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Abstract— How can a social planner adaptively incentivize
selfish agents who are learning in a strategic environment to
induce a socially optimal outcome in the long run? We propose
a two-timescale learning dynamics to answer this question in
games. In our learning dynamics, players adopt a class of
learning rules to update their strategies at a faster timescale,
while a social planner updates the incentive mechanism at a
slower timescale. In particular, the update of the incentive
mechanism is based on each player’s externality, which is
evaluated as the difference between the player’s marginal cost
and the society’s marginal cost in each time step. We show that
any fixed point of our learning dynamics corresponds to the
optimal incentive mechanism such that the corresponding Nash
equilibrium also achieves social optimality. We also provide
sufficient conditions for the learning dynamics to converge to a
fixed point so that the adaptive incentive mechanism eventually
induces a socially optimal outcome. Finally, as an example, we
demonstrate that the sufficient conditions for convergence are
satisfied in Cournot competition with finite players.

I. INTRODUCTION

The design of incentive mechanisms plays a crucial role
in many social-scale systems, where the system outcomes
depend on the selfish behavior of a large number of interact-
ing players (human users, service providers, and operators).
The outcome arising from such strategic interaction – Nash
equilibrium – often leads to a suboptimal societal outcome.
This is due to the fact that individual players often ignore
the externality of their actions (i.e. how their actions affect
the cost of others) when minimizing their own cost. An
important way to address the issue of externality is to provide
players with incentives that align their individual goal of cost
minimization with the goal of minimizing the total cost of
the society ([1], [2], [3], [4]).

The problem of incentive design is further complicated
when the design faces a set of learning agents who are
repeatedly updating their strategies ([5], [6], [7]). Such a
problem is particularly relevant when the physical system
has experienced a random shock, and players are in the
process of reaching a new equilibrium. Designing a socially
optimal incentive mechanism directly based on the conver-
gent strategy of the learning agents is challenging because
such an equilibrium is typically difficult to compute in large-
scale systems. The question that then arises is: how can a
social planner design an adaptive incentive mechanism to
influence players’ learning dynamics so that the strategy

C. Maheshwari, K. Kulkarni, and S. Sastry are with EECS, University
of California Berkeley, USA. M. Wu is with the school of Operations
Research and Information Engineering at Cornell University, NY, USA. The
work was done while M. Wu was at the Simons Institute for the Theory
of Computing, Berkeley. chinmay maheshwari@berkeley.edu, kshitijkulka-
rni@berkeley.edu manxiwu@cornell.edu, sastry@eecs.berkeley.edu.

learning under the adaptive mechanism leads to a socially
beneficial outcome in the long run?

We propose a discrete-time learning dynamics that jointly
captures the players’ strategy updates and the designer’s
updates of incentive mechanisms. The incentive mechanism
designed by the social planner sets a payment (tax or sub-
sidy) for each player that is added to their cost function in the
game. In each time step, players update their strategies based
on the opponents’ strategies and the incentive mechanism in
the current step, and the social planner updates the incen-
tive mechanism in response to players’ current strategies.
We assume that the incentive update proceeds at a slower
timescale than the strategy update of players. The slower
evolution of incentives, which allows the players to consider
the incentives as static, is in-fact a desirable characteristic
for any societal scale system, where frequent changes of
incentives may lead to instability in the system and may
hamper participation.

A key feature of our learning dynamics is that the incentive
update in each time step is based on the externality created
by each player with their current strategy. In particular,
given any strategy profile, the externality of each player is
evaluated as the difference between the marginal cost of
their strategy on themselves and the marginal social cost.
In a static incentive design problem, when all players are
charged with their externality, the change of their total cost
– original cost in game plus the payment – with respect to
their strategy becomes identical to the change of social cost.
Consequently, the induced Nash equilibrium is also socially
optimal [8], [9], [10]. In our learning dynamics, the social
planner accounts for the externality of each player evaluated
at their current strategy, which evolves with players’ strategy
updates.

