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Abstract. Knowledge tracing (KT), or modeling student knowledge
state given their past activity sequence, is one of the essential tasks
in online education systems. Research has demonstrated that students
benefit from both assessed (e.g., solving problems, which can be graded)
and non-assessed learning activities (e.g., watching video lectures, which
cannot be graded), and thus, modeling student knowledge from mul-
tiple types of activities with knowledge transfer between them is cru-
cial. However, current approaches to multi-activity knowledge tracing
cannot capture coarse-grained between-type associations and are pri-
marily evaluated by predicting student performance on upcoming as-
sessed activities (labeled data). Therefore, they are inadequate in incor-
porating signals from non-assessed activities (unlabeled data). We pro-
pose Graph-enhanced Multi-activity Knowledge Tracing (GMKT) that
addresses these challenges by jointly learning a fine-grained recurrent
memory-augmented student knowledge model and a coarse-grained graph
neural network. In GMKT, we formulate multi-activity knowledge trac-
ing as a semi-supervised sequence learning problem and optimize for
accurate student performance and activity type at each time step. We
demonstrate the effectiveness of our proposed model by experimenting
on three real-world datasets.

Keywords: Educational data mining · Knowledge tracing · Knowledge
transfer · Multi-activity · Transition-aware · Graph neural network

1 Introduction

The proliferation of large-scale online learning systems has facilitated distance
education and provided students with access to a vast array of courses and di-
verse learning materials. One of the essential tasks in these systems is knowledge
tracing (KT), which aims to model student knowledge based on their past in-
teractions with the learning materials. Traditionally, KT models have focused
on modeling assessed learning activities, such as solving problems and quizzes,
and predicting students’ performance in them [11,12,14,24,27]. However, recent
research has recognized that students learn from both assessed and non-assessed
learning activities, such as watching video lectures and studying worked ex-
amples [3, 22]. Therefore, recently, multi-activity KT models [2, 8, 41, 42] have
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emerged to incorporate students’ learning history of both assessed and non-
assessed types of learning materials, resulting in more accurate predictions of
students’ future performance. However, these models still do not fully utilize the
observations from non-assessed learning activities and cannot model long-range
associations and complex knowledge transitions between learning materials.

More specifically, similar to their traditional counterparts, current multi-
activity KT models are formulated as supervised sequence learning problems
that predict students’ future performance in non-assessed activities. Although
these models incorporate non-assessed learning activities as input, they are not
explicitly considered in the model’s objective function, and therefore, they are
not fully involved in optimization and training process. In effect, the non-assessed
activities are underrepresented and their impact on student knowledge growth is
diluted by these models. Moreover, similar to most modern KT models, multi-
activity KTs are formulated as a form of recurrent neural network or tensor fac-
torization models with Markovian assumptions that represent learning materials
in fine-grained latent-concept spaces. Thus, the long-range and coarse-grained as-
sociations between learning materials are lost in these models. Furthermore, most
multi-activity KTs represent all learning activity types in the same latent space
and do not explicitly model student knowledge transfers when students transi-
tion between different activity types. These models overlook essential aspects of
KT by ignoring processes by which student knowledge is attained, transferred,
and materialized when transitions happen between various activity types.

To solve these challenges, we propose Graph-enhanced Multi-activity Knowl-
edge Tracing (GMKT). GMKT fully represents both assessed and non-assessed
learning activity and incorporates the complex, long-range associations among
them. In GMKT, we represent the fine-grained learning material associations by
developing a knowledge transfer layer, and the coarse-grained long-range associ-
ations by constructing a multi-activity graph neural network (GNN [15]) layer.
We develop a transition-aware recurrent network for GMKT’s knowledge trans-
fer layer that traces student knowledge over different learning material types
and learns knowledge transfer patterns among them using transition-specific
knowledge transfer weight matrices. In GMKT’s graph neural network layer, we
construct a multi-activity transition graph according to the global transitions
between learning materials and learn coarse-grained learning material repre-
sentations by discovering transition-aware propagation and association matrices
between them. Moreover, we formulate multi-activity KT as a semi-supervised
learning problem and introduce a new activity-type learning objective for GMKT
that uses the student’s choice of learning activity type as an additional signal in
training the model. To summarize, the main contributions of this work are:
• We propose two transition-aware multi-activity recurrent and graph neural
networks in GMKT that jointly represent fine-grained and long-range coarse-
grained associations between different types of learning materials.
• We formulate the multi-activity knowledge tracing, with a novel perspective,
as a semi-supervised sequence learning task and add an activity type objective
to GMKT’s optimization problem to fully discern the signals from non-assessed



Graph-Enhanced Multi-Activity Knowledge Tracing 3

learning activities.
• We demonstrate the effectiveness of GMKT on three real-world datasets by
comparing it with 15 baseline methods from various research lines, conducting
ablation studies, and performing sensitivity analysis.
• We showcase the efficacy of GMKT’s transition-aware knowledge transfer by
analyzing knowledge transfer weight matrices between different material types.

