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In brief

Combining single-cell data from different
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holistic understanding of the system
under study. This is demonstrated on a
variety of example modalities with the
scMMGAN model introduced in
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THE BIGGER PICTURE Biological experimental data are increasingly being generated along multiple
different axes, with new and more complex technologies specializing in particular measurements being
developed every year. Measuring a single subject or system with multiple specialized data-collecting tools
creates a natural interest in integrating the results of these individual instruments to form a single unified
view. The model introduced here presents a computational technique designed for this purpose. With
the single-cell multi-modal GAN (scMMGAN), there is an opportunity to measure along many different
omic directions and synthesize the information from each into one larger understanding of the system under

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem

SUMMARY

Exciting advances in technologies to measure biological systems are currently at the forefront of research.
The ability to gather data along an increasing number of omic dimensions has created a need for tools to
analyze all of this information together, rather than siloing each technology into separate analysis pipelines.
To advance this goal, we introduce a framework called the single-cell multi-modal generative adversarial
network (scMMGAN) that integrates data from multiple modalities into a unified representation in the ambient
data space for downstream analysis using a combination of adversarial learning and data geometry tech-
niques. The framework’s key improvement is an additional diffusion geometry loss with a new kernel that
constrains the otherwise over-parameterized GAN. We demonstrate scMMGAN'’s ability to produce more
meaningful alignments than alternative methods on a wide variety of data modalities and that its output
can be used to draw conclusions from real-world biological experimental data.

INTRODUCTION

Integrating data gathered from different sources is a critical chal-
lenge in computational genomics. Currently there are several
single-cell technologies including RNA sequencing (RNA-seq),
assay for transposase-accessible chromatin using sequencing
(ATAC-seq), Hi-C, ChIP-seq (chromatin immunoprecipitation

Gheck for
Updates

sequencing), and CITE-seq (cellular indexing of transcriptomes
and epitopes by sequencing) as well as proteomic technologies
such as cytometry by time of flight (CyTOF), imaging CyTOF, and
multiplexed ion beam imaging that offer complementary cellular
information.'™” Of these modalities, only a fraction are available
as simultaneous measurements —often with quality degradation
factors such as reduced gene dimensions, lower throughput,

Patterns 3, 100577, September 9, 2022 © 2022 The Author(s). 1

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).



mailto:smita.krishnaswamy@yale.edu
https://doi.org/10.1016/j.patter.2022.100577
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2022.100577&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

¢ CellP’ress

and increased noise. The remaining measurements must be
done on distinct cellular subsamples from the same population.
This is the key problem that we tackle in this article: the predic-
tion of missing or non-simultaneous modalities in order to
generate a more complete set of features. Thus, given modalities
such as single-cell RNA-seq (scRNA-seq), scATAC-seq, and
spatial transcriptomics measured separately on different cells
(from the same population), our single-cell multi-modal genera-
tive adversarial network (scMMGAN) generates a complete set
of simultaneous measurements for downstream analyses.

Aligning the separately measured data computationally has
many advantages over analyzing the data modalities individually.
Combining data modalities allows us to leverage the advantages
of each and mitigate the disadvantages. For example, combining
a modality with a higher signal-to-noise ratio such as proteomic
CyTOF measurements with one that has a lower signal-to-noise
ratio such as scRNA-seq gives us the opportunity to resolve cell
populations to a finer degree in the noisier dataset.” Even more
compellingly, combining modalities allows us to measure vari-
ables only available in one domain combined with variables
only available in another domain, thus simulating jointly
measured technologies.

We base our method on the framework of cycle-consistent
generative adversarial networks (CycleGANs).®'" In GAN-based
domain adaptation frameworks, a generator network is trained to
map data points of one modality into data points from another
modality. During training, a discriminator is used to ensure that
generated points are sampled from the high-dimensional distri-
bution representing the second modality. In CycleGANs there
are two back-to-back generators, one going from the first mo-
dality to the second modality and another going from the second
modality to the first. A reconstruction error enforces that the
result of two back-to-back domain adaptations results in the
original distribution again, i.e., that the generators are inverses
of each other over the regions of the data spaces where there
are training points.

While CycleGAN frameworks can successfully generate points
in each modality, the mapping they produce is not constrained
enough. For instance in the original CycleGAN paper, images
of zebras were mapped to images of horses, but nothing ensured
that the background would be unaltered. While this may not be
detrimental for natural image applications, it can be untenable
for scientific applications where the scRNA-seq measurement
must correspond with and corroborate the scATAC-seq mea-
surement. Noting this key weakness, in earlier work we proposed
the use of a correspondence loss and gave anecdotal examples
on flow cytometry panels with overlapping measured markers. '?
However, here we both extend the application to multi-modal
integration and specify a more powerful, generally applicable
correspondence loss: the geometry-preserving loss. This loss
enforces that the diffusion geometry, performed with a new
kernel designed to pass gradients better than the Gaussian
kernel, is preserved throughout the mapping. We note that this
loss can be utilized even in cases where no measurements
overlap.

We demonstrate the power of aligning data modalities with
scMMGAN on a wide array of data types. We start by validating
it on datasets where simultaneous measurements are available
and use those as ground truth in evaluations. We then use
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scMMGAN to perform a thorough investigation into a novel tri-
ple-negative breast cancer dataset, where we have cells from
the breast cancer culture HCC38 xenografted into mice and al-
lowed to metastasize from the primary to secondary tumor loca-
tions. We show that scMMGAN can infer spatial locations of
cellular structures.