The externality-based incentive updates distinguish our
adaptive incentive design from other recent studies on incen-
tive mechanisms with learning agents. The paper [11] studies
the problem of incentive design while learning the cost
functions of players. The authors assume that both the cost
functions and incentive policies are linearly parameterized,
and the incentive updates rely on the knowledge of players’
strategy update rules instead of just the current strategy
as in our setting. Additionally, the paper [12] considers a
two-timescale discrete-time learning dynamics, where play-
ers adopt a mirror descent-based strategy update, and the
social planner updates an incentive parameter according to a
gradient descent method. The convergence of such gradient-
based learning dynamics relies on the assumption that the
social cost when evaluated at players’ equilibrium strategy
is convex in the incentive parameter. However, the convexity
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assumption can be restrictive since the equilibrium strategy
as a function of the incentive parameter is nonconvex even
in simple games.

We show that our externality-based incentive updates
ensure that any fixed point of our learning dynamics cor-
responds to a optimal incentive mechanism, such that the
induced Nash equilibrium of the game is also socially
optimal (Proposition 3.1). This result is built on the fact that
at any fixed point of our learning dynamics, the strategy
profile is a Nash equilibrium corresponding to the incentive
mechanism, and each player’s payment equals to the exter-
nality created by their equilibrium strategy. Therefore, the
equilibrium strategy associated with this externality-based
payment also minimizes the social cost. Additionally, we
present the sufficient conditions on the game such that the
fixed point set is a singleton set, and thus the socially optimal
incentive mechanism is unique (Proposition 3.2).

Furthermore, we provide sufficient conditions on games
that guarantee the convergence of strategies and incentives
induced by our learning dynamics (Theorem 3.3). Since the
convergent strategy profile and incentive mechanism corre-
sponds to a fixed point that is also socially optimal, these
sufficient conditions guarantee that the adaptive incentive
mechanism eventually induces a socially optimal outcome
in the long run.

In the proof of our convergence theorem, we exploit the
timescale separation between the strategy update and the
incentive updates. We use tools from the theory of two-
timescale dynamical systems [13] to analyze the convergence
of strategy updates and incentive updates separately after
accounting of time separation. In particular, the convergence
of strategy updates can be derived from the rich literature
of learning in games ([14],[15],[16], etc.) since the incentive
mechanism can be viewed as static in the strategy updates,
thanks to the time separation. On the other hand, the conver-
gence of incentive vectors can be analyzed via the associated
continuous-time dynamical system where the value of the
externality function is evaluated at the converged value of fast
strategy update, which is the Nash equilibrium. Our sufficient
conditions are based broadly on two main techniques of
proving global stability of non-linear dynamical system: (i)
cooperative dynamical systems theory [17] and (ii) Lyapunov
based methods [18].

Finally, we apply our general results to a practically
relevant class of game: Cournot competition. We provide
sufficient conditions on the game parameters and social
cost functions under which the adaptive incentive design
eventually induces a socially optimal outcome. In the ex-
tended version of this article [19], we have also verified
the effectiveness of the proposed adaptive incentive design
framework on games such as: (i) networked quadratic games;
(ii) routing games.

The article is organized as follows: in Sec. II we describe
the setup considered here. In addition, we also provide the
joint strategy and incentive update considered in this paper.
We present the main results in Sec. III and the applications of
those results to Cournot competition in Sec. IV. We conclude

our work in Sec. V. Due to space limitations we only provide
the main ideas of proofs, the detailed proofs are available in
the extended version of this paper [19].

Notations
For any vector x ∈ Rn, we use xj or xj to denote the j−th

component of that vector. Given a function f : Rn → R,
we use Dxif(x) to denote ∂f

∂xi
(x), the derivative of f with

respect to xi for any i ∈ {1, 2, ..., n}. We use k to denote
the discrete-time index and t to denote the continuous-time
index. We use ∇ to denote the gradient of a function, and
⟨·, ·⟩ to denote inner product.

II. MODEL

We introduce the model of static games considered in this
paper in Sec.II-A. In Sec. II-B, we present the two-timescale
dynamics of strategy learning and incentive design.