2 Related Work

Knowledge Tracing: KT approaches mainly rely on the predefined association
between learning material and knowledge concepts or components [5,11,13,26],
such as BKT [11] and Regression-based KT methods [5, 6, 13, 18, 26]. These ap-
proaches measure student knowledge of learning material by quantifying student
mastery level of the set of knowledge concepts [13,18,19,21]. Later, models like
DKT and DKVMN have been proposed to learn the underlying latent concepts
of the learning materials [14, 17, 24, 27, 30, 32, 39, 39], since predefined mapping
between materials and concepts is typically labeled by human experts, which is
costly and impractical for nowadays large-scale online education systems.

All these methods focus on assessed learning materials and do not model
students’ non-assessed learning activities. Zhang et al. and Choi et al. sug-
gest including non-assessed activities as additional features in modeling student
knowledge [8, 40]. However, these models do not explicitly measure a student’s
knowledge state when interacting with non-assessed materials. To the best of
our knowledge, there are only a few multi-activity KT approaches that explicitly
model student knowledge from multi-type students’ learning activities, including
MA-Elo [2], MA-FM [1], MVKM [41], DMKT [34], TAMKOT [42]. However, ex-
cept TAMKOT, these methods either require a predefined mapping between the
learning materials and concepts, or explicitly represent the dynamics of knowl-
edge transfer among different learning activities. Moreover, including TAMKOT,
none of the methods mentioned above consider the global neighborhood-based
transitions and have an activity-type learning objective.
Graph Neural Network: More recently, GNN [15] is widely used to learn
and represent the structural information of a graph. It has been shown success
in various domains [28, 29, 29, 35, 35, 37]. Existing GNN-based KT methods in-
clude GKT [23], GIKT [36], PEBG [20], SKT [33], and DGEKT [12]. Except for
DGEKT building graphs through learning activities, these GNN-based methods
all create graphs between learning materials or knowledge concepts, neglecting
the global transition-structured information from student activity sequences. Ad-
ditionally, all of the previous GNN-based methods focus on single-type learning
material, while we propose to build graphs for multi-type materials.

3 Problem Formulation

In this work, our goal is to model and trace student knowledge by practicing
both assessed and non-assessed learning activities. Assuming that there are two
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types of learning materials, one assessed (e.g., questions) and one non-assessed
(e.g., video lectures), we represent a student’s whole trajectory of activities as
a sequence of tuples, {hi1, d1i , ..., hit, dti}, where each tuple hit, dti indicates a
student’s activity at time step t. Here, dt 2 {0, 1} is a binary indicator that
represents the learning activity type at time step t, with 0 denoting assessed
and 1 denoting non-assessed type, and it indicates the learning material being

interacted with. Specifically, we formulate it as: it =

(
(qt, rt) if dt = 0

lt if dt = 1
, where

(qt, rt) represents the student’s interaction with the assessed material qt at time
step t, with performance rt, and lt represents the non-assessed material that
the student interacted with at time step t. Conventionally, knowledge tracing is
evaluated by the task of performance prediction in the target student’s upcoming
assessed learning activity qt+1, based on their past assessed activity records
{(q1, r1), . . . , (qt, rt)}. Here, given a student’s past assessed and non-assessed
learning activity history, {hi1, d1i , . . . , hit, dti}, we aim to predict their upcoming
performance on the assessed material qt+1 at time step t+ 1.

4 Graph-Enhanced Multi-Activity Knowledge Tracing

Our model, Graph-enhanced Multi-activity Knowledge Tracing (GMKT), com-
prises four key layers, including (1) The embedding layer for encoding each stu-
dent activity into a latent concept feature space; (2) The multi-activity transi-
tion graph layer that incorporates the coarse-grained long-range patterns among
learning materials; (3) The recurrent knowledge transfer layer that captures stu-
dent knowledge and fine-grained transfers as students transition between differ-
ent activities; and (4) The prediction layer that generates a prediction of a stu-
dent’s upcoming performance on an assessed material. We introduce the details
of each layer in the next sections and show GMKT’s architecture in Figure 1.
Notations. We use lowercase letters, boldface lowercase letters, and boldface
capital letters to respectively denote scalars (qt), vectors(qt), and matrices (Aq).

