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Dimension-Specific Shared Autonomy for Handling

Disagreement in Telemanipulation
Michael Bowman and Xiaoli Zhang , Member, IEEE

Abstract—One of the fundamental questions in shared control is
how to allocate control power to the human and robot effectively.
Conventional arbitration policies often define a uniform singular
scalar for all 6 DOFs to blend human input and robot assistance.
However, this singular scalar over-dominates some dimensions of
the inputs and provides insufficient assistance in other dimensions.
Thus, current shared control can support simple telemanipulation
tasks such as pushing, pressing, and simple positional control
but is limited in tasks with more DOFs like rotational motion.
A dimension-specific arbitration policy is developed to customize
the control arbitration along each DOF to fill the gap. It looks
at whether the robotic assistance is too timid or aggressive along
each DOF and determines the arbitration magnitude according to
disagreement levels of control allocation and the user’s willingness
to accept assistance. The user’s willingness is estimated from a
feedback psychology model. The method has higher similarity and
ratio of agreement between the human and robot (lower over-
dominance) over existing methods and, simultaneously, improves
the task performance. This arbitration strategy is expected to
increase the adoption of teleoperation for object manipulation.

Index Terms—Telerobotics and teleoperation, motion control,
human-centered robotics.

I. INTRODUCTION

T
ELEOPERATING a robot for a manipulation task is often

difficult and complex due to indirect visualization, indi-

rect manipulation with the robot, and physical discrepancies

between a human and robot hand [1], [2]. Shared control injects

autonomy into an operator’s actions to overcome these issues.

Shared autonomy is desirable for teleoperation applications,

including industrial inspection and maintenance, disaster relief,

or assistive living.

Object telemanipulation requires more than simple positional

control, realizing the system requires rotational and finger con-

trol. These motion components provide a natural split in han-

dling complex tasks. Operators handle these components in
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Fig. 1. The overview of the proposed telemanipulation control paradigm. Our
contributions include partitioning dissimilar dimensions, devising independent
arbitration policies to handle control allocation disagreement, and applying the
appropriate dimension-specific control authority.

their preferred approach. For example, the operator may obtain

a position near an object, then begin to handle the rotations

and end with finger control. Here an iterative process occurs

by the operator to refine each step until they achieve the goal.

Certain combinations of refinement will be more intuitive to

different operators, like either handling the depth before lining

up the robot in an x-y plane or vice versa. Naturally, operators

likely only adjust a few components while holding others nearly

constant (i.e., holding a position but adjusting the pose angle or

finger posture) to succeed in a grasp [6].

The autonomous actions may differ from the operator actions

along all or a portion of these motion components. For instance,

given the same high-level target pose, the autonomous agent

and operator may have differing motion strategies to achieve it

(Fig. 1: human operator and robot agent). Disagreement occurs

due to misperception or preference of the operator. Neither agent

is incorrect in their actions to accomplish the task, nor is the

robot producing suboptimal action plans. This disagreement is

fundamentally inherent in shared control, and precautions are

necessary to prevent over-dominance from the robotic agent.

Further, the robot and human may only partially agree, where

they may agree in the positional component and differ in the

rotational component. Fig. 2 shows this partial agreement.

Determining the appropriate level of autonomy in teleop-

eration is the key research topic to realize telemanipulation

scenarios fully. The most common state-of-the-art strategy in

shared control is to use a linear blending strategy with a universal

arbitration term, α. The control authority is a singular scalar

value that influences every dimension of the control rather than

individual components. Specifically, it only includes positional

components, not rotational ones, to dictate arbitration along a
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Fig. 2. Agreed positional components influence and dominate arbitration
models, leaving rotational components more robot-dominated than intended.
An example of an operator’s and robot’s actions for 3 timesteps with partial
agreement in the vison-based telemanipulation scenario.

trajectory. This strategy cannot handle partial agreement that

arises in telemanipulation scenarios, especially towards the end

of the trajectory where conventionally, the robot assumes most

control (α = 1). Consider a case where the robot is near the

positional goal, and the operator attempts to refine the position

before adjusting the rotation. With the conventional strategies,

the robot will dominate not only the positional components but

the rotational aspect too as α approaches 1. This is despite the

operator not yet focusing on the rotational components to grasp

an object successfully and restricts their ability to alter them.