A. Static games
Consider a game G with a finite set of players1 I. The

strategy of each player i ∈ I is xi ∈ Xi, where Xi is a
non-empty and closed interval in R. The strategy profile of
all players is x = (xi)i∈I , and the set of all strategy profiles
is X :=

∏
i∈I Xi. The cost function of each player i ∈ I is

ℓi : X → R. For any x−i = (xj)j∈I\{i}, we assume that the
cost function ℓi(xi, x−i) is twice-continuously differentiable
and strictly convex in xi for all i ∈ I.

A social planner designs incentives by setting a payment
pixi for each player i that is linear in their strategy xi.2 Here,
pi represents the marginal payment for every unit increase in
strategy of player i. The value of pi can either be negative or
positive, which represents a marginal subsidy or a marginal
tax, respectively.

Given the incentive vector p = (pi)i∈I , the total cost of
each player i ∈ I is:

ci(x, p) = ℓi(x) + pixi, ∀ x ∈ X. (1)

Note that here we assume that the cost of any players
is independent of incentives of other players. However, it
depends indirectly on the incentives of other players through
their strategies.

Definition 2.1: A strategy profile x∗(p) ∈ X is a Nash
equilibrium in the game G with the incentive vector p if

ci(x
∗
i (p), x

∗
−i(p), p) ⩽ ci(xi, x

∗
−i(p), p), ∀ xi ∈ Xi, ∀i ∈ I.

Recall that the cost ℓi(xi, x−i) is a continuous function, and
is strictly convex in xi. Additionally, the strategy set Xi is
convex and compact for each player i. Therefore, we know
that Nash equilibrium must exist and must be unique in G.
Moreover, we can equivalently represent a Nash equilibrium
x∗ as a strategy profile that satisfies the following variational
inequality ([20]):

⟨J(x∗(p), p), x− x∗(p)⟩ ⩾ 0, ∀ x ∈ X, (2)

1Due to space limitations we have presented the results in the setting of
non-atomic games in [19].

2Considering a linear payment is sufficient to ensure optimal incentive
design. This is a consequence of our results presented in Sec. III.
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where J(x∗(p), p) = (Ji(x
∗(p), p))i∈I , and Ji(x

∗(p), p) =
Dxici(x

∗(p), p) = Dxiℓi(x
∗) + pi.

Furthermore, a strategy profile x† ∈ X is socially optimal
if x† minimizes the social cost function Φ : X → R. We
assume that the social cost function Φ(x) is strictly convex
and twice continuously differentiable in x. Then, the optimal
strategy profile x† is unique. Additionally, from the first order
conditions of optimality, we know that x† minimizes the
social cost function Φ if and only if:

⟨∇Φ(x†), x− x†⟩ ⩾ 0, ∀ x ∈ X. (3)

Finally, given a strategy profile x ∈ X , we define the
externality caused by player i as the difference between the
marginal social cost, and the marginal cost of player i with
respect to xi. That is,

ei(x) = Dxi
Φ(x)−Dxi

ℓi(x). (4)

B. Learning dynamics

We now introduce the discrete-time learning dynamics
considered in this paper. For every time step k = 1, 2, ..., we
denote the strategy profile in the game G as xk = (xi,k)i∈I ,
where xi,k is the strategy of player i in step k. Additionally,
we denote the incentive vector as pk = (pi,k)i∈I . The
strategy update and the incentive update are presented below:

Strategy update. In each step k+1, the updated strategy is
a linear combination of the previous strategy in stage k (i.e.
xk), and a new strategy (i.e. f(xk, pk) ∈ X) that depends
on the previous strategy and the incentive vector in stage k.
The relative weight in the linear combination is determined
by the step-size γk ∈ (0, 1).

xk+1 = (1− γk)xk + γkf(xk, pk) (x-update)

We consider generic strategy update (x-update) such that
the new strategy profile f(xk, pk) = (fi(xk, pk))i∈I can
incorporate a variety of strategy update rules. Two simple
examples of such update include:

1) Equilibrium update: The strategy update incorporates
a Nash equilibrium strategy profile with respect to the
incentive vector in stage k, i.e., f(xk, pk) = x∗(pk).

2) Best response update: The strategy update incorporates
a best response strategy with respect to the strategy
and the incentive vector in the previous step, i.e.
fi(xk, pk) = BRi(xk, pk) = argmin

yi∈Xi

ci(yi, x−i,k, pk).

