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Abstract

We provide a road towards obtaining gravitational waveforms from inspi-

raling material binaries with an accuracy viable for third-generation

gravitational wave detectors, without necessarily advancing computational

hardware or massively-parallel software infrastructure. We demonstrate a

proof-of-principle 1+ 1-dimensional numerical implementation that exhibits

up to 7th-order convergence for highly dynamic barotropic stars in curved

spacetime, and numerical errors up to 6 orders of magnitude smaller than a

standard method. Aside from errors associated with overshoot in high-order

extrapolation from the interior of the star to the surface, there are no obvi-

ous fundamental obstacles to obtaining convergence of even higher order. The

implementation uses a novel surface-tracking method, where the surface is

evolved and high-order accurate boundary conditions are imposed there. Com-

putationalmemory does not need to be allocated to fluid variables in the vacuum

region of spacetime. We anticipate the application of this new method to full

3+ 1-dimensional simulations of the inspiral phase of compact binary systems

with at least onematerial body.The additional challenge of a deformable surface

must be addressed in multiple spatial dimensions, but it is also an opportunity

to input more precise surface tension physics.
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1. Introduction and motivation

Gravitational wave astronomy has recently exploded with activity [1–5]. The signal-to-noise

ratio in current gravitational wave data [6, 7] does not yet challenge the accuracy of theoretical

models of the signals coming from perturbation theory, phenomenology, and numerical relativ-

ity [8–13]. Therefore, thosemodels are used to inform interpretations of the data [14, 15]. How-

ever, with future third-generation detectors [16, 17] or current detectors at design-sensitivity,

the signal-to-noise ratio is expected to challenge current models [18–20]. It is therefore nec-

essary to make substantial advancements in the accuracy of theoretical models, including

numerical relativity simulations. Advancements are being pursued in perturbative calculations

[21–32] as well as numerical simulations. Some efforts in the latter category involve innova-

tions and optimizations of hardware [33–35], parallel-computing software [36–40], numerical

methods [41–53], and novel physics formulations [54, 55].

In this work, we take advantage of an existing arbitrage opportunity to substantially increase

the accuracy of simulations of relativistic stars with a negligible increase in computational cost.

The price paid is a modest increase in code complexity. The opportunity exists because cur-

rent, widely applied numerical methods for dealing with stellar surfaces and vacuum regions

are an unnecessary and substantial source of numerical error and degradation of convergence

rate. The standard method consists of filling the vacuum regions of spacetime with an artificial

low density fluid atmosphere, maintaining it at every time step, and then evolving the fluid

equations everywhere (including across stellar surfaces). Often a low-order accurate solver is

used purposely in the vicinity of the surface (e.g. [56, 57]). Strong attempts to achieve high-

order convergence in binary simulations yield convergence orders for the inspiral gravitational

waveform of 2.5–3 [44, 47].1 One recent advancement uses negative pressure artificial atmo-

spheres which can be in hydrostatic equilibrium [54]. A recently demonstrated strategy to

use an artificial atmosphere-style scheme with zero density, while importantly lowering errors

associated with mass conservation and ejecta, does not substantially improve the bulk motion

[53]. High-order convergence in simulations of isolated fluid bodies has been elusive, and is a

significant obstacle for simulating such systemswith an accuracy viable for future gravitational

wave observation campaigns.

Our objective in this work is to improve the treatment of relativistic stellar surfaces in 1

spatial dimension, which is a necessary step towards high-order convergence in full 3 + 1

dimensional numerical relativity simulations. Our strategy is to evolve the surface position and

velocity, and impose free surface boundary conditions there. This moving boundary condition

can be imposed at arbitrarily high order, in principle.We demonstrate up to 7th-order accuracy

formally for the fluid variables in a 1+1-dimensional toy model involving highly dynamic stars

on curved spacetime. Using this ‘surface-tracking’ method, we also demonstrate substantial

improvements in the absolute level of numerical error even when the time-stepping algorithm

is a standard 3rd-order one. These demonstrations are presented as a proof-of-principle for

the method, with extensions to multiple spatial dimensions left for future work. The multi-

dimensional moving boundary (the stellar surface) will also be deformable, which presents

an additional technical challenge as well as an opportunity to input surface tension physics.

The machinery for dealing with rigid moving boundaries in multiple dimensions was already

presented in reference [59]. We expect that non-oscillatory interpolators will have to be used

1Note that reference [44] describes oscillations of equilibrium stars in simulations as being triggered by atmosphere

effects. However, strictly speaking they are initially triggered by the use of an ill-balanced numerical scheme, whereas

atmosphere effects sustain the oscillations subsequently. See e.g. reference [58] for an example of a well-balanced

scheme.
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in multiple dimensions in order to prevent excessive unphysical wrinkling of the surface, and

this may be where surface tension physics enters.

An important design goal is that the surface-tracking method can be used with any interior

scheme, which enables adoption of the method in all existing production codes. We anticipate

that the method will work with any grid structure, although our demonstration is on a Carte-

sian one. Furthermore, there is absolutely no need to allocate computational memory to fluid

variables in the vacuum regions, although taking advantage of this would increase the data

structure complexity in the code.

Our surface boundary treatment is based on a history of development that in the past

used the inverse of the original Lax–Wendroff procedure [60]. The Lax–Wendroff proce-

dure involves writing time derivatives in terms of spatial derivatives using the equations of

motion, and can be used to derive the one-step 2nd-order accurate Lax–Wendroff numeri-

cal method. Near computational boundaries, where spatial derivative stencils extend beyond

the domain, it is advantageous to do the reverse: replace spatial derivatives with time deriva-

tives. In the inverse Lax–Wendroff procedure, spatial derivatives normal to the boundary are

replaced by time derivatives and tangential spatial derivatives using the equations of motion.

The idea of using the Lax–Wendroff procedure in reverse was proposed in references [61,

62] for the analysis of numerical boundary conditions, and was extended to arbitrarily shaped

boundaries in reference [63]. Inspired by reference [64], extensions to nonlinear conserva-

tion laws [59] and compressible non-relativistic inviscid fluids [65] were achieved. Significant

simplification of the boundary treatment was presented in reference [66]. Linear stability of

the inverse Lax–Wendroff treatment of boundaries has been established for up to 13th-order

accurate methods [67, 68]. See the review in reference [69].

Schemes for tracking a fluid–vacuum interface have previously been reported. A numerical

treatment of the vacuum Riemann problem was presented in references [70, 71]. Such work

was built upon by reference [72], allowing the fluid–vacuum interface to contract, thereby

enabling the simulation of oscillating stars with a surface-trackingmethod. This improvedmass

conservation relative to an artificial atmosphere scheme, but there was no attempt to render the

surface treatment as high-order accurate.

