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Dimension-Specific Shared Autonomy for Handling
Disagreement in Telemanipulation

Michael Bowman

Abstract—One of the fundamental questions in shared control is
how to allocate control power to the human and robot effectively.
Conventional arbitration policies often define a uniform singular
scalar for all 6 DOFs to blend human input and robot assistance.
However, this singular scalar over-dominates some dimensions of
the inputs and provides insufficient assistance in other dimensions.
Thus, current shared control can support simple telemanipulation
tasks such as pushing, pressing, and simple positional control
but is limited in tasks with more DOFs like rotational motion.
A dimension-specific arbitration policy is developed to customize
the control arbitration along each DOF to fill the gap. It looks
at whether the robotic assistance is too timid or aggressive along
each DOF and determines the arbitration magnitude according to
disagreement levels of control allocation and the user’s willingness
to accept assistance. The user’s willingness is estimated from a
feedback psychology model. The method has higher similarity and
ratio of agreement between the human and robot (lower over-
dominance) over existing methods and, simultaneously, improves
the task performance. This arbitration strategy is expected to
increase the adoption of teleoperation for object manipulation.

Index Terms—Telerobotics and teleoperation, motion control,
human-centered robotics.

1. INTRODUCTION

ELEOPERATING a robot for a manipulation task is often

difficult and complex due to indirect visualization, indi-
rect manipulation with the robot, and physical discrepancies
between a human and robot hand [1], [2]. Shared control injects
autonomy into an operator’s actions to overcome these issues.
Shared autonomy is desirable for teleoperation applications,
including industrial inspection and maintenance, disaster relief,
or assistive living.

Object telemanipulation requires more than simple positional
control, realizing the system requires rotational and finger con-
trol. These motion components provide a natural split in han-
dling complex tasks. Operators handle these components in
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Fig. 1. The overview of the proposed telemanipulation control paradigm. Our
contributions include partitioning dissimilar dimensions, devising independent
arbitration policies to handle control allocation disagreement, and applying the
appropriate dimension-specific control authority.

their preferred approach. For example, the operator may obtain
a position near an object, then begin to handle the rotations
and end with finger control. Here an iterative process occurs
by the operator to refine each step until they achieve the goal.
Certain combinations of refinement will be more intuitive to
different operators, like either handling the depth before lining
up the robot in an x-y plane or vice versa. Naturally, operators
likely only adjust a few components while holding others nearly
constant (i.e., holding a position but adjusting the pose angle or
finger posture) to succeed in a grasp [6].

The autonomous actions may differ from the operator actions
along all or a portion of these motion components. For instance,
given the same high-level target pose, the autonomous agent
and operator may have differing motion strategies to achieve it
(Fig. 1: human operator and robot agent). Disagreement occurs
due to misperception or preference of the operator. Neither agent
is incorrect in their actions to accomplish the task, nor is the
robot producing suboptimal action plans. This disagreement is
fundamentally inherent in shared control, and precautions are
necessary to prevent over-dominance from the robotic agent.
Further, the robot and human may only partially agree, where
they may agree in the positional component and differ in the
rotational component. Fig. 2 shows this partial agreement.

Determining the appropriate level of autonomy in teleop-
eration is the key research topic to realize telemanipulation
scenarios fully. The most common state-of-the-art strategy in
shared control is to use a linear blending strategy with a universal
arbitration term, «. The control authority is a singular scalar
value that influences every dimension of the control rather than
individual components. Specifically, it only includes positional
components, not rotational ones, to dictate arbitration along a
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U; contains 3 components: an Xx-
component, y-component  position
vector, with an w-component
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Fig. 2. Agreed positional components influence and dominate arbitration
models, leaving rotational components more robot-dominated than intended.
An example of an operator’s and robot’s actions for 3 timesteps with partial
agreement in the vison-based telemanipulation scenario.

trajectory. This strategy cannot handle partial agreement that
arises in telemanipulation scenarios, especially towards the end
of the trajectory where conventionally, the robot assumes most
control (o« = 1). Consider a case where the robot is near the
positional goal, and the operator attempts to refine the position
before adjusting the rotation. With the conventional strategies,
the robot will dominate not only the positional components but
the rotational aspect too as «v approaches 1. This is despite the
operator not yet focusing on the rotational components to grasp
an object successfully and restricts their ability to alter them.
The over-dominance restricts the operator in how they want to
complete the task (i.e., grasp the object from the side rather than
the top like in Fig. 1). This leads to an operator’s attempt to
refine actions but sees the control as too aggressive thus make
drastic changes [3]. Over-adjustments and strong reactionary
responses are due to the low control authority. However, the
operator’s initial intuitive refinement is to be subtle. This is
especially common for telemanipulation applications [4], [5].