4.1 Embedding Layer

The embedding layer is designed to learn the embedding of each learning activ-
ity it, which is then used as input for capturing the students’ knowledge state
and transfer from the latent concept space. To do this, GMKT learns the latent
representation of the material (qt and lt) and the student response (rt) for ac-
tivity it. Assuming two learning material types, questions and video lectures, we
embed each material type separately. This design allows for a more flexible rep-
resentation by allowing different embedding sizes for each material type. Specif-
ically, GMKT learns two underlying latent embedding matrices A

q 2 RNQ⇥dq

and A
l 2 RNL⇥dl to respectively map all questions and lectures to their spec-

ified latent spaces. Here, NQ and NL are the number of questions and video
lectures, and dq and dl are the respective latent embedding sizes. To incorpo-
rate student performance outcomes in assessed activities, GMKT maps rt into a
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Fig. 1: The architecture of the GMKT model. The solid and dashed lines are identical.
Different line types are used to clarify between lines that cross/fall over each other.

higher-dimensional performance latent space. We consider two scenarios for rt,
namely, binary outcomes (e.g., correctness in solving a question) and numerical
outcomes (e.g., normalized exam scores between 0 and 1). For the binary case,
we learn an embedding matrix A

r 2 R2⇥dr to map rt, where dr is the perfor-
mance embedding size. For the numerical case, we use A

r 2 Rdr , and apply a
linear mapping function f(rt) = rtAr to the performance rt.

4.2 Multi-Activity Transition Graph Layer

Student learning activity sequences can provide coarse-grained insights into re-
lationships between different learning materials. Observing students interacting
with materials consecutively may indicate that they are similar or related. To
capture such coarse-grained aggregate information, we construct a multi-activity
transition graph G = (V, E), where V consists of all assessed and non-assessed
learning materials as nodes, and E represents the undirected edges between
materials that correspond to transitions between materials in a student’s se-
quence. An edge exists between two materials if a student from the training ses-
sions has interacted with them consecutively. For example, given a student’s se-
quence {h(question1, 0), 0i , hlecture4, 1i , h(question2, 1), 0i , ...}, edges between
question1 and lecture4, as well as question2 and lecture4, are added to graph.

To update a learning material’s representation, we use propagation matrices
to integrate the embedding of that learning material with its neighboring ma-
terials. Having assessed and non-assessed types of learning materials and their
different contributions, we also learn transition matrices to map the two types
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to each other. Specifically, taking the material’s embedding qt or lt from the
embedding layer as the input, the material aggregation is formulated as:

q
p
t =V

T
Q


qt +

1

|NQ
qt |

X

i2NQ
qt

G
T
QQqi +

1

|NL
qt

|
X

j2NL
qt

G
T
QLlj

�
+ bQ

(1)

l
p
t =V

T
L


lt +

1

|NL
lt
|

X

i2NL
lt

G
T
LLli +

1

|NQ
lt
|

X

ij2NQ
lt

G
T
LQqj

�
+ bL

(2)

where q
p
t and l

p
t represent the coarse-grained embeddings of learning material qt

and lt after the GNN propagation. Transition matrices GQQ 2 Rdq⇥dq , GQL 2
Rdl⇥dq , GLL 2 Rdl⇥dl , and GLQ 2 Rdq⇥dl are learned to map each material
type’s embeddings to corresponding material space for propagation. N ⇤

⇤⇤ denotes
the set of neighbors from type * for the material **. For example, NL

qt denotes all
the lecture neighbors (“L”) of question (“Q”) qt. V T

Q 2 Rdq⇥dq and V
T
L 2 Rdl⇥dl

are weight matrices for propagation, bQ 2 Rdq and bL 2 Rdl are bias terms.
In this layer, in addition to the coarse-grained associations, the neighborhood-

based propagation enables the discovery of long-range relationships between ma-
terials that cannot be easily captured in the recurrent knowledge transfer layer
of the architecture.

4.3 Knowledge Transfer Layer

We design the knowledge transfer layer to accurately learn the dynamic student
knowledge state and the fine-grained material representations. To do so, similar
to dynamic key-value memory networks (DKVMN) [39], we employ a static key
matrix M

k 2 RN⇥dk to represent N latent concept features and a dynamic
value matrix M

v
t 2 RN⇥dv to track the student’s mastery state in them. Each

vector in the static key matrix corresponds to a concept characterized by dk
latent concept features, while each vector in the dynamic value matrix is a dv-
size memory slot to monitor the student’s updated knowledge state (mastery
levels) of the corresponding concept over time steps.

