

Multimodal CS Education Using a Scaffolded CSCL Environment

Robert Monahan
 Jessica Vandenberg
 Anisha Gupta
 Andy Smith
 rpmonaha@ncsu.edu
 jvanden2@ncsu.edu
 agupta44@ncsu.edu
 pmsmith4@ncsu.edu
 North Carolina State University
 USA

Rasha Elsayed
 Kimkinyona Fox
 Aleata Hubbard Cheuoua
 Cathy Ringstaff
 relsaye@wested.org
 kfox@wested.org
 ahubbar@wested.org
 cringst@wested.org
 WestEd
 USA

James Minogue
 Kevin Oliver
 Bradford Mott
 jminogu@ncsu.edu
 kmoliver@ncsu.edu
 bwmott@ncsu.edu
 North Carolina State University
 USA

ABSTRACT

There is a growing need for 21st-century workers to be digitally literate and to possess computational thinking and collaborative problem-solving skills. Computer-supported collaborative learning (CSCL) focused on computational thinking can guide students toward the co-development of these skills. In this work, we present our approach to integrating virtual and physical learning modalities into INFUSECS, a CSCL environment. INFUSECS uses problem-based learning scenarios to situate upper elementary school students (ages 8 to 11) in a CSCL setting to foster their computational thinking and science knowledge construction as they collaborate to create digital narratives.

1 OVERVIEW

Digital learning environments that include problem-based learning opportunities enable learners to collaboratively “test ideas and solutions, challenge others’ solutions, and engage in dynamic and creative dialogue” [3, p.351]. CSCL models that structure collaborative problem-solving situations for students have been found to be potent pedagogical tools, and to enhance the quality of complex learning outcomes [2], while promoting a shared understanding among students [1, 4].

INFUSECS is designed with built-in scaffolding to support collaborative problem-solving with the end goal of enabling students to create fully functional makerspace prototypes and digital narratives driven by block-based programs. The backstory of the learning environment situates the students with a team of scientists who are stranded on an island after a shipwreck. The students explore virtual locations (in tandem) where they discover and manage resources that can be used in their problem-solving efforts. For example, if a pair of students decide to have the characters in their narrative use a wind turbine to power a rescue signal, the students will use a physical set of maker materials to construct a working model (Figure 1). Depending on which problem-solving challenge students

Figure 1: INFUSECS Collaborative Problem Solving

choose, they need to figure out the degree to which they should collaborate with each other and/or with other teams to make their solutions “work.” Once they have developed a solution they are satisfied with, students are asked to co-construct responses to reflection questions which act as the seeds for a jointly created digital narrative. The final step in their experience involves the students using a block-based coding interface to test and run their narrative programs that allow on-screen characters to act out the problem-solving vignettes they created. This poster presents results from a pilot study with INFUSECS including reports on student collaborative behavior and on student perceptions, interest, and motivation related to CS education in a multimodal CSCL environment.

ACKNOWLEDGMENTS

This research was supported by the National Science Foundation (NSF) through grants DRL-1921495 and DRL-1921503. Any opinions, findings, and conclusions expressed in this material are those of the authors and do not necessarily reflect the views of the NSF.

REFERENCES

- [1] Allyson Hadwin, Sanna Järvelä, and Mariel Miller. 2018. Self-regulation, co-regulation, and shared regulation in collaborative learning environments. (2018).
- [2] Raija Hämäläinen. 2011. Using a game environment to foster collaborative learning: a design-based study. *Technology, Pedagogy and Education* 20, 1 (2011), 61–78.
- [3] Petros Lameras, Thrasivoulos Tsatsos, Panagiotis Petridis, Dimitris Tolis, Fotis Liarokapis, Despina Anastasiadou, and Sylvester ... Arnab. 2015. Creative thinking experiments for entrepreneurship with a disruptive, personalised and mobile game-based learning ecosystem. In *2015 International Conference on Interactive Mobile Communication Technologies and Learning (IMCL)*. IEEE, 348–352.
- [4] Leonardo S Silva. 2020. Investigating the socially shared regulation of learning in the context of programming education. In *Proceedings of the 2020 ACM Conference on Innovation and Technology in Computer Science Education*. 575–576.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

ITiCSE 2023, July 8–12, 2023, Turku, Finland

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0139-9/23/07.

<https://doi.org/10.1145/3587103.3594181>