This work aims to provide autonomy to aspects the robot and
user agree on and reduce assistance in areas where they disagree.
Otherwise, the arbitration leads to operator resistance. Toward
this aim, a dimension-specific control authority to focus on in-
dividual components to succeed is developed. The contributions
are as follows:

1) Break down dimensional aspects with respective motion
components, and quantify dimension-specific disagree-
ment and the human’s willingness for assistance.

2) Develop a dimension-specific arbitration strategy for non-
dominating assistance along different motion components.

3) Validate and evaluate the dimension-specific arbitration
strategy in telemanipulation tasks.

II. RELATED WORK

Current telemanipulation focuses on improving hand motion
mapping capabilities and lacks shared autonomy strategies.
These mapping strategies use model-based approaches such as
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DexPilot [7] or use synergies [8], [9]. These methods consider
orientation and finger mapping. However, deployment still relies
on an operator to fully control a system that is difficult to
maneuver and slower than normal actions an operator would
take [7]. Despite improving the physical discrepancy issues, the
operator struggles to overcome the disembodiment problem,
where they face indirect perception and manipulation of the
robot environment and lack dynamic interaction with objects.

Introducing shared control to circumvent the above issues
has empowered the autonomous agent with its knowledge of the
environment. However, shared control with linear blending has
only been used on simplified approaching problems [10]. The
arbitration is a single scalar based on the robot’s confidence in a
human’s intended goal [11], [12], [13] or empirically defined to
increase from O to 1, where the higher autonomy levels are near
the goal [6]. This standard strategy leads to over-dominance of
arobot’s actions near goal states; an operator may disagree with
the output actions. Operators have sometimes reported a desire
to retain control despite lower task performance [14], [15]. Often
seen as inferencing issues to achieve a better arbitration, research
lacks questioning the structural issues for linear blending tech-
niques and handling disagreement.

The work in [3] provides insight on reframing a multi-
inference sub-policy to quantify disagreement between oper-
ators and robotics assistance plans for 2D approaching tasks.
Other strategies quantify disagreement between operator and
robot actions and then apply minimum assistance to ensure safe
control [12], [16], [17]. The disagreement quantification works
for both discrete and continuous domains [18]. Alternatively,
handling disagreement can be viewed as mutual adaptation or
adapt to adaptation [19], [20], [21]. One aim of mutual adapta-
tion is to have an online adjustment of control authority based on
the operator’s action. However, all these strategies obfuscate the
action’s individual components by analyzing the entire vector
and have rarely been used in telemanipulation fields.

III. METHODS
A. Disagreement of Control Allocation

Both agents have pose states denoted as X € RS. Where X
is split between 3D positional and three independent rotational
dimensions (roll, pitch, yaw), thus X € {z;,6;}, j = 1,2,3.
Both the robot and operator apply actions U € {&;, éj}, J
1,2, 3. We assume the goal state, X9°%, is given and known by
the robot and the operator, and the optimal robot policy U"°%°* is
set as to go towards X 9°% as seen in Fig. 2. The operator is free
to choose actions, U *wman , other than those towards the X goal
to achieve the task, thus going to their own state, X human (e |
the current human hand pose as seen in Fig. 2). The standard
linear blending arbitration is augmented to a dimension-specific
one for both the U"*™a" and U"°"°*  as in (1), where i is each
dimension of the control vector (i = 1, 2,..., 6). The resultant
action, U applies to the robot dynamics with the current

7
robot state, X “""¢"* to obtain the next state, X"¢* in (2).

