
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z00 = z · z0, z0 6= 0 is strongly minimal. So, strong minimality precludes the existence of invariant curves,
but this is not su�cient. For instance, the system

x0 = 1

y0 = xy + ↵

is not strongly minimal, but when ↵ 6= 0 the system has no invariant curves.† It is easy to see that the
system violates the transcendence criterion over the field C(t) with the solution x = t and y a generic
solution to y0 = ty + ↵.

As already alluded to in the introduction (see also the discussion below), in DCF0 strongly minimal sets
determine, in a precise manner, the structure of all definable sets of finite order. Furthermore, establishing strong
minimality of a definable set X usually ensures that we have some control over the possible complexity of the
structure of the set X. As an example, if X is defined over C, that is the di↵erential equations involved are
autonomous, then the following holds (cf. [49, Section 2] and [6, Section 5]).

Fact 2.3. Assume that a strongly minimal set X is defined over C and that ord(X) > 1. Then

1. X is orthogonal to C.
2. X is geometrically trivial: for any di↵erential field K over which X is defined, and for any y1, .., y` 2 X,

denoting eyi the tuple given by yi together with all its derivatives, if (ey1, . . . , ey`) is algebraically dependent
over K, then for some i < j, eyi, eyj are algebraically dependent over K.

3. If Y is another strongly minimal set that is nonorthogonal to X, then it is non-weakly orthogonal to X.

Recall that if X1 and X2 are strongly minimal sets, we say that X1 and X2 are nonorthogonal if there
is some infinite definable relation R ⇢ X1 ⇥X2 such that ⇡1|R and ⇡2|R are finite-to-one functions. Here for
i = 1, 2, we use ⇡i : X1 ⇥X2 ! Xi to denote the projections maps. Generally, even if the sets X1 and X2 are
defined over some di↵erential field K, it need not be the case that the finite-to-finite relation R witnessing
nonorthogonality is defined over K (instead it will be defined over a di↵erential field extension of K). We say
that X1 is non-weakly orthogonal to X2 if they are nonorthogonal and the relation R ⇢ X1 ⇥X2 is defined over
Kalg.

Remark 2.4. Notice that in Fact 2.3(2) we can replace “K” in the conclusion by “C”, that is one can state the
conclusion as “then for some i < j, eyi, eyj are algebraically dependent over C”. This follows using the non-weak
orthogonality statement given in Fact 2.3(3) (taking Y = X).

In the next section, we will show that strong minimality holds in some special cases of equations of Liénard
type. Since these equations are autonomous of order 2, it then follows that all three conclusions of Fact 2.3 hold
in those cases. This will allow us to make deeper analysis of the algebraic property of the solution sets.

It is worth mentioning that if a strongly minimal set is not necessarily defined over C, then there still is a
strong classification result called the Zilber trichotomy theorem:

Fact 2.5 ([25],[57]). Let X be a strongly minimal set. Then exactly one of the following holds:

1. X is nonorthogonal to C,
2. X is nonorthogonal to the (unique) smallest Zariski-dense definable subgroup of a simple abelian variety

A which does not descend to C,
3. X is geometrically trivial.

Notice that nonorthogonality to the constants is simply a version of algebraic integrability after base change.
We will now discuss several other variations of this notion but first need to say a few words about “types” and
“forking” in DCF0.

Let K be a di↵erential field and y a tuple of elements from U , the type of y over K, denoted tp(y/K), is
the set of all L�-formulas with parameters from K that y satisfies. It is not hard to see that the set Ip = {f 2
K{X} : f(X) = 0 2 p} = {f 2 K{X} : f(y) = 0} is a di↵erential prime ideal in K{X} = K[X,X

0
, . . .], where

p = tp(y/K). Indeed, by quantifier elimination, the map p 7! Ip is a bijection between the set of complete types
overK and di↵erential prime ideals inK{X}. Therefore in what follows there is no harm to think of p = tp(y/K)

†
Thanks to Maria Demina for this example.
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as the ideal Ip. If X is a definable set over K, then by the (generic) type of X over K we simply mean tp(y/K)
for y 2 X generic over K. We say that a complete type‡ p over a di↵erential field K is of finite rank (or order)
if it is the generic type of some definable set over K of finite order.

Definition 2.6. Let K be a di↵erential field and y a tuple of elements from U . Let F be a di↵erential field
extension of K. We say that tp(y/F ) is a nonforking extension of tp(y/K) if K hyi is algebraically disjoint from
F over K, i.e., if y1, . . . , yk 2 K hyi are algebraically independent over K then they are algebraically independent
over F . Otherwise, we say that tp(y/F ) is a forking extension of tp(y/K) or that tp(y/F ) forks over K.

It is not hard to see from the definition that tp(y/Kalg) is always a nonforking extension of tp(y/K).
A complete type p = tp(y/K) over a di↵erential field K, is said to be stationary if tp(y/Kalg) is its unique
nonforking extension, i.e., whenever z is another realization of p (so tp(y/K) = tp(z/K)), then z is also a
realization of tp(y/Kalg) (so tp(y/Kalg) = tp(z/Kalg)). We say that it is minimal if it is not algebraic and
all its forking extensions are algebraic, that is if q = tp(y/F ) is a forking extension of p, where F ◆ K, then
y 2 F alg. If X is strongly minimal and p is its generic type, then if follows that p is minimal.

Using forking, one obtains a well-defined notion of independence as follows: Let K ✓ F be di↵erential fields
and y a tuple of elements from U . We say that y is independent from F over K and write y |̂

K
F , if tp(y/F )

is a nonforking extension of tp(y/K). We now give the first variation of nonorthogonality to the constants.

Definition 2.7. A complete type p over a di↵erential field K is said to be internal to C if there is some
di↵erential field extension F ◆ K such that for every realisation y of p there is a tuple c1, . . . , ck from C such
that y 2 F (c1, . . . , ck).

Fact 2.8. [66, Lemma 10.1.3-4]

1. A complete type p over a di↵erential field K is internal to C if and only if there is some di↵erential field
extension F ◆ K and some realisation y of p such that y 2 F (C) and y |̂

K
F .

2. A definable set X is internal to C if and only if there is a definable surjection from Cn (for some n 2 N)
onto X.

Using Fact 2.8(2) it is not hard to see that homogeneous linear di↵erential equations are internal to C.
Indeed in this case, the solution set is simply a C-vector space V . If (v1, . . . vn) is a basis for V , then the
map f(x1, . . . xn) =

Pn
i=1 xivi is the surjective map Cn ! V witnessing that V is internal to C. Clearly, Fact

2.8(2) also shows that internality to the constants is closely related to the notion of algebraic integrability (i.e.
enough independent first integrals). We also have a more general but closely related notion of analysability in
the constants:

Definition 2.9. Let y be a tuple from U and K a di↵erential field. We say that tp(y/K) is n+ 1-step analysable

in the constants (or analysable in the constants for short) if there is a sequence (y0, . . . , yn) such that

• y 2 K hy0, y1, . . . , ynialg and

• for each i, either yi 2 K hy0, . . . , yi�1ialg or tp(yi/K hy0, . . . , yi�1i) is stationary and internal to C.

It follows that if tp(y/K) is analysable in the constants, then the sequence (y0, . . . , yn) in the definition
above can be chosen to be fromK hyi. Furthermore, it follows that analysability of p in the constants is equivalent
to the condition that every extension of p is nonorthogonal to C. Di↵erential equations that have Liouvillian
solutions provide the most studied example of equations that are analysable in the constants. We will say quite
a bit more in Section 4. Let us now turn our attention to the semi-minimal analysis of complete types, a notion
which has been mentioned a few times in the introduction.

Definition 2.10. Let p be a complete stationary type over a di↵erential fieldK. Then p is said to be semiminimal

if there is some di↵erential field extension F ◆ K , some z realising the nonforking extension of p to F and
z1, . . . , zn each of whose type over F is minimal and such that z 2 F hz1, . . . , zni.

Semiminimal (and hence minimal) types are the building block all finite rank types in DCF0 via the
following construction

‡
So p = tp(y/K) for some tuple y from U .
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Definition 2.11. Let p = tp(y/K) be a complete type over a di↵erential field K. A semiminimal analysis of p
is a sequence (y1, . . . , yn) such that

• y 2 K hyni,
• for each i, yi 2 K hyi+1i,
• for each i, tp(yi+1/K hyii) is semiminimal.

The following is a fundamental result and is obtained by putting together Lemma 2.5.1 in [55] and Lemma
1.8 in [5] (See aslo Proposition 5.9 and 5.12 in [56]).

Fact 2.12. Every complete type of finite rank in DCF0 has a semiminimal analysis.

Finally, recall that for a field K, we denote by K ((X)) the field of formal Laurent series in the variable X,
while K hhXii denotes the field of formal Puiseux series, i.e., the field

S
d2N K

��
X1/d

��
. It is well know that if

K is an algebraically closed field of characteristic zero, then so is K hhXii (cf. [15, Corollary 13.15]).
Puiseux series traditionally appear in the study of algebraic solutions of di↵erential equations, however they

have also been used by Nishioka (cf. [50] and [52]) in his work around proving transcendence results for solutions
of some classical di↵erential equations. Inspired by those ideas, Nagloo [47] and Casale, Freitag and Nagloo [6]
have also use these techniques to study model theoretic and transcendence properties of solutions of well-known
di↵erential equations generalizing the results of Nishioka. In a di↵erent direction, León-Sánchez and Tressl [34]
also used Puiseux series in their work on di↵erentially large fields. We will make use of Puiseux series in our
proof of strong minimality of special cases of equations of Liénard type.

3 Strong minimality

The set of solutions of the equation
zz00 = z0, z0 6= 0

in a di↵erentially closed field of characteristic zero were shown by Poizat (see [44] for an exposition) to be
strongly minimal.

Poizat’s method of proof relies in an essential way on the specific form of the equation being extremely
simple.† A similar but more complicated variant of the strategy of Poizat was employed in Kolchin’s proof of
the strong minimality of the first Painlevé equation (originally in an unpublished letter from Kolchin to Wood);
an exposition appears in [44]. In [19, Chapter 9], another elaboration of the above strategy was employed to
show that the set defined by

zz000 � z00 = 0, and z00 6= 0

is strongly minimal.
In [4], Brestovski generalized Poizat’s theorem to include equations of the form:

z00 = z0
✓
B � fzz0 � gz

fA

◆
, z0 6= 0

for polynomials f, g, A,B over C satisfying very specific conditions‡ We are interested in the case that the
derivatives of z appear linearly in the equation (i.e. f is a constant). Then Brestovski’s family of equations
becomes:

z00 = z0f(z), z0 6= 0 (?)

where f(z) 2 C(z). In this case, we give a definitive characterization of the strong minimality:

Theorem 3.1. The solution set of equation (?) is strongly minimal if and only if for all g 2 C(z), we have that
f(z) 6= dg

dz .

†
The proof is direct; taking an arbitrary di↵erential polynomial p(z) of order one, if the polynomial determines a subvariety, it must

be that the vanishing of p(z) implies the vanishing of zz00 � z0. Considering z�(p(z)) one can apply the relation zz00 = z0 to obtain

a new di↵erential polynomial q(z) of order one such that the vanishing of p(z) implies the vanishing of q(z). It follows that p(z)
must divide q(z), and this fact can be used to show that p(z) itself must be of a very restrictive form. One ultimately shows that

p(z) = z0.
‡
When f, g are constant, B = 1, A = z the theorem yield’s Poizat’s result and these choices satisfy Brestovski’s assumptions. The

assumptions in Brestovski’s theorem are calibrated just so that the strategy of Poizat can be successfully carried out. A complete

characterization of strong minimality via this method seems unlikely, due to the complexity of the calculations which appear in the

course of the proof in [4].
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Proof . Clearly, if f(z) = dg
dz for some g 2 C(z), then any solution of z0 = g(z) + c, c 2 C, is also a solution to

z00

z0 = f(z). Hence the solution set of equation (?) is not strongly minimal and indeed has rank 2.
Now assume that f(z) has partial fraction decomposition

f(z) =
dg

dz
+

nX

i=1

ci
z � ai

where the ai’s are distinct and some ci 6= 0. Without loss of generality assume c1 6= 0. Then f(z) has a nonzero
residue at a1. Considering the change of variable z 7! z � a1 we may assume that f(z) has a nonzero residue at
0.