RESULTS

scMMGAN model results
The scMMGAN framework is depicted in Figure 1A. Each pair of
data domains or modalities has a pair of generator networks that
map in either direction between them, forming a diversified multi-
modal mapping. For a generator mapping from Domain i to
Domain j which we denote Gy, it functions as a traditional GAN
guided by a discriminator in Domain j which we denote D;. The
discriminator tries to distinguish between samples from the
real data for that domain x; and samples from the generator
Gji(x;), while the generator tries to fool the discriminator. They
alternate trying to optimize the following minimax objective:
min max &, _p() 109(D;(6)) + Ex~p,, log(1 — D;(Gy(xi)))-

(Equation 1)

In addition to this loss of the discriminator guiding the gener-
ator to transform its input modality into the output modality
Lgan, there are two other terms in the loss that ensure the learned
mapping is informative and meaningful. These are depicted in
Figure 1B. The reconstruction loss L, is the mean-squared error
(MSE) between the original data x; and the composition of the
two paired generators between the domains j and j:

L = |x — Gi(G;(x)|. (Equation 2)

The correspondence loss L. imposes a constraint on a single
point’s representation in Domain i and Domain j, as opposed to
the reconstruction loss which imposes a constraint on points
within the same domain:

L. = correspondence(x;, Gj(X;)). (Equation 3)

The motivation for the correspondence loss comes from the
fact that previous models using cycle consistency for domain
mapping with GANs included only two restrictions: (1) that the
generators be able to reconstruct a point after it moves to the
other domain and back; and (2) that the discriminators not be
able to distinguish batches of true and mapped points. The gen-
erators can accomplish these goals in many different ways,
including by learning arbitrarily complex mappings: as long as
they align the two data manifolds at a distribution level. The fam-
ily of paired inverse functions that can match the target distribu-
tions is large, and with existing frameworks the particular pair
that results from training is determined by the vagaries of random
weight initialization and mysterious biases in gradient descent.

The GAN loss is a probability-distribution matching objec-
tive."® In previous work it has been proven that under certain
optimality conditions a GAN discriminator provides a Jensen-
Shannon divergence between the true and generated distribu-
tions.'* A Wasserstein GAN (WGAN), on the other hand, contains
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Figure 1. scMMGAN architecture and the
correspondence loss

(A) The scMMGAN architecture mapping between
multiple domains, each consisting of a pair of gen-
erators and discriminator.

(B) In addition to the discriminator loss, there are
two additional losses within each domain.

(C) Hypothetical demonstration of the data geom-
etry guiding alignment through the correspondence
loss. In the depicted space, data in the two domains
have been shifted and rotated, but the intrinsic data
geometry is preserved with the values of the diffu-
sion eigenvectors.

(D) Hypothetical illustration of a bad mapping that is
invertible (has low reconstruction loss) but does not
align analogous representations (has high corre-
spondence loss) and a good mapping that is both
invertible and aligns analogous representations. In
the situation where minimally changing the value of
genes is preferred, the mapping on the left unnec-
essarily changes the value of the gene on the x axis.

mapping that matches the probability dis-
tribution (as the GAN does) but preserves
the data geometry as much as possible
while doing so. By combining the existing
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GAN-based loss and a data geometry
loss, the network can balance the tradeoff
between these goals.

We thus introduce a correspondence
loss that ensures the mappings have
point-wise as well as distributional align-
ment by preserving the data geometry

Domain j

through the learned mapping. To do this,
we use the diffusion map representation
of the original data.

Here we give a brief overview of diffusion
maps. Diffusion maps are a kernel-based

Bad Mapping
Low Reconstruction Loss
High Correspondence Loss

modifications that result in a Wasserstein distance being pro-
vided by the discriminator.'®

However, simply matching probability distributions can result
in incoherent cell states (Figure 1D). A key insight we bring is that
distributions must only be matched within correspondence con-
straints. These correspondences are essentially invariances in
the underlying system that are reflected in every modality. In
our previous work we used customized correspondence losses
for each dataset. However, here we note that when matching sin-
gle-cell data we can use a nearly universal constraint—that of
manifold geometry preservation.

While our model incorporates signal from a data geometry loss
into a larger framework, the data geometry is too rigid to be used
on its own to guide alignment. It is heavily influenced by the prop-
erties of the domain data space, and thus when the two domains
are very different it does not allow for sufficient flexibility in
changing the shape of the distribution. Methods that use only
the data geometry struggle to align domains that are significantly
different.’® An ideal mapping would have both the flexibility of a

Good Mapping
Low Reconstruction Loss
Low Correspondence Loss

method frequently used in manifold
learning to produce low-dimensional em-
beddings that preserve intrinsic structure
in the data.'”"'® The eigenvectors of the diffusion operator form
an embedding where Euclidean distances correspond to diffu-
sion distance, or the probability of getting from one point to
another via random walk, on the original manifold.'® Because
these new coordinates represented by the diffusion eigenvec-
tors abstract away much of the data-domain specific properties,
they present a way of ensuring the underlying data geometry is
preserved in the mapping.

By calculating the eigenvectors of the diffusion operator for the
points in their original domain ¢,, and the eigenvectors of the
diffusion operator for the points after being mapped to the other
domain g x,)llo, We can directly compare the i eigenvectors to
enforce that intrinsic data geometry, as measured by diffusion,
be preserved by the mapping. For further detail about the calcu-
lation of ¢, see experimental procedures.

The correspondence geometry loss then penalizes the L2 dis-
tance between the two representations of each point:

(Equation 4)

Le = [lg, = Ppen |-
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Figure 2. Results comparison from the DBIT-
seq experiment
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On the DBIT-seq data, shown are corresponding
proteomic and transcriptomic expression for the
gene shown. The x axis and y axis plotted are the
measured spatial coordinates taken directly from
the data. The ground-truth transcriptomic values
are plotted alongside the generated proteomic
values for each model, where we see scMMGAN
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By enforcing this loss in the scMMGAN framework, we ensure
that the intrinsic structure of the data is preserved in the other-
wise underconstrained GAN setting.