Uioutput _ U[obot a; + Uihu'rnan (1 _

;) (D
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Xnemt — f ()(currem&7 Uoutput) (2)

«; can be summarized as the L1 distance (or L2 if preferred)
towards X 9°%_ from an initial robot state, X 5t@"* and X current,
to determine the control authority. Eq. (3) shows an L1 distance
using X ¢“rrent in the standard error function (erf).

||Xgoal _ Xcurrent”l

Qi = 1 —erf HXgoal _ XstartHl

3)

For the baseline case (denoted as the Standard (S) controller),
all «; are the same value as (3). The «; is only from the robot’s
perspective as X €4""¢nt golely dictates it to promote as much
assistance as possible ( «; = 1). However, we must account for
misalignment, as previously discussed. So, we alter «; through
quantifying disagreement of control allocation. The disagree-
ment between both the current human (X"%™%") and robot
(X ceuwrrent) ig the difference in expected control allocation. The
expected control allocation is where the current robot expects
to provide o help based on X<“"¢"! and the operator expects
to gain o assistance based on X" There is a mismatch
between X ¢¥rrent gnd X human thygthe expected « is different,
due to misalignment. So, (4) makes two changes to (3). The
first is to update it as a dimensional difference. The second
is to represent each agent’s current state position (:c;‘“m“” or
xj“”e”t) as a probability of expected control allocation (as if
each agent were to apply their position to (3) and produce an
a;), where A represents either the human (H) or the robot (R)

agent . . h i
agent and x j is either ;™™ or """
gt~
P(Aj)=l-ef L I lyi={123} j={1,2,3}
277 —as5tert] |

“)
Eq. (4) is inappropriate for quantifying rotation dimensions to
account for circular variables. Therefore, a more natural, appro-
priate probability distribution for rotational control allocation is
the Von Mises distribution [3] in (5). Functions with similar
characteristics that can handle circular variables can also be
applied. For instance, our rotations are independent, leading to
a univariate probability function in (5).

e’i Cos(quentiegoal)

P i) = =070

vl = {4’5’6}’;7 = {1’2’3}
3)

k is an empirically defined variable, and Iy(x) is the modified
Bessel function, and ngem refers to rotational dimensions of
X. Egs. (4) and (5) are shown in Fig. 3 as solid black lines.
In Fig. 3, the human and robot have differing expectations of
control allocation along a singular dimension. P(H;) and P(R;)
are the bounds of disagreement for control authority seen by the
operator and the actual robot pose. In conventional systems,
assistance is either timid (the robot’s provided assistance is
behind the human’s expected assistance in Fig. 3’s top row)
or aggressive (the robot’s provided assistance is ahead of the
human’s expected assistance in Fig. 3’s bottom row). With our
system, we aim to determine whether assistance is truly timid
or aggressive (ultimately determining the appropriate level of
assistance to provide) by including the operator’s willingness
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Fig.3. The expected control authority by the human (H), and robot (R) using

(4) (left column) and 5 (right column) for specific dimensions. The target value
corresponds to the goal state known by both agents. Conventional systems take
P(R) as the true cv. Top row: human leads robot, meaning lower assistance, v, in
conventional systems (P(R) < P(H)). Bottom row: robot leads human, meaning
higher assistance, «, in conventional systems (P(R) > P(H)). The purple regions
are potential o from our strategy in (8). Our approach aims to find a better v
than conventional means by evaluating the operator’s willingness, B;, which
contextualizes the Ui’“””“" based on their current progress in the task. A high
B; will lead «; being closer to the conventional strategy (P(R)), while a low B;
will lead to «; to be near P(H).

to accept assistance (which contextualizes U;*“"" in terms of
current progress toward the goal). For instance, if the operator
has a low willingness to accept assistance for conventionally
aggressive assistance (bottom row of Fig. 3), then the o will be
setcloser to P(H). Alternatively, if they have a high willingness to
accept assistance, then the conventionally aggressive assistance
is not true, the operator is willing to gain aggressive assistance,

and « can be set closer to P(R).