Arguing by contradiction, let us assume that the solution set of equation (?) is not strongly minimal. Then
for some K, a finitely generated di↵erential field extending C† with derivation �, and y a solution of (?) we have
that u = �(y) 2 K(y)alg.

We can think of u as living in the field of Puiseux series Kalg hhyii with the usual valuation v and the
derivation

�
⇣X

aiy
i
⌘
=
X

�(ai)y
i +
⇣X

iaiy
i�1
⌘
�(y).

So

u =
1X

i=0

aiy
r+ i

m ,

where v(u) = r and m is the ramification exponent. Di↵erentiating we get

�(u) =
1X

i=0

�(ai)y
r+ i

m + u

 1X

i=0

(r +
i

m
)aiy

r+ i
m�1

!
.

Since

v

 1X

i=0

�(ai)y
r+ i

m

!
� r,

we have that

�(u)

u
= ↵+

1X

i=0

(r +
i

m
)aiy

r+ i
m�1,

where v(↵) � 0. The right hand side of this equation is equal to f(y) and so there should be a nonzero residue.
But the coe�cient of y�1 on the right hand side is 0. This is a contradiction.

Since Equation (?) has constant coe�cients, it follows from Theorem 3.1 and Fact 2.3(2) (see [6, Proposition
5.8] for a proof) that:stminthmtriviality

Corollary 3.2. The solution set of equation (?) for f(z) not the derivative of any rational function is
geometrically trivial.

The previous corollary already gives strong restrictions on the possible algebraic relations between solutions
of Equation (?), but sections 5 and 6 are devoted to giving a complete classification. Following this, we turn to
similar questions in the case that f(z) is the derivative of a rational function. Before we do so let us describe
the connection between Theorem 3.1 and (non)integrability of equations of Liénard type.

4 Solutions and integrability

Equations of the form:
x00(t) + f(x)x0(t) + g(x) = 0, (1)

for f(x), g(x) rational functions have their origins in the work of Liénard [35, 36] and have important applications
in numerous scientific areas. For instance, the solutions can be used to model oscillating circuits; see page 2 of
[23] for numerous references. Numerous recent works are devoted to giving explicit solutions or first integrals of
Equation 1 in special cases or showing that none can be expressed in terms of special functions in some class
(e.g. Liouvillian, elementary). In this section, we first point out some general connections between solutions in
special classes of solutions, first integrals, and the model theoretic notions we study. Following this, we describe
some existing results for Liénard equations and then give some results based on model theoretic ideas and our
work in Section 3.

†
Formally, we work with C ⇢ C a subfield finitely generated over Q by the coe�cients of the equation.
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4.1 Special classes of solutions

In this section, we give results connecting our model theoretic notions to several classically studied classes of
solutions.

Definition 4.1. Let (F,�) be a di↵erential field (generally we are interested in the case F = C(x, y) with the
derivations d

dx ,
d
dy ). We say that a finitely generated di↵erential field extension (K,�) of F is elementary if there

is a tower of di↵erential field extensions F = F0 ⇢ F1 . . . ,⇢ Fn = K such that for all i = 1, . . . n we have that
Fi = Fi�1(↵) where ↵ is such that:

1. �↵ = �f/f for some f 2 Fi�1 and for all � 2 � or

2. �↵/↵ = �f for some f 2 Fi�1 and for all � 2 � or

3. ↵ 2 F alg
i�1.

We say that y 2 U is an elementary function if it is contained an elementary di↵erential field extension of some
di↵erential field (F, �).

The class of Liouvillian functions is more general than the class of elementary functions:

Definition 4.2. Let (F,�) be a di↵erential field. We say that a finitely generated di↵erential field extension
(K,�) of F is Liouvillian if there is a tower of di↵erential field extensions F = F0 ⇢ F1 . . . ,⇢ Fn = K such that
for all i = 1, . . . n we have that Fi = Fi�1(↵) where ↵ is such that:

1. �↵ 2 Fi�1 for all � 2 � or

2. �↵/↵ 2 Fi�1 for all � 2 � or

3. ↵ 2 F alg
i�1.

We say that y 2 U is a Liouvillian function if it is contained a Liouvillian di↵erential field extension of some
di↵erential field (F, �).

We next give several more special classes of functions generalizing Liouvillian and elementary functions.

Definition 4.3.
† Let f1, . . . , fl be complex analytic functions on some domain U ✓ Cn. We will call (f1, . . . , fl)

a C-Pfa�an chain if there are polynomials pij(u1, . . . , un, v1, . . . , vi) with coe�cients in C such that

@fi
@xj

= pij (x, f1(x), . . . , fi(x))

for 1  i  l and 1  j  n. We call a function C-Pfa�an if it can be written as a polynomial (coe�cients in
C) in the functions of some C-Pfa�an chain.

Finally, we come to the most general notion we consider, a condition that was developed by Nishioka [50, 51]:

Definition 4.4. Let y be di↵erentially algebraic over a di↵erential field K. We say y is r-reducible over K if
there exists a finite chain of K-finitely generated di↵erential field extensions,

K = R0 ⇢ R1 ⇢ . . . Rm

such that y 2 Rm and tr.deg.Ri�1
Ri  r.

Remark 4.5. 1. By definition, each of the classes Pfa�an, Liouvillian, and elementary are 1-reducible.
2. Recent work of Pila and Tsimerman [54] introduces the notion of B-strictly elementary for B =

(B1, . . . , Bk) a sequence of polynomials in C[X,Y ]. The notion has an inductive definition much like
all of the other above definitions, allows for algebraic extensions but also for extensions obtained by
postcomposition by solutions of equations of the form Bi(x,

dz
dx ) = 0 as well as by their local inverses.

When we consider sequences B coming from a set of polynomials, S, then we call the resulting functions
S-elementary.

For instance, when S consists of instances of a single polynomial XY � 1, S-elementary matches the
classical notion of elementary given above in definition 4.1. On the other hand, it is easy to see that
for any set S, S-elementary implies 1-reducibility. As the notions of Liouvillian and C-Pfa�an functions
both lie in between being elementary and being 1-reducible, it would be interesting to understand their
relationship with the notion of S-elementary functions in the sense of [54] for various set S of poynomials.

†
The notion of a Pfa�an function is most commonly defined for a real-valued function of a real variable, but we formulate the

complex analog as well which fits more naturally with the results of this paper. Both notions are closely connected to model theoretic

notions from the theory of di↵erentially closed fields. See [20].
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Theorem 4.6. If X is a strongly minimal di↵erential equation of order n defined over a finitely generated
di↵erential field K, then any nonalgebraic solution f of X is not d-reducible over K for any d < n. It also
follows that f is not Pfa�an, Liouvillian, or elementary.

Proof . First notice that in the case n = 1, we have to show that any nonalgebraic solution f is not 0-reducible
overK. However by definition, 0-reducibily overK implies that in particular f 2 Kalg and so this is automatically
impossible. In what follows, we may hence assume that n > 1.

Recall, from Remark 2.2 that the zero set X of our di↵erential equation with coe�cients in a di↵erential
field K is strongly minimal if and only if (1) the equation is irreducible over Kalg (as a polynomial in several
variables) and (2) given any solution f of X and any di↵erential field extension F of K,

tr.deg.FF hfi = n or 0.

If f were d-reducible for d < n, as witnessed by some chain K = R0 ⇢ R1 ⇢ . . . Rm, then we can assume
that f is transcendental over Rm1 for some m1  m and algebraic over Rm1 . But then the di↵erential field Rm1

has the property that tr.deg.Rm1
(Rm1hfi)  d < n, contradicting strong minimality of X. As pointed out in

Remark 4.5, each of the classes Pfa�an, Liouvillian, and elementary are 1-reducible, so f can not be in any of
these classes either.

Assuming a weaker model theoretic notion about X allows one to rule out Liouvillian solutions, but not
Pfa�an solutions:

Theorem 4.7. Let X be a di↵erential equation of order n defined over a finitely generated di↵erential field
K. Suppose the generic type of X is not analyzable in the constants; then the generic solution of X is not
Liouvillian.

Suppose further that X is orthogonal to the constants. Then any nonalgebraic solution f of X is not
Liouvillian.

Proof . Recall from Fact 2.12 that every finite rank type has a semiminimal analysis. The extensions appearing
in the definition of f being Liouvillian are either algebraic or generated by the generic solution of an order one
linear di↵erential equation. The type of the generator of this extension is internal to the constants

† over the
previous field in the tower, so the type of f over K is analyzable in the constants.

If X (as a definable set) is orthogonal to the constants, then any type q in X not algebraic over K has
the property that q is orthogonal to the constants. This implies q is not analyzable in the constants, so any
realization of q is not Liouvillian.

In contrast with the strong minimality condition, non-analyzability or even orthogonality to the constants
does not rule out the more general Pfa�an or d-reducible solutions as above. The relationship to S-elementary
functions in the sense of [54] depends closely on the collection S. For instance, when S = {XY � 1}, the class
of S-elementary functions is the class of elementary functions ruled out by the properties of non-analyzability
or orthogonality to the constants. On the other hand, even when the collection S only consists of polynomials
linear in Y (of the form f(X) + Y g(X)), if follows from [62] that if S contains a polynomial such that the
rational function f(X)/g(X) is neither a derivative nor a constant multiple of a logarithmic derivative in C(X)
(e.g. f(X) = 1 and g(X) = X2(X � 1)) then there exist di↵erential equations orthogonal to the constants whose
solutions are S-elementary functions.

The connection between integrability in Liouvillian or elementary terms and our model theoretic notions is
more subtle than the connection to the existence of solutions, as we explain in the next subsection.

4.2 Notions of integrability

We will begin by describing some general notions around integrability. Consider a system of autonomous
di↵erential equations

x0 = P (x) (2)

where P = (P1, . . . , Pn) are polynomial or rational functions in the variables x = (x1, . . . , xn) with coe�cients
in Cn.

†
See Fact 2.8(2) (and the comment after) which applies here since the equation is linear.
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A first integral of the system is a non constant meromorphic function of x which is constant along solution
curves of the system, i.e., F : U ⇢ Cn ! C defined on some non-empty analytic open set U of Cn with

nX

i=1

Pi(x)
@F

@xi
= 0.

Meromorphic (and even holomorphic) first integrals always exist in an analytic neighborhood of a non-singular
point of the equation; furthermore if F is a first integral of the system on some open set U then it is a first
integral on any open set U ⇢ V where F can be analytically continued. In particular, if F is a rational function
then the open set U can be taken to be the Zariski-open set of Cn where F is well-defined.

Usually, one is interested in first integrals from various special classes of functions. For instance, a Darboux

integral [40] of the system is one of the special form:

f1(x)
r1 . . . fk(x)

rkeh(x)/g(x)

for polynomials fi, g, h and rj 2 C.
Associated with the polynomials P (x) = (P1(x), . . . , Pn(x)) is the vector field

⌧P := P1(x)
@

@x1
+ . . .+ Pn(x)

@

@xn
.

A Darboux polynomial of the system is f(x) 2 C[x] such that ⌧P (f) divides f . This condition is equivalent to
the zero set of f being an invariant algebraic hypersurface for the vector field ⌧ . The connection to integrability
is given by results originally due to Darboux and Jouanolou, see [42, Theorem 3].

Fact 4.8. Suppose that a polynomial vector field ⌧ of degree at most d has irreducible invariant hypersurfaces
given by the zero set of fi for i = 1, . . . k and suppose that the fi are relatively prime. Then:

1. If k �
�
n+d�1

n

�
+ 1 then ⌧ has a Darboux integral.