In this work, we extend the work of reference [65] to relativistic inviscid fluids in 1 +

1-dimensional curved spacetime, and to boundary conditions appropriate for fluid–vacuum

interfaces such as stellar surfaces. The treatment of a fluid–vacuum interface requires novel

strategies since extrapolations into the vacuum regionwould in general yield unphysical values

of the fluid variables. We find that we can implement the efficiency improvement of refer-

ence [66] even more aggressively, whereby we eliminate the inverse Lax–Wendroff procedure

entirely. This yields an exceptionally simple scheme. The reason this is possible is likely due

to the fact that stellar surfaces are characteristic surfaces (at least very nearly2), so one can be

more relaxed regarding the treatment of ingoing versus outgoing information3. Extension to

rigid surfaces in multiple spatial dimensions should follow straightforwardly using the general

recipe described in reference [65], but as mentioned earlier, treating deformable surfaces will

require additional development likely to involve non-oscillatory interpolations of the surface

position and velocity. For technical reasons described in the body of the text (see section 3), we

use a ‘liquid’ equation of state whereby the rest mass density takes on a small positive value

when the pressure vanishes (thus the density is finite at the stellar surface). We consider only

2We use a liquid equation of state in this work, whereby the sound speed does not vanish at the stellar surface (but

instead becomes very small).
3 If working with an equation of state such that the sound speed is non-negligible at the surface, one can expect to have

to use the inverse Lax–Wendroff procedure for the ingoing first derivatives [66].
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barotropic fluids, since we anticipate the future application of our methods to the inspiral phase

of compact binary mergers involving at least one material body. The inspiral phase is expected

to be well-approximated by barotropic fluid flow [73, 74]. The extremeness of the stellar evo-

lutions that we study far exceeds what one expects during the inspiral phase of a binary. In a

binary inspiral, stars are subjected to smooth, long-wavelength tidal deformations rather than

the volatile sloshing motion that we consider in this work.

It is worth mentioning that the well-posedness of the fluid–vacuum interface is a difficult

and unsettled mathematical problem. Some find benefits to using a liquid equation of state

(e.g. reference [75]). For general reading on the problem, see for example references [75–80]

and references therein. Numerically, we find that the free surface problem is quite stable when

using a standard formulation of hydrodynamics.

In section 2, we describe our toy model environment in which our new method is demon-

strated, including the characteristic structure of the system in section 2.1. We describe the

boundary conditions used at the fluid–vacuum interfaces in section 3, as well our choice of

liquid equation of state. The surface-tracking algorithm is described in detail in section 4.

Implementation details for the interior scheme are presented in section 5. Numerical results are

presented in section 6. We summarize and give some thoughts on future directions in section

7. Although it is not used, we present the inverse Lax–Wendroff procedure for first derivatives

in appendix B, as well as the constraint on first derivatives that one would have to use in the

inverse Lax–Wendroff procedure in appendix A. Various failure modes that we have encoun-

tered for the surface-trackingmethod, as well as some possible policies for dealing with them,

are presented in appendix C (although we have found that the invocation of such error han-

dling policies usually indicates a bug in the implementation, except for very extreme stellar

evolutions).

Throughout,we use the negative-timemetric signature (−,+,+, . . .). Spacetime indices are

denoted with letters at the beginning of the alphabet {a, b, c . . .}. Spatial indices are denoted
with letters beginning in the middle of the alphabet {I, j, k . . .}. We use units in which G =

c = 1.

2. Toy model

In this section, we describe a toy model which we use to demonstrate the surface-tracking

methods. It consists of an isolated fluid body living in 1 spatial dimension, under the influence

of a time-independent spacetime curvaturewhich acts tomaintain the body’s compactness. The

spacetime is prescribed, non-dynamical, and not derived from any underlying theory. The toy

model contains the minimal set of ingredients required for demonstrating high-order accurate

simulations of a relativistic star in curved spacetime.

We consider a 1 + 1-dimensional Cartesian ‘star’ in a frozen spacetime with metric

ds2 = −α(x)2dt2 + dx2. (2.1)

The spacetime is periodic in x with a length L = 10, and the lapse function is prescribed to be

α(x) =
2

3

(

1− 1

2
cos

{

2π

L
(x − L/2)

})

. (2.2)

This lapse function goes to 1 at x = 0 and x = L, and reaches a minimum value of 1/3 at x =
L/2, thereby providing a confining gravitational potential centered at the position x = L/2.
Note that this is a curved spacetime, since it has non-vanishing Ricci scalar R = −(2/α)∂2

xα.
We intend that this lapse function only mimics a confining gravitational potential; it is not

4
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derived from any underlying theory. In the language of a 1 + 1-dimensional decomposition

of spacetime, the shift vanishes βx = 0 and the spatial metric is Euclidean γxx = δxx , thus
in particular the spatial metric determinant is

√
γ = 1. This Cartesian 1 + 1-dimensional

setup is more representative of a 3 + 1-dimensional Cartesian setup than a 1 + 1-dimensional

spherically-symmetric one, because of the absence of singular coordinate behavior at the ori-

gin. Such singular coordinate behavior in spherical symmetry requires numerical care, and is

a distraction from the main proof-of-principlewe present in this work. These reasons motivate

our choice of toy model spacetime equation (2.1).

We consider two formulations of barotropic fluid dynamics. One resembles the Valencia

formulation [81, 82] because it is based on the equations of mass and momentum conserva-

tion (we simply refer to it as the Valencia formulation). The other formulation is based on

mass conservation and the Hamiltonian Euler equation (we refer to it as the Hamiltonian for-

mulation). The Hamiltonian Euler equation evolves the canonical momentum (rather than the

momentum density). Both formulations are analytically equivalent for smooth solutions (in the

absence vacuum boundaries [55]), but have different properties when discretized numerically.

Both formulations use the conservation of rest mass density,

0 = ∇a (ρu
a), (2.3)

where ρ is the rest mass density and ua is the fluid two-velocity. Rest mass conservation is

an approximation of baryon number conservation in a relativistic setting. In the usual 1 + 1

decomposition of the spacetime, this equation becomes

0 = ∂tD + ∂x [αDv], (2.4)

where v is the fluid speed as seen by Eulerian observers, W = αut = 1/
√
1− v2 is the

corresponding Lorentz factor, andD = ρW is the relativistic rest mass density.

The Valencia formulation uses the covariant conservation of momentum,

0 = ∇aT
a
i , (2.5)

where Tai = ρhuaui + δai P, h is the specific enthalpy, P is the pressure, a is a spacetime index,

and I is a spatial index. In a 1 + 1 decomposition, this equation becomes

0 = ∂tS + ∂x [αSv + αP]+
(

ρhW2 − P
)

∂xα, (2.6)

where S = ρhW2v. The Hamiltonian formulation instead uses the Hamiltonian Euler equation

0 = ua [∂a(hub)− ∂b(hua)], (2.7)

which does not have any covariant derivatives because the derivatives occur in an antisymmetric

combination. In the usual 1 + 1 decomposition of the spacetime, this equation becomes

0 = ∂tp+ ∂xH, (2.8)

where p= hWv is the canonical momentum, and H = αhW is the Hamiltonian4. See [54] for

a more general discussion of this barotropic Hamiltonian formulation of fluid dynamics.

4 In an arbitrary frame, stationarity of the fluid configuration implies that a slightly different quantity, namely H̃ ≡
αh/W, is constant. This is because stationarity in amoving frame corresponds to vanishing Lagrangian time derivatives

D/Dt = ∂t + αv∂x . When equation (2.10) is written in terms of D/Dt, stationarity implies that αh/W is constant in

space.
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Figure 1. Rest mass density for an equilibrium configuration with H = 0.7, κ = 100,
Γ = 2, and lapse function given by equation (2.2).