B. User’s Willingness to Accept Assistance

The operator’s willingness to accept assistance stems from
their desire to change the current control authority in the dynamic
process. Determining the change to this authority level can tem-
per too aggressive and boost too timid assistance. The operator’s
current desire and preference towards the robot’s assistance is
identified by looking at both agents’ actions along each dimen-
sion. A probabilistic approach, inspired by psychology feedback
models [22], [23], [24], is developed to determine willingness to
accept assistance. The psychology model discusses a proposed
feedback mechanism for how people change their behaviors in
a task based on current progress, previous experiences, and the
current rate of progress. Further, a Beta prime distribution uses
these components to determine when a person will likely pick
up the pace or back off. Lastly, the model discusses how the
pace changes for the individual dimensions; as one dimension
slows, another takes precedence. The feedback model was con-
ceptual and discusses the pace in the abstract; we adapt them
to a mathematical framework and apply them to the shared
autonomy. Compared with the existing model-free data-driven
approach that defines adaptability through a Mixed Observable
Markov Decision Process [20], the primary benefit of using the
mathematical model is to provide the robot with the operator’s
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willingness to accept the control authority in a human-like man-
ner. The proposed model can be adapted in two ways. The first
is to move it into the motion domain rather than a conceptional
abstraction of rate changes to complete tasks. The second is to
adapt the model to give a predictive or feedforward effect rather
than a reactive calculation (i.e., computing acceleration from
measured U/*“™™). Together, both adaptations account for the
expected way an operator would move toward the goal given
their current progress (correctly transforming or normalizing
the U“"" into the model’s concept of speed change). Due to
the predictive nature of the model and the transformation, this
is referred to as the “expected speed change.” To make these
adaptations to the psychology model, we identified four compo-
nents: 1) current actions, 2) previous actions, 3) current progress
in the task, and 4) aggregated previous experiences. The first
and second components are instantaneous reactionary decisions,
while the third term looks at a longer planning window for the
current trial. The last term influences the operator’s expectations
in completing the trial based on previous experiences. The last
two terms are what the operator relies on to know if they are slow
or fast in this trial compared to previous trials. Eq. (6) combines
these terms to quantify the agent’s expected speed change based
on their current (first term) and last actions (second term), current
progress (third term), and aggregated previous experiences (last
term). Where N is the total number of previous attempts in
doing the task, and n is the index for a specific attempt. Eq. (6)
aims to quantify/normalize whether the operator will increase or
decrease their velocity based on their current progress compared
to previous experiences in the task.

current previous
X; - X

agent __ rragent
wi - Ui B current __ Y previous
X X 2

current start
X — X;

- current __ start
12X Xetart|

terminal start
X', - Xz n

1 N
L i,n , 6
+ N ;::0 ||X%e7’mznal _ Xfltart”Q ( )

The variable agent refers to the human agent (U, i’“‘m‘m) or the
robot agent (U7°%°*) actions. Each rate (1™ and 1)7°%°%) is
then used in a Beta prime distribution with hyperparameters b,
p, and g. The hyperparameters impact the shape and scale and
are empirically chosen based on human speed in manipulation
tasks and the robot’s velocity limits. The heuristic described in
[23] inspires the Beta prime distribution. The distribution allows
for normalization and quantification compared to the heuristic in
[23] and provides context toward what the operator is attempting
to achieve with their speed change. 1)7°%°! is necessary as it is
the reference to compare the sampling for 1)%™a" (which is
used to see if it is faster or slower). The robot policy, U7t
determines t7°*°! before the arbitration takes place which is
discussed in the next section. w;‘)b”t is necessary as it influences
the shape of the curve and is the mean value for the probability
density function to evaluate the 1/"“™" (which is calculated
after measuring U/**™™). The 1)"*™" evaluation produces a
single deterministic value (which we call willingness, B;) for
the specific time point. However, this could be extended to a
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Fig.4. The operator’s willingness to accept assistance for a single dimension.
The dashed line represents the reference which is the expected speed change of
the robot, w{"bo’f, from the optimal robot policy (U;" "b"t). Three regions exist.

The first (in red) shows when no expected speed change (¢ g“””‘”l = 0) occurs,
which implies the operator is unwilling to change and accept assistance. As the
z[;lh“ma" increases, it implies they are willing to change and accept assistance

in this dimension. The second region (in green) shows that as wfum“" gets
closer to wf"b"i, corrections to de“man are less warranted. The third region
(in yellow) shows when the wg”‘m‘m is faster than w;ObOt, they think their
expected speed change is more desired as it is above the w;"b"t, and that the
robot should be following suit. Note that there are two cases Bi can be 0, either

when w,{l“ma” =0, or when ¢£“”"a” is very fast.

stochastic sampling approach by either 1) taking multiple time
point samples or 2) utilizing uncertainty in the measurement of
Ui”'“m“". It should be noted that the rates are dynamic, in that, at
each time point 7°*°* and 1)["*™" will change to new values.
The willingness, B;, to accept assistance is between 0 (fully
unwilling) and 1 (fully willing).