Incentive update. In each step k+ 1, the updated incentive
vector is a linear combination of the previous vector in step
k (i.e. pk), and the externality (i.e. e(xk)) based on the
strategy profile in step k. The relative weight in the linear
combination is determined by the step size βk ∈ (0, 1).

pk+1 = (1− βk)pk + βke(xk); (p-update)

The incentive update (p-update) modify the incentives
on the basis of the externality caused by the players. We
emphasize that this update is adaptive to the evolution of
players’ strategies since the externality is evaluated based

on players’ current strategies. Moreover, the computation of
each player’s externality (4) only requires that the social
planner knows the gradients of its own costs and those of
the players, evaluated at the players’ current strategy profile.

The joint evolution of strategy profiles and incentive
vectors (xk, pk)

∞
k=1 in game G is governed by the learning

dynamics (x-update) – (p-update). The step-sizes (γk)
∞
k=1

and (βk)
∞
k=1 determine the speed of strategy update and

incentive update. We make the following assumption on step-
sizes:

Assumption 2.1:
(i)

∑∞
k=1 γk =

∑∞
k=1 βk = +∞,

∑∞
k=1 γ

2
k + β2

k < +∞.
(ii) limk→∞

βk

γk
= 0.

In Assumption 2.1, (i) is a standard assumption on step-
sizes that allow us to analyze the convergence of the discrete-
time learning dynamics. Additionally, (ii) assumes that the
incentive update occurs at a slower timescale compared to the
update of strategies. A class of candidate sequences which
satisfy Assumption 2.1 is γk = 1/kρ and βk = 1/kη , where
0.5 < ρ < η ⩽ 1.

Since the assumption on stepsizes (Assumption 2.1 (ii))
ensures that the incentive evolves on a slower timescale than
the strategies, players may view the incentive mechanism as
approximately static (although not completely fixed) when
updating their strategies. Note that with any fixed incentive
mechanism, the equilibrium update always converges. On
the other hand, although best response update, which we
also consider, do not converge in all games, they converge
in many practically-relevant games such as zero sum games
[21], potential games [22], and dominance solvable games
[23]. Additionally, our strategy update (x-update) can in-
corporate many other learning dynamics; their convergence
properties in static game environments have been extensively
studied in the literature [24], [15], [14], [16].

We emphasize that the convergence of strategy update
with fixed incentive mechanism is not the focus of our
paper. Instead, our goal is to characterize conditions under
which the adaptive incentive update (p-update) converge to a
socially optimal mechanism. We note that such convergence
cannot be achieved in scenarios where the strategy update
does not converge even with a completely fixed incentive
vector. Therefore, we impose the following assumption that
the strategy update considered in our dynamics converge to
a Nash equilibrium with any fixed incentive vector.

Assumption 2.2: In G, the update (x-update) starting from
any initial strategy x1 with (pk) ≡ p for any p, satisfies
limk→∞ xk = x∗(p), where x∗(p) is the Nash equilibrium
corresponding to p.

III. GENERAL RESULTS

In Sec III-A we characterize the set of fixed points of
the dynamic updates (x-update)-(p-update), and show that
any fixed point corresponds to a socially optimal incentive
mechanism such that the induced Nash equilibrium strategy
profile minimizes the social cost. In Sec. III-B, we provide
a set of sufficient conditions that guarantee the conver-
gence of strategies and incentives in our learning dynamics.
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Consequently, under these conditions, the proposed adaptive
incentive mechanism eventually induces a socially optimal
outcome.

A. Fixed point analysis

We first characterize the set of fixed points of our learning
dynamics (x-update)-(p-update) as follows:

{(x, p)|f(x, p) = x, e(x) = p} , (5)

We can check that if the learning dynamics starts with a
fixed point strategy and incentive vector, then the strategies
and incentive vectors remain at that fixed point for all time
steps. Moreover, under Assumption 2.2, we know that for any
incentive vector p, a strategy profile that satisfies f(x, p) = x
must be a Nash equilibrium x∗(p). Thus, from (5), we can
write the set of incentive vectors at the fixed point as P † =
{(p†i )i∈I |e(x∗(p†)) = p†}. That is, at any fixed point, the
incentive of each player is set to be equal to the externality
evaluated at their equilibrium strategy profile.