Unlike DKVMN, GMKT further models different activity types and the tran-
sitions among them. As the way knowledge transfers between different material
types can vary depending on the order of the transition, we learn a unique
knowledge transfer pattern for each transition between every two distinct ma-
terial types. To model these transition-specific transfer patterns, we incorporate
current and previous activity types as additional inputs. GMKT uses a set of
indicators to activate corresponding knowledge transfer weight at each time t.
Having two material types, questions (“Q”) and lectures (“L”), four transition
indicators at each time t are formulated based on material types dt and dt�1:

sQQ = (1 � dt)(1 � dt�1) sQL = dt(1 � dt�1) sLQ = (1 � dt)dt�1 sLL = dtdt�1 (3)

At each time step t, only one of the above transition indicators is equal to
1, while the rest are 0. For example, sQL = 1 and sQQ = sLQ = sLL = 0 indi-
cate that the student has transitioned from attempting a question at time t� 1
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to watching a video lecture at time t. Then, the transition indicators s⇤⇤ are
utilized to activate the corresponding transition-specific weight matrices T⇤⇤ for
updating the student’s knowledge state M

v
t . Consequently, GMKT first com-

putes the attention weight vector wt, which represent the correlation between
learning material (qt or lt) and each of the N latent concepts. The coarse-grained
embedding of the material (qp

t or l
p
t ) from equation 1 and 2, and the static key

matrix M
k are used to compute wt 2 RN as follows:

wt(i) = softmax(
⇥
(1 � dt) · RT

qq
p
t + dt · RT

l l
p
t

⇤T
M

k(i)) (4)

where wt(i) is the i-th element in the attention weight vector wt, and the
Softmax function softmax(mi) = emi/

P
j e

mj is to ensure that the attention
weights sum to one. Rq 2 Rdq⇥dk and Rl 2 Rdl⇥dk are used to map question
and lecture activity embedding to the concept feature space of Mk in size dk.

Then, at each time step t, the student’s knowledge state is updated based on
the learning activity it ((qr, rt) or lt), using the erase-followed-by-add mechanism
to modify the memory value matrix M

v
t . It involves erasing previous redundant

information before adding new information to M
v
t and is formulated as follows:

Erase:
et = �

�
(1 � dt) · ET

q [q
p
t � rt] + dt · ET

l l
p
t + be

�
(5)

M̃
v
t (i) =

⇥
sQQ · TQQM

v
t�1 + sLL · TLLM

v
t�1

+ sQL · TQLM
v
t�1 + sLQ · TLQM

v
t�1

⇤
(i)·

⇥
1 � wt(i)et

⇤ (6)

Add:
dt = Tanh

�
(1 � dt) · DT

q [q
p
t � rt] + dt · DT

l l
p
t + bd

�
(7)

M
v
t (i) = M̃

v
t (i) + wt(i)dt (8)

Here, � and Tanh are Sigmoid and Tanh activation functions. The erase vec-
tor et 2 [0, 1]dv is formulated to remove redundant knowledge information from
M

v
t�1. The add vector dt 2 Rdv is formulated to capture the new knowledge that

the student acquires at time t. M̃v
t (i) and M

v
t (i) indicates the i-th knowledge

slot of Mv
t after erasing and adding process. We acknowledge that knowledge

transfer can differ for the four possible transitions among different learning ma-
terial types, therefore, separate transfer weight matrices are utilized. These ma-
trices are activated by using the four different transition indicators s⇤⇤, namely
TQQ, TQL, TLQ, and TLL 2 Rdv⇥dv . For example, when the student switches
from watching video lectures to solving questions, TLQ represents knowledge
transfer from the previous student knowledge state M

v
t�1 to the current state

and it is activated since sLQ = 1. In addition, (1 � dt) and (dt) are used to
determine whether the learning activity it is a question or a lecture attempt.
They are used to activate the corresponding matrices Eq and Dq 2 R(dq+dr)⇥dv ,
El and Dl 2 Rdl⇥dv for mapping the learning activity embedding to concept
feature space of value matrix. be and bd 2 Rdv represent the bias terms.

In this layer, representing student knowledge and learning material concepts
in fine-grained latent features and the transition-aware transfer matrices allow
for more precise student performance prediction and capture more detailed as-
sociations between consequent learning materials in a sequence.
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4.4 Prediction Layer

In this layer, GMKT predicts the performance of a student on a given question
qt+1 at the next time t+1, based on their knowledge state of the qt+1’s concepts.

wt+1(i) = softmax([RT
qq

p
t+1]

T
M

k(i)) (9)

ct+1 =
NX

i=1

wt+1(i)
⇥
(1 � dt) · Mv

t TQQ + dt · Mv
t TLQ

⇤
(i) (10)

ft+1 = Tanh(W T
f [ct+1 � qt+1] + bf ) (11)