By = B ([rmen], [vit] b, p,q) 7)

We obtain a different B; curve for each dimension. Fig. 4
shows (7) and its three distinct regions. The left part of the first
region is when the operator has little or no 1)/"*™"compared to
¥robot When the 1“™"s near 0, two aspects are needed: 1)
constant U*“™" s the first and second terms of (6) can cancel
out, and 2) X" configuration that leads to the third and
fourth terms being either 0 (the third term is 0 when X 7me™t =
X ot and the fourth term is 0 with no previous trials attempted)
or cancel out (X¢wrrent = X940 yyhuman pear () results in an
unwillingness to accept assistance (B; = 0). One example of
when 1"#ma" = () occurs is near the goal—resulting in the third
and last terms of (6) canceling out—with the operator no longer
making adjustments to achieve the task, leading to the first and
second terms approaching 0. Note that this is one example, but
Yhuman — () could occur anywhere along the trajectory as long
as the four terms cancel (e.g., when the operator moves in the y-
direction in Fig. 5(b), the x-dimension wj“”’“m is approximately
0 leading to the purple distribution closely resembling the green
one due to B; being approximately 0). The other critical point
is when 1/1#man ig slightly lower than 1)7°%* (B; = 1). In this
scenario, the operator’s expected speed change is not far off from
the w;"b"t and the expectation is the operator desires to achieve
w;’obot .

The second region shows 1/%™3" nearing 7", where the
operator’s B; is reduced and changes are less warranted In this
region, the psychology model of [23] states that the operator
decreases their B; as ¥"“™%" nears the ¥!°*°* because they
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Fig. 5. (a) The simulation environment. The stochastic human has a policy
in green and the robot policy is in red. The robot policy follows the shortest
distance and smallest angle to the goal. The S controller follows (3) to set the
«; for all i. The starting pose is always identical (black). (b) The distributions
of all simulated trajectories. (c) Is the heading across time, (d) Is the x and y
directions across time. The plots in (d) also shows the trends of P(H) in green,
and P(R) as red (S) and purple (DS). There is a large difference in the human’s
and S controller’s x-position causing disagreement in control allocation of P(H)
and P(R). There is less disagreement between the human and DS.

lose their sense of urgency to achieve it and their expected speed
change is in an acceptable bound. The third region occurs when
pluman jg much faster than 7%, implying the operator will
have a strong desire to move in this direction. In this scenario, the
operator does not care as much about the help because it moves
slower. Note that in the third region, when wih"””“” becomes
extremely fast, B, will go to 0.

C. Handling Disagreement in a Dimension-Specific Setting

The dimension-specific arbitration uses the disagreement be-
tween control authority allocation and the user’s willingness.
P(H;) and P(R;) act as bounds, where a better arbitration exists
between them in (8). The new «; tempers too aggressive control
while boosting too timid control.

a; = (P (R;) — P (H;)) B; + P (H;) (®)

After «; from (8) is calculated, the output action from (1) is
calculated. Each dimension will assume a different level of «;.
An example of possible «; is shown in Fig. 3(a)—(d) in purple.
For instance, consider if the current situation resembles Fig. 3(c),
where an operator is behind the robot. If 1*“™" i near 0 and
thus B; =0 (region 1 of Fig. 4), then «; = P(H;). This gives the
operator more control and tempering too aggressive assistance.
If wf"ma” begins to increase where B;= 1 (near the max of
Fig. 4), then at this time point, the control authority goes towards
the robot at o; = P(R;). Providing more active assistance in
tune with the operator. If 1)“™%" continues much faster at the
next time point where a transition from Fig. 3(c) to (a) occurs,
the B; goes toward O (region 3 of Fig. 4) which pulls the robot
toward the human’s expected control authority as o; = P(H;)
and boosts too timid assistance (P(H;) is dynamic, and changes,
s0, they are not the same P (H;)). This does not mean the robot
provides zero assistance but uses the operator’s expected control
authority allocation. In this transition phase, «; first increases
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from P(H;) to P(R;) in Fig. 3(c) then keeps increasing from
P(R;) to P(H;) in Fig. 3(a). P(H;), P(R;) and B; change
along each dimension; thus, each «; will be different. The linear
model for (8) should not impact the operator’s perception of
rotational assistance as they could hold similar «; but with two
different poses. Rather the human-robot policy misalignment
would have a higher influence (i.e., the robot wants m — 9;"’1"”,
and the operator has the desired 7 + 9‘;““”“").