The over-dominance restricts the operator in how they want to

complete the task (i.e., grasp the object from the side rather than

the top like in Fig. 1). This leads to an operator’s attempt to

refine actions but sees the control as too aggressive thus make

drastic changes [3]. Over-adjustments and strong reactionary

responses are due to the low control authority. However, the

operator’s initial intuitive refinement is to be subtle. This is

especially common for telemanipulation applications [4], [5].

This work aims to provide autonomy to aspects the robot and

user agree on and reduce assistance in areas where they disagree.

Otherwise, the arbitration leads to operator resistance. Toward

this aim, a dimension-specific control authority to focus on in-

dividual components to succeed is developed. The contributions

are as follows:

1) Break down dimensional aspects with respective motion

components, and quantify dimension-specific disagree-

ment and the human’s willingness for assistance.

2) Develop a dimension-specific arbitration strategy for non-

dominating assistance along different motion components.

3) Validate and evaluate the dimension-specific arbitration

strategy in telemanipulation tasks.

II. RELATED WORK

Current telemanipulation focuses on improving hand motion

mapping capabilities and lacks shared autonomy strategies.

These mapping strategies use model-based approaches such as

DexPilot [7] or use synergies [8], [9]. These methods consider

orientation and finger mapping. However, deployment still relies

on an operator to fully control a system that is difficult to

maneuver and slower than normal actions an operator would

take [7]. Despite improving the physical discrepancy issues, the

operator struggles to overcome the disembodiment problem,

where they face indirect perception and manipulation of the

robot environment and lack dynamic interaction with objects.

Introducing shared control to circumvent the above issues

has empowered the autonomous agent with its knowledge of the

environment. However, shared control with linear blending has

only been used on simplified approaching problems [10]. The

arbitration is a single scalar based on the robot’s confidence in a

human’s intended goal [11], [12], [13] or empirically defined to

increase from 0 to 1, where the higher autonomy levels are near

the goal [6]. This standard strategy leads to over-dominance of

a robot’s actions near goal states; an operator may disagree with

the output actions. Operators have sometimes reported a desire

to retain control despite lower task performance [14], [15]. Often

seen as inferencing issues to achieve a better arbitration, research

lacks questioning the structural issues for linear blending tech-

niques and handling disagreement.

The work in [3] provides insight on reframing a multi-

inference sub-policy to quantify disagreement between oper-

ators and robotics assistance plans for 2D approaching tasks.

Other strategies quantify disagreement between operator and

robot actions and then apply minimum assistance to ensure safe

control [12], [16], [17]. The disagreement quantification works

for both discrete and continuous domains [18]. Alternatively,

handling disagreement can be viewed as mutual adaptation or

adapt to adaptation [19], [20], [21]. One aim of mutual adapta-

tion is to have an online adjustment of control authority based on

the operator’s action. However, all these strategies obfuscate the

action’s individual components by analyzing the entire vector

and have rarely been used in telemanipulation fields.

III. METHODS

A. Disagreement of Control Allocation

Both agents have pose states denoted as X ∈ R
6. Where X

is split between 3D positional and three independent rotational

dimensions (roll, pitch, yaw), thus X ∈ {xj , θj}, j = 1, 2, 3.

Both the robot and operator apply actions U ∈ {ẋj , θ̇j}, j =
1, 2, 3. We assume the goal state, Xgoal, is given and known by

the robot and the operator, and the optimal robot policyUrobot is

set as to go towards Xgoal as seen in Fig. 2. The operator is free

to choose actions, Uhuman , other than those towards the Xgoal

to achieve the task, thus going to their own state, Xhuman (i.e.,

the current human hand pose as seen in Fig. 2). The standard

linear blending arbitration is augmented to a dimension-specific

one for both the Uhuman and Urobot, as in (1), where i is each

dimension of the control vector (i = 1, 2, …, 6). The resultant

action, U
output
i , applies to the robot dynamics with the current

robot state, Xcurrent, to obtain the next state, Xnext in (2).

U
output
i = Urobot

i αi + Uhuman
i (1− αi) (1)

Authorized licensed use limited to: COLORADO SCHOOL OF MINES. Downloaded on May 03,2023 at 05:41:08 UTC from IEEE Xplore.  Restrictions apply. 