Experimental results

Mapping between spatial, scRNA-seq, and

proteomic data

As an initial validation of scMMGAN, we utilize simultaneously
measured multi-modal data from the newly developed determin-
istic barcoding in tissue sequencing (DBIT-seq) technology as
ground truth. DBIT-seq uses deterministic barcoding in tissue
for spatially resolved measurements of both transcriptomics
and proteomics.?° Thus, in DBIT-seq, three things are measured
jointly on every cell: an scRNA-seq profile, a protein profile, and
spatial coordinates. The system being studied in these data is
that of mouse embryos, particularly focused on early tissue
development and organogenesis.

Often, in transcriptomic/proteomic alignment problems, no
“ground truth” is available because each technology measures
adistribution of cells in a destructive process. As a result, models
such as scMMGAN that learn to map between two distributions
without needing point-wise pairings are called unsupervised
alignment models. We design an experiment with these data to
show how scMMGAN could have been used to obtain this infor-
mation without needing them to be measured jointly. We treat
the spatially located scRNA-seq data and the spatially located
protein data as two separate measurements and learn to map
between them. We then utilize the fact that they were measured
jointly and that some of the columns in each dataset are related
(corresponding genes and proteins) to evaluate the accuracy of
the learned mapping. We compare against both an autoen-
coder-based alignment method (cross-modal autoencoder
[CMAE]) and a standard CycleGAN without a correspondence
loss.”>?" For detailed descriptions of the model architectures,
see experimental procedures.

Figure 2 shows example results of sScMMGAN and baseline
models on these data. Plotted on the given spatial coordinates,
we show the ground-truth transcriptomic value along with
generated proteomic values. There we see scMMGAN best
models the ground-truth data. We further evaluate sScMMGAN’s
performance on this application quantitatively. To quantify the
aspect of the generated distribution matching the target distribu-
tion as a whole, we employ the metric maximum mean discrep-
ancy (MMD), a distance defined on distributions frequently
used in both deep-learning and biological contexts to distinguish
between distributions.?*** To quantify the aspect of preserving
information about the individual observation through the align-
ment, we use correlation between columns in the transcriptomic
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Spatial Coordinates

best model the data.

space and the proteomic space known to correspond to the
same gene. Since these values correspond to the same gene,
we would expect there to be a correlation between a point’s
value before mapping and its value after mapping.

These scores confirm quantitatively what we saw graphically

in these experiments (Table 1). All models are able to accurately
match the target distribution (low MMDs), with very similar per-
formance consisting of each model’s one or two SD interval
overlapping. However, when looking at the preserved correla-
tion, we see scMMGAN achieved the best alignment with an
average correlation of r = 0.154 between columns known to
correspond. We note that the absolute value of this correlation
is relatively low compared with other datasets, and this is due
to limited amount of shared correlation in the underlying “ground
truth” pairings of points that are jointly measured.
Unique versus common information in measurement modalities.
The scMMGAN is a generative framework, but when used in non-
standard ways it can become a tool for analysis in addition to
faithful generation. When measuring two aspects of a biological
system with two different technologies, some of the information
might be shared between the two modalities while other informa-
tion might be unique to one of the modalities. For example, when
mapping between a modality that measures the whole transcrip-
tomic space such as scRNA-seq and one that measures only a
subset of the proteomic space, we would expect for the genes
with corresponding proteins to be more easily modeled than
the genes without them.

We design our experiment as follows to test this on the tran-
scriptomic and proteomic measurements in the DBIT-seq data
(summarized in Figure 3, with further mathematical detail in
experimental procedures). We train the model augmented with
random noise input and then evaluate it on mapping the same
points in proteomic space to the transcriptomic space, except
with different random noise samples. We then calculate the vari-
ance of the different predicted values for each transcript count
and for each given point in proteomic space. The mean across
all points then gives us a measure of the uncertainty associated
with a given transcript measurement. To factor out the influence
the magnitude of counts of a given transcript would have on vari-
ance, we scale by the variance in the raw dataset for each one.
We also filter out lowly expressed genes. We can then compare
the stochasticity as measured in this experiment of the genes
that have a corresponding proteomic measurement and those
that do not.

Just as expected, we find that the average variance of genes
with an analogous proteomic measurement is 0.026 while the
average variance of genes without an analogous proteomic mea-
surement is 1.419. This is a logical result, as the relationship
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Table 1. Results from the DBIT-seq experiment

DBIT-seq scMMGAN CycleGAN CMAE

MMD (G(x1),x2) 0.072 + 0.001 0.078 + 0.006 0.082 + 0.001
MMD (x1,G(x2)) 0.060 + 0.001 0.066 + 0.002 0.079 + 0.001
Correlation (G(x1),x2) 0.155 + 0.006 —0.026 + 0.021 0.003 + 0.082
Correlation (x1,G(x2)) 0.152 + 0.014 —0.088 + 0.074 —0.012 + 0.066

Evaluation of each model on the DBIT-seq data. While the MMDs are close for each model (meaning the predicted distribution resembles the ground-
truth distribution), scsMMGAN is significantly more accurate at preserving correlation between columns known to correspond. The best values are in

boldface.

between transcript counts with corresponding proteomic mea-
surements is more straightforward to model and can thus be
done with more certainty. This corroborates our understanding
of the process at work in this multi-modal setting.

Furthermore, this analytical process with scMMGAN allows us
to inspect which genes are modeled with the most and least un-
certainty and thus provide the most unique information and most
common information with respect to the other modality. Unsur-
prisingly, the genes with the least uncertainty are related to early
embryo development in mice, as that is the system being stud-
ied: for example, the three least are Gm5049, Gm37500, and
Gm33051. Meanwhile, the genes with the most uncertainty are
GM37686 and Rp1. It is possible that genes with higher
observed uncertainty could also be of interest to the research,
for example, Rp1, which is involved in the development of the
retina while the study was focused on early tissue develop-
ment.?® The information that these genes had high uncertainty
can help guide future experimental design decisions that would
lead to the selection of proteins to measure, thus allowing for
better alignment of these measurements.