IV. EXPERIMENTAL RESULTS
A. Simulation Setup

For easier visualization of the results and qualitative anal-
ysis of each «; and the outcome of their respective actions,
a simplified telemanipulation scenario with three DOF (two
translational and one rotational) shown in Fig. 5(a) is used.
Success occurs when the robotic hand is radius, R, away from the
goal position and within a radian tolerance, §, from the normal
direction to the goal position. The tolerances resemble real
scenarios where a point goal is not enough. The simulated human
trajectories sample a probability distribution that attempts to
grasp the object’s handle. The robot’s target pose has noise at the
target position to simulate when a robot is not precise enough
to achieve the desired pose. 1000 simulated trajectories were
used to compare the baseline S controller (mentioned in III.A)
and the Dimension-Specific (DS) controller. Fig. 5(b) shows all
three trajectory distributions. The robot policy for the DS and S
controllers is to follow the shortest distance and smallest angle
to the goal. The DS controller starts with a B; of 1 (fully willing)
because no previous human actions indicate otherwise.

B. Simulation Results

Qualitative analysis comes in two forms. The first is the
appearance of output robot trajectories for the same human
trajectory. Our approach aims to align more with the principal
axis the operator is trying to achieve. Fig. 5 shows this is evident
compared to the singular « that over-dominates the trajectory
(i.e., although the operator is moving primarily in the y-direction,
the S controller forces motion in the x-direction). Fig. 5(d) also
demonstrates the trends of P(H) in green and P(R) as red (S)
and purple (DS). There is a large difference in the human’s and
S controller’s x-position, causing disagreement in the control
allocation of P(H) and P(R). There is less disagreement when
considering humans and DS. The second qualitative test is to
compare «;. The «; in Fig. 6 corresponds to the distributions in
Fig. 5. The expected operator actions proceed in the y-direction
before the x-direction. The DS controller should provide more
control authority in y before the x-direction. In the top plot of
Fig. 6, the « is relatively low. As the operator is not moving
in this dimension, giving more control to the operator in this
dimension can prevent the robot from over-extending its motion
in an undesired path. Whereas, in the middle plot, the operator
moves toward the component goal making the a; go higher,
and reduces the authority the operator experiences, allowing the
robot to provide more assistance in this direction. Further, the S
controller calculates (3) before developing an output action with
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Fig. 6.  «; distributions for the trajectories shown in Fig. 5.
Human user indirectly/virtually
interacting with a cup
Fig.7. Operators see the robot perspective on the screen while they move their

hand freely over the table. The Xbox Kinect captures hand posture to extract the
palm pose and the amount each finger is open or closed. The information is then
sent to the robot to execute the motion.

(1), which is why the same alpha is along all components. The
DS controller value for ay has two trends. The first trend is at
the beginning of the trajectory; the human’s current and target
heading are close to one another. The human angle does not have
significant deviations, so the robot is afforded more control with
. The second trend occurs when the human heading begins to
deviate, signaling to the robot that the human wants to assume
more control to achieve a desired heading, driving ayy lower
overall. This becomes more apparent in a real-world scenario.

C. Telemanipulation Setup

Fig. 7 describes the telemanipulation experimental setup. An
Xbox Kinect takes an RGB-D image, and Mediapipe [25] ex-
tracts features used as inputs for the robot control. The operator
directly controls the hand pose (position and orientation) and
the amount each finger opens and closes, eight variables in total.
The operator aims to grasp kitchen utensils from a holder and
place them in a bin. A failure occurs if an object does not reach
the bin or lands on the table. The operator is free to move how
they wish to accomplish the task. The robot is given pick and
place goal poses with induced noise.