Our next proposition shows that the fixed point set P †

is non-empty. Moreover, given any fixed point incentive
parameter p† ∈ P †, the corresponding Nash equilibrium is
socially optimal.

Proposition 3.1: The set P † is non-empty. Additionally,
any p† ∈ P † is socially optimal in that x∗(p†) = x†.

The existence of the optimal incentives implies that there
exists a linear incentive policy (as in (1)) which is optimal.

To provide a sketch of the proof: first, we use the
boundedness of the strategy space to construct a convex
compact set which maps to itself under the function e(x∗(·)).
Therefore, by Brouwer’s fixed point theorem the set P † is
non-empty. Next, by the definition of the set P † and (4) we
have Dxi

Φ(x∗(p†)) = Dxi
ℓi(x

∗(p†)) + p† for every i ∈ I.
Using this along with the conditions of optimality (2)-(3) we
establish that x∗(p†) = x†.

Next, we provide sufficient conditions under which the
fixed point set P † is singleton.

Proposition 3.2: The set P † is singleton if any one of the
following conditions holds:
(i) The equilibrium strategy profile x∗(p) is in the interior

of the strategy set X for any p
(ii) ⟨e(x)− e(x′), x− x′⟩ > 0 for all x ̸= x′

Under the sufficient condition in Proposition 3.2 there
exists a unique incentive mechanism in P † such that players
pay for their externality at equilibrium. From Proposition 3.1,
such a mechanism induces a socially optimal outcome.

B. Convergence to optimal incentive mechanism

The next result provides sufficient conditions for strategies
and incentives updates (x-update)-(p-update) to converge to
social optimality.

Theorem 3.3: Under Assumptions 2.1 and 2.2, the se-
quence of strategies and incentives induced by the discrete-
time dynamics (x-update)-(p-update) satisfies

lim
k→∞

(xk, pk) = (x†, p†) (6)

if at least one of the following conditions holds:

(C1) ∂ei(x
∗(p))

∂pj
> 0 for all p ∈ R|I| and all i ̸= j.

Additionally, any one of the following holds:
(C1-a) If ei(x∗(0)) ⩾ 0, then limp→+∞ ei(x

∗(p))−pi < 0
for all i ∈ I.3

(C1-b) If ei(x∗(0)) ⩽ 0, then limp→−∞ ei(x
∗(p))−pi > 0

for all i ∈ I
(C2) There exists a continuously differentiable, positive def-

inite and decrescent function 4 V (p) : Rn → R+ such
that V (p†) = 0 and V (p) > 0 for all p ̸= p†. Moreover:

∇V (p)⊤ (e(x∗(p))− p) < −ω(∥p− p†∥) ∀ p ̸= p†,

where ω(·) is strictly increasing, and satisfies ω(0) = 0.
Owing to Assumption 2.1, we utilize the timescale separa-

tion between the strategy update (x-update) and the incentive
update (p-update) to prove Theorem 3.3. Indeed, the two-
timescale stochastic approximation theory [13] suggests that
the strategy update (x-update) is a fast transient while the
incentive update (p-update) is a slow component. Therefore
while considering the fast strategy update the slow incen-
tive updates are quasi-static. Consequently, Assumption 2.2
along with Assumption 2.1 ensures that the tuple (xk, pk)
converges to the set {(x∗(p), p) : p ∈ R|I|} [13]. Thus
for sufficiently large values of k, the update xk closely
tracks x∗(pk). Therefore, we consider the following update
to analyze the convergence of the slow incentive update
(p-update):

pk+1 = (1− βk)pk + βke(x
∗(pk)). (7)

As the step sizes {βk} are asymptotically going to zero and
satisfy Assumption 2.1-(i), we can approximate the updates
in (7) by the following continuous-time dynamical system:

ṗ(t) = e(x∗(p(t)))− p(t), (8)

Convergence of the discrete-time updates (x-update)-
(p-update) then hold if the flow of (8) globally converges
to P †.