BOWMAN AND ZHANG: DIMENSION-SPECIFIC SHARED AUTONOMY FOR HANDLING DISAGREEMENT 1417

Xnext = f
(

Xcurrent, Uoutput
)

(2)

αi can be summarized as the L1 distance (or L2 if preferred)

towardsXgoal, from an initial robot state,Xstart, andXcurrent,

to determine the control authority. Eq. (3) shows an L1 distance

using Xcurrent in the standard error function (erf).

αi = 1− erf
‖Xgoal −Xcurrent‖

1

‖Xgoal −Xstart‖
1

(3)

For the baseline case (denoted as the Standard (S) controller),

all αi are the same value as (3). The αi is only from the robot’s

perspective as Xcurrent solely dictates it to promote as much

assistance as possible ( αi = 1). However, we must account for

misalignment, as previously discussed. So, we alter αi through

quantifying disagreement of control allocation. The disagree-

ment between both the current human (Xhuman) and robot

(Xcurrent) is the difference in expected control allocation. The

expected control allocation is where the current robot expects

to provide α help based on Xcurrent and the operator expects

to gain α assistance based on Xhuman. There is a mismatch

betweenXcurrent andXhuman, thus the expectedα is different,

due to misalignment. So, (4) makes two changes to (3). The

first is to update it as a dimensional difference. The second

is to represent each agent’s current state position (xhuman
j or

xcurrent
j ) as a probability of expected control allocation (as if

each agent were to apply their position to (3) and produce an

αi), where A represents either the human (H) or the robot (R)

agent and x
agent
j is either xhuman

j or xcurrent
j .

P (Ai)=1−erf
‖xgoal

j −x
agent
j ‖

1

‖xgoal
j −xstart

j ‖
1

∀i={1, 2, 3} , j={1, 2, 3}

(4)

Eq. (4) is inappropriate for quantifying rotation dimensions to

account for circular variables. Therefore, a more natural, appro-

priate probability distribution for rotational control allocation is

the Von Mises distribution [3] in (5). Functions with similar

characteristics that can handle circular variables can also be

applied. For instance, our rotations are independent, leading to

a univariate probability function in (5).

P (Ai) =
eκ cos(θagent

j
−θ

goal

j )

2πI0 (κ)
∀i = {4, 5, 6} , j = {1, 2, 3}

(5)

κ is an empirically defined variable, and I0(κ) is the modified

Bessel function, and θ
agent
j refers to rotational dimensions of

X. Eqs. (4) and (5) are shown in Fig. 3 as solid black lines.

In Fig. 3, the human and robot have differing expectations of

control allocation along a singular dimension.P (Hi) andP (Ri)
are the bounds of disagreement for control authority seen by the

operator and the actual robot pose. In conventional systems,

assistance is either timid (the robot’s provided assistance is

behind the human’s expected assistance in Fig. 3’s top row)

or aggressive (the robot’s provided assistance is ahead of the

human’s expected assistance in Fig. 3’s bottom row). With our

system, we aim to determine whether assistance is truly timid

or aggressive (ultimately determining the appropriate level of

assistance to provide) by including the operator’s willingness

Fig. 3. The expected control authority by the human (H), and robot (R) using
(4) (left column) and 5 (right column) for specific dimensions. The target value
corresponds to the goal state known by both agents. Conventional systems take
P(R) as the true α. Top row: human leads robot, meaning lower assistance, α, in
conventional systems (P(R) < P(H)). Bottom row: robot leads human, meaning
higher assistance, α, in conventional systems (P(R) > P(H)). The purple regions
are potential α from our strategy in (8). Our approach aims to find a better α
than conventional means by evaluating the operator’s willingness, Bi, which
contextualizes the Uhuman

i
based on their current progress in the task. A high

Bi will lead αi being closer to the conventional strategy (P(R)), while a low Bi

will lead to αi to be near P(H).

to accept assistance (which contextualizes U
agent
i in terms of

current progress toward the goal). For instance, if the operator

has a low willingness to accept assistance for conventionally

aggressive assistance (bottom row of Fig. 3), then the α will be

set closer to P(H). Alternatively, if they have a high willingness to

accept assistance, then the conventionally aggressive assistance

is not true, the operator is willing to gain aggressive assistance,

and α can be set closer to P(R).