Initially, the correlation between question qt+1 and each of the N latent concepts
is determined by computing the attention weight vector wt+1 (equation 9). The
read content ct+1 is then retrieved to summarize the student’s knowledge state of
question qt+1 by using the weighted sum of all memory slots in the value matrix
M

v
t and wt+1 (equation 10). Here, (1� dt) and dt are used to indicate whether

the knowledge transfer from time t to t + 1 for predicting the performance of
qt+1 is from a question or a lecture. Next, the concatenation of ct+1 and the next
question’s embedding vector qt+1, is passed through a fully connected layer with
a Tanh activation function to obtain a summary vector ft+1(equation 11), where
Wf 2 R(dv+dq)⇥ds and bf 2 Rds is the weight matrix and the bias term, with ds is
the summary vector size. Finally, another fully connected layer with the Sigmoid
activation function is used upon ft+1 to predict the student’s performance pt+1:

pt+1 = �(W T
p ft+1 + bp) (12)

where a scalar pt+1 represents the probability of the student correctly answering
the next question qt+1, Wp 2 Rds⇥1 and bp 2 R are weight matrix and bias term.

4.5 Optimization and Objective Function

Similar to traditional KT models, we aim to minimize the following binary cross-
entropy loss between actual and estimated student performance rt and pt:

L = �
X

t

(rt log pt + (1 � rt) log (1 � pt)) (13)

But, unlike previous KT models, our goal is to also learn from the unlabeled
data (non-assessed activities). To do so, we propose an additional objective to
accurately estimate the type of the next material. Accordingly, we propose a read
content of learning material type c

o
t to summarize a student’s behavior state of

material type at each time t by using an attention weight vector, denoted by w
o
t :

wo
t (i) = softmax(

⇥
(1 � dt) · OT

qq
p
t + dt · OT

l l
p
t

⇤T
M

k(i)) (14)

c
o
t =

NX

i=1

wo
t (i)M

v
t (i) (15)

where wo
t (i) is the i-th element of wo

t , and Oq 2 Rdq⇥dk and Ol 2 Rdl⇥dk and
two weight matrices to map question and lecture embeddings. We then model
the type of material the student will interact with at time t+1 using equation 16:

p
o
t+1 = �(dt · WT

oqc
o
t + (1 � dt) · WT

olc
o
t + bo) (16)



Graph-Enhanced Multi-Activity Knowledge Tracing 9

Table 1: Descriptive statistics of datasets.

Dataset #Stu-
dents

#Assessed
Materials

#Assessed
Activities

Assessed
Responses

Mean

Assessed
Responses

STD

#Correct
Assessed

Responses

#Incorrect
Assessed

Responses

#Non-assessed
Materials

#Non-assessed
Activities

EdNet 1000 11249 200931 0.5910 0.2417 118747 82184 8324 150821
Junyi 2063 3760 290754 0.6660 0.2224 193664 97090 1432 69050

MORF 686 10 12031 0.7763 0.2507 N/A N/A 52 41980

where pot+1 represents the probability that the next learning material student will
interact be a question. Woq and Wol 2 Rdv⇥1 are two weight matrices, bo 2 R is
the bias term. Finally, the activity-type objective function Lo is formulated as a
binary cross-entropy loss between pot and the actual material type dt:

Lo = �
X

t

�
dt log po

t + (1 � dt) log
�
1 � po

t

��
(17)

Eventually, we minimize a combination of the performance objective function
L Equation 13) and the activity-type objective function Lo (equation 17) with a
regularization term to learn the parameters of GMKT, as shown in equation 18:

Ltotal = L + �oLo + �✓||✓||2 (18)

We use �o to balance between the contribution of student performance objective
and activity-type objective. ✓ represents the set of all trainable parameters in
GMKT, and the term ||✓||2 corresponds to the regularization, while �✓ denotes
the hyperparameter that determines the weight of this regularization term.

5 Experiments

We evaluate GMKT through two sets of experiments. First, we compare GMKT’s
student performance predictive ability with baseline KT methods and perform
ablation studies and sensitivity analysis of the model’s components. Then, we
compare transition weight matrices to examine knowledge transfer between learn-
ing material types. Our code and supplementary material are available on GitHub 1.