Requirement (C1) in Theorem 3.3 is a sufficient condition
for convergence of the trajectories of (8) to the set P †.
This condition is based on cooperative dynamical systems
theory [17]. Particularly, the condition: ∂ei(x

∗(p))
∂pj

> 0 for
all p ∈ R|I| and all i ̸= j, ensures that the flow of
(8) is strongly monotone (in the sense of [17]). Intuitively,
this condition requires that the externality created by any
player increases (resp. reduces) if the marginal payment
(resp. subsidy) of other players is increased. This should
typically be the case for games with resource constraints e.g.
routing games [19]. Further, the condition (C1-a) (resp. (C1-
b)) ensures that R|I|

+ (resp. R|I|
− ) is invariant with respect

of flow of (8) Additionally, these conditions also ensure
that the forward orbit closure of (8) is compact. Intuitively,

3p → +∞ means pi → +∞ for all i. Similarly, p → −∞ means
pi → −∞ for all i.

4A function V : Rn → R is positive definite if V (x) ⩾ α1(∥x∥) for
some continuous, strictly increasing function α1(·) such that α1(0) = 0,
and α1(t) → ∞ as t → ∞. V is decrescent if V (x) ⩽ α2(∥x∥) for some
continuous, strictly increasing function α2(·) such that α2(0) = 0.
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condition (C1-a) (resp. (C1-b)) requires than if marginal
increment in social cost due to a players strategy at the
equilibrium, corresponding to no payments, is larger (resp.
smaller) than marginal increment in their own cost then
there exists suitably high payments (resp. subsidies) which
balances marginal increments in social cost and players’ cost.
Requirement (C2) in Theorem 3.3 on the other hand ensures
convergence by positing existence of a Lyapunov function
[18] that is strictly positive everywhere except at P † and
decreases along the flow of (8).

Note that either one of the conditions (C1) or (C2)
guarantees the convergence of the flow of the slow system
(8) to P †. This in addition to the convergence of the fast
strategy update (Assumption 2.2) leads to the convergence
of the discrete-time dynamics (x-update)-(p-update) [13].

Thus, we have shown that there exists an incentive which
induces an equilibrium which is socially optimal and the
externality based pricing update along with any strategy
update, satisfying requirements of Theorem 3.3, converges
to the optimal incentive.

IV. APPLICATION: COURNOT COMPETITION

In this section we apply our general results to Cournot
competition between firms. We design an adaptive incen-
tive mechanism to account for the environmental external-
ity produced by the firms. We show that our mechanism
asymptotically induces a socially optimal outcome via both
theoretical results and numerical simulations. Additionally,
we have studied several other practically relevant class of
games such as networked aggregative games and routing
games in the extended version of this article [19].

Consider a finite set of firms I that compete in a single
market. The strategy of each firm i ∈ I is its production
quantity xi. Given any strategy profile x = (xi)i∈I , the price
of the good is ξ(x) = θ− δ

∑
i∈I xi with θ, δ > 0. The per-

unit production cost of the good is νi. Consequently, the cost
function of firm i ∈ I (written as negative of the profit) is
ℓi(x) = −xiξ(x) + νixi.

A social planner designs an incentive mechanism that
charges each player i with payment pixi. The total cost of
firm i ∈ I given x and p is: ci(x, p) = −xiξ(x)+(νi+pi)xi

The game has a unique Nash equilibrium given by: 5

x∗
i (p) =

1

δ(|I|+ 1)

θ − νi − |I|pi +
∑
j ̸=i

pj

 (9)

The goal of the social planner is to minimize the aggregate
cost of players while also accounting for the environmental
cost of good production, which is unpriced in equilibrium.
We model the environmental cost to be a quadratic function
of production following [25]. Thus, the social cost function is
Φ(x) =

∑n
i=1 ℓi(x)+λ

∑n
i=1 x

2
i where λ > 0 is a parameter

that determines the relative weight between the firm costs and
environmental cost. Finally, the externality (4) caused by of

5We assume that θ is large enough such that x∗(p) > 0 for all p in
a neighborhood of the socially optimal incentive p†. We have made this
assumption to simplify exposition. For the general setting, refer to [19].

a firm i ∈ I is ei(x) = 2λxi+δ
∑

j ̸=i xj . We consider best-
response based strategy updates. Given any x−i, the best
response of firm i ∈ I is:

BRi(x−i, pi) =
θ − δ

∑
j ̸=i xj − ν − pi

2δ
.