In this way, sScMMGAN can help provide insights into the sys-
tem being studied as well as into experimental design and
decisions.

Mapping between scRNA-seq and ATAC-seq data

We next perform an experiment on data consisting of paired
ATAC-seq and RNA-seq measurements on the same cells. As
with the previous experiment, since these two technologies
both measure values related to a particular gene (chromatin
availability for ATAC-seq and transcript expression for RNA-
seq), we can expect there to be some correlation between the
two spaces in their values for that gene, as in the prior case.
The dataset we use comes from a public human blood dataset
of granulocytes removed through cell sorting from peripheral
blood mononuclear cells of a healthy donor.?®

A qualitative assessment of the results via plots of the output
are shown in Figure 4, with the ground-truth ATAC value plotted
in the first column and the generated corresponding RNA-seq
values in the subsequent columns. As before, scMMGAN’s
output best matches the ground truth. For the other models,
while they have the appropriate amount of activation for each
gene at a distribution level, they are inaccurate in terms of align-
ment at a point level (some populations have been inverted).

Confirming this quantitatively, as seen in Table 2, while all of
the models perform adequately at matching the ground truth at
a distribution level (as seen by their low MMDs), a significant dif-
ference can be seen when evaluating them at a point-wise level.
scMMGAN’s predictions have an average correlation with the

ground truth of r = 0.336 while the others are all essentially un-
correlated (0 is near the middle of each models’ 1 — ¢ interval).
Integration of triple-negative breast cancer data

Here, we apply scMMGAN to a dataset that comprises a human
xenograft model of triple-negative breast cancer (MDA-MB-231)
with transcriptomic measurements jointly in both a spatial RNA-
seq modality and a scRNA-seq modality lacking the spatial infor-
mation. The study consists of the MDA-MB-231 cell line grown in
mouse models, with the measurements taken from primary site
tumors in the tissue from the mammary gland. While the exper-
imental models are replicates, they are different organisms and
thus introduce an additional source of noise for the alignment.

Each of the two measurement modalities produces transcrip-
tomic measurements, but each also has advantages and disad-
vantages. The spatial RNA-seq provides the ability to analyze the
physical structure of the tissue sample and localize behavior to
different regions of it via (x, y) spatial coordinates. As a draw-
back, however, each spatial coordinate is bigger than the size
of a single cell, and as a result the transcriptomics are estimates
of groups of multiple cells. For example, if a cell of one type that
is expressing gene A and a cell of another type that is expressing
gene B are spatially adjacent, this technology would observe
gene A and gene B being expressed together, even if they are
never jointly expressed in a single cell.

In contrast, the scRNA-seq provides the usual single-cell
granularity of measurements that would be able to distinguish
between the expression of each cell. By mapping the spatial
data to the scRNA-seq space, we are in essence imputing it
into single-cell resolution. However, the scRNA-seq does not
have spatial orientation with respect to the original tissue sam-
ple. Thus, to combine the best of each modality (spatial informa-
tion at the single-cell level), we use sScMMGAN to integrate them
by mapping a point from the spatial RNA-seq domain to the
scRNA-seq domain while considering its aligned representation
of its original spatial coordinates and its generated scRNA-seq
expression values.

The spatial RNA-seq dataset consists of a tissue sampled
across 1,170 spatial coordinates, each coordinate with mea-
surements on 20,092 genes. Four different scRNA-seq samples
were obtained from cancerous primary site tissue (from different
mice), each measured across the same 20,092 genes, and con-
sisting of 7,606, 5,118, 8,163, and 7,591 cells, respectively.

While the scRNA-seq and spatial RNA-seq data are both tran-
scriptomic technologies measuring gene profiles, and thus their
dimensions have the same meaning, the two datasets cannot be
analyzed together as is. In Figure 5A, we see that the two data
distributions are completely non-overlapping prior to the use of
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Figure 3. Design of the uncertainty quantification experiment

Uncertainty

(A) A depiction of how scMMGAN can be used to quantify how much uncertainty is associated with the mapping to each gene. A particular cell is mapped from
Domain i to Domain j along with various different noise samples. The mapped values of Gene A change significantly with the noise, while the mapped values of
Gene B change little for this cell. We interpret this as a quantification of how much information there is about each gene in Domain i.

(B) The genes identified by scMMGAN to have the most uncertainty associated with the mapping, and thus have the least common information with the proteomic

measurements in this dataset.

scMMGAN. Because the raw data are completely separable in
the joint space, any downstream analysis would only be able
to pick up on the difference between the two modalities and
not the differences between cells within them. For an integrated
analysis using information from both of them, we need the
aligned output from scMMGAN (Figure 5B).

We analyze the scMMGAN alignment by taking the spatial
RNA-seq, mapping it to the scRNA-seq space, and then clus-
tering the generated scRNA-seq data (Figure 5B). We use spec-
tral k-means clustering with a selected parameter of k = 5, and
we then plot the clusters according to their original spatial coor-
dinates. As we see, these scRNA-seq clusters preserve spatial
patterns seen in the coordinates, demonstrating our ability to
make new spatially informed conclusions by analyzing the
generated scRNA-seq data in conjunction with the original
spatial coordinates.

In Figure 5C, we look at the opposite mapping direction of tak-
ing the scRNA-seq data and generating spatial RNA-seq with it.
By mapping scRNA-seq points to these generated coordinates,
we can see spatial organization of particular cell types. For
example, in this figure we plot the generated spatial coordinates
for cells high in SLC2A1 and CDK11A and see spatial differenti-
ation between these two types of cells. We show all of these
clusters plotted in Figure 5D.