For ease of reference, we collect the equations of motion for the Valencia formulation here:

0 = ∂tD + ∂x [αDv],

0 = ∂tS + ∂x [αSv + αP]+ ∂xα
(

ρhW2 − P
)

. (2.9)

And we collect the equations of motion for the Hamiltonian formulation here:

0 = ∂tD + ∂x [αDv],

0 = ∂tp+ ∂xH. (2.10)

The system is closed by an equation of state, e.g. P = P(ρ) or h = h(ρ).
A stationary fluid configuration in this spacetime is completely determined by setting v = 0

and specifying the value of its constant Hamiltonian H. The rest mass density profile is then

recovered by inverting H = H(ρ). A barotropic equation of state can be written as h = h(ρ).
Thus the recovery of ρ from a chosen value of H begins with obtaining h via h = H/α, and
then inverting h = h(ρ). For the lapse function given in equation (2.2), the fluid has left and

right surfaces when H < 1, which correspond to spatial locations x where h(x) = 1. When

H � 1, the fluid extends across the entire spatial domain. In figure 1 we display the lapse

function and resulting density profile for the choiceH = 0.7, and a polytropic equation of state
P = κρΓ with κ = 100, and Γ = 2. This star has a central density ρc = 5.5× 10−3, central

energy density εc ≈ 8.7× 10−3, dynamical time td = 1/
√
εc ≈ 10, and left and right surfaces

at x/L ≈ 0.2341 and x/L ≈ 0.7659, respectively.
We also consider increasingly perturbed versions of this configuration, whereby the star

is initialized with uniform motion ux/ut = αv ∈ {0.01, 0.02, 0.04}. In these cases, the initial

enthalpy is given by h = H̃W/α with H̃ = 0.7, and the initial surface locations are corre-

spondingly modified (but still satisfy h = 1). Note that the spacetime remains fixed, so that

the resulting evolution is a star that sloshes back and forth in a fixed gravitational well.

Note that we use an equation of state that is not precisely P = 100ρ2, but is very close (and
described in section 3).

2.1. Characteristic structure

In this section we present the characteristic structure used in our numerical implementation.

For a set of evolved variables U, corresponding fluxes F, sources S, and lapse function α(x),

6
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the equations of motion read

0 = ∂tU + ∂x [αF]+ S. (2.11)

When seeking the characteristic structure of this systemwith respect to a chosen set of variables

q, one can use the chain rule as follows:

0 =
∂U

∂q
∂tq+ α

∂F

∂q
∂xq+ l.o.

→ 0 = ∂tq+ α

(

∂U

∂q

)−1
∂F

∂q
∂xq+ l.o., (2.12)

where we have denoted by ‘l.o.’ terms that are lower order in the sense of characteristic

analysis5, and assumed ∂U/∂q is invertible. Equation (2.12) is the quasilinear form of the

equations of motion with respect to the variables q, and the Jacobian can be read off from

equation (2.12) as the prefactor of ∂xq: J ≡ α(∂U/∂q)−1∂F/q. If the fluxes and evolution

variables can be written as explicit functions of the choice of variables q, then the Jacobian is

easy to compute.

We use the characteristic structure associatedwith two choices of variables: ‘safe’6 variables

q = (h,Wv)T and ‘flux’ variables q = F. For the flux variables, the Jacobian is the same as if

q = U, namely

J = α
∂F

∂U
, (2.13)

which is readily computed in terms of primitive variables pusing the chain rule7 and assuming

the applicability of the inverse function theorem [83] for ∂ p/∂U8 (see equation (2.14) below,

and set q = p).

For the safe variables, we use the full expression for the Jacobian,

J = α

(

∂U

∂q

)−1
∂F

∂q
. (2.14)

The matrices ∂U/∂q and ∂F/∂q are again readily computed in terms of primitive variables

p via ∂U/∂q = (∂U/∂ p)(∂q/∂ p)−1 and ∂F/∂q = (∂F/∂ p)(∂q/∂ p)−1, which assumes the

applicability of the inverse function theorem for ∂q/∂ p.
The Jacobian J, its eigenvalues λ±, and its left and right eigenvectors L±, R± are provided

in table 1 for the safe variables and flux variables in the Valencia and Hamiltonian formu-

lations. The speed of sound is cs =
√

∂P/∂(ρh), which can be rewritten (for general h) as

cs =
√

(1/h)∂ρP or as cs =
√

(ρ/h)∂ρh. In our numerical implementation we make use of

local characteristic variables defined by

V =

[

L+,1 L+,2

L−,1 L−,2

]

X

q. (2.15)

Where L± = (L±,1, L±,2), and the matrix of left eigenvectors is evaluated at the specific point

x = X, where the characteristic decomposition is being performed.

5 For example, terms proportional to S and ∂xα.
6The name ‘safe’ is explained in section 3.
7 i.e. ∂F/∂U = (∂F/∂q) · ∂q/∂U.
8 i.e. ∂ p/∂U = (∂U/∂ p)−1.

7



C
la
ss.

Q
u
a
n
tu
m

G
ra
v.
3
8
(2
0
2
1
)
1
4
5
0
0
3

J
R
W
e
ste

rn
a
ch

e
r-S

ch
n
e
id
e
r

Table 1. Collection of fluid characteristic information with respect to several sets of variables.

Safe variables Valencia flux variables Hamiltonian flux variables

J = α
1−v2c2s

[

v(1− c2s ) hc2s/W
3

1/(hW) v(1− c2s )

]

J = α
1−v2c2s

[

v(v2 − c2s ) 1/(hW3)
h

W
(v2 − c2s ) v(2− v2 − c2s )

]

J = α
1−v2c2s

[

v(1− c2s ) ρ/(hW2)

hc2s/(ρW
2) v(1− c2s )

]

λ± = α v±cs
1±vcs

λ± = α v±cs
1±vcs

λ± = α v±cs
1±vcs

L± = (± W
hcs

, 1) L± = (hW(−v ± cs), 1) L± = (± hcs
ρ , 1)

R± = (± hcs
W
, 1)T R± = ( 1

hW(v±cs) , 1)
T R± = (± ρ

hcs
, 1)T
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3. Vacuum boundary conditions

For concretenesswe focus on the right boundaryof our one-dimensional star. The left boundary

description is analogous. The boundary conditions appropriate for the right stellar surface are

3P(xv) ≡ P = 0,

v(xv) ≡ v = lim
x→x−v

v(x). (3.1)

We denote evaluation at the surface with an overbar. The vanishing pressure condition implies

h = 1. We assume a liquid equation of state whereby the rest mass density takes a positive

value ρ when the pressure vanishes, i.e. P(ρ) = 0 and ρ > 0. The use of a liquid equation

of state greatly simplifies technical details in the description of the stellar surface, because it

allows one to work directly at the surface rather than in a neighborhood of it (essentially by

avoiding repeated divisions by zero there). An example of such an equation of state is that of

a generalized polytrope,

h = 1− a+
κΓ

Γ− 1
ρΓ−1, (3.2)

with a = constant > 0. The corresponding formula for the density is

ρ =

(

h− 1+ a

κ(1+ n)

)n

, (3.3)

where Γ = 1+ 1/n. The pressure vanishes when the enthalpy h = 1, implying that

ρ =

(

a

κ(1+ n)

)n

. (3.4)

By taking a ≪ 1, this equation of state deviates negligibly from the usual polytrope except in

the vicinity of the surface of a star. In this work, we set ρ = 10−13, which is roughly 10 orders

of magnitude below the central density of the star. We found no issue going even lower, and

our results on convergence are not sensitive to the choice. The specific evolutions we obtain

are also not sensitive to the choice of ρ, provided it is chosen to be sufficiently small (a similar

level as with artificial atmosphere prescriptions, i.e. at least 6 or 7 orders of magnitude below

the central density of the star).