The institution’s Institutional Review Board (IRB) approved
a set of experiments. Before participating in the study, written
consent was obtained, acknowledging they understood the robot

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 3, MARCH 2023

TABLE I
TELEOPERATION RESULTS FOR THEIR RESPECTIVE MEANS AND CONFIDENCE
INTERVALS
Mode | Success Rate | Trial Time (s) Cosine Ratio of
Distance Agreement
DS 0.446 152.4 0.076 0.981
[0.346,0.547] | [125.0,185.8] | [0.065,0.089] | [0.980,0.982]
S 0.326 223.4 0.400 0.895
[0.234,0.425]| [176.2,283.3] | [0.385,0.417] | [0.893,0.897]

DS means Dimension-Specific, S means Standard. Bold means this performs
better in this metric by statistical significance.

setup, the purpose of the study, and the potential risks involved
(arm soreness). Three trials were conducted for each arbitration
strategy for each participant. A trial consisted of three runs; each
run had a different object. A randomized order of the control
modes was used to reduce learning effects. 10 participants
volunteered (a total of 90 runs for each arbitration strategy) in
the pilot study. The volunteer breakdown included 25.5 £+ 4.15
years of age, with 4 women and 6 men involved.

D. Telemanipulation Results

Task performance. The quantitative analysis is broken down
by success rate, completion time, cosine similarity, and the ratio
of agreement. Due to the smaller number of trials compared
to the simulation results, the metrics have a different analysis.
The success rate uses a Laplace Estimate over the Maximum
Likelihood Estimate to reflect the true success rate. Likewise,
an adjusted-Wald 95% confidence interval creates the bounds of
success. An N-1 Chi-Squared test determines statistical signifi-
cance. All comparisons are in Table I. The DS controller achieves
a higher success rate than the S strategy, but no statistical
significance is found (p = 0.092). The success rate is low for both
strategies due to a few factors that are not related to operator error
as our scenario was designed to reenact real world challenges:
1) induced noise on the 2 goal locations, 2) induced time delay
of the teleoperation scenario, 3) imperfect information as there
was a single camera view so operators must overcome the depth
perception. The induced noise of the goal state provides a more
realistic scenario where imperfect perception causes the robot to
have uncertainty about the goal. The induced time delay provides
a realistic scenario. Therefore, both uncertainties reduce the
success rate of the task.

Time data is notorious for not being positively skewed from a
normal distribution [26]; thus, a log transform of the data must
be used. The geometric mean and 95% confidence interval is
used. A two-sample t-test is used to determine the statistical
significance. The time data was the total trial data (the summed
three runs); it includes both success and failures to determine if
the control strategies limit an operator in multi-step tasks. The
DS controller outperforms the S with a statistical significance
of p = 0.0141. The task performance favors the DS controller
with a better success rate and trial time than the S controller.

Assistance quality of the robot control. Objective measures
for determining user agreement widen the gap further by explor-
ing over-dominance. Two measures used to identify this are the
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cosine distance and ratio of agreement. The former is defined:

> -

actions

Uhuman . Uoutput

H Uhuman || ||Uoutput H

The aim is to determine the alignment of the control vectors
for the robot and the operator. A score of 0 is considered optimal.
The ratio of agreement is defined:

>.ag

number of actions’

¢ = 0<p<1

1’ if Uhuman ) Uoutput >0
ag = 0. if [hwman . routput < (

This metric determines the number of output actions, U °“tPut,
which aligns with the human operator. The aim is to normalize
the number of actions taken and determine a better ratio of
agreeable actions. A score of 1 is considered optimal. The
geometric mean and 95% confidence intervals for both metrics
were generated and placed in Table I. The two-sample t-test is
used to determine the statistical significance. The cosine simi-
larity and ratio of agreement demonstrate that the DS controller
follows human actions more than the S controller. The DS
controller outperforms the S controller for both measures with
p<0.001. This strongly indicates that the DS controller assists
in the direction the operator is moving while further showing the
over-dominance of the robot actions occurring in the S controller.
The DS controller shows greater alignment with the operator
and improved task performance with the objective measures.
The conclusion is that the DS controller benefits the operators
in their preferred dimensions.