Now that we see sScMMGAN has learned to map data between
the two modalities in a way that preserves gene signals, we next
compare this with the alternative alignment models. In Figure 6,
we show the results of the learned mapping from spatial RNA-
seq to scRNA-seq for each model. We first note that each model
was able to generate a distribution that accurately matched the
target distribution, an observation we will demonstrate quantita-
tively later. However, the alternative approaches to scMMGAN
achieved this result by aligning a given spatial RNA-seq gene
profile to an scRNA-seq observation that is very different.

In the first column of Figure 6, we plot the value of five genes
across the original spatial coordinates in the spatial RNA-seq
data. We then plot the generated scRNA-seq value of that
gene for each spatial coordinate for each model in the subse-
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quent columns, starting with scsMMGAN. With FAM87b in the
first row, we see that scMMGAN’s generated values largely
match the original spatial pattern, with some minimal changes
that were necessary to match the target distribution as well.
The CycleGAN matches much of the bottom half of the spatial
coordinates, but the top half maps some coordinates that were
low in the gene to scRNA-seq profiles that are high in the
gene, and vice versa. The CMAE has even less correspondence
between the original spatial RNA-seq value of the gene and the
generated scRNA-seq value.

The preservation of signals by scMMGAN and not the other
methods has important consequences for downstream analysis.
In the first row of Figure 6, we show the values of SLC2A1. This
gene encodes the glucose transporter type 1 (GLUT1) protein
that is commonly upregulated in triple-negative breast cancers
and is associated with high-grade tumors, having been previ-
ously shown to be a potential driver of metastasis in a broad
array of breast and other cancers.”’’ ' Notably, in the spatial
data, SLC2A1 activity has a strong spatial pattern in which areas
in the tissue express it highly. With scMMGAN mapping, the
spatial observations with high SLC2A1 also have high expres-
sion in the generated scRNA-seq data. With the other models,
however, the SLC2A1-high spatial observations are mapped to
SLC2A1-low scRNA-seq cells. This important signal has been
lost, and the downstream analysis that seeks to understand
the differential spatial distribution and function will have lost
this key gene signal. The scMMGAN mapping produces aligned
data that best preserves the original signal.

The bottom row showing RER1 demonstrates another canon-
ical situation motivating sScMMGAN’s correspondence loss. This
gene is roughly bimodally distributed with equal numbers of ob-
servations high and low within it. Because flipping two popula-
tions is often as easy as introducing a single negative sign into
a single weight in a neural network layer, CMAE maps all spatial
coordinates high in the gene to scRNA-seq profiles low in the
gene and vice versa. Only with scMMGAN’s correspondence
loss is one of these equally-easy-to-learn mappings specified
as preferable, with the training objective significantly lower for
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the one that does not flip the populations as opposed to it being
equal. This is further corroborated by the results of the quantita-
tive experiments shown in Table 3.

Gene correlations. scMMGAN highlights the differences be-
tween the measurements of the two modalities by investigating
the genes most highly correlated with a particular gene of inter-
est in this system in both the original data and the generated
data. Specifically, as the spatial data is an aggregate measure-
ment of multiple cells in the same proximate area in the tissue
(not a single cell), we can highlight some possibly spurious cor-
relations by mapping them to the scRNA-seq space and recalcu-
lating the correlations.

Consider, for example, the glucose-transporter gene SLC2A1
that we have studied previously. If we look at the n most corre-
lated genes in the original spatial data, any of them that have
low correlation in the generated scRNA-seq data are candidates
for spurious data artifacts. Similarly, any of the n most correlated
genes in the generated scRNA-seq data that have low correla-
tion in the original scRNA-seq are candidates for novel associa-
tions found by the scMMGAN.

Choosing n = 700 and defining low correlation in the other
space as being less than 0.1, we obtain a list of six genes that
have spurious correlations: FRAT2, CAMK2A, CANX, LRRC66,
ZMIZ1-AS1, and MTRNR2L8. We then have the following five
genes that have been discovered by scMMGAN: AC092115.3,
P2RX7, CCDC93, UTP25, and BBS10.

Among these genes whose correlation to the glucose trans-
mitter SLC2A1 is discovered by scMMGAN, we see P2RX7,
which has been identified in the literature as a precursor to
glucose transporters.®? This provides corroborating support in
favor of the scMMGAN-discovered gene correlations.

DISCUSSION

In this work we demonstrated that sScsMMGAN can align data
from related experiments but different modalities in a way that
best preserves the properties of the original cells through learned
mapping. The addition of the correspondence loss in
scMMGAN’s architecture resolves the ambiguity created by
only stating a distribution-level loss in learning a mapping. This
holds across a wide array of data types and modalities, distribu-
tion shapes, and other settings that arise in practical biological
experiments.

We have shown how scMMGAN can be used to measure un-
certainty in the mapping and use injected stochasticity to gauge
which information is unique to one of the modalities and which
information is common between them. This can be used to not
only answer questions about the cellular samples in an experi-

analysis (PCA) dimensions.

ment but also to answer questions about the technologies and
modalities themselves in terms of their strengths and
weaknesses.

Furthermore, we have shown how scMMGAN can be used to
identify spurious correlations found in one modality as artifactual
results, as opposed to real findings. Similarly, we demonstrated
scMMGAN'’s ability to identify novel correlations that are not
visible in an individual modality but become apparent when the
data are mapped to another modality. In these ways, sScMMGAN
can be added to traditional analysis pipelines to uncover further
insights from complicated, multi-modal experimental data.