2. If k �
�
n+d�1

n

�
+ n then ⌧ has a rational first integral.

In model theoretic terms, even in the nonautonomous case, there is a close connection between co-order
one di↵erential subvarieties of a di↵erential algebraic variety and nonorthogonality to the constants, see [21].
Of course, the relation to the previous section is: strong minimality of a second order (or higher) system of
di↵erential equations implies that the system has no Darboux polynomials. In fact strong minimality and the
other model theoretic notions we study go a good deal further, but as we will see, our model theoretic notions
are more closely connected to the existence of solutions in various special classes rather than integrability in
those classes.

Definition 4.9. We call a first integral F elementary (Liouvillian) if F is an elementary (Liouvillian)
function.†

We first remark that one can reduce the study of algebraic integrals to the study of rational integrals.

Lemma 4.10. Let X be a vector field on some algebraic variety over C. If X has an algebraic first integral
then X has a rational first integral

Proof . We denote by V the algebraic variety supporting X and by � the derivation induced by X on C(V ).
First remark that since � extends uniquely to a derivation � on C(V )alg, we have

� � � = � � � for all � 2 Gal(C(V )alg/C(V ))

as ��1 � � � � is another derivation on C(V )alg extending �.
Assume now that X has no rational first integrals and consider f 2 C(V )alg such that �(f) = 0. Then by the

remark above, we also have �(�(f)) = 0 for all � 2 Gal(C(V )alg/C(V )). Hence the coe�cients a1, . . . , ar 2 C(V )
of the minimal polynomial of f over C(V ) satisfy �(ai) = �(ai) = 0 and therefore by assumption a1, . . . , ar 2 C.
Since C is algebraically closed, we conclude that f 2 C and thatX does not have any algebraic integral either.

†
Any of the special classes of functions we mention in the previous subsection might be used to develop notions of integrability, but

to our knowledge there is no development of integrability in terms of Pfa�an or r-reducible functions.
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Theorem 4.11. Let X be a vector field on some algebraic variety over C. If X has an algebraic first integral,
then X is not orthogonal to the constants.

Proof . An algebraic first integral f gives a map from the solution set of X to C as f is constant on solutions.
When f is algebraic, this yields a definable map from X to C, implying X is nonorthogonal to C.

For the remainder of the section we work with more general first integrals, but we will assume the di↵erential
equation we work with, X, is given by a planar vector field with coe�cients in C.

Theorem 4.12. Let X as above be an order two di↵erential equation given by a rational planar vector field
over C. If X has an elementary first integral, then X has an integrating factor of the form:

⇧(Ci)
pi

for polynomials Ci and integers pi. If X is strongly minimal then all of the Ci must be poles of the vector field.
If X is regular and strongly minimal, then X has no elementary first integral.

Proof . If the system X has an elementary first integral, results of [60] show that the integrating factor is of
the form

⇧(Ci)
pi

for polynomials Ci and integers pi.†

It follows that if the Ci are not poles of the vector field, then the system has nontrivial invariant algebraic
curves (an explanation of this can be found in various place, e.g. the second page of [8] following the statement of
the main theorem). Strongly minimal systems have no invariant curves, and regular systems have no poles.

The connection between Liouvillian first integrals and strong minimality is more subtle, but we can say
something about the form of the integrating factor:

Theorem 4.13. If X is a strongly minimal planar vector field with coe�cients in C, then X has a Liouvillian
first integral if and only if X has an integrating factor of the form ⇧(Ci)pieC/D for polynomials Ci, D which
are poles of the vector field and C a polynomial. If X is a strongly minimal regular vector field, then if X has
a Liouvillian first integral, it has an integrating factor of the form eC .

Proof . By results of Singer [65] and Christopher [8, Theorem 2], if there is a Liouvillian first integral of X,
then there is an integrating factor of the form:

eC/D · ⇧(Ci)
pi

where C,D,Ci are polynomial functions of the two variables of the system. Their proofs take place in the regular
setting, but can be adapted to rational vector fields; see [14]. The zero sets of the Ci and the zero set of D give
invariant algebraic curves for the vector field as long as they are not poles of the vector field X, contradicting
strong minimality.

We now describe two examples. The first ones shows that Liouvillian integrability does not in general imply
the existence of invariant algebraic curves.

Example 4.14. Consider the system
x0 = 1
y0 = xy + ↵

(3)

where ↵ 6= 0. The system has integrating factor e
�x2

2 , so the system has a Liouvillian first integral, but no
invariant algebraic curve.

Notice that the system 3 is not strongly minimal (see Remark 2.2) and that more precisely the solutions
of this system are all Liouvillian. On the other hand, Rosenlicht constructed examples of order two equations
having a Liouvillian first integral but no nonconstant Liouvillian solution [61, introduction] [40, Proposition 3].
Our second example shows that there exist order two equations having a Liouvillian first integral but no Pfa�an

solution.

†
Technically, [60] works in the setting of regular vector fields, but an easy argument shows that the results apply to rational vector

fields as well; see page 8 of [14].
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Example 4.15. Consider the vector field associated with the Poizat equation which originally motivated our
work:

x0 = y
y0 = y/x

(4)

Note that the first integrals of the system are una↵ected by multiplying both rational functions by x to clear
the denominator of the second equation. One then obtains the system:

x0 = xy
y0 = y

(5)

It is easy to check that the function H(x, y) = ey

x is a first integral of this second system (hence of the first one
too), which has two invariant curves given by x = 0 and y = 0. It is also easy to see that the generic solution of
system 5 is not strongly minimal or orthogonal to the constants (it is 2-step analyzable in the constants and has
a Liouvillian generic solution), while the generic solution of system 4 is strongly minimal by the arguments of
the previous section. So, by Theorem 4.6, system 4 is a system with a Liouvillian first integral but no Pfa�an
solution.

Furthermore, this example illustrates the following observation of independent interest: transformations
which scale both coordinates of the vector field by some polynomial

• preserve first integrals,
• do not preserve the model theoretic notions we study (e.g. strong minimality, orthogonality to the
constants),

• do not preserve the property of the system having Liouvillian solutions.

The examples given above also show that the Theorem 4.13 can not be improved to give a direct connection
between strong minimality and the existence of Liouvillian first integrals, at least not in complete generality.
However, in the case that one can rule out an exponential integrating factor by some other argument, one can
use strong minimality to show that no Liouvillian first integral exists. For instance, an argument ruling out
exponential integrating factors in the case of certain Liénard equations is contained in [40, Section 2].

4.3 Overview of previous results for Liénard equations

Equation 1 is equivalently expressed by the vector field on A2:

x0 = y
y0 = �f(x)y � g(x)

(6)

The study of algebraic solutions of Equation 6 seems to begin with Odani [53], who shows that Equation
6 has no invariant algebraic curves when f, g 6= 0, deg(f) � deg(g) and g/f is nonconstant. Numerous authors
attempted to generalize Odani’s results on invariant curves [67, 41]. Many recent works utilize the results of
Odani and generalizations to characterize Liouvillian first integrals of Liénard equations in various special cases
[37, 38, 7, 39, 9, 12, 11]. Many of the special cases considered make assumptions about the degrees of f(x), g(x)
in equation 6, while others make detailed assumptions not unlike the criteria employed by Brestovski [4]. Demina
[10] has recently completely classified the systems 6 which have Liouvillian first integrals for polynomial f, g.

Explicit exact solutions (all Liouvillian) for the Equation 6 in very special cases are the subject of many
additional papers in the literature [16, 17, 18, 23, 32]. Our results in the next subsection show in numerous
wide-ranging cases Equation 6 has no Liouvillian solutions, so formulas for explicit exact solutions such as those
of [16, 17, 18, 23, 32] do not exist.

Numerous other order two systems of di↵erential equations can be transformed analytically or algebraically
to solutions of a system in the form of Equation 6. In most cases, it is apparent that the transformations preserve
the property of being Liouvillian. For instance, this applies to the transformations in Propositions 2 and 3 of
[22]. There it is shown that the solutions of the system

x0 = f0(x)� f1(x)y,

y0 = g0(x) + g1(x)y + g2(x)y
n

can be transformed to solutions of the Liénard family 1 by means of the transformation

Y = (f0(x)� f1(x)y)e
R x
0 (g2(⌧)�f 0

1(⌧)/f1(⌧))d⌧ .

It is easy to see that when the functions appearing in the system are Liouvillian, this analytic transformation
preserves the property of solutions being Liouvillian. Similar more complicated analytic transformations have
been developed for various particular order two systems of higher degree (e.g. Proposition 3 of [22]). There are
numerous additional works showing particular systems can be transformed into equations of Liénard form (see
e.g. [1] or the references of [22]).



13

4.4 Solutions of Liénard type equations

Theorem 4.16. [29, Theorem C] Let k be a countable field of characteristic 0, let S be a smooth irreducible
algebraic variety over k and let ⇡ : (X , v) ! (S, 0) be a smooth family of autonomous di↵erential equations
indexed by S defined over k. Assume that all the fibres of ⇡ are absolutely irreducible and that

(O) : for some s0 2 S(k), the generic type of the fibre (X , v)s0 := ⇡�1(s0) is orthogonal to the constants.

Then for some/any realization s 2 S(C) of the generic type of S over k, the generic type of (X , v)s is also
orthogonal to the constants.

By Theorem 4.7 and the conclusion of Theorem 4.16, when condition (O) holds and the system (X , v)s is
two-dimensional, the system (X , v)s has only finitely many Liouvillian solutions. Note that because the theorem
only says that the generic type is orthogonal to the constants, there might be finitely many other types of order
one coming from the finitely many algebraic invariant curves.

We fix k a countable field of characteristic 0 (for example, k = Q). Set S = An the a�ne space of dimension
n. By an k-algebraic family of rational functions indexed by S, we mean a rational function g(s, z) 2 k(S)(z).

Lemma 4.17. Let g(s, z) 2 k(S)(z). There is a dense open set S0 ⇢ S such that g(s, z) 2 C[S0](z).

Proof . Write

g(s, z) =
u(s, z)

v(s, z)
=

P
ai(s)ziP

i�1 bi(s)z
i + 1

where the ai’s and the bi’s are in k(S). Denote by Z the proper closed subset of S obtained as the finite union
of the poles of the ai’s and the bi’s and set S0 = S \ Z.

Corollary 4.18. Let k be a countable field of characteristic 0, let g(s, z) 2 k(S)(z) be a k-algebraic family
of rational functions indexed by S = Ap and let f(z) 2 k(z) be a rational function with at least one non-zero
residue. Assume that

for some s0 2 S(k), the rational function g(s0, z) is identically equal to 0.

Then for every realization s 2 S(C) of the generic type of S over k , the generic type of

y00 + y0f(y) + g(s, y) = 0.

is orthogonal to the constants.

Notice that the conclusion is equivalent to: the property

O(s): the generic type of y00 + y0f(y) + g(s, y) = 0 is orthogonal to the constants

holds on a set of full Lebesgue measure of the parameter space S(C).

Proof . Without loss of generality, we can replace S by an open set S0 such that g 2 C[S0](z): since S is
irreducible, so is S0 and s0 2 S0. Denote by (z, z0) the standard coordinates on A2, P the (finite) set of poles of
f(z) and by U ⇢ A2 the Zariski open set defined by

U = A2 \ (P ⇥A1)

Consider ⇡ : X = U ⇥ S0 ! S0 which is obviously smooth and with the notation of the previous lemma
consider the closed subset Z of X defined by:

1 +
X

i�1

bi(s)z
i = 0

describing the set of poles of g(s, z) when s varies in S0. Since the restriction of a smooth morphism is smooth,
the restriction of ⇡ to the open set X0 = X \ Z

⇡0 : X0 ! S0.

is also smooth. Moreover, the fibres of ⇡0 are absolutely irreducible since the fibres of ⇡ are absolutely irreducible
and a dense open set of an absolutely irreducible variety is also absolutely irreducible.
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Consider the vector field on X0 given in the coordinates (z, z0, s) by

v(z, z0, s) = z0
@

@z
+
⇣
� z0f(z)� g(z, s)

⌘ @

@z0
+ 0

@

@s1
+ . . .+ 0

@

@sp
.