Following (x-update) – (p-update), we can write the updates
of strategies and incentives as follows:

xi,k+1 = (1− γk)xi,k + γk

(
θ − δ

∑
j ̸=i xj,k − ν − pi,k

2δ

)
,

(10a)

pi,k+1 = (1− βk)pi,k + βk(δ
∑
j ̸=i

xj,k + 2λxi,k). (10b)

and the step-sizes {γk}∞k=1, {βk}∞k=1 satisfy Assumption 2.1.
We show that for any fixed p, the best response learning

dynamics (10a) converge to a Nash equilibrium x∗(p) as-
sociated with p. Indeed, we show that the strategy update
(10a) with fixed incentives asymptotically track the flow
of a continuous-time linear dynamical system whose flow
asymptotically converges to the Nash equilibrium x∗(p).
Thus, Assumption 2.2 is satisfied.

The next proposition shows that the optimal incentive p†

is unique. Moreover, the incentive vectors induced by (10b)
converge to the socially optimal incentive p† if the weight
of environmental cost, λ, is sufficiently high.

Proposition 4.1: There exists a unique socially optimal
incentive mechanism p† that satisfies p† = e(x∗(p†)). Given
p†, the induced equilibrium strategy profile is socially opti-
mal, i.e. x∗(p†) = x†. Moreover, the discrete-time learning
dynamics (10a)-(10b) satisfy limk→∞(xk, pk) = (x†, p†) if
λ > δ.

The sufficient condition λ > δ states that if the social
planner assigns higher weight to the environmental cost
compared to the per-unit increase of firm cost, then the
adaptive incentive mechanism can asymptotically induce a
socially optimal outcome.

To prove Proposition 4.1, we show that there is a unique
incentive p† such that the corresponding Nash equilibrium as
in (9) equals to the socially optimal strategy profile, and p†

is a fixed point of the discrete-time learning dynamics (10b).
Moreover, we show that when λ > δ, we can construct a
Lyapnov function that satisfies (C2) in Assumption (2.2).
Therefore, following Theorem (3.3), we can conclude that
the discrete-time learning dynamics converges to a socially
optimal outcome.

We now numerically illustrate the convergence results in
Proposition 4.1. We study the above model with parameters
N = 6, θ = 100, δ = 5, λ = 50, ν = [10, 18, 26, 34, 42, 50].
The simulation results are presented in Fig. 1. We note that
as the strategies and prices have converged, this shows that
game has reached a Nash equilibrium. Furthermore, since
the social cost goes to zero, the resulting Nash equilibrium
is infact the socially optimal outcome. Furthermore, in the
limit, the firm with the lowest production cost (P1) produces
the highest quantity of the good but is also charged the
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Fig. 1. The first subfigure depicts the evolution of the strategy (quantity
produced) by different firms over time. The second subfigure depicts the
evolution of price per unit production quantity for different firms. The last
subfigure depicts the evolution of social cost, showing that asymptotically,
the strategies are socially optimal.

highest in order to reduce its externality. Similarly, the
firm with the highest production cost (P6) has the lowest
production quantity and consequently lowest payment.

V. CONCLUSION

We propose an incentive design framework to steer selfish
players, who are dynamically updating their strategies in
a strategic environment, to socially optimal outcome. The
incentives for players are dynamically updated based on
the difference between the marginal impact of players’
strategies on social cost and their own cost (the externality).
Furthermore, the incentives are updated at a slower rate than
the rate at which players update their strategies. We show
that at the fixed point of joint strategy-incentive updates, the
resulting Nash equilibrium coincides with a socially optimal
outcome. Furthermore, we provide sufficient conditions for
convergence of the joint strategy-incentive updates. Finally,
we demonstrate the applicability of the proposed incentive
design framework to Cournot competition.
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