Limitations
There are limitations to the proposed approach that bear
mentioning. Although GANs have been useful in mapping distri-
butions, they suffer from key drawbacks. First, they are difficult
to train because of the adversarial losses, which can lead to
instability.>® This instability means that the model can deteriorate
from effective to ineffective quickly across training iterations.
Second, they often suffer from mode collapse because they
are not penalized by distribution-level losses to match the entire
distribution.®* The additional correspondence loss does not
worsen these issues. We informally observe that early stopping,
as a regularization, as well as our geometric loss helps mitigate
these effects, but these effects may still be present in some con-
texts. Additionally, with our framework based on pairwise gener-
ators in each mapping direction, the number of generators
necessary grows quadratically. This means that for a large num-
ber of input modalities to align, the networks would have to be
made small or would have to be trained separately. Finally, our
geometry-based loss is not completely “plug-and-play” in the
sense that we still require a choice of distance between data
points. In cellular data, we used Euclidean distance to compute
the manifold. However, in other contexts, such as two image
types, more complicated measures such as the structural simi-
larity index may be used.®*¢

For this reason, we encourage continued evaluation of aligned
results through external verification measures. For example, in
this work we verified that known signals across genes and
across cells are still preserved in the aligned data. Moreover,
we point out that the novel gene correlations found by
scMMGAN are potential discoveries that should be further inves-
tigated with experiments specifically designed for this aim.

EXPERIMENTAL PROCEDURES

In this section we further expand on the model, experimental regimes, and im-
plementations used in this work.
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Table 2. Results from the ATAC-seq/RNA-seq experiment

ATAC-seq scMMGAN CycleGAN CMAE

MMD (x1,G(x2)) 0.033 + 0.001 0.033 + 0.000 0.038 + 0.000
MMD (G(x1),x2) 0.031 + 0.000 0.032 + 0.000 0.051 + 0.003
Correlation (x1,G(x2)) 0.313 + 0.025 0.024 + 0.140 —0.014 £ 0.108
Correlation (G(x1),X2) 0.358 + 0.016 0.034 + 0.225 0.020 + 0.111

Evaluation of each model on the ATAC-seq/RNA-seq data. The MMDs for each model are close, as each models the ground truth at a whole-distri-
bution level. scsMMGAN is the only model whose predictions preserve the known correlation, however, because its alignment is also accurate point-

wise. The best or tied-for-best values are in boldface.

Resource availability

Lead contact

The lead contact is Smita Krishnaswamy (smita.krishnaswamy@yale.edu).
Materials availability

There are no newly generated materials.

Data and code availability

An implementation of the scMMGAN model written in Python and Tensorflow,
which can be run on any user-loaded datasets, is available at https://github.
com/KrishnaswamylLab/scMMGAN. Direct further data availability inquiries
to the lead contact.

Biological methods

This section describes the methods used to acquire the dataset of triple-nega-
tive breast cancer investigated in this paper.

Animal studies

All experiments were approved by and conducted in accordance with the Na-
tional Health and Medical Research Council Statement on Animal Experimen-
tation, the requirements of New South Wales State Government legislation,
and the rules for animal experimentation of the Biological Testing Facility of
the Garvan Institute and the Victor Chang Cardiac Research Institute (protocol
#18/12).

Ten NOD/SCID mice at 6-8 weeks of age were purchased from Austra-
lian Bioresources (ABR). Mice were 8-9 weeks of age at time of injec-
tions. MDA-MB-231-GFP cells (1 x 10° cells) were prepared in 25 pL
20% Matrigel (BD Matrigel Matrix Growth Factor Reduced)/serum-free
medium and injected orthotopically into the inguinal mammary fat pads.
After 9.5 weeks, animals underwent survival surgery to remove the pri-
mary tumors (700-1,000 mm?®), which were subsequently split into three
parts: one chunk was used for scRNA-seq, one chunk was formalin fixed
and embedded in paraffin for future analysis, and one chunk was frozen
in optimal cutting temperature compound for spatial transcriptomics anal-
ysis. Animals were housed for 2 more weeks, after which the liver, lymph
nodes, and lungs were harvested for analysis of metastatic cells in those
tissues.
scRNA-seq preparation and analysis
Primary tumors, lungs, livers, and lymph nodes were chopped into small
pieces, then incubated at 37°C for 40 min on a rotary shaker in DMEM/F12
containing collagenase A (300 U) and hyaluronidase (100 U). Following diges-
tion, cell suspensions were pelleted, the DMEM removed, washed with PBS
2% (v/v) fetal bovine serum (FBS), and resuspended in 0.15% + 10% DNasel
trypsin for 1 min. Trypsin was quenched with 2% FBS/DMEM. Cells were re-
suspended in FACS buffer (2% [v/v] FBS in PBS). GFP* alive tumor cells
were sorted and collected, and scRNA-seq was performed using Chromium
10X technology.

Spatial transcriptomics

Spatial transcriptomics was performed according to the published protocol.®”

Training objectives

Here we elaborate on the training objectives used in the scMMGAN frame-
work learning. We define the formulation considering a pair of domains,
with the definitions extending to multiple domains accordingly. It is
composed of distinct GAN networks, each with a generator network G
with input X and output X’. We call each generator a mapping from the input
domain to the output, or target, domain. Each generator attempts to make its

8 Patterns 3, 100577, September 9, 2022

output G(X) indistinguishable by D from X’. Denote the two datasets X; and
X». Let the generator mapping from X3 to X» be G12 and the generator map-
ping from X, to X7 be G21. The discriminator that tries to separate true sam-
ples from X; from the generated output of Go1(X2) is Dy, and the discrimi-
nator that tries to separate true samples from X, from generated samples
from G12(X1> is D».