By definition, the vector field v is tangent to the fibres of ⇡0 so that

⇡0 : (X0, v) ! (S0, 0)

is a morphism of D-varieties and it satisfies the “geometric” assumptions of Theorem 4.16 by the discussion
above.

Claim 4.19. Let s 2 S0(C) and denote by (X0, v)s := ⇡�1(s). There is a k(s)-definable bijection between (X0, v)�s
and the solution set of y00 + y0f(y) + g(y, s) = 0. In particular, the generic type of one is interdefinable over k(s)
with the generic type of the other.

Indeed, this is the standard correspondence between D-varieties and di↵erential equations: the definable
bijection is given by:

(z, z0) 7! z

For s0 2 S0, we have shown that the definable set y00 + y0f(y) = 0 has Morley rank 1 (and Morley degree
2). Hence the generic type of this equation — the unique type p 2 S(k) of maximal order living on the solution
set of this equation — is a strongly minimal type of order 2, hence orthogonal to the constants. The claim above
shows that s = s0 satisfies the property (O).

By Theorem 4.16, we conclude that for generic s 2 S0(C) (equivalently, for generic s 2 S(C)) the generic
type of (X0, v)s is orthogonal to the constants. Hence using the claim above in the other direction, we obtain
that the generic type of

y00 + y0f(y) + g(s, y) = 0

for generic values of s 2 S(C) over k is orthogonal to the constants.

Example 4.20. Let a0, . . . , an, b0, . . . bn 2 C be Q-algebraically independent. Then the generic type of

y00 +
y0

y
+

anyn + an�1yn�1 + . . .+ a0
bmym + bm�1ym�1 + . . .+ b0

= 0 (7)

is orthogonal to the constants. By Theorem 4.7, the generic solutions of this equation are not Liouvillian and
more precisely, this equation has at most finitely many nonconstant Liouvillian solutions which are all supported
by algebraic invariant curves of the equation.

Example 4.21. Let a /2 Qalg be a transcendental number and g(y) 2 Q(y) arbitrary. The generic type of

y00 +
y0

y
+ ag(y) = 0 (8)

is orthogonal to the constants. By Theorem 4.7, the generic solutions of this equation are not Liouvillian and
more precisely, this equation has at most finitely many nonconstant Liouvillian solutions which are all supported
by algebraic invariant curves of the equation.

Remark 4.22. Systems satisfying condition (O) from Theorem 4.16 yield wide classes of examples generalizing
Equations 7 or 8. For instance, one can replace 1

y , the coe�cient of y0 in Equations 7 or 8, by any rational

function h(y) which has no rational antiderivative while drawing the same conclusions. By Corollary 4.18 and
Claim 4.19, one can replace ag(y) in Equation 8 by g(a, y) where g(s, y) is a k-algebraic family of rational
functions indexed by Ap and a 2 Cp is a point such that for some k-specialization a0 of a, g(a0, y) = 0.

5 Algebraic relations between solutions and orthogonality in the strongly minimal case

Let x1, . . . , xn be solutions of Equation (?). Since Equation (?) is strongly minimal by Theorem 3.1 and has
constant coe�cients, by Fact 5.7 and Proposition 5.8 of [6], if x1, . . . , xn are not independent over some di↵erential
field k extending C, then there is a di↵erential polynomial in two variables (of order zero or one) with coe�cients
in C such that p(xi, xj , x0

j) = 0.† In this section, we go farther, showing that in our case p can be taken to be
a polynomial relation between xi and xj not involving any derivative. Then in the following section, we give
a precise characterization of what the possible polynomial relations between solutions are in terms of basic
invariants of the rational function appearing in Equation (?) (e.g. singularities, residues).

†
Note here we are already using strong minimality and triviality to deduce that the relation witnessing non-independence involves

the derivative of only one of the solutions.
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5.1 Di↵erential forms

We give some background on di↵erential forms as this will be used heavily in this section. A general reference
on the subject is [33, Chapter 5] in the context of real di↵erential geometry. Recall that throughout, U is a
saturated model of DCF0 with constants C.

Let V be an irreducible (a�ne) variety over C and let F = C(V ) be its function field. We identify Der(F/C)
with the vector space of rational vector fields of V (C), that is a derivation D 2 Der(F/C) corresponds to a
rational map

V (C) XD��! TV (C).

We let ⌦1
V = ⌦1(F/C) be the space of rational di↵erential 1-forms on V (C) endowed with the universal

derivation
d : F ! ⌦1

V .

For every derivation D 2 Der(F/C), there exists a unique linear map D⇤ : ⌦1
V ! F such that D⇤ � d = D. In

particular, the F -vector spaces Der(F/C) and ⌦1
V are dual to each other. It is well known (see [24, Chapter 2,

Section 8]) that any transcendence basis ⇠1, . . . , ⇠r of F over C gives rise to a F -basis d⇠1, . . . , d⇠r of ⌦1
V so that

dim(V ) = ldimF (⌦
1
F ).

In particular, notice that if v = (v1, . . . , vn) is a generic point of V (U) then F = C(v) and {dv1, . . . , dvn} includes
a basis for ⌦V .

For each n 2 N we define ⌦n
V , the space of rational di↵erential n-forms, to be the exterior algebra

Vn ⌦1
V .

It is the F -vector space of all alternating n-multilinear maps

! : Der(F/C)n ! F.

As usual, ⌦n
V = {0} for n > dim(V ) and otherwise ldimF (⌦n

V ) =
�
dim(V )

n

�
. In particular, ⌦dim(V )

V is an F -vector

space of dimension one and an element ! 2 ⌦dim(V )
V will be called a (rational) volume form on V .

The finite dimensional F -vector space

⌦•
V = F � ⌦1

V � . . .� ⌦dim(V )
V

is endowed with the structure of an anticommutative graded F -algebra given by the wedge product characterized
by the two properties:

(i) ^ is F -bilinear.
(ii) for every 1-forms !1, . . . ,!k 2 ⌦1

V ,

(!1 ^ . . . ^ !k) : (D1, . . . , Dk) 7! det((!i(Dj)i,jk)

On top of that, the universal derivative d : F ! ⌦1
V extends uniquely into a complex (that is d � d = 0) of

F -vector spaces:

0 ! F
d�! ⌦1

V
d�! ⌦2

V
d�! . . .

d�! ⌦n
V ! 0

characterized by the following compatibility condition with ^: for every p-form !1 and q-form !2

d(!1 ^ !2) = !1 ^ d!2 + (�1)p!1 ^ d!2.

We refer to [33] for more details on the construction outlined above.

Definition 5.1. Given a derivation D 2 Der(F/C), we describe two operations on ⌦•
V naturally attached to D

initially considered by E. Cartan:

(1) the interior product iD : ⌦n
V ! ⌦n�1

V is the contraction by the derivation D:

iD!(D1, . . . , Dn�1) = !(D,D1, . . . , Dn�1).

(2) The Lie derivative LD : ⌦n
V ! ⌦n

V is defined using “Cartan’s magic formula”

LD = iD � d+ d � iD.



16 J. Freitag, R. Jaoui, D. Marker and J. Nagloo

Notice that one can use a di↵erent approach to define the Lie derivative based on the Lie bracket of vector
fields as described in the first section of [30]. Moreover, the Lie derivative LD corresponds to the derivation D
defined on ⌦•

V by Brestovski on page 12 of [3].

Fact 5.2. For f 2 F , !,!1,!2 2 ⌦n
V and D 2 Der(F/C), we have the following well-known identities:

LD(f!) = D(f)! + fLD(!),

LD(!1 ^ !2) = LD(!1) ^ !2 + !1 ^ LD(!2)

LD(d!) = dLD(!),

LfD = fLD(!) + df ^ iD(!),

iD(!1 ^ !2) = iD(!1) ^ !2 + (�1)n!1 ^ iD(!2)

See [33, Proposition 5.3 pp. 142] for a proof of these identities. The main definition of this section is

Definition 5.3. Let (E) : y(n) = f(y, y0, . . . , y(n�1)) be a complex autonomous equation of order n where f is
a rational function of n variables. If V = Cn with coordinates x0, . . . xn�1, the equation (E) defines a derivation
Df 2 Der(C(V )/C) given by:

Df (xi) = xi+1 for i < n� 1 and Df (xn�1) = f(x0, . . . , xn�1).

We say that a volume form ! 2 ⌦n
V is an invariant volume form for the equation (E) if

LDf (!) = 0.

Before going in further details, we first give an analytic interpretation explaining the terminology although
it will not be needed in our analysis. Consider

(E) : y(n) = f(y, y0, . . . , y(n))

a di↵erential equation as above and ! a (rational) volume form on V = Cn. Denote by U the (dense) open set
of V obtained by throwing away the poles f and the poles of !. As described above, the derivation Df gives
rise to a vector field sf on U namely the section sf : U ! T (U) ' U ⇥Cn given by

sf (x0, . . . , xn�1) = (x0, . . . , xn�1;x1, . . . , xn�1, f(x0, . . . , xn�1)).

By definition, every point in a 2 U is a non singular point of the vector field sf . The classical analytic theorem
of local existence and uniqueness for the integral curves of a vector field implies that there exists an analytic
function:

� : Ua ⇥D ⇢ U ⇥C ! U.

where Ua is an analytic neighborhood of a and D a complex disk such that for every b 2 Ua, the function
t 7! �(b, t) is the local analytic solution of the initial value problem

d�

dt
= (⇡2 � sf )(�(t)) and �(0) = b.

We will call � the local flow of the vector field v around a. The germ of � at (a, 0) is determined by the
vector field sf .

Fact 5.4. With the notation above, the volume form ! is invariant for the equation (E) if and only if for every
a 2 U , the local flow � around a preserves the volume form !: namely

for every t 2 D,�⇤
t!�t(a) = !a

where �t : Ua ! U is the function defined by �t(b) = �(b, t) and !p denotes the germ of ! around p.
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This follows from the formula on pp. 140 of [33]: for every p-form !,

Lv(!) =
d

dt |t=0
�⇤
t!.

using the same proof as the proof of [30, Proposition 3.2.1]. We don’t give more details here since this analytic
interpretation will not be needed in the rest of the paper.

Instead, in the following subsections, we will use invariant volume forms together with the following result
which follows from the work of Ax [2] that can be found explicitly in [63, Proposition 4] or [43, Lemma 6.10].

Fact 5.5. Let V be an irreducible a�ne variety over C and let F = C(V ) be its function field. Let u1, . . . , un, v 2
F be such that all the ui’s are non zero. Suppose c1, . . . , cn 2 C⇤ are linearly independent over Q and let

! = dv +
nX

i=1

ci
dui

ui
.

Then ! = 0 in ⌦V if and only if du1 = . . . = dun = dv = 0, i.e u1, . . . , un, v 2 C.

5.2 A warm-up case

The techniques we will use in our setting already have (known) strong consequences for order one di↵erential
equations, where the arguments are often simpler. For instance, the method we use allows us to give a proof a
result of Hrushovski and Itai [26, 2.22].

Lemma 5.6. Let V be an irreducible (a�ne) algebraic variety of dimension n and let D 2 Der(C(V )/C) be
a derivation. Assume that the constant field C(V )D of (C(V ), D) is equal to C. The space of invariant volume
forms

⌦n
V,D = {! 2 ⌦n

V | LD(!) = 0}

is a complex vector space of dimension  1.