B. User’s Willingness to Accept Assistance

The operator’s willingness to accept assistance stems from

their desire to change the current control authority in the dynamic

process. Determining the change to this authority level can tem-

per too aggressive and boost too timid assistance. The operator’s

current desire and preference towards the robot’s assistance is

identified by looking at both agents’ actions along each dimen-

sion. A probabilistic approach, inspired by psychology feedback

models [22], [23], [24], is developed to determine willingness to

accept assistance. The psychology model discusses a proposed

feedback mechanism for how people change their behaviors in

a task based on current progress, previous experiences, and the

current rate of progress. Further, a Beta prime distribution uses

these components to determine when a person will likely pick

up the pace or back off. Lastly, the model discusses how the

pace changes for the individual dimensions; as one dimension

slows, another takes precedence. The feedback model was con-

ceptual and discusses the pace in the abstract; we adapt them

to a mathematical framework and apply them to the shared

autonomy. Compared with the existing model-free data-driven

approach that defines adaptability through a Mixed Observable

Markov Decision Process [20], the primary benefit of using the

mathematical model is to provide the robot with the operator’s
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willingness to accept the control authority in a human-like man-

ner. The proposed model can be adapted in two ways. The first

is to move it into the motion domain rather than a conceptional

abstraction of rate changes to complete tasks. The second is to

adapt the model to give a predictive or feedforward effect rather

than a reactive calculation (i.e., computing acceleration from

measured Uhuman
i ). Together, both adaptations account for the

expected way an operator would move toward the goal given

their current progress (correctly transforming or normalizing

the U
agent
i into the model’s concept of speed change). Due to

the predictive nature of the model and the transformation, this

is referred to as the “expected speed change.” To make these

adaptations to the psychology model, we identified four compo-

nents: 1) current actions, 2) previous actions, 3) current progress

in the task, and 4) aggregated previous experiences. The first

and second components are instantaneous reactionary decisions,

while the third term looks at a longer planning window for the

current trial. The last term influences the operator’s expectations

in completing the trial based on previous experiences. The last

two terms are what the operator relies on to know if they are slow

or fast in this trial compared to previous trials. Eq. (6) combines

these terms to quantify the agent’s expected speed change based

on their current (first term) and last actions (second term), current

progress (third term), and aggregated previous experiences (last

term). Where N is the total number of previous attempts in

doing the task, and n is the index for a specific attempt. Eq. (6)

aims to quantify/normalize whether the operator will increase or

decrease their velocity based on their current progress compared

to previous experiences in the task.

ψ
agent
i = U

agent
i −

Xcurrent
i −X

previous
i

‖Xcurrent −Xprevious‖
2

−
Xcurrent

i −Xstart
i

‖Xcurrent −Xstart‖
2

+
1

N

N
∑

n=0

Xterminal
i,n −Xstart

i,n

‖Xterminal
n −Xstart

n ‖
2

(6)

The variable agent refers to the human agent (Uhuman
i ) or the

robot agent (Urobot
i ) actions. Each rate (ψhuman

i and ψrobot
i ) is

then used in a Beta prime distribution with hyperparameters b,

p, and q. The hyperparameters impact the shape and scale and

are empirically chosen based on human speed in manipulation

tasks and the robot’s velocity limits. The heuristic described in

[23] inspires the Beta prime distribution. The distribution allows

for normalization and quantification compared to the heuristic in

[23] and provides context toward what the operator is attempting

to achieve with their speed change. ψrobot
i is necessary as it is

the reference to compare the sampling for ψhuman
i (which is

used to see if it is faster or slower). The robot policy, Urobot
i ,

determines ψrobot
i before the arbitration takes place which is

discussed in the next section. ψrobot
i is necessary as it influences

the shape of the curve and is the mean value for the probability

density function to evaluate the ψhuman
i (which is calculated

after measuring Uhuman
i ). The ψhuman

i evaluation produces a

single deterministic value (which we call willingness, Bi) for

the specific time point. However, this could be extended to a

Fig. 4. The operator’s willingness to accept assistance for a single dimension.
The dashed line represents the reference which is the expected speed change of
the robot, ψrobot

i
, from the optimal robot policy (Urobot

i
). Three regions exist.