In past work, it was found that high-order numerical treatment of boundary conditions can

be achieved stably as long as the inverse Lax–Wendroff procedure is followed for ingoing first

derivatives [66], with all ingoing higher derivatives simply being extrapolated to the bound-

ary. For a stellar surface, we find we are able to be even more aggressive; we can extrapolate

all ingoing derivatives, and only impose the free surface boundary conditions on the undif-

ferentiated fluid variables. This makes the implementation especially efficient. The greater

stability we find for the stellar surface problem is probably because the surface is almost a

characteristic boundary (cs ≪ 1). If the ingoing and outgoing characteristic speeds were very

different, extrapolation of ingoing variables to the boundary would be numerically more dan-

gerous. If the sound speed is not small at the surface, one can expect to have to follow the inverse

Lax–Wendroff procedure for at least the ingoing first derivatives, as in [66]. In appendix A we

have derived the constraint on first spatial derivatives of the fluid variables at the stellar surface,

which would be necessary for the inverse Lax–Wendroff procedure. We also describe how to

derive constraints on higher order derivatives.

9
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As in reference [54], we extend the equation of state to negative pressures h < 1 via a

piecewise attachment to h(ρ). This is why we call the variables q = (h,Wv)T ‘safe’, i.e. if

extrapolations result in a value of the enthalpy less than 1 (but greater than 0), the equation of

state supports it. The variableWv is also safe (compared to v) because its physically-admissible

range is (−∞,∞).

4. Surface tracking

In this section, we describe our high-order accurate tracking algorithm for the fluid–vacuum

interface. We follow reference [65] closely, and adapt their work to the relativistic case and

to boundary conditions which are appropriate for the fluid–vacuum interface. We also com-

bine the method with an efficiency improvement presented in [66], which we implement

even more aggressively. The basis of the original approach is the inverse Lax–Wendroff

method, which replaces spatial derivatives at the boundary with time derivatives, and was

presented for nonlinear conservation laws originally in [59].9 But our implementation does

not use the inverse Lax–Wendroff method at all, making it simpler to implement. For con-

creteness and ease of presentation, we use a 5th-order accurate scheme [66] in what follows,

but other orders of accuracy can be obtained with obvious modifications (which we point out

along the way).

First, it is instructive to give a few words about the time update procedure. At time tn,

where the exponent denotes a time level index, we assume the last interior point on the right

side of the star is located at position xR. Everything that follows works similarly for the left

surface. The surface at time tn is located at xv such that xR � xv < xR+1, and xR+1 is a vac-

uum point. The surface may or may not cross a grid point during the update (in a sub-step

of the update, or after the entire update), either engulfing a new grid point or receding past

one. If the surface engulfs the new grid point xR+1 in any sub-step of the update, values

for the fluid variables are not assigned there until the full time step is complete, and only if

the surface position at time tn+1 has engulfed the point xR+1.
10 If the surface recedes past

the grid point xR during any sub-step or after the entire update, strictly speaking one should

anticipate this at the beginning of the time update, and then only evolve the points that are

interior to the star during all sub-steps and at time tn+1, i.e. {. . . , xR−3, xR−2, xR−1}. How-
ever, rather than devise such an anticipation criterion, we instead drop the point xR in the

middle of the time update if the surface recedes past it on any sub-step of the time update

(e.g. Runge–Kutta sub-steps), and continue to exclude that point for the remainder of the

update. If xR is still an interior point at time tn+1, then we repopulate the fluid variables there at

that stage.

The fluid variables at the interior points near the surface, which we collect as Xint ≡
{xR−4, xR−3, xR−2, xR−1, xR},11 are assumed to have been updated (and possibly defined anew

for xR) from time tn−1 to time tn, or they are provided by initial data if the initialization time is

tn. We will be assigning values of the split fluid fluxes f± (defined in section 5, and we denote

simply as f in this section) at ghost points located at Xghost ≡ {xR+1, xR+2}12 via a Taylor

9Note there is a sign typo in their equation [59]. It should read β2 = (61u20 + 160u21 + 74u0u2 + 25u22 − 196u1u0
− 124u1u2)/12.
10 It is possible that the surface could engulf a grid point or recede past a grid point in a sub-step of the update, but not

after the entire update.
11 If using the 7th-order scheme, then Xint = {xR−6, xR−5, xR−4, xR−3, xR−2, xR−1, xR}.
12 If using the 7th-order scheme, then Xghost = {xR+1, xR+2, xR+3}.
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expansion at the fluid–vacuum interface xv:

fi =

4
∑

k=0

(xi − xv)
k

k!
f (k), (4.1)

where f (k) is the kth-order derivative of f approximated at (5− k)th order13 (denoted with the

superscript (k)) evaluated at the surface (denoted with the overbar).

We transform to local characteristic variables at the point xR in order to control the out-

going versus ingoing fluid information. This is done separately for the unsplit fluxes F and

the safe variables q from section 2. Using the characteristic structure from table 1, the local

characteristic variable transformation for any set of variables (represented schematically as

Q) is

QVi =

[

L+,1 L+,2

L−,1 L−,2

]

xR

Qi. (4.2)

Notice that thematrix of left eigenvectors is evaluated at the point xR, so by taking the derivative

of both sides, we see that derivatives of the variables also transform in the same way:

QV
(k)
i =

[

L+,1 L+,2

L−,1 L−,2

]

xR

Q
(k)
i . (4.3)

After obtaining local characteristic variables corresponding to the unsplit fluxes F and the

safe variables q, we fit a 5th-orderLagrange polynomial14 to the available grid information near

the surface, at locations Xint.
15 Derivatives approximated at (5− k)th order (up to k = 4),16

QV
(k)
i , are obtained by analytic derivatives of the Lagrange polynomial fits. If the solution

near the surface is expected to be non-smooth, a weighted essentially non-oscillatory (WENO)

polynomial may be more appropriate [66]. But we find that the bare Lagrange polynomials

work quite well17. In addition to denoting evaluation at the surface with an overbar, e.g. Q, we

denote extrapolated values with a star superscript, e.g. Q∗.
We extrapolate all the local characteristic variables to the surface, thereby obtaining qV(k)

and FV(k). The only exceptions are the ingoing variables for k = 0, qV
(0)
− and FV

(0)
− , which

are instead effectively fixed by the free surface boundary condition ρ|xv = ρ. For example, we

solve for v using qV∗
+ and using equation (4.2) evaluated at the surface:

qV∗
+ =

(

W

hcs

)

R

+Wv. (4.4)

In this expression, the only unknown is v̄ and one can always solve for it. Thus, we obtain

v from equation (4.4), and ρ is the (constant) surface density value determined by the liquid

equation of state. This yields q(0), from which F(0) can easily be computed.

13 (7− k)th order for a 7th-order scheme.
14 7th-order Lagrange polynomial for a 7th-order scheme.
15Note that overshooting would become an increasing issue with increasingly high-order Lagrange polynomial fits.

Using WENO polynomials instead might counteract such an issue.
16 (7− k)th order up to k = 6 for a 7th-order scheme.
17On physical grounds, fluid–vacuum interfaces do not technically support shockwaves because the Rank-

ine–Hugoniot jump conditions are not satisfied there [70, 84]. But that fact does not exclude the possibility of

gradients near the surface that are so large as to present a practical numerical problem for simple Lagrange polynomial

extrapolation.