To further assess whether the assistance benefits the operator,
qualitative analysis can be done by comparing the operator and
robot trajectories. Our video shows the over-dominance issues
regarding rotation differences. The robot output poses differ
significantly for two similar human trajectories. The difference
has major repercussions on the overall perception and adap-
tation of the operator as they must contend with a robot that
dominates control near a goal location. The over-dominance
causes some operators to hesitate as it is not similar to their
hand posture; the operator moves to regain control. Another
approach is to compare the trajectory differences of the oper-
ators and corresponding outputs, X ““""¢"! shown in Fig. 8. A
Jensen-Shannon divergence measure compares the distributions
which are bounded between 0 and 1. Two trends are apparent
when analyzing the trajectory distributions. The first is that the
S controller forces the robot behavior to act with a smaller
deviation compared to the DS controller. This is evident by
how Fig. 8(d) shows a rather straight-line trajectory between
the 2 goal locations (pick and place goal), whereas Fig. 8(c)
shows a more diverse suite of trajectories to aid the operator
towards the goals. The divergence between the DS and the S
controllers’ outputs is 0.1896. The second discernable pattern is
how much the robot conforms to the operators. The S controller
(Fig. 8(b) to (d) has a divergence of 0.3017) conforms less to the
human than the DS controller (Fig. 8(a) to (c) has a divergence of
0.2905). The higher divergence between the S controller means
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Fig. 8. Trajectory distributions in R®. (a) Human input for DS, (b) Human

input for S, (c) Robot response for DS, (d) Robot response for S. A Jensen-
Shannon divergence metric compares the distributions. (a) to (b) divergence is
0.1293, (c) to (d) is 0.1896, (a) to (c) is 0.2905, and (b) to (d) is 0.3017.

it conforms less than the DS controller. The more concentrated
regions in Fig. 8(b) compared to Fig. 8(a) suggest that operators
were fighting the robot near the pick goal location, which leads
to the credence that the S controller over-dominates the control
and does not allow the human to compensate. All the divergence
values are relatively low and similar to one another as there are
only 2 goal locations to move between (meaning there are limited
strategies for reaching both goals).

V. DISCUSSION

A strategy to enable dimension-specific shared control has
been developed. By breaking down the problem into subprob-
lems, each dimension has an individual arbitration curve that
allows the operator to adapt to the task. Further, we provide
a safeguard to prevent over-dominance. This is evident by
the improved similarity and agreement for the DS controller
over the conventional approach. Although, it is difficult to
say with certainty that the proposed strategy improves task
performance. The low success rates for both strategies prove
that this environment and task were challenging for operators,
which may have also contributed to slower reported times.
In ideal cases, the S controller should be faster as the robot
has higher levels of authority; however, in the real-world, our
approach yields faster times. This is likely due to the operator
handling uncertainties of the robot and reducing unnecessary
adjustment times. The proposed strategy could benefit remote
factory and facility maintenance, telenursing, and assistive living
tasks. For example, the assistive living tasks where operators
may have varying degrees of desired assistance [15], and our
approach can provide an assistance level more in line with the
operator.

Our strategy aims to give appropriate assistance to improve
performance in challenging tasks. The proposed rotational
arbitration is necessary for providing an operator with seamless
assistance and may benefit users with more limited mobility
as the agent can understand when to assume more or less
control of the system. The rotational arbitration’s limitations
are two-fold: 1) the hyperparameter tuning of (5) and (7), and
2) a temporal filter window on both the «; and B; to smooth
out spikes that could occur in control authority. These are
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relatively straightforward limitations and should be tuned based
on the interface, setup, and tasks the shared control system
needs to handle. Future work directly stemming from this
paper should aim to improve the success rate by 1) devising
new arbitration curves to handle specific control dimensions
(translation vs. rotation) based on properties discussed in this
work and 2) investigating alternative strategies for adjusting
control allocation on the fly (i.e., alternative models to B;) in a
dimension-specific context to handle the misalignment issues.

Conventional arbitration may hold advantages in a few sce-
narios: 1) in very controlled settings with low uncertainty, 2)
in lower DOF interfaces (i.e., a controller with 2 or 3 DOFs
rather than the 6 DOFs), 3) in tasks that do not require a heavy
influence on rotation such as tracing tasks on a fixed plane. First,
the autonomous agent should yield an optimal action plan where
an operator needs limited interaction. Towards the second, it
may be beneficial for low-DOF interfaces to use a synergy-style
approach [9] where more assistance is warranted. Towards the
third, simpler tasks where automated subroutines shine may
allow the autonomy to offload all user control. Regardless,
our strategy provides an avenue for meaningful shared control
in environments where an operator desires more control over
telemanipulation systems.
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