The loss for G1 on minibatches x; and xz is

X12 = G12(X1)
X121 = Gt (X12)
Ly = Lreconstruction = MSE<X1 1X121)
Lo = Laiscriminator = — [Ex, ~Px, [log D2(x12)],
Lc = Lconespondence = L<X1 ,X12)
La, = ALr+2glg + AcLc

where MSE is the mean-squared error and L is the correspondence loss dis-
cussed previously. The hyperparameters J,, A4, and A, are chosen to balance
the reconstruction, discriminator, and correspondence losses. These can be
chosen by defaulttobe A, = Ay = Ac = 1, but A; increased if the observed
correspondences are low and A, increased if the observed reconstructions
are not accurate.

Similarly, the loss for G» is

Xo1 = Gy (X2)
Xo12 = G2(X21)

L, = MSE(X2,X212)
Lyg= — [EXZ~PXQ [log D1 (X21)].
Lo = L(X2,X01)

L, = ALr+Aglg + AcLc

The losses for D4 and D, are

Lp, = — [EX‘NPX‘ [logD1(x1) + logD1 (X121)]
— Expy, l0g(1 — D1 (X21))]
Lp, = — Exnpy, [10gD2(x2) +10gD2(X212)]-

= Exqnpy, l09(1 = Da(X12))]

Calculation of correspondence loss

For the following notation, consider one of the datasets x; and its representa-
tion after being mapped to the other domain, G(x1). First, matrices of pairwise
distances Dy, and Dg,) are constructed.

These are then transformed into matrices of pairwise affinities with an in-
verse-distance kernel k(x;,x;)) = max(0,1 — ||x; — xj||1/0i), where o; is a
k-nearest neighbor adaptive bandwidth. This kernel was necessary, as the
standard Gaussian kernel suffered from gradients that saturated and sup-
pressed learning. With this kernel, we are able to effectively perform diffusion
geometry learning through gradient descent.

These affinity matrices are transformed into transition probability matrices
Py, and Pg,) through row normalization. Powering these matrices t times
then represents taking t steps forward in the Markov chain. Let the eigenvec-
tors of these two matrices be ¢,, and ¢g,), respectively. The it row of @y, and
9G(x,) represents the diffusion coordinates of the point x4; in the original space
and G(xy;) in the generated space, respectively. Because we are only seeking
to match low-frequency structure of the data, we use only the first ne
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Figure 5. Analysis of scMMGAN alignment and clusters on the triple-negative breast cancer dataset

(A) Plotted are the PCA coordinates of the gene expression values from the two distributions. In the raw data, the spatial RNA-seq and scRNA-seq are not directly
comparable, as they are entirely separable. After mapping with scMMGAN, they are aligned and comparable with downstream analysis.

(B) Mapping spatial RNA-seq to scRNA-seq, clustering the generated scRNA-seq values, and then plotting the cluster by the measured spatial coordinate on the
X axis an y axis.

(C) Generated spatial RNA-seq data from scRNA-seq, including generated spatial coordinates. Same coordinates as previous plot.

(D) All generated clusters mapped to the spatial RNA-seq space. Same coordinates as previous plots.
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Figure 6. Generated scMMGAN expression value results plotted on the spatial coordinates
The x axis and y axis plotted are the raw measured spatial coordinates from the spatial RNA-seq. The color is expression value, where we compare the original
spatial RNA-seq of a gene with each generated scRNA-seq value of that gene for each method, showing scMMGAN best aligns the original and generated values.

eigenvectors of the data as an approximation. The eigenvectors are then re-
scaled to be between —1 and 1.

We also perform a check before comparing the eigenvectors of the original
data ¢, and those of the generated data ¢, . Because the direction of the ei-
genvectors can be switched, two datasets with equivalent intrinsic geometry
could have eigenvectors that are either highly correlated or highly anticorre-
lated. To combat this, we calculate the correlation of each pair of eigenvectors
before computing the loss and whether the correlation is below a threshold
e = — 0.5, then we multiply the values of ¢g() by —1 before computing
the loss. We then also compare the eigenvectors at different scales by sum-
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ming adjacent vectors and comparing the new combined representations
that have half the number of vectors.

Noise-augmented model

Here we detail the noise-augmented model used in the section about distin-
guishing unique and common information. The core idea is that by providing
additional noise as input, the model will be able to use the stochasticity
when necessary or ignore it if not. In other words, some generated values
will have more certainty behind them in the model and others greater uncer-
tainty. We experiment with this notion by introducing a slight modification of
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Table 3. Results from the triple-negative breast cancer experiment

scRNA-seq —> Spatial scMMGAN CycleGAN CMAE
MMD (G(x1),X2)
Sample 1 0.072 + 0.003 0.072 + 0.001 0.076 + 0.002
Sample 2 0.071 + 0.001 0.072 + 0.002 0.075 + 0.002
Sample 3 0.072 + 0.002 0.072 + 0.001 0.075 + 0.002
Sample 4 0.071 + 0.002 0.072 + 0.004 0.076 + 0.002
MMD (x1,G(x2))
Sample 1 0.076 + 0.002 0.080 + 0.003 0.075 + 0.001
Sample 2 0.085 + 0.002 0.074 + 0.002 0.078 + 0.003
Sample 3 0.081 + 0.002 0.082 + 0.001 0.087 + 0.004
Sample 4 0.079 + 0.001 0.076 + 0.001 0.086 + 0.006
MSE (x1,G(x2))
Sample 1 0.987 + 0.128 2.001 + 0.525 2.021 £ 0.323
Sample 2 0.995 + 0.126 1.934 + 0.235 1.771 £ 0.521
Sample 3 0.887 + 0.026 2.097 + 0.548 1.591 + 0.728
Sample 4 1.029 + 0.017 1.932 + 0.353 1.823 + 0.288
MSE (G(x1),x2)
Sample 1 0.931 + 0.101 1.972 + 0.515 2.031 £ 0.275
Sample 2 0.970 + 0.108 1.931 £ 0.195 1.843 + 0.536
Sample 3 0.878 + 0.024 2.068 + 0.556 1.609 + 0.756
Sample 4 0.985 + 0.010 1.905 + 0.366 1.872 + 0.287