11
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In this way, we obtain q(k) and F(k), from which we form the split fluxes f
(k)
± from section 5.

Flux values are then obtained at any points where they are needed using the Taylor expansion

equation (4.1). If populating fluid variables at interior points, we do so with the equivalent

Taylor expansion for the safe variables q.

As per the style in references [59, 65, 66], we now summarize the procedure for populating

fluxes at ghost points and possibly populating fluid variables at interior points:

(a) Compute the local characteristic variables qVi and
FVi at points Xint using equation (4.2).

(b) Fit Lagrange polynomials to qVi and
FVi at points Xint, then, using those polynomials,

compute derivatives qV(k) and FV(k) and extrapolate to the surface to obtain qV∗(k) and
FV∗(k).

(c) Obtain q(k) and F(k) by inverting equation (4.3).

(d) Treat the k = 0 case specially as done in the example surrounding equation (4.4), thereby

obtaining q(0) and by extension F(0).18

(e) Solve for q(k) and F(k) for k = 1, 2, 3, 4 from qV∗(k) and FV∗(k) by inverting equation (4.3).

(f ) Populate split fluxes f± wherever they are needed, for example Xghost.

(g) If needed, populate qi at any interior points where values do not exist or must be replaced

(see the discussion at the beginning of this section regarding the time update procedure,

and see appendix C for policies to deal with failure modes).

The surface is evolved by solving the equation ∂txv = αv with a time-stepping algorithm

(e.g. Runge–Kutta), using the values of v obtained above at each time sub-step. Note the right-

hand side is the advective velocity of the surface (ux/ut)|xv , which is the actual velocity one sees
the surface movewith on a fixed grid. In this work, the lapse function is known analytically, but

in fully general relativistic simulations one would have to interpolate it to the surface location

with an order of accuracy that is consistent with the rest of the methods.

5. Implementation

In this section we present our numerical discretization. In appendix C we describe various

failure modes that we have encountered, together with policies for dealing with them.

We use a uniform grid over a domain of length L with grid spacing ∆x. The system of

equations of motion in semi-discrete form appear schematically in a flux-conservative form as

∂tUi = − 1

∆x

(

Fi+1/2 − Fi−1/2

)

+ Si. (5.1)

The evolved variables are represented by U, the fluxes are represented by F, and any source

terms that may be present are represented by S. Spatial locations are indicated with the index

i. We discretize spatial derivatives using 5th- or 7th-order upwind-biased finite differences,

together with a global Lax Friedrichs flux split (see e.g. [85]). The upwind-biasing is necessary

for numerical stability, and the flux split technique allows upwinding to be applied to a system

with multiple signal speeds. The flux split is F = f+ + f− where

f± =
1

2

(

F±max(|λ|)U
)

. (5.2)

18One could obviously use the safe variables and their derivatives, q(k), to obtain the fluxes and their derivatives, F(k),

using analytic derivative formulae for F. But those formulae are very cumbersome for high-order derivatives, so we

find it easier to extrapolate the fluxes separately.

12
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The eigenvalues of the flux Jacobian are represented by λ, and the maximum is taken over

the entire grid. By adding such terms ±max(|λ|)U, the eigenvalues of the Jacobians of f± are

respectively semi-positive and semi-negative, allowing us to separately apply the appropriate

upwind finite difference operator to each split flux. Given values of the flux f± at grid points

(integer index i), 5th- and 7th-order left-biased approximations for f +
i+1/2 and right-biased

approximations for f −
i−1/2 [57] are given by

5f±i±1/2 =
1

60
(2 f±i∓2 − 13 f±i∓1 + 47 f±i + 27 f±i±1 − 3 f±i±2) (5.3)

7f±i±1/2 = − 1

140
f±i∓3 +

5

84
f±i∓2 −

101

420
f±i∓1 +

319

420
f±i

+
107

210
f±i±1 −

19

210
f±i±2 +

1

105
f±i±3. (5.4)

The discretization (5.1) thus reads

∂tUi = − 1

∆x

(

sf+
i+1/2 +

sf−i+1/2− sf+
i+1/2−

sf−i+1/2

)

+ Si, (5.5)

where s is the order of accuracy of the flux.

For time stepping we use a total variation diminishing Runge–Kutta scheme of 3rd-order

accuracy. This is a widely used and robust scheme for computational fluid dynamics, owing to

its suppression of spurious ringing near discontinuities (e.g. shockwaves). For a system written

schematically as ∂tU = L(U), the time stepping reads

U{1}
= Un

+∆tL(Un)

U{2}
=

3

4
Un

+
1

4

(

U{1}
+∆tL(U{1})

)

(5.6)

Un+1
=

1

3
Un

+
2

3

(

U{2}
+∆tL(U{2})

)

, (5.7)

where (Un,Un+1) are respectively the values of U at time levels (n, n+ 1), and (U{1},U{2})
are values at intermediate steps. For the purposes of simplicity in demonstrating high-order

convergence, we obtain sth-order accuracy in time by using a time step∆t ∝ ∆xs/3 [59]. This

means the time step decreases fast enough as resolution is increased such that sth-order accu-

racy in time is achieved. In future applications, we do not suggest using this modification of

the 3rd-order Runge–Kutta scheme, because there is still a comparable decrease in numerical

error with the standard scheme (see figure 6 below). The surface position is evolved according

to ∂txv = (αv)|xv using the same Runge–Kutta time stepping as all other variables.

We compare our high-order methods with a standard finite volume scheme using the

Harten–Lax–van Leer (HLL) flux formula [86] and a standard artificial atmosphere with con-

stant density 10−13 and a standard polytropic equation of state P = 100ρ2 everywhere. We use

the barotropic Valencia scheme, which is described in [54].

6. Numerical results

In what follows, we use the Valencia formulation given by equation (2.9). We comment on

using the Hamiltonian formulation in section 6.1.
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Figure 2. Density evolution at the center of the grid x = 5. Left, center, and right respec-
tively show evolutions using the 7th-order, 5th-order, and HLL methods, all with CFL
factor 1.0. Three resolutions N = {101, 201, 401} are displayed using different line
styles, and three initial uniform advective velocities αv = {0.01, 0.02, 0.04} are dis-
played using different colors. The dynamical time of the star is taken to be exactly
td = 10.

Some properties of our simulations are displayed in figures 2 and 3, which evolve for a

total duration of 10 dynamical times td (where we take td to be exactly 10, although a more

precise value according to the central energy density is td = 1/
√
ǫc ≈ 10.72). The dynami-

cal time scale is a gravitational time scale for the star, and it is a relevant scale because it

is similar to the hydrodynamic time scale for the star near equilibrium. Figure 2 shows the

evolution of the rest mass density at the center of the grid, x = 5, on a fractional basis rel-

ative to its initial value. The HLL method with artificial atmosphere (right) is shown along

with our finite difference 5th-order (middle) and 7th-order (left) methods with surface track-

ing. Cases with three initial advective velocities αv ∈ {0.01, 0.02, 0.04} are displayed using

different colors, while we omit the equilibrium case αv = 0 because it appears uneventful

in this plot and clutters the visual inspection. Three different resolutions corresponding to a

number of grid points across the whole domain of N ∈ {100, 200, 400} are shown using dif-

ferent line styles. The star initially spans roughly 53% of the domain, and its span fluctuates

as it sloshes around in the fixed spacetime. As the initial velocity is increased, the density

oscillations increase correspondingly. It is qualitatively evident that the HLL method with arti-

ficial atmosphere (right) is slower to converge, because the curves for different resolutions do

not overlap well in comparison to the surface-tracking methods (left and middle). The dispar-

ity in convergence and absolute level of error are presented quantitatively in several figures

described below.