Proof . Clearly, ⌦n
V,D is a complex vector space. It remains to show that any two non-zero invariant volumes

forms !1,!2 2 ⌦n
V,D are linearly dependent. Since ⌦n

V is a C(V ) vector space of dimension one, there exists
f 2 C(V ) such that !1 = f!2. Computing LD on both side, we get:

0 = LD(!1) = LD(f!2) = D(f)!2 + fLD(!2) = D(f)!2.

Since !2 6= 0, we get D(f) = 0 which implies f 2 C.
In general, this vector space may very well be the trivial vector space but when V = P1 (or more generally

when V is a curve), an easy computation shows that the Hrushovski-Itai 1-form is always an invariant volume
form, so that this vector space is always one-dimensional.

Lemma 5.7. Consider two di↵erential equations of order one of the form:

(E1) : x
0 = f(x) and (E2) : y

0 = g(y).

and denote by c1, . . . , cr the residues of 1/f(x) and by d1, . . . , ds the residues of 1/g(x). We assume that 1/f(x)
and 1/g(y) have at least one non zero residue and that c1, . . . , cr are Q-linearly disjoint from d1, . . . , ds. That is:

ldimQ(c1, . . . , cr) + ldimQ(d1, . . . , ds) = ldimQ(c1, . . . , cr, d1, . . . , ds).

Then (E1) and (E2) are weakly orthogonal.

Proof . First notice that both the equations (E1) and (E2) admit an invariant volume form which are respectively
the 1-forms

!1 =
dx

f(x)
and !2 =

dy

g(y)

associated by Hrushovski and Itai to the equations (E1) and (E2). By Lemma 5.6, every invariant volume form
will be a constant multiple of these forms. So !1 and !2 are the unique invariant volume forms of (E1) and (E2)
normalized by

!i(si) = 1 for i = 1, 2.
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where s1(x) = f(x) d
dx and s2(y) = g(y) d

dy are the vector fields associated with the derivation Df on C(x) and
Dg on C(y) respectively.

For the sake of a contradiction, assume that these two equations are not weakly orthogonal: this means
that there exists a closed generically finite to finite correspondence Z ⇢ P1 ⇥ P1 which is invariant under the
derivation Df ⇥Dg associated with the product vector field s1(x)⇥ s2(y) on P1 ⇥ P1. Without loss of generality,
we can assume that Z is irreducible.

Consider the two pull-backs of the two 1-forms !1 and !2 (by the respective projections) to P1 ⇥ P1 which
are still given by the formulas above in the coordinates (x, y) on P1 ⇥ P1. Since

LDf⇥Dg (!1) = LDf (!1) = 0

and similarly for !2, both !1 and !2 are invariant 1-forms for the derivation Df ⇥Dg on P1 ⇥ P1. It follows
that their restrictions !1|Z and !2|Z are two invariant volume forms on Z endowed with the derivation induced
by Df ⇥Dg on C(Z). By Lemma 5.6, we conclude that for some c 2 C,

(!1 � c!2)|Z = 0.

Noting the normalization in our case, we see

1 = !1(s1 ⇥ s2) = c!2(s1 ⇥ s2) = c

so that in fact c = 1 and the one-form !1 � !2 vanishes identically on Z. Write

1

f(x)
=

dF

dx
+
X ci

x� ai
1

g(y)
=

dG

dy
+
X dj

y � bj
.

Applying this notation to !1 � !2, we have an equality of 1-forms on Z

dF � dG =
P

�ci
d(x�ai)
x�ai

+
P

dj
d(y�bj)
y�bj

=
P

↵i
dfi
fi

+
P

�j
dgj
gj

.

where the ↵i forms a Q-basis of c1, . . . , cn, the �j form a Q-basis of d1, . . . , ds and fi(x) 2 C(x), gj(y) 2 C(y).
Note that a linear combination of logarithmic derivatives can always be rewritten as a sum of logarithmic
derivatives in which the coe�cients are linearly independent over Q. See Remark on page 76 of [43].

The assumption on the linear disjointness of the ci’s and dj ’s gives that the ↵i’s and the �j ’s form a Q-
linearly independent set. By Fact 5.5, fi(x) is constant on Z for all i and gj(y) is constant on Z for all j. Since
f(x) and g(y) have at least one non-zero residue, we conclude that Z cannot project dominantly on the solution
sets of (E1) and (E2). Contradiction.

5.3 Our setting

Let f 2 C(z) be a rational function and consider the associated equation (?). Let V = C2 \ Zf in coordinates
(x, y), where Zf is the union of horizontal line y = 0 and, for each pole a of f , the vertical line x = a. Consider
the section of the tangent bundle sf : V ! T (V )

sf (x, y) = (x, y, y, yf(x)).

Let ⇡2sf (x, y) := (y, yf(x)). Then we showed, in Section 3 (Theorem 3.1 and Corollary 3.2), that if f(z) is
such that for any h 2 C(z) f(z) 6= dh

dz , it follows that (V, sf )# = {(x, y) 2 Vf (U) : x0 = y ^ y0 = yf(x)} is a
geometrically trivial strongly minimal set.

This section sf gives rise to the derivation Df 2 Der(C(V )/C) given by

Df (h) = y
@h

@x
+ yf(x)

@h

@y
.

In particular, Df (x) = y, Df (y) = yf(x) and Df (
1
y ) =

�f(x)
y .
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Lemma 5.8. For any f 2 C(z), the derivation (or vector field) Df preserves the volume form

! =
dx ^ dy

y
2 ⌦2

V

and LDf (!) = 0.

Proof . We only need to show that LDf (!) = 0.

LDf (!) = LDf (
dx ^ dy

y
)

= Df (
1

y
)(dx ^ dy) +

1

y
LDf (dx ^ dy)

=
�f(x)

y
(dx ^ dy) +

1

y
[dy ^ dy + dx ^ (f 0(x)ydx+ f(x)dy)]

=
�f(x)

y
(dx ^ dy) +

1

y
[f 0(x)ydx ^ dx+ f(x)dx ^ dy)]

= 0

Now assume that f(z), g(z) 2 C(z) are such that for any h 2 C(z), we have that neither f(z) 6= dh
dz nor

g(z) 6= dh
dz . We do not exclude here the possibility that f(z) = g(z). Let V = C2 \ Zf and W = C2 \ Zg with

coordinates (x1, y1) and (x2, y2) respectively. Assume that the two strongly minimal definable sets (V, sf )#

and (W, sg)# are nonorthogonal. Then since they are geometrically trivial, they are non-weakly orthogonal. So
there is Z ⇢ V ⇥W a closed complex Df ⇥Dg invariant generically finite to finite correspondence witnessing
nonorthogonality. We write

!1 =
dx1 ^ dy1

y1
2 ⌦2

V and !2 =
dx2 ^ dy2

y2
2 ⌦2

W

for the corresponding 2-forms. From Lemma 5.8, we have that LDf (!1) = LDg (!2) = 0. We will now view !1

and !2 as 2-forms on Z, which are volume forms since Z is a finite to finite correspondence (tr.deg.CC(Z) = 2).
More precisely we let e!1 be the 2-form on Z defined as the pullback of !1 by the projection map ⇡1 : Z ! V .
The form e!2 is defined similarly. By construction we have that

LDf⇥DG(e!1) = LDf (!1) = 0.

A similar expression holds for e!2.

Lemma 5.9. Let Z be as above, then there exist c 2 C⇤ such that

iDf⇥Dg

✓
dx1 ^ dy1

y1
� c · dx2 ^ dy2

y2

◆
= 0

where iDf⇥Dg is the interior product.

Proof . Since Z is 2-dimensional, the space of rational 2-forms on Z is a C(Z)-vector space of dimension one.
So there exists h 2 C(Z) such that

e!1 = he!2.

We hence have that

0 = LDf⇥DG(e!1)

= LDf⇥DG(he!2)

= (Df ⇥Dg)(h)!2 + hLDg (!2)

= (Df ⇥Dg)(h)!2

So h is in the constant field of Df ⇥Dg in C(Z). Since the equations are orthogonal to C, we have that h 2 C.
By construction we have that !1 = c!2, for c 2 C.

Hence on Z, the two form !1 � c!2 = dx1^dy1

y1
� c · dx2^dy2

y2
is identically 0. Furthermore, on Z, the 1-form

obtained by applying the interior product iDf⇥Dg is 0 and the result follows.



20 J. Freitag, R. Jaoui, D. Marker and J. Nagloo

Lemma 5.10. Let Z be as above, then there is c 2 C⇤ such that on Z

dy1 � f(x1)dx1 � c(dy2 � f(x2)dx2) = 0 2 ⌦1
Z

Proof . We will use the formula

iD(�1 ^ �2) = iD(�1) ^ �2 � �1 ^ iD(�2)

where D is any derivation and �1, �2 are 1 forms. Starting with lemma 5.9

0 = iDf⇥Dg

✓
dx1 ^ dy1

y1
� c · dx2 ^ dy2

y2

◆

= iDf (
dx1 ^ dy1

y1
)� c · iDg (

dx2 ^ dy2
y2

)

=
iDf (dx1) ^ dy1 � dx1 ^ iDf (dy1)

y1
� c ·

iDf (dx2) ^ dy2 � dx2 ^ iDf (dy2)

y2

=
y1dy1 � y1f(x1)dx1

y1
� c · y1dy2 � y2f(x2)dx2

y2
= dy1 � f(x1)dx1 � c(dy2 � g(x2)dx2)

Proposition 5.11. Let Z be as above. Then Z is contained in a closed hypersurface of V ⇥W of the from
Z(p) for some p 2 C[x, y].

Proof . Recall that by assumption for some f1, g1 2 C(z), we have that

f(x1) =
df1
dx1

+
X ci

x1 � ai

and

g(x2) =
dg1
dx2

+
X di

x2 � bi
where at least one of the ci’s and one of the di’s are non-zero. Multiplying the above equations by dx1 and dx2

respectively and using
dy1 � f(x1)dx1 � c(dy2 � g(x2)dx2) = 0

we get

d(y1 � cy2 � f1(x1) + cg1(x2)) = �
X

ci ·
d(x1 � ai)

x1 � ai
+
X

cdi ·
d(x2 � bi)

x2 � bi
.

We use here that d(x1 � ai) = dx1 and d(x2 � ai) = dx2. Consider the Q-linear span of {ci, cdj} - which is a
non-trivial vector space since f(z) (and on top of that g(z)) has at least one simple pole - and extract {e1, . . . , es}
a Q-basis (so s � 1).

For some fixed N � 0, we can take each ei to be ei/N so that the ci’s and cdj ’s are in the Z-span of
{e1, . . . , es}. We then get that

d(y1 � cy2 � f1(x1) + cg1(x2)) =
X

ek
dhk

hk

where hk 2 C[x1, x2] has the specific form

hk =
Y

(x1 � ai)
�n(ci,k)

Y
(x2 � bj)

n(cbj ,k)

and n(ci, k)(resp. n(cbj , k)) denotes the coe�cient of ci (resp. cbj) relatively to ek in the basis e1, . . . , ek. But
by Fact 5.5, it must be that

d(y1 � cy2 � f1(x1) + cg1(x2)) = 0 and dhk = 0.

Hence for k = 1 as an example, we get that
h1(x1, x2) = c

for some constant c 2 C. Since Z projects dominantly on V and W , we get a non-trivial polynomial relation
between x1 and x2 as required.
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To summarize, in this subsection, we have shown

Proposition 5.12. Let f(z), g(z) 2 C(z) be such that for any h 2 C(z), we have that neither f(z) 6= dh
dz nor

g(z) 6= dh
dz . Suppose that x and y are solutions to the strongly minimal equations

z00

z0
= f(z) and

z00

z0
= g(z)

respectively. Let K be any di↵erential extension of C such that K hyialg = K hxialg. Then C(x)alg = C(y)alg.

In the next section we classify the algebraic relations between solutions in details in the case that
C(x)alg = C(y)alg, in particular showing that there are only finitely many, depending on basic invariants of
the rational functions f, g.