5.1 Datasets

We use three real-world datasets for our experiments. Table 1 provides an overview
of the general statistics for each dataset.
EdNet

2 [9]: This dataset is collected from Santa 3, a multi-platform AI tutoring
service that was designed to provide Korean students with a platform to practice
for TOEIC 4 English testing. Every time, students choose a bundle that includes
a set of problems to practice, and optional corresponding problem explanations
to read. We use the preprocessed data introduced in [42] for our experiments,
1 https://github.com/persai-lab/2023-ECML-PKDD-GMKT
2 https://github.com/riiid/ednet
3 https://www.aitutorsanta.com/
4 https://www.ets.org/toeic

https://github.com/persai-lab/2023-ECML-PKDD-GMKT
https://github.com/riiid/ednet
https://www.aitutorsanta.com/
https://www.ets.org/toeic
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which use problems (assessed) and their associated problem explanations (non-
assessed) as two types of learning materials.
Junyi

5 [10]: This dataset is sourced from a Chinese e-learning website that
teaches math to students. The website covers eight math areas with varying
difficulty levels. For our experiments, we use the preprocessed data made avail-
able in [7,42], with problems (assessed) and hints (non-assessed) as two distinct
learning material types. Each problem may be associated with multiple hints.
During practice, students have the option to request hints for solving problems.
MORF [4]: This dataset comprises data from an online course “Educational
Data Mining” offered on Coursera6 and accessed from the MOOC Replication
Framework (MORF) platform7. The course consists of modules covering various
topics, such as “classification”. During the course, students are expected to watch
several video lectures per module and complete an assignment, containing mul-
tiple problems. However, only coarse-grained assignment-level data is available.
Thus, we treat each submission of an assignment as one assessed activity and
consider the overall score as the activity response. For our experiments, the two
material types are assignments (assessed) and video lectures (non-assessed).

5.2 Baselines

To evaluate our proposed method on student performance prediction task, we
compare it with six state-of-the-art assessed-only supervised KT models and
three multi-activity KT models. In addition, to ensure a fair comparison, we also
extend the six assessed-only supervised KT models to handle both assessed and
non-assessed activities and also include a multi-layer perceptron (MLP) baseline
that can handle both types of activities. We denoted these extended models by
“original model name +M”. Overall, we evaluated our method against 15 base-
lines, consisting of eight deep learning-based models and one tensor factorization
model among the original nine baselines. Notably, to ensure fairness, we refrain
from comparing with GNN-based KT models mentioned in section 2, as they re-
quire the predefined mapping between materials and concepts, whereas we learn
the underlying latent concept. For baselines that originally used the knowledge
concept of each question as inputs (e.g., DKT), we used each question as a
knowledge component. The assessed supervised KT baselines are:
DKT [27] employs recurrent neural networks to model the knowledge state of
students, and is the first deep learning-based KT method.
DKVMN [39] modifies MANN that utilizes a static key matrix to represent
knowledge concepts and a dynamic value matrix to update student knowledge.
DeepIRT [38] extends DKVMN by incorporating the one-parameter logistic
item response theory, which provides better interpretability of KT.
SAKT [24] applies a self-attentive mechanism to model the inter-dependencies
between student interactions and improve the effectiveness of KT.
5 https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=1275
6 https://www.coursera.org/
7 https://educational-technology-collective.github.io/morf/

https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=1275
https://www.coursera.org/
https://educational-technology-collective.github.io/morf/
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SAINT [8] is a transformer-based method and is an encoder-decoder model that
employs deep self-attentive layers to separately encode exercises and responses.
AKT [14] is a context-aware KT model that utilizes a monotonic attention
mechanism to summarize the impact of past student activity performance on
the current activity’s knowledge state.
The baseline methods support both assessed and non-assessed activities are:
DKT+M [40], DKVMN+M, SAINT+M [8], AKT+M and AKT+M are
variants of DKT, DKVMN, SAINT, SAKT, and AKT. in these extended mod-
els, non-assessed learning activities embedding are summarized as an additional
feature, with the problem embedding as the model input.
MLP+M [16] is a simple multi-layer perceptron that takes the embedding of a
student’s three most recent assessed activities and three non-assessed activities
as input to predict student knowledge of a concept.
MVKM [41] can model student knowledge acquisition from multi-type learning
activities. It is a method based on multi-view tensor factorization that constructs
separate tensors for student activities from each learning material type but can-
not explicitly capture the knowledge transition between material types.
DMKT [34] is based on DKVMN and models distinct read and write opera-
tions for assessed and non-assessed learning material types. However, it lacks the
ability to explicitly model knowledge transfer between assessed and non-assessed
learning materials. Moreover, it requires a fixed number of non-assessed learning
activities between every two assessed ones, making it less flexible in modeling
the student knowledge from the complete activity sequence.
TAMKOT [42] is a transition-aware KT model that builds based on LSTM.
It learns multiple knowledge transfer matrices to explicitly model the knowl-
edge transfer between different activity types. However, it does not consider the
global neighborhood-based transitions its knowledge modeling layer is LSTM-
based, and its objective function only considers students’ assessed activities.