For the surface-tracking method, the evolution history of the surface positions and veloc-

ities are available. These are shown in figure 3, where surface positions xv are displayed

in the left column and surface velocities vv are displayed in the right column19. We only

display the 7th-order method in this figure, but we display cases with all initial velocities

αv ∈ {0.00, 0.01, 0.02, 0.04}. In figure 5 below, which shows numerical errors over time,

spikes in the numerical error correspond to maximal compression of the left and right sides

of the star (since this yields maximal gradients at the surfaces). For the right surface, maximal

gradients occur when xv reaches locally minimal values, whereas for the left surface, maximal

19Note that the actual surface motion would be given by the advective velocity, α|xv vv .
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Figure 3. Left and right surface positions (left column) and surface velocities (right col-
umn) over time, for resolution N = 400 using the 7th-order method with Courant factor
1.0. Cases with four initial uniform advective velocities αv = {0.00, 0.01, 0.02, 0.04}
are displayed using different colors. The dynamical time of the star is taken to be exactly
td = 10.

gradients occur when xv reaches locally maximal values (compare figure 5 to the left column

of figure 3).

Next we present the convergence properties of the different methods on a quantitative basis.

We quantify numerical errors by evaluating the residuals of the equations of motion, namely

the local conservation of rest mass |∇a(ρu
a)| and momentum |∇aT

ai| (both of which would

be zero given analytic solutions). The numerically-obtained fluid variables are plugged into

these residuals, and derivatives are computed using centered finite difference operators with

an order of accuracy greater than the expected order of convergence (so as not to contaminate

the measurement of convergence with the errors associated with such derivative evaluations).

At the edges of the star, the residuals are not evaluated because the spatial derivative stencils

extend into the vacuum regions. Similarly for the time derivatives at the temporal beginning

and end of the simulations; residuals are not evaluated there because time derivative stencils

extend beyond the computed data. We present the residuals on a space-and-time integrated

basis versus resolution in figure 4, as well as on a space integrated basis versus time in

figure 5. Generally speaking, we present a resolution range corresponding to N ∈ [100, 400].

N = 100 is slightly outside of the convergent regime for some initial velocities, whereas

machine precision limits our ability to measure convergence for the surface-tracking methods

when N � 400.

In figures 4 and 5, the finite difference orders used to evaluate the residuals for the 7th-order,

5th-order, andHLLmethods are respectively 8th-order, 6th-order, and 4th-order.The time steps

used are also not the same. In all methods, the Courant–Friedrichs–Lewy factor is 1 for the

lowest resolution corresponding to N = 100. But for the 7th- and 5th-order cases, the Courant

factor is respectively (∆x/0.1)7/3−1 and (∆x/0.1)5/3−1, where ∆x is the spatial resolution

∆x = L/N (these choices maintain 7th- and 5th-order accuracy in time, even though we use

a 3rd-order accurate Runge–Kutta time-stepping method). For these reasons, it is not fair to

compare the absolute levels of error between the three methods in figures 4 and 5. However, it

is fair to compare the convergence orders.

Note that it is more delicate to measure convergence in the case of an equilibrium star,

αv = 0, because as grid points are added to the domain, the distance between the outermost

interior points and the respective surfaces does not decrease monotonically, which then reflects
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Figure 4. Global convergence rates for the 7th-order scheme (left), 5th-order scheme
(middle), and standard finite volume scheme using the HLL flux and an artifi-
cial atmosphere (right). Cases with four initial uniform advective velocities αv =
{0.00, 0.01, 0.02, 0.04} are displayed using different colors. The momentum and mass
residuals are displayed with circle and cross tick marks. The residuals are averaged over
∼10 dynamical times and over the interior of the star. Power-law trends are indicated
with gray lines. Comparing the three methods with each other is not meaningful in this
figure, except for the convergence rates, because different time steps are used and the
residuals are evaluated with different order finite difference operators (8th, 6th, and 4th,
respectively for left, middle, and right). For the equilibrium starαv = 0, we only display
N ∈ {100, 200, 400} for reasons explained in the text.

upon the residuals as large fluctuations versus N.20 For this reason, we display resolutions

which are only integermultiples ofN = 100, namelyN ∈ {100, 200, 400},which yieldsmean-

ingful measurements of convergence because grid point positions are never removed as N

doubles, only added. In non-equilibriumcasesαv �= 0, this issue is less pronouncedbecause the

surface moves across grid points anyway; the numerical error associated with the initial posi-

tion of the star on the grid is less dominant than the errors associated with the stellar motion.

We believe this concern is a peculiarity of the one-dimensional case because there are only

two outermost interior points. In multiple dimensions, there will be many outermost interior

points with a well-populated range of shortest distances to the surface, thereby contributing

a diverse range of numerical errors to the total error budget. In aggregate, such errors would

not fluctuate drastically as the position of the star shifts slightly with respect to increasingly

larger grids.

In figure 4, the mass and momentum residuals are displayed using different tick marks,

cases with different initial advective velocities αv ∈ {0.00, 0.01, 0.02, 0.04} are displayed

using different colors, and gray solid lines are reference power-law trends. We observe 7th-

and 5th-order convergence (left and middle) for low values of the initial advective velocity αv.
For the most extreme case with αv = 0.04, the convergence order degrades by roughly 1, and
it becomes apparent that the convergent regime is roughly N � 200. By contrast, the standard

HLLmethod with artificial atmosphere yields the widely observed 1.5 convergence order, with

a noticeable degradation to 1 for the mass residual. The degradation of the mass residual is also

noticeable for the 5th-ordermethod, but appears less pronounced for the 7th-ordermethod. The

explanation for this is unclear.

20Although if one appropriately shifts the position of the star with respect to the grid as points are added, then the

distance between the outermost interior points and the respective surfaces would decrease monotonically.
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Figure 5. Spatially-averaged residuals over time for the 7th-order scheme (left), 5th-
order scheme (middle), and standard finite volume scheme using the HLL flux and an
artificial atmosphere (right). Only the most extreme case with initial uniform advec-
tive velocity αv = 0.04 is displayed, which exhibits the clearest spikes in residuals (and
degradation of convergence order) when surface gradients and acceleration of the sur-
face become large. A selection of resolutions is displayed, corresponding to a number of
grid points N = {125, 200, 400}. The momentum and mass residuals are displayed with
solid and dashed lines. The residuals are averaged over the interior of the star, and the
dynamical time is taken to be exactly td = 10. The curves have been gently smoothed
with a Gaussian kernel of width 0.2× td, in order to improve the visual presentation.
Caution should be used when comparing the three methods using this figure, because
different time steps are used and the residuals are evaluated with different order finite
difference operators (8th, 6th, and 4th, respectively for left, middle, and right).

In figure 5 we show the spatially integrated residuals as a function of time. The mass and

momentum residuals are displayed using different line styles, and a selection of three res-

olutions corresponding to N ∈ {125, 200, 400} are displayed using different colors. Only the

most extreme initial velocity is shown,αv = 0.04, because this case most clearly illustrates the

spiking of numerical errors coinciding with the local maxima of surface gradients (compare

with figure 3). In some instances, for example comparing N ∈ {125, 200} for the 7th-order

method (left), the residual does not settle down to previous levels following a spike (look at

time∼ 6.25td). This behavior, as well as the spiking in residuals themselves, are what account

for the degradation of global convergence order observed in figure 4 for the most extreme case

αv = 0.04. The residuals in the HLL method with artificial atmosphere also exhibit spikes at

these times, although they are somewhat less pronounced.