6 Algebraic relations between solutions

Theorem 6.1. Let f1(z), . . . , fn(z) 2 C(z) be rational functions such that each fi(z) is not the derivative of a
rational function in C(z) and consider for i = 1, . . . , n, yi a solution of

(Ei) : y
00/y0 = fi(y)

Then tr.deg.CC(y1, y01, . . . , y0n, yn) = 2n unless for some i 6= j and some (a, b) 2 C⇤ ⇥C, yi = ayj + b. In that
case, we also have fi(z) = fj(az + b).

Notice that we do not exclude the case where some of the fi(z) are equal in this statement.

Proof . By Theorem 3.1 and Corollary 3.2, we already know that each of the equations

(Ei) : y
00/y0 = fi(y)

is strongly minimal and geometrically trivial. It follows that if y1, . . . , yn are solutions of (E1), . . . , (En) such
that tr.deg.CC(y1, y01, . . . , y0n, yn) < 2n then for some i 6= j,

tr.deg.CC(yi, y0i, yj , y0j) < 4

Since all the equations (Ei) do not admit any constant solution, yi and yj must realize the generic type of (Ei)
and (Ej) respectively and using strong minimality we can conclude that

tr.deg.CC(yi, y0i, yj , y0j) = 2 and C(yi, y0i)alg = C(yj , y0j)alg.

Proposition 5.12 now implies that in fact C(yi)alg = C(yj)alg. To simplify the notation, set f(z) = fi(z),
g(z) = fj(z), yi = x and yj = y and so we have that x and y are interalgebraic over C.

First note that the derivation on C(x)alg has image in the module C(x)algx0. If F (x, z) = 0 for some z, then

we have that z0 = �Fx(x,z)
Fz(x,z)

x0. Thus there are ↵,� 2 C(x)alg such that y0 = ↵x0 and ↵0 = �x0. Then

y00 = �(x0)2 + ↵(x00) = �(x0)2 + ↵f(x)x0

but also
y00 = g(y)y0 = ↵g(y)x0.

Since x0 6= 0,
�x0 = ↵(g(y)� f(x)).

If � 6= 0, then x0 = ↵(g(y)�f(x))
� 2 C(x)alg contradicting strong minimality. Hence � = 0. Since ↵0 = �x0 and

y0(=↵x0) is not zero, we get that ↵ 2 C⇥. Using y0 = ↵x0 we also obtain that y = ↵x+ b for some b 2 C. Finally,
� = 0 also implies that f(x)� g(y) = 0 and hence f(x) = g(y) = g(↵x+ b).

In the rest of this section, we will derive some consequences of Theorem 6.1 on the structure of the solution
sets of these equations. First let us recall the definitions of what it means for an equation to have no or little
structure.

Definition 6.2. Suppose that X is a geometrically trivial strongly minimal set defined over some di↵erential
field K. Then, X is said to be !-categorical if for any y 2 X, the set X \K hyialg is finite. Moreover, if

X \K hyialg = {y}, then we say that X is strictly disintegrated.
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Example 6.3. In the Poizat example, that is when f(z) = 1
z , the requirement 1

az+b = 1
z gives that a = 1 and

b = 0. Hence, the Poizat example is strictly disintegrated.

Example 6.4. Consider now the case where f(z) = 1
z�a � 1

z�b , where a, b 2 C. Then it is not hard to see

that f(�z + a+ b) = f(z). Hence it follows that the strongly minimal equation z00

z0 = 1
z�a � 1

z�b is not strictly
disintegrated. Moreover we will show that it is !-categorical.

We now focus on the case when f(z) = g(z) and will further study the condition f(ax+ b) = f(x). Recall
that f(z) is such that z00

z0 = f(z) is strongly minimal. We write f(z) = dg
dz +

Pn
i=1

ci
z�↵i

and so f(ax+ b) = f(x)
gives

dg

dz
(�(x)) +

nX

i=1

ci
�(x)� ai

= f(x)

where �(x) = ax+ b. Since � has such a simple form, it is easy to see that � must permute the set of ai, points
at which f has a nonzero residue or else f(ax+ b) 6= f(x). So, bounding the size of the setwise stabilizer of the
collection of ai will bound the number of nontrivial algebraic relations between solutions. In what follows, we
let A be the collection of ai at which f(x) has a nontrivial residue and G1 be the stabilizer of A. We assume
that the points of A have a unique orbit under G1 - otherwise replace A by one of the orbits. Our arguments
below will only depend on the size of any particular set stabilized by the a�ne transformations which induce
algebraic relations.

For some n, �n is in the pointwise stabilizer any of the collection of ai 2 A. If there is more than one ai, then
�n is the identity, since the pointwise stabilizer of two distinct points under the group of a�ne transformations
is trivial (e.g. directly from the stabilizer condition, one gets two linearly independent equations for a, b and of
course a = 1, b = 0 is a solution to the system - thus the unique solution). So, � is torsion in the group of a�ne
transformations. We will represent the group of a�ne transformations in the standard manner:

⇢✓
a b
0 1

◆ ���� a, b 2 C
�
.

The natural action on x 2 C is given by matrix multiplication on the vector

✓
x
1

◆
. One can show that the

elements of finite order in this group are precisely those in which a is a root of unity of some order greater than
one together with the identity element. When a is a primitive kth root of unity, the cyclic subgroup of the a�ne

generated by

✓
a b
0 1

◆
is of order k. If |A| = 1, then a simple argument shows that there are no nontrivial a�ne

transformations which preserve f(x). In the case that |A| > 1, there is an upper bound on the number of a�ne
transformations preserving f in terms of |A| (the same argument works with any set known to be stabilized by
the action).

Claim 6.5. When |A| = n, |G|  n(n� 1).

Proof . First, note that the action of the a�ne group on the a�ne line is sharply 2-transitive, meaning that
for any pairs of distinct elements (c1, c2) and (d1, d2) in C2, there is precisely one a�ne transformation which
maps (c1, c2) to (d1, d2). Thus, the action of the setwise stabilizer on the collection of ai will be determined
by determining the image of a1 and a2. Since their images are in the collection {a1, . . . , an} there are at most
n(n� 1) choices for their images, of which at most n(n� 1)� 1 correspond to nontrivial a�ne transformations.
Thus the setwise stabilizer is of size at most n(n� 1).

Corollary 6.6. Let f(z) 2 C(z) which is not the derivative of a rational function. Then the solution set of the
equation (E) : y00/y0 = f(y) is !-categorical.

Proof . We already proved that the equation is strongly minimal and geometrically trivial. All we need to show
is that if y is a solution of (E), then C hyialg only contains finitely many solutions of (E). By Theorem 6.1

applied to f1(y) = f2(y) = f(y), we see that if y1 2 C hyialg is a solution of (E), then y1 = ay + b for some
(a, b) 2 C⇤ ⇥C such that z 7! az + b belongs in the stabilizer of f(z) by the action of A↵2(C) on C(z) by

precomposition. It follows that if k is the number of solutions of (E) in C hyialg, then

k = |Stab(f(z))|  n(n� 1)

where n is the number of non-zero complex residues of f(z).
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Actually, the previous bound for k obtained above is not sharp. Before improving the bound, we first give
an example for which k will be maximal based on the number of non zero residues of f(y).

Example 6.7. Let n � 2, let c 2 C⇤, let ⇠ be a primitive n-th root of unity and let g(z) 2 C(z) be a rational
function. Consider

f(z) = c.
n�1X

k=0

⇠k

z � ⇠k
+ g(zn) 2 C(z).

We claim that f(⇠z) = f(z). Indeed, obviously g((⇠z)n) = g(zn) and moreover

n�1X

k=0

⇠k

⇠z � ⇠k
=

n�1X

k=0

⇠k�1

z � ⇠k�1

=
⇠�1

z � ⇠�1
+

n�1X

k=1

⇠k�1

z � ⇠k�1

=
⇠n�1

z � ⇠n�1
+

n�2X

k=0

⇠k

z � ⇠k

=
n�1X

k=0

⇠k

z � ⇠k
.

It follows that f(⇠kz) = f(z) for all k  n� 1 and therefore that the stabilizer f(z) under the action of the a�ne
group has cardinal � n. Consequently, there at least n polynomial relations for the solutions of the di↵erential
equation y00

y0 = f(y).

The following lemma shows that this equality in fact holds:

Lemma 6.8. Let f(z) 2 C(z) be a function with at least one non zero residue. Denote by G the stabilizer of
f(z) under the action of the a�ne group by precomposition and by n � 1 the number of complex points where
f(z) has a non zero residue. Then

|G|  n.

We already know by Claim 6.5 that G is finite.

Claim 6.9. Any finite subgroup G of A↵2(C) is cyclic and conjugated to a finite subgroup of rotations (for the
usual action of A↵2(C) on the complex plane).

Proof . Since the additive group Ga(C) has no non-trivial finite subgroup, using the exact sequence

0 ! Ga(C) ! A↵2(C) ! Gm(C) ! 1,

we see that G is isomorphic to its image µ(G) in Gm(C) and therefore that G is cyclic. Moreover, in the matrix
representation of A↵2(C), G is generated by an element of the form

⌅ =

✓
⇠ b
0 1

◆

where ⇠ is a root of unity. A direct computation shows that

✓
1 �c
0 1

◆✓
⇠ 0
0 1

◆✓
1 c
0 1

◆
=

✓
⇠ (⇠ � 1)c
0 1

◆

Hence, if ⇠ 6= 1 (i.e. G is not the trivial group) then taking c = b
⇠�1 conjugates G to a subgroup of S1 = {z 2

C || z |= 1} ⇢ Gm(C) (i.e. a subgroup of rotation of the complex plane).

Claim 6.10. Let f(z) 2 C(z) be a rational function stabilized by a non-trivial finite group G of rotations of
the complex plane then f(z) has a trivial residue at z = 0.
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Proof . The finite group G is generated by the rotation z 7! ⇠z where ⇠ 6= 1 is a root of unity. Write

f(z) =
a

z
+ g(z)

where 0 is not a simple pole of g(z). Therefore, 0 is not a simple pole of g(⇠z) either and

f(⇠z) =
a⇠�1

z
+ g(⇠z).

Comparing the residues of f(⇠z) and f(z) at 0, we get a = a⇠�1 and therefore a = 0. Hence, f(z) has a trivial
residue at z = 0.

Proof of Lemma 6.8. Denote by G the stabilizer of f(z). We already know that G is finite by Claim 6.5. Using
Claim 6.10, up to replacing f(z) by f(z + c), we can assume that G is a subgroup of the group of rotations
of the complex plane since this transformation does not a↵ect the number of complex points where f(z) has a
non-zero residue.

In particular, G is a subgroup of Gm(C) acting on the complex plane by multiplication. Denote by
A = {a1, . . . , an} 6= ; the set of complex points where f(z) has a non-zero residue. Claim 6.10 ensures that
A ⇢ C⇤. Since the action of Gm(C) on C⇤ is 1-sharply transitive, the same argument as in Claim 6.5 gives

|G|  n.

Since G is a group of rotations, the proof gives in fact a bit more: if the upper bound is achieved (|G| = n)
then all the complex numbers where f(z) has a non zero residue must lie on a common circle of the complex
plane.

Coming back to Example 6.7, since n � 2, g(z) does not have non zero residues and therefore f(z) has a
non-zero residue exactly at the nth roots of unity. It follows that the stabilizer of f(z) is exactly the group of
rotations of the complex plane with angles 2⇡k/n with k = 0, . . . n� 1.

Lemma 6.11. Let f(z) 2 C(z) be a rational function with at most simple poles. Assume that f(z) has a
non-zero residue at n � 2 complex points and that equality occurs in the previous lemma:

the stabilizer of f(z) under the action of the a�ne group by precomposition has cardinality n.

Then f(z) is conjugated to one of the examples of Example 6.7: there exist a, b 2 C such that

f(az + b) = c.
n�1X

k=0

⇠k

z � ⇠k
+ g(zn)

where g(z) 2 C[z] is a polynomial.