Quantitative measurement of how well the generated distributions match the target distribution (MMD) and how well they preserve correspondence
with the original input distribution (MSE). While all methods match the target distribution reasonably (top two sections), only scMMGAN minimally alters
the points in the alignment (bottom two sections). Statistics reported on both mapping directions and across five independent trials. The best or tied-

for-best values are in boldface.

the scMMGAN framework: additional random input. We calculate the genera-
tor’s output as G(x;;z), wherez ~ N(0,1) e IRP, concatenating a draw from an
isotropic normal distribution with the original input. The reconstruction and
correspondence losses are then calculated as usual with just x;. This allows
the model to create more stochasticity around regions of the space where
there is not enough information to pin down precisely the correct alignment,
while it can ignore the noise and create a deterministic mapping in regions
of the space where there is enough information.

Invariance and risk

In this section we connect our model in the domain alignment setting to
existing literature on invariance and risk minimization.*® Consider the
domain alignment task as drawing a dataset df ~ D° from a distribution
P(D®) where the environment e determines how observations manifest
d; in De. The domains Xy and X in our setting are drawn from P(D¢),
then the datasets x,,i = 1...ny and x},i = 1...n, are drawn from the distri-
butions X1 and X». Thus, we have two sources of randomness from sam-
pling to consider in learning the desired mappings G, one from the points
sampled from the distribution and the other from the distribution sampled
from the distribution over settings. We want to minimize the risk of
alignment:

o, = L(Ga(h) ) +L (55, Gor ().

The inadequacy of solely a cycle-consistency loss should be obvious
from this formation. While minimizing the cycle-consistency loss can opti-
mize performance with respect to the expectation over X; and Xy, the
formulation is equivalent for all datasets drawn from P. Thus, it is incapable
of resolving correlations that are structurally related to the datasets versus
those arising spuriously from sampling. These ideas are key to the exten-
sion beyond just using cycle consistency in the construction of domain
mapping networks.

Diffusion maps

Diffusion maps define a process of Markovian diffusion over a dataset,
whereby a set of local affinities capture the intrinsic data geometry as quanti-
fied by diffusion distances.'® They operate on a matrix of pairwise distances
that is transformed into a matrix of pairwise affinities, here via the commonly
used Gaussian kernel k(x;, x;) = exp{ — ||x; — x;[|? /¢}. A Markov chain transi-
tion matrix over the dataset P is constructed from the pairwise affinity matrix A

-1
viaP = (Z‘/\,,) A. Powering the matrix P! represents taking t forward steps
i

inthe Markov chain. Diffusion maps are then defined as Wy(x) = (X4, ..., Aiy)
where ; and y; are the i" eigenvalue and eigenvector of P, and / is a hyperpara-
meter of the number of top eigenvectors to use. The diffusion map coordinates
form a space where the Euclidean distance between points approximates the
diffusion distance between those points.

In previous work, diffusion operators have been used in the context of multi-
modal data integration.® This has been done for the related tasks of visualizing
and denoising, rather than mapping between, the datasets. The approach
there differs from ours in that it relies on combining diffusion operators from
different modalities through algebraic operations as opposed to our method,
which integrates them into a broader deep-learning framework.

The diffusion maps are a key foundational notion used in the construction of
the data geometry loss.

Geometry-preserving correspondence loss

We now further elaborate on a few points about the geometry-preserving
correspondence loss introduced in this paper. We only enforce the cor-
respondence loss on the first eigenvectors because this ensures that
basic low-frequency signals are largely aligned while still allowing the
flexibility of changing high-frequency signals that are more likely to be
idiosyncratic to each domain. In practice we find using 10-20 eigenvec-
tors works best.
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We note that any changes to the data geometry would cause a mismatch
here, and thus the ideal alignment would not drive this term in the objective
all the way to zero unless the two datasets being aligned have identical geom-
etry. Despite the goal not being zero correspondence loss, there are many
different mappings that achieve comparably low GAN losses, and among
them the ones with lower correspondence losses are preferable. This is why
using it as a regularization to lightly guide the transformation in addition to
the GAN loss can achieve the best performance overall.

Architecture and baselines

We compare scMMGAN with alternative baseline deep-learning models used
for alignment of this type: a CycleGAN, to motivate the need for the correspon-
dence loss by showing the improper alignments obtained without it;” and
CMAE, an autoencoder-based model that uses separate encoders/decoders
that learn to map into a shared space and then generates by crossing the
encoder of one domain with the decoder of another.”’ These alternative
methods use distribution-level losses to ensure the generated distribution
matches the target distribution, but do not impose any loss on the representa-
tion of a point and its representation in the aligned domain. As a result, they can
produce alignments that unnecessarily invert signals and change values of in-
dividual points.

With scMMGAN, we use a generator consisting of three internal layers of
128, 256, and 512 neurons with batch norm and leaky rectified linear unit ac-
tivations after each layer, and a discriminator consisting of three internal layers
with 1,024, 512, and 256 neurons with the same batch norm and activations
except with minibatching after the first layer.>>“° We use a correspondence
loss coefficient of 10, cycle-loss coefficient of 1, learning rate of 0.0001, and
batch size of 256. As preprocessing steps prior to running each model on
this dataset, we correct for dropout with the manifold smoothing method
MAGIC,*"! zero-center and unit scale each dimension, and reduce to 50 prin-
cipal components. We use these architectures and hyperparameters in all sub-
sequent experiments except where otherwise stated.
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