In order to make a fair comparison between the different methods on the basis of absolute

level of residuals, in figure 6 we repeat the same style of plots as in figure 4, except we use the

same Courant factor of 1 across all cases and we use the same order finite difference operator

(8th-order) when evaluating all residuals. The absolute level of error as measured by these

residuals is roughly 5 to 6 times smaller for the surface-tracking methods than for the HLL

method with artificial atmosphere. Furthermore, for the surface-tracking methods, we observe

that the convergence order degrades to 3 as one moves either to larger αv or larger N. This
reflects the dominance of the numerical error associated with time stepping, which with fixed

Courant factor decreases as 3rd order for our Runge–Kutta method. This figure shows that

one does not necessarily need a time-stepping method higher than 3rd order to achieve the

benefits of low numerical error. However, higher order strong stability preserving time-stepping

methods exist [87] which could be utilized to achieve an overall convergence order of 5 or 7,

for example.
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Figure 6. Global convergence rates with a fixed Courant–Friedrichs–Levy factor of 1.0
for the 7th-order scheme (left), 5th-order scheme (middle), and standard finite volume
scheme using the HLL flux and an artificial atmosphere (right). Cases with four initial
uniform advective velocities αv = {0.00, 0.01, 0.02, 0.04} are displayed using differ-
ent colors. The momentum and mass residuals are displayed with circle and cross tick
marks. The residuals are averaged over ∼10 dynamical times and over the interior of
the star. Power-law trends are indicated with gray lines. Comparing the three meth-
ods with each other is meaningful in this figure, because the same time stepping is
used and the residuals are evaluated with the same (8th-order) finite difference operator.
The convergence order for the 7th-order and 5th-order methods quickly drops to 3rd-
order as time step errors become dominant, reflecting the 3rd-order Runge Kutta time-
stepping method. For the equilibrium star αv = 0, we only display N ∈ {100, 200, 400}
for reasons explained in the text.

Lastly, we demonstrate long-term stability of each method in figure 7. We show only

the most extreme case αv = 0.04, which is the most demanding test for long-term stability.

We use a single resolution corresponding to N = 150, which is roughly the lowest number

of grid points which yields stable evolution over 100 dynamical times. The left plot shows

the mass and momentum residuals over time, and stability is evidenced by the absence of

any apparent secular drift in residuals. The right plot shows the rest mass density evolu-

tion at the center of the grid x = 5, on a fractional basis with respect to its initial value.

The HLL method with artificial atmosphere has a noticeable secular decay in central den-

sity oscillations relative to the surface-tracking 7th- and 5th-order methods, meaning that the

latter methods are less dissipative at the same grid resolution. See supplemental material at

(https://stacks.iop.org/CQG/38/145003/mmedia) for a video of the long-term evolution.

6.1. Hamiltonian formulation

In this subsection we briefly comment on the possibility of using the Hamiltonian formulation

with the surface-trackingmethods. It was found in [54] that surface stability issues were a per-

sistent problem when using the HLL method with an artificial atmosphere, and this problem

was solved by using a hybrid scheme whereby the Valencia formulation is used at the last

interior point of the star and beyond. Our tests in this work indicate that it is possible to use

the pure Hamiltonian formulation, and the convergence properties are similar to the Valencia

formulation. However, the stability is greatly diminished. Failure modes are encountered more

often, requiring the invocation of error handling policies, whereas with the Valencia formula-

tion we almost never encounter a failure mode (unless the initial velocity of the star is roughly

αv = 0.6 or greater, and even then one expects failure modes to be avoided with a shock-

capturing scheme since large surface gradients would be more well-tolerated). We were not
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Figure 7. This figure shows long-term stability over 100 dynamical times. Spatially-
averaged residuals over time for the 7th-order, 5th-order, and standard finite volume
scheme using the HLL flux and an artificial atmosphere (left). Only the most extreme
case with initial uniform advective velocity αv = 0.04 is displayed. One resolution is
displayed (N = 150), corresponding to roughly the lowest resolution for which long-
term stability is achieved using all methods. The momentum and mass residuals are
displayed with solid and dashed lines. The residuals are averaged over the interior of the
star, and the dynamical time is taken to be exactly td = 10. The curves have been gently
smoothed with a Gaussian kernel of width td, in order to improve the visual presentation.
Different time steps are used and the residuals are evaluated with different order finite
difference operators (8th, 6th, and 4th, respectively for 7th-order, 5th-order, and HLL
methods). Central density evolutions from the same simulations are displayed on the
right.

able to evolve any moving star cases stably for greater than about 30 dynamical times with the

Hamiltonian formulation. The stability issues are again surface-related, which probably stem

from the fact that the weak solutions for a fluid–vacuum interface in the Hamiltonian formu-

lation support shockwaves [55] (whereas in the Valencia formulation only rarefaction waves

are supported [70, 84]). Thus, in future applications of the Hamiltonian formulation with our

surface-tracking methods, we expect it to be advisable and perhaps necessary to once again

hybridize the formulation with Valencia at the outermost interior points, as done in reference

[54].

7. Summary

Future gravitational wave detections will have signal-to-noise ratios which challenge the accu-

racy of current state-of-the-artwaveformmodels calibrated to numerical relativity simulations.

In numerical relativity simulations of compact binaries involving at least one material body,

the standard way that stellar surfaces are treated (using an artificial atmosphere) is a significant

source of error and the primary obstacle preventing high-order convergence during the inspiral

phase of the binary.We presented a new numerical method which tracks and evolves the stellar

surface, and imposes free surface boundary conditions there with an arbitrarily high order of

accuracy (in principle). Our surface-tracking method is independent of the scheme used in the

interior of the star, which should allow wide adoption of our method. We demonstrated this

new method in a 1 + 1-dimensional proof-of-principle numerical implementation, whereby a

relativistic one-dimensional star with a barotropic liquid equation of state undergoes violent

sloshing motion inside of a fixed gravitational potential. The method performs very well in

comparison to a standard finite volume scheme with an artificial atmosphere, both in conver-

gence rate as well as a decrease in absolute numerical errors by 5–6 orders of magnitude at

19



Class. Quantum Grav. 38 (2021) 145003 J R Westernacher-Schneider

the same resolution. In the future, we anticipate that this method will be applied to simulate

the inspiral phase of material compact binaries in full 3 + 1-dimensional numerical relativity

(which is expected to be barotropic fluid flow to a high degree of accuracy).

A challenge for multiple dimensions, which we have not addressed in this work, is dealing

not just with a moving boundary (the surface), but with a deformable one. We anticipate that

non-oscillatory interpolations of the surface position will be necessary to prevent excessive

unphysical wrinkling of the stellar surface in multiple dimensions. However, this is not merely

a technical challenge; it is also an opportunity to input more precise surface tension physics

into numerical simulations, which may be accessible observationally with future gravitational

wave detectors.