5.3 Experiment Setup

We adopt 5-fold student stratified cross-validation, following standard KT exper-
iments [27,34]. In each fold, 80% of students’ sequences are randomly chosen as
the training set, while the remaining 20% of students’ sequences are used as the
test set. For hyperparameter tuning, we separate 20% of students from training
set and use their sequences as the validation set. We conduct a coarse-grained
grid search to find the best hyperparameters, which are reported in Table 2.

5.4 Student Performance Prediction

In student performance prediction experiments, we report the mean results
across five folds of each method and present the paired t-test p-values that com-
pare each baseline to GMKT. For datasets where student performance is binary
(correctness), such as EdNet and Junyi, we evaluate model performance using
Area Under Curve (AUC). For datasets where student performance is numeric
values (scores), such as MORF, we normalize student assignment scores within
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Table 2: Best learned hyperparameters
Dataset dq dr dl dk dv ds N �o �✓

EdNet 64 32 32 32 32 32 8 0.1 0.05
Junyi 32 32 32 64 64 32 32 0.1 0.05

MORF 32 16 8 32 32 32 8 0.05 0.03

Fig. 2: Performance w.r.t. �o

Table 3: Student perfor-
mance prediction results. The
best and second-best results
are in bold and underlined. ⇤⇤
and ⇤ represent paired t-test
p � values < 0.05 and < 0.1,
compared to GMKT.

EdNet Junyi MORF
Methods AUC AUC RMSE

DKT 0.6393⇤⇤ 0.8623⇤⇤ 0.1990⇤⇤

DKVMN 0.6296⇤⇤ 0.8558⇤⇤ 0.1995⇤⇤

SAKT 0.6334⇤⇤ 0.8053⇤⇤ 0.1975⇤⇤

SAINT 0.5205⇤⇤ 0.7951⇤⇤ 0.2190⇤⇤

AKT 0.6393⇤⇤ 0.8093⇤⇤ 0.2417⇤⇤

DeepIRT 0.6290⇤⇤ 0.8498⇤⇤ 0.1946⇤⇤

DKT+M 0.6372⇤⇤ 0.8652⇤ 0.1942⇤⇤

DKVMN+M 0.6343⇤⇤ 0.8513⇤⇤ 0.2071⇤⇤

SAKT+M 0.6323⇤⇤ 0.7911⇤⇤ 0.1981⇤⇤

SAINT+M 0.5491⇤⇤ 0.7741⇤⇤ 0.2007⇤⇤

AKT+M 0.6404⇤⇤ 0.8099⇤⇤ 0.2226⇤⇤

MLP+M 0.6102⇤⇤ 0.7290⇤⇤ 0.2428⇤⇤

MVKM � � 0.1936⇤

DMKT 0.6394⇤⇤ 0.8561⇤⇤ 0.1856⇤

TAMKOT 0.6786 0.8745⇤⇤ 0.1857⇤

GMKT 0.6819 0.8960 0.1802

the range of [0, 1] using the assignment’s maximum possible score. We then use
Root Mean Squared Error (RMSE) to evaluate model prediction performance.
Comparison with Baselines: GMKT’s results along with the baselines are
presented in Table 3. We only run MVKM on MORF dataset due to its limita-
tions in handling high-dimensional data with large computational time costs.

We first observe that GMKT outperforms all baseline methods, particularly
in Junyi and MORF datasets, highlighting the importance of modeling both as-
sessed and non-assessed activities for accurate student knowledge representation.
The results demonstrate GMKT’s effectiveness in capturing knowledge transfer
between different material types and improving multi-activity student knowledge
tracing through neighborhood-based and transition-aware representation learn-
ing. We also observe that the difference between GMKT and the second-best
baseline is more significant in Junyi and MORF datasets. A potential explana-
tion could be contrast in material associations and transition variability between
different datasets. Contrary to GMKT which uses a complex key-value struc-
ture and neighborhood-based material representations, the second-best baseline
(TAMKOT) models knowledge transfer between assessed and non-assessed ma-
terials using a simple LSTM-like structure. Hence, while the complex structure
of GMKT is needed for more complex datasets, TAMKOT’s performance could
be adequate for the less complex ones. Particularly, in EdNet, related problems
are bundled together, each problem is associated with one explanation, and stu-
dents follow similar transitions between materials within bundles. So, the en-
hanced graph structure and complex knowledge representation may not provide
much additional information in this dataset. Comparing GMKT to other two
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multi-activity methods, MVKM and DMKT, it shows that GMKT significantly
outperforms both of them in all datasets. This again highlights the importance
of explicitly modeling knowledge transfer and activity-type transitions, as well
as incorporating graph-structured information in knowledge modeling.