Proof . As for the proof of the previous lemma, replacing f(z) by f(z + c), we can assume that the stabilizer
G of f(z) is the subgroup of rotations with angles 2⇡k/n for k = 0, . . . , n� 1. As noticed after the proof of the
previous lemma, after this translation, all the poles of f(z) lie (in a single orbit hence) on a circle centered at 0
(say of radius r). Replacing f(z) by f(rz), we can assume that all the poles of f(z) lie on the unit circle. Finally,
replacing f(z) again by f(ei✓z), we can assume one of the pole of f(z) is z = 1.

After this combination of a�ne substitutions, the n simple poles of f(z) are located at nth roots of unity
1, ⇠, . . . , ⇠n�1. We claim that

f(z) = c.
n�1X

k=0

⇠k

z � ⇠k
+ g(zn).

Indeed, writing the partial fraction decomposition of f(z) as

f(z) = P (z) +
n�1X

i=0

↵i

z � ⇠i

we get (by uniqueness of the partial fraction decomposition) that both terms are preserved under the action of
G.
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• Looking at the polynomial part, if a is a root of P then

P (a) = P (⇠a) = · · · = P (⇠n�1a) = 0.

Since these are all distinct roots, we get that

(z � a)(z � ⇠a) · · · (z � ⇠n�1a) = (zn � an)

divides P (z). Iterating the argument, we obtain that P (z) is of the form

P (z) = (zn � an1 ) · · · (zn � ank ) = g(zn)

• Looking at the simple poles part: we compute as in Example 6.7

n�1X

i=0

↵i

⇠z � ⇠i
=

n�1X

i=0

↵i⇠�1

z � ⇠i�1

=
↵0⇠�1

z � ⇠n�1
+

n�2X

i=0

↵i+1⇠�1

z � ⇠i

which gives ↵i+1 = ↵i⇠ for i = 1, . . . (n� 2) and ↵0 = ↵n�1⇠. In particular, ↵0 = c can be chosen freely and
↵i = ⇠ic for i � 1. The last equality is automatically satisfied since ⇠ is a nth-root of unity.

Putting everything together, we showed that after these substitution, we obtain

f(z) = g(zn) + c.
n�1X

k=0

⇠k

z � ⇠k
.

Example 6.12. If we consider the functions given in Example 6.4 by

f(z) =
1

z � a
� 1

z � b

and z 7! a�b
2 z + a+b

2 is the unique a�ne transformation sending (1,�1) to (a, b) then

f(
a� b

2
z +

a+ b

2
) =

2

b� a
(

1

z + 1
� 1

z � 1
)

are all of the form prescribed by the lemma.
On the other hand, it is necessary to assume that f(z) has only simple poles for the conclusion of the lemma

to hold. For instance,

f(z) =
�1

z � 1
+

1

z + 1
+

1

(z � a)2
+

1

(z + a)2
+

1

(z + b)3
� 1

(z � b)3

is not of the form given by Example 6.7 and satisfies f(z) = f(�z).

Corollary 6.13. Let f(z) 2 C(z). Denote by a1, . . . , an the non-zero zero complex residues of f(z) and assume
n � 1. For a solution y of (E) : y00/y0 = f(y), denote by acl(y) the set of solutions of (E) which are algebraic
over C hyi. Then |acl(y)| does not depend on the chosen solution y and

1  |acl(y)|  n

Moreover,

(i) |acl(y)| = 1 if n = 1 or if n � 3 and the only a�ne transformation which preserves the set of complex
residues of f(z) is the identity. In that case, the equation is strictly disintegrated.

(ii) Assume that f(z) does not have higher order poles. Then |acl(y)| = n if and only if for some (a, b) 2 C⇤ ⇥C,

f(az + b) = c.
n�1X

k=0

⇠k

z � ⇠k
+ g(zn)

where g(z) 2 C[z] is a polynomial and ⇠ is a primitive n-root of unity.
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7 Observations about the non-minimal case

Theorem 3.1 tells us that the solution set of z00

z0 = f(z) has rank 2 precisely when we can write f(z) as the
derivative of a rational function g(z). In that case, a family of order one subvarieties fibers our equation and is
given by z0 = g(z) + c for c 2 C. A priori, three options might arise:

1. The equation z00

z0 = f(z) is internal to the constants.

2. The fibers z0 = g(z) + c are internal to the constants, but the equation z00

z0 = f(z) is 2-step analyzable in
the constants.

3. For generic c, z0 = g(z) + c is orthogonal to the constants.

The goal of this section is to show that all three possibilities can arise in our family of equations.

7.1 The generic fiber and nonorthogonality to the constants

The following slightly restated theorem of Rosenlicht gives conditions for a rational order one di↵erential equation
to be nonorthogonal to the constants, see [62, 45].

Theorem 7.1. Let K be a di↵erential field with algebraically closed field of constants. Let f(z) 2 CK(z) and
consider the di↵erential equation z0 = f(z). Then z0 = f(z) is nonorthogonal to the constants if and only if 1

f(z)

can be written as:

c
@u
@z

u
or c

@v

@z

where c 2 CK and u, v 2 CK(z).

Lemma 7.2. Suppose that g(z) 2 C(z). Then for c 2 C generic over the coe�cients of g(z), 1
g(z)+c can not be

written as c1
@v
@z for any c1 2 C and @v

@z 2 C(z).

Proof . We first establish the following claim:

Claim 7.3. For any p(z), q(z) 2 C[z] nonzero, sharing no common roots, with at least one of p, q nonconstant,
and c generic over the coe�cients of p, q, the polynomial p(z)� cq(z) has only simple roots.

Proof of Claim 7.3. Assume for contradiction that the claim is false. Then for some b 2 C, the polynomial

f(x) = p(z � b)� cq(z � b)

has no constant or linear term (i.e. has at least a double root at zero). Then f(0) = f 0(0) = 0. It follows that
p(�b) = cq(�b) and p0(�b) = cq0(�b). Now, since p, q share no common roots and c is generic over the coe�cients
of both, we must have q(�b) 6= 0 and p(�b) 6= 0. Now by a simple computation, it follows that

d

dz

✓
p(z)

q(z)

◆
(�b) = 0.

Again, since p, q are relatively prime, the function p(z)
q(z) is nonconstant and so b is algebraic over the coe�cients

of p, q. But now p(�b)
q(�b) = c, which is impossible as c is generic. This proves the claim.

From the claim it follows for g(z) 2 C(z) and c generic over the coe�cients of g, 1
g(z)+c can not be written

as c1
@v
@y - indeed by the above claim it follows that 1

g(z)+c has only simple poles while c1
@v
@y has poles of order 2

or more.

Now, combining Lemma 7.2 and Theorem 7.1, we obtain:

Corollary 7.4. If z00

z0 = f(z) has rank 2 and the family of order one subvarieties is given by z0 = g(z) + c, then

the generic solution of z00

z0 = f(z) is analyzable in the constants if and only if for generic c, 1
g(z)+c can be written

as c1
@u
@z
u for c1 2 CK and u 2 CK(z).

Remark 7.5. The condition that a rational function can be written as a constant times a single logarithmic
derivative is known to be non-constuctible in the coe�cients of the rational function - see for instance Corollary
2.10 of [45].
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7.2 Internality to the constants

Consider the case z00

z0 = c where c 2 C. In this case, regarding z as a function of t and assuming c 6= 0, solutions
of the equation can be seen by an elementary calculation, to be given by

aect + b,

for some a, b 2 C. Then, the equation is internal to the constants (with the internality realized over a single
solution). This fits into case 1) of the classification given at the beginning of this section.

Question 7.6. Is there any nonconstant rational function f(z) such that z00

z0 = f(z) is internal to the
constants?

7.3 Analyzability to the constants

We first fix some notation for this subsection: z00

z0 = f(z) with g(z) a rational antiderivative of f(z) so that

z0 = g(z) + c is a family of order one subvarieties of z00

z0 = f(z).

Lemma 7.7. Suppose that g(z) is a degree 2 polynomial a2z2 + a1z + a0. Then for generic† c 2 C, z0 = g(z) + c
is nonorthogonal to the constants.

Proof . We have that
1

g(z) + c
=

d

(z � ↵)(z � �)
,

with ↵ 6= �. Then writing A = d
↵�� , B = d

��↵ ,

1

g(z) + c
=

A

z � ↵
+

B

z � �
.

If we take u(z) = z�↵
z�� , then

1

g(z) + c
= A

u0

u
,

and so it follows by Theorem 7.1 that z0 = g(z) + c

We next show that the equation z00

z0 = z falls under case 2 of the classification mentioned at the beginning
of this section:

Lemma 7.8. The generic type of the equation
z00

z0
= z (9)

is 2-step analyzable in the constants and is not internal to the constants.

Proof . For a generic solution z of equation 9, set c(z) = z2 � 2z0 2 C(z, z0). The equation 9 implies that

c(z)0 = 0

and set

z0 =
z �

p
c(z)

z +
p

c(z)
2 C(z, z0)alg

A direct computation shows that

z00
z0

=
(z�

p
c(z))0

z�
p

c(z)
� (z+

p
c(z))0

z+
p

c(z)

= z0

z�
p

c(z)
� z0

z+
p

c(z)

=
2z0

p
c(z)

z2�c(z) =
p

c(z)

†
or more specifically, as long as c 6= a0 � a2

1
4a2
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where we used the exact formula for c(z) in the computation of the denominator for the last equality. Since c(z)
and hence

p
c(z) are constants, it follows that

✓
z00
z0

◆0

= 0 (10)

Since for z generic,
p

c(z) /2 C, z0 realizes the generic type of equation 10 so that there is an algebraic
correspondence between the equations 9 and 10. The equation 10 is known to be analyzable in exactly two steps
in the constants by [31] and therefore so is the equation 9.

A linear change of variables z1 = z�b
a can be used to give a bijective correspondence between equation 9

and any such equation with the right hand side an arbitrary linear function of z over C:

Corollary 7.9. For any a, b 2 C, the generic type of the equation

z00

z0
= az + b

is 2-step analyzable in the constants and is not internal to the constants.

7.4 Orthogonality to the constants

We remind the reader of our general notation: z00

z0 = f(z) with g(z) an antiderivative of f(z) so that z0 = g(z) + c

is a family of order one subvarieties of z00

z0 = f(z). In this subsection, we consider the case that g(z) is a degree
three polynomial over C.

Lemma 7.10. There is no polynomial P (z) of degree 3 such that

fc(z) =
1

P (z) + c

is a constant multiple of a logarithmic derivative in C(z) for generic values of c.

Proof . By contradiction, assume that such a polynomial P (z) exists. Without loss of generality, we can assume
that P (z) is monic and the constant coe�cient of P (z) is 0. So we write:

P (z) = z3 + az2 + bz.

This implies that the quotients of the residues do not depend on c and therefore that there exists fixed

A1, A2, A3 2 C⇤ such that for infinitely many values of c,

(⇤) : 1

P (z) + c
= e.(

A1

z � ↵1
+

A2

z � ↵2
+

A3

z � ↵3
)

for some e 6= 0,↵1,↵2,↵3. So, choose c such that P (z) + c has simple roots (this holds for any c independent
from a, b, for instance) and A1, A2, A3 are the residues of fc(z). For d close enough to c, P (z) + d also as simple
roots �1,�2,�3 and if B1, B2, B3 are the residues of fd(z) then

B2/B1 = A2/A1 and B3/B1 = A3/A1.

It follows that

fd(z) =
B1

z � �1
+

B2

z � �2
+

B3

z � �3

=
B1

A1

⇣ A1

z � �1
+

A2

z � �2
+

A3

z � �3

⌘

Up to replacing e by e.(A1A2A3), we can assume that A1, A2 and A3 have been chosen such that:

(E1) : A1A2A3 = 1.