We do not believe that extending our surface-tracking method to baroclinic liquids would

be a significant challenge, and there are no obvious impediments to using a realistic, tabulated

equation of state. However, extending our method to the merger phase of compact binaries,

whereby matter is being stripped and ejected, would be very challenging. From a geometrical

standpoint, the number of distinct fluid–vacuum interfaces during the merger phase would

undergo a rapid bifurcation cascade, with each surface undergoing potentially very large shape

variations, which would require an exceptionally robust surface-tracking algorithm.
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Appendix A. Surface derivative constraint in the toy model

Since the fluid flow in the vicinity of the surface matches the surface motion, any quantity

that takes on a persistent value at the stellar surface will have a vanishing Lagrangian time

derivative thereD/Dt = ∂t + (ux/ut)∂x [88], where in our toymodel ux/ut = αv. For example,

the pressure is persistently zero at the surface, and therefore satisfies

¯

DP

Dt
=

¯

∂tP+
¯
α

¯
v

¯

∂xP = 0, (A1)

at the surface. The density is persistently equal to ρ̄, defined by P(ρ̄) = 0, thus we also have

Dρ/Dt = 0. Similarly, we have D(ρh)/Dt = 0 at the surface.

We can derive a condition on the spatial derivatives of the fluid variables at the surface

using these vanishing Lagrangian time derivatives and the fluid equations. Write the rest mass

conservation equation (2.4) in terms of the Lagrangian time derivative,
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0 = ∂t(ρW)+ ∂x (αρWv)

=
D

Dt
(ρW)+ ρW∂x (αv)

= ρ
DW

Dt
+W

Dρ

Dt
+ ρW∂x(αv). (A2)

Evaluation at the surface yields

0 = ρ
DW

Dt
+ ρW∂x(αv). (A3)

Note that DW/Dt = W3vDv/Dt. The energy equation∇aT
at for our toy model expressed in a

1 + 1 decomposition of spacetime is [89]

0 = ∂t
(

ρhW2 − P
)

+ ∂x
(

αρhW2v
)

+ ρhW2v∂xα

= ∂t
(

ρhW2
)

− DP

Dt
+ αv∂xP+ ∂x

(

αρhW2v
)

+ ρhW2v∂xα, (A4)

where in the second line we made the replacement −∂tP = −DP/Dt + αv∂xP. Writing the

remaining Eulerian time derivatives in terms of Lagrangian ones, we obtain

0 = W2D (ρh)

Dt
+ ρh2W

DW

Dt
− DP

Dt
+ αv∂xP+ ρhW2∂x (αv)+ ρhW2v∂xα. (A5)

Evaluation at the surface causes D(ρh)/Dt and DP/Dt to vanish and h = 1:

0 = ρ2W
DW

Dt
+ αv∂xP+ ρW2∂x (αv) + ρW2v∂xα. (A6)

Eliminating DW/Dt using equations (A6) and (A3) yields the constraint on spatial derivatives
of the fluid variables:

v∂xP = ρW2∂xv. (A7)

This constraint equation (A7) must be satisfied at a stellar surface satisfying the boundary

conditions (3.1). Note we can rewrite ∂xv in terms of the primitive-like variable ∂x(Wv) via
∂x(Wv) = W3∂xv. To gain an intuition for what the constraint equation (A7) means, note first

that for an equilibrium star (∂x(αv) = 0) in the rest frame v = 0, ∂xP is left unconstrained (as

one would expect, since there are many possible equilibrium stars with varying ∂xP). For an
equilibrium star (∂x(αv) = 0) in a boosted frame v �= 0, equation (A7) expresses the condition

of hydrostatic equilibrium at the surface in that frame.

An interesting implication of equation (A7) is that one cannot initialize a star in an arbitrary

but seemingly reasonable manner and expect it to have a free surface. For example, initializing

an equilibrium density profile with ∂xP �= 0 but setting v = constant > 0 results in a violation

of equation (A7). In order for the initial data to satisfy the free surface vacuum boundary

conditions (3.1), care must be taken to enforce equation (A7) as well. Combining instead rest

mass conservation∇a(ρu
a) = 0 with the Euler equation∇aT

a
i = 0 yields the same constraint

as equation (A7).
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Appendix B. Inverse-Lax Wendroff procedure for first derivatives

Denote kth-order spatial derivatives of quantities with a superscript, e.g. q(k). Note that the

matrix of left eigenvectors in equation (4.2) is evaluated at the point xR, whereas V and q are

evaluated at arbitrary points xi. Thus, derivatives of the fluid variables also obey this relation

because the derivative operator treats the matrix of left eigenvalues at xR as constant. At the

surface, using the safe variables from section 2.1, we obtain

V(k)
=

[

W/(hcs) 1

−W/(hcs) 1

]

R

q(k). (B1)

With extrapolation of the outgoing first-order derivative, we have

V
∗(1)
+ =

(

W

hcs

)

R

∂xh+ ∂x(Wv), (B2)

where there are two unknowns ∂xh and ∂x(Wv). We can eliminate one unknown using the

constraint equation (A7), which we write in terms of ∂xρ = ∂hρ∂xh = (ρ/c2s )∂xh and ∂x(Wv)
as

Wv∂xh = ∂xWv. (B3)

Plugging into equation (B2) gives

V
∗(1)
+ =

[(

W

hcs

)

R

+Wv

]

∂xh, (B4)

which we can use to solve for ∂xh and then recover ∂x(Wv) using equation (B3). This expres-

sion is not invertible for ∂xh when
(

W
hcs

)

R
+Wv = 0. In this unlikely scenario, one can instead

extrapolate both characteristic variables to obtain V
∗(1)
± , and then invert equation (B1) to

obtain q∗.
This would constitute the inverse Lax–Wendroff procedure for the first derivatives, but we

find it to be unnecessary. For derivatives higher than first order, in principle one can derive

constraints on higher-order spatial derivatives of the fluid variables following a similar strategy

as we did for equation (A7). For example, one can use the fact that DkP/Dtk = Dkρ/Dtk =

Dkρh/Dtk = 0. But this is numerically unnecessary, and with a dynamical spacetime would

actually involve time derivatives of the metric, leading to very cumbersome constraints on the

fluid derivatives at the surface.

Appendix C. Failure modes and error-handling policies

There are failure modes we have encountered during the development of our surface-tracking

method. They all involve the density becoming negative at interior stellar points close to the

surface.

In the event that the density at the last interior point becomes negative or zero, it is repopu-

lated using an interpolation of the same order as the rest of the methods (e.g. 5th- or 7th-order).

If the interpolated replacement also has a negative density, then the surface position is manually

receded to some fraction A of a grid separation∆x away from the last interior positive density

point. This failure mode might occur, for example, if the surface position is a tiny distance

away from the last interior point, such that the density at the last interior point is very small.
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If the density at multiple consecutive last interior points (e.g. the last two points) becomes

negative or zero, then the surface position is reset to some fraction of a grid separation A∆x

away from the last positive density point, and the points at which the density became negative

are therefore deemed to be in the vacuum region. One could alternatively attempt to repopulate

the points with physical values, but we interpret this failure mode as an indication that the

surface evolution has become too inconsistent with the fluid.

Note that these failure modes almost never occur for the Valencia formulation. For the

Hamiltonian formulation, these failure modes occur often, thus such evolutions are unsup-

portable without the error handling policies. When using the Valencia formulation, the failure

modes above usually indicate an implementation bug. Generally speaking, the latter failure

mode (negative density at multiple consecutive points) is more severe.
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[44] Bernuzzi S and Dietrich T 2016 Phys. Rev. D 94 064062
[45] Felker K G and Stone J M 2018 J. Comput. Phys. 375 1365
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