Moreover, the results indicate that the multi-activity variants of assessed-
only methods do not consistently improve prediction performance compared to
their original formulations. For instance, SAKT+M performs worse than SKAT
on EdNet and Junyi datasets, while DKVMN+M performs worse than DKVMN
on MORF dataset. These suggest that simply adding non-assessed activities as
additional features sometimes has a negative impact on performance prediction.
Nonetheless, it can improve performance when knowledge transfer between as-
sessed and non-assessed materials is adequately modeled, like GMKT.
Ablation Studies: We conduct two sets of ablation studies to validate the im-
pact of coarse-grained representations (the multi-activity transition graph layer)
and the type objective. First, we remove the GNN component from GMKT, re-
ferred to as GMKT-G. Second, we remove the type objective term, �oLo, from
Ltotal, in Equation 18 (GMKT-O). According to the results in Table 4, removing
either of these components has decreased performance in all datasets, indicating
that neighborhood-based representations and the type objective are both nec-
essary and can provide the most significant improvement when used together.
Comparing GMKT-G and GMKT-O, we observe similar results in EdNet and
Junyi. Whereas, for MORF dataset, GMKT-O outperforms GMKT-G, meaning
that neighborhood-based similarities are more important than the type objective
in MORF. A potential reason can be the material complexity in MORF. Each
problem covers one topic in EdNet and Junyi, but each MORF assignment has
multiple problems and video lectures cover multiple concepts. So, more coarse-
grained representation can provide richer information about materials in MORF.
Sensitivity Analysis: To have a deeper understanding of the impact of the
type objective on student performance prediction, we perform a sensitivity anal-
ysis by changing �o in Equation 18 while fixing all other hyperparameters to the
best-learned values. The experiment results in Figure 2 show that prediction per-
formance initially improves, but gradually decreases after reaching a certain �o

for all datasets. This demonstrates that while adding the type objective helps in
achieving higher performance, a balance is necessary between the objective func-
tion components. Additionally, while the best �o varies slightly for each dataset
(0.1 for EdNet and Junyi and 0.05 for MORF), the overall range for optimal �o

is small and GMKT can robustly use a similar �o for different datasets.

5.5 Knowledge Transfer Modeling

In this set of experiments, we focus on examining the knowledge transfer between
assessed materials to non-assessed ones. Specifically, we compare the transition
weight matrices TQL and TLQ in equation 6 to determine if the knowledge trans-
fer from assessed to non-assessed materials differs from that of non-assessed to
assessed materials. These matrices represent the weight of knowledge transfer
from one memory slot to another when a student switches from one material
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Table 4: Ablation study results
EdNet Junyi MORF

Methods AUC AUC RMSE

GMKT-G 0.6759 0.8909 0.1888
GMKT-O 0.6761 0.8911 0.1867

GMKT 0.6819 0.8960 0.1802

Table 5: Spearman correlation coefficients
with p-values between TQL and TLQ

EdNet Junyi MORF

Correlation 0.0357 -0.0128 -0.0504

p-value 0.2531 0.4120 0.1072

Fig. 3: Heatmaps for weight matrices
TQL and TLQ for MORF dataset.

type to another. We flatten these matrices and calculate the Spearman corre-
lation coefficient [31] between them. The resulting correlation coefficient and
p-value are presented in Table 5, indicating that there is no significant correla-
tion between TQL (assessed to non-assessed) and TLQ (non-assessed to assessed),
as the correlations are small and the p-values are greater than 0.1 for all datasets.
This implies that transition weights in TQL and TLQ are mostly different. To
further investigate, we plot the heatmap of TQL and TLQ for the MORF dataset
in Figure 3(Heatmaps for the Junyi and Ednet are in the supplementary ma-
terial due to space limitations). A z-score normalization [25] is performed to
TQL and TLQ for better visualization. As evident from the heatmap, weight
matrices are considerably different from each other, indicating that knowledge
transfer weights depend on the order of transition between material types. Thus,
modeling knowledge transfer between different material types is sufficient.

6 Conclusions

We focused on multi-activity knowledge tracing, modeling student knowledge
as they transition between various types of materials. We developed GMKT,
a model with a transition-aware dynamic knowledge transfer network and a
transition-aware graph neural network that captures both fine-grained and coarse-
grained associations between materials. We also proposed a semi-supervised
learning approach that considers both student performance and activity type
objectives. Our experimental results on three real-world datasets showed that ex-
plicitly modeling transition-aware knowledge transfers, capturing coarse-grained
associations by the transition-aware GNN, and adding the activity type objec-
tive, are crucial for accurately representing student knowledge and predicting
their performance. Our analysis showed that student knowledge transfers be-
tween assessed and non-assessed activities depend on transition order, indicating
that transition-aware models are essential for multi-activity knowledge tracing.
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