With this normalization, we claim that:

Claim 7.11. A1, A2 and A3 are the three third roots of unity. In particular, A1/A2 /2 Q.
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Proof . It is enough to show that (
A1 +A2 +A3 = 0

A1A2 +A1A3 +A2A3 = 0.

since this implies that (z �A1)(z �A2)(z �A3) = z3 � 1. Note that ↵1,↵2,↵3 must be the roots of P (z) + c so
we get the two equations:

(S) :

(
↵1 + ↵2 + ↵3 = a

↵1↵2 + ↵2↵3 + ↵1↵3 = b.

On the other hand, developing (⇤) gives:

1
(z�↵1)(z�↵2)(z�↵3)

= e.A1(z�↵2)(z�↵3)+A2(z�↵1)(z�↵3)+A3(z�↵1)(z�↵2)
(z�↵1)(z�↵2)(z�↵3)

= e.

⇣
A1+A2+A3

⌘
z2�
⇣
A1(↵2+↵3)+A2(↵1+↵3)+A3(↵1+↵2)

⌘
z+

⇣
A1↵2↵3+A2↵1↵3+A3↵1↵2

⌘

(z�↵1)(z�↵2)(z�↵3)

The coe�cients of z2 and z on the right hand side must therefore be 0 and the constant coe�cient must
be equal to 1. The last equation defines e implicitly in terms of the other parameters so we won’t be using it.
Next, consider the coe�cient of z2

(E2) : A1 +A2 +A3 = 0.

The sum of the residues is 0. The coe�cient of z:

0 = A1(↵2 + ↵3) +A2(↵1 + ↵3) +A3(↵1 + ↵2) =

↵1(A2 +A3) + ↵2(A1 +A3) + ↵3(A1 +A2) =

�↵1A1 � ↵2A2 � ↵3A3

where in the last equality we used (E2).
Together with the system (S), this yields that ↵1,↵2,↵3 are solutions of the system of polynomial equations:

(S) :

8
><

>:

X1 +X2 +X3 = a

X1X2 +X2X3 +X1X3 = b

A1X1 +A2X2 +A3X3 = 0

This is where we use our assumption: since this is true for infinitely many values of c, this system must have
infinitely many solutions so its set of solutions must have dimension � 1 (actually = 1). This will give us our
last equation on A1, A2, A3:

Consider q = (q1, q2, q3) a common solution of the system above (since it has infinitely many solutions).
The first equation and the last equations are equations of planes so they must intersect on a line L of the form

L = {q + �v,� 2 C}
where the vector v is given by

v =

0

@
1
1
1

1

A ^

0

@
A1

A2

A3

1

A =

0

@
A3 �A2

A1 �A3

A2 �A1

1

A

So in order for the system (S) to have infinitely solutions this line (L) must be contained in the conic given
by the second equation:

(q1 + �v1)(q2 + �v2) + (q2 + �v2)(q3 + �v3) + (q1 + �v1)(q3 + �v3) = b

So the coe�cient in �2 must vanish, which gives:

0 = v1v2 + v2v3 + v1v3

= (A3 �A2)(A1 �A3) + (A1 �A3)(A2 �A1) + (A3 �A2)(A2 �A1)

= �(A2
1 +A2

2 +A2
3) +A1A3 +A1A2 +A2A3

= �(A1 +A2 +A3)2 + 3(A1A3 +A1A2 +A2A3)

= 3(A1A3 +A1A2 +A2A3)



30 J. Freitag, R. Jaoui, D. Marker and J. Nagloo

where we used (E2) on the last line. We conclude that

(E3) : A1A2 +A2A3 +A1A3 = 0.

To conclude the proof of the lemma, we use the following argument explained in the Example 2.20 of [26]:
every (non constant) f(z) 2 C(z) can be written as:

f(z) =
(z � a1) . . . (z � an)

(z � b1) . . . (z � bm)

By direct calculation, one can see that:

f 0(z)

f(z)
=
X 1

z � ai
�
X 1

z � bi
.

It follows that every logarihmic derivative has only simple poles with integer residues. So if g(z) is a constant
multiple of a logarithmic derivative, then all poles are simple are the quotients of the residues are rational, but
we’ve observed that is impossible.

By combining the previous Lemma with Corollary 7.4, we see that

Corollary 7.12. For any polynomial P (z) of degree 3, then for generic c 2 C independent from the coe�cients
of P , z0 = P (z) + c is orthogonal to the constants.

Proposition 7.13. Suppose a, b, c, d are algebraically independent over Q. Let g(z) = z3 + az2 + bz. The
strongly minimal sets defined by z0 = g(z) + c and z0 = g(z) + d are orthogonal.

Proof . Let ↵1,↵2,↵3 be the zeros of g(z) + c. Then ↵1,↵2,↵3 are algebraically independent.

1

g(z) + c
=

3X

i=1

Ai

z � ↵i

where

Ai =
1Q

j 6=i(↵i � ↵j)
.

We have the linear relation A1 +A2 +A3 = 0.

Claim 7.14. If m1,m2,m3 2 Q and
P

miAi 2 Q(a, b)alg, then m1 = m2 = m3.

Proof of Claim 7.14. Suppose
P

miAi = � 2 Q(a, b)alg.

�
Y

j<i

(↵i � ↵j) = m1(↵2 � ↵3)�m2(↵1 � ↵3) +m3(↵1 � ↵2)

= (m3 �m2)↵1 + (m1 �m3)↵2 + (m2 �m1)↵3

If m1 = m2 = m3, then we are left with the equation �
Q

j<i(↵j � ↵i) = 0. Since ↵1,↵2,↵3 are algebraically

independent we must also have � = 0. Otherwise we have a degree 3 polynomial over Q(a, b)alg vanishing at
(↵1,↵2,↵3).

Let’s write the linear term
P

ni↵i. We now have the following system of equations over Q(a, b)alg satisfied
by ↵1,↵2,↵3.

�a = z1 + z2 + z3

b = z1z2 + z1z3 + z2z3

�
Y

j<i

(zi � zj) = nz1 + n2z2 + n3z3

Let H be the hyperplane z1 + z2 + z3 = �a, V the surface z1z2 + z1z3 + z2z3 = b, and W the surfaceQ
i<j(zi � zj) = nz1 + n2z2 + n3z3. We will show H \ V \W is finite. But then ↵1,↵2,↵3 2 Q(a, b)alg, a

contradiction.
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We make the substitution z3 = �z1 � z2 � a into the defining equation for V to get F (z1, z2) = 0 where

F (z1, z2) = z21 + z22 + z1z2 + az1 + az2 + b.

This is an irreducible polynomial.
Making the same substitution into the defining equation for W we get G(z1, z2) = 0 where

G(z1, z2) = �[2z31 � 2z22 + 3z21z2 � 3z1z
2
2 ] + lower degree terms

If F (z1, z2) = G(z1, z2) = 0 has infinitely many solutions, then, since F is irreducible, we must have F |G.
But comparing the homogeneous parts of F andG of highest degree we see that is impossible, so we’ve established
the claim.

Now suppose the strongly minimal set z0 = g(z) + c and z0 = g(z) + d are non-orthogonal. Let B1, . . . , Bn

be the residues for g(z) + d.
By Lemma 5.6 (or [26, 2.22]),

ldimQ(A1, A2, A3, B1, B2, B3) < ldimQ(A1, A2, A3) + ldimQ(B1, B2, B3) = 4.

Thus we have an equation X
miAi =

X
niBi

where neither m1 = m2 = m3 or n1 = n2 = n3.
Since A1, . . . , An are algebraic over Q(a, b, c) and c |̂ Q(a,b)alg

d,

tp(A1, A2, A3/Q(a, b)alg, B1, B2, B3) is finitely satisfiable in Q(a, b)alg. Thus we have
P

miAi 2 Q(a, b)alg

contradicting Claim 7.14.

We now derive the following model-theoretic consequence of Corollary 7.12 and Proposition 7.13.

Corollary 7.15. Let f(z) = z2 + az + b be a complex polynomial of degree 2. Then the theory of the solution
set of

(?) : z00/z0 = f(z)

has the dimensional order property (DOP) and hence 2 isomorphism classes of models of cardinal  for every
uncountable cardinal .

Recall that a complete totally transcendental theory T has the dimensional order property (DOP) if there
are models M0 ⇢ M1,M2 with M1 |̂

M0
M2 and a regular type q with parameters in the prime model over

M1 [M2 such that q is orthogonal to M1 and M2. It is well-known that if T has the DOP then T has 2

isomorphism classes of models of cardinal  for every  � @1+ | T |.

Proof . First note that if ↵ 6= 0 then y 7! ↵y gives a definable bijection between the solution sets of z00/z0 = f(z)
and z00/z0 = f(z/↵). Choosing ↵ = 1/

p
3, we can assume that f(z) is of the form

f(z) = 3z2 +
p
3az + b

Set g(z) = z3 + a
p
3

2 z2 + bz and let c be a transcendental constant over Q(a, b). We claim that the generic type
qc 2 S(Q(a, b, c)) of

z0 = g(z) + c.

is orthogonal to Q(a, b)alg: assume that qc is non-orthogonal to Q(a, b)alg. Since qc is strongly minimal and
orthogonal to the constants by Corollary 7.12, qc is one based. It follows that there exists a minimal type
q0 2 S(Q(a, b)alg) non-orthogonal to qc. Moreover, any copy qd of qc for every transcendental constant d over
Q(a, b) is also non-orthogonal to q0.

By transitivity of the non-orthogonality relation for minimal types, the types qc and qd are non-orthogonal
whenever c and d are transcendental constant over Q(a, b). This contradicts Proposition 7.13, hence p is
orthogonal to Q(a, b)alg.

We conclude as in Chapter 3, Corollary 2.6 of [44] that the theory of the solution set of (?) has the DOP:
consider M0 the prime model over Q(a, b), c and d independent transcendental constants over Q(a, b) and denote
by M1 (resp. M2) the prime model over Q(a, b, c) (resp. Q(a, b, d)).

Set e = c+ d and q = qe. We claim that qe is orthogonal to both M1 and M2: since e is a transcendental
constant over M1, we have that:

e |̂
Q(a,b)alg

M1 and qe orthogonal to Q(a, b)alg
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from which it follows that qe is orthogonal to M1. Similarly, qe is orthogonal to M2, hence the theory of the
solution set of (?) has the DOP and hence the maximal number of isomorphism classes of models in any
uncountable cardinal.

In particular, from our analysis of a specific autonomous second order equation, we recover Shelah’s theorem
in [64] which asserts that the theory DCF0 admits the maximal number of isomorphism classes of models in
any given uncountable cardinal. While Shelah’s proof uses di↵erentially transcendental elements, it was already
noticed by Poizat in [59, pp. 10] that the DOP is also witnessed by families of algebraic di↵erential equations
parametrized by constants such as:

(x0 =
cx

1 + x
, c 2 C⇥).

Remark 7.16. In the same vein, it is interesting to note that our results allows us to compute e↵ectively the
oldest model-theoretic invariant — the function  7! I() which counts the isomorphism classes of models of
cardinal  — for the solution sets of equations of the form (?). More precisely, if Tf denotes the theory of the
solution set of y00/y0 = f(y) and I(, Tf ) counts the number of isomorphism classes of models of Tf of cardinal
 then:

(1) The rational function f(z) is a derivative in C(z) if and only if I(, Tf ) = 1 for all infinite cardinals .
(2) If f(z) is constant or a linear polynomial then I(, Tf ) = 1 for all uncountable cardinals  but I(@0, Tf ) =

@0.
(3) If f(z) is a polynomial of degree 2 then I(, Tf ) = 2 for every uncountable cardinal .

From this perspective, it would be interesting to show that no other function  7! I() can occur in the family
(?) or equivalently that the theory of the solution set of any di↵erential equation of the form (?) which is not
analyzable in the constants nor strongly minimal admits the maximal number of isomorphism classes of models
in every uncountable cardinal.
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Journal für die reine und angewandte Mathematik (Crelles Journal), 2017(726):1–27, 2017.
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