The first (in red) shows when no expected speed change (ψhuman

i
= 0) occurs,

which implies the operator is unwilling to change and accept assistance. As the
ψhuman

i
increases, it implies they are willing to change and accept assistance

in this dimension. The second region (in green) shows that as ψhuman

i
gets

closer to ψrobot

i
, corrections to ψhuman

i
are less warranted. The third region

(in yellow) shows when the ψhuman

i
is faster than ψrobot

i
, they think their

expected speed change is more desired as it is above the ψrobot

i
, and that the

robot should be following suit. Note that there are two cases B
i

can be 0, either

when ψhuman

i
= 0, or when ψhuman

i
is very fast.

stochastic sampling approach by either 1) taking multiple time

point samples or 2) utilizing uncertainty in the measurement of

Uhuman
i . It should be noted that the rates are dynamic, in that, at

each time point ψrobot
i and ψhuman

i will change to new values.

The willingness, Bi, to accept assistance is between 0 (fully

unwilling) and 1 (fully willing).

Bi = β
(∣

∣ψhuman
i

∣

∣ ,
∣

∣ψrobot
i

∣

∣ , b, p, q
)

(7)

We obtain a different Bi curve for each dimension. Fig. 4

shows (7) and its three distinct regions. The left part of the first

region is when the operator has little or no ψhuman
i compared to

ψrobot
i . When the ψhuman

i is near 0, two aspects are needed: 1)

constant Uhuman
i so the first and second terms of (6) can cancel

out, and 2) Xcurrent
i configuration that leads to the third and

fourth terms being either 0 (the third term is 0 when Xcurrent
i =

Xstart
i and the fourth term is 0 with no previous trials attempted)

or cancel out (Xcurrent
i = X

goal
i ). ψhuman

i near 0 results in an

unwillingness to accept assistance (Bi = 0). One example of

when ψhuman
i = 0 occurs is near the goal—resulting in the third

and last terms of (6) canceling out—with the operator no longer

making adjustments to achieve the task, leading to the first and

second terms approaching 0. Note that this is one example, but

ψhuman
i = 0 could occur anywhere along the trajectory as long

as the four terms cancel (e.g., when the operator moves in the y-

direction in Fig. 5(b), the x-dimensionψhuman
i is approximately

0 leading to the purple distribution closely resembling the green

one due to Bi being approximately 0). The other critical point

is when ψhuman
i is slightly lower than ψrobot

i (Bi = 1). In this

scenario, the operator’s expected speed change is not far off from

the ψrobot
i and the expectation is the operator desires to achieve

ψrobot
i .

The second region shows ψhuman
i nearing ψrobot

i , where the

operator’s Bi is reduced and changes are less warranted In this

region, the psychology model of [23] states that the operator

decreases their Bi as ψhuman
i nears the ψrobot

i because they
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Fig. 5. (a) The simulation environment. The stochastic human has a policy
in green and the robot policy is in red. The robot policy follows the shortest
distance and smallest angle to the goal. The S controller follows (3) to set the
αi for all i. The starting pose is always identical (black). (b) The distributions
of all simulated trajectories. (c) Is the heading across time, (d) Is the x and y
directions across time. The plots in (d) also shows the trends of P(H) in green,
and P(R) as red (S) and purple (DS). There is a large difference in the human’s
and S controller’s x-position causing disagreement in control allocation of P(H)
and P(R). There is less disagreement between the human and DS.

lose their sense of urgency to achieve it and their expected speed

change is in an acceptable bound. The third region occurs when

ψhuman
i is much faster than ψrobot

i , implying the operator will

have a strong desire to move in this direction. In this scenario, the

operator does not care as much about the help because it moves

slower. Note that in the third region, when ψhuman
i becomes

extremely fast, Bi will go to 0.

C. Handling Disagreement in a Dimension-Specific Setting

The dimension-specific arbitration uses the disagreement be-

tween control authority allocation and the user’s willingness.

P(Hi) and P(Ri) act as bounds, where a better arbitration exists

between them in (8). The new αi tempers too aggressive control

while boosting too timid control.

αi = (P (Ri)− P (Hi))Bi + P(Hi) (8)

After αi from (8) is calculated, the output action from (1) is

calculated. Each dimension will assume a different level of αi.

An example of possible αi is shown in Fig. 3(a)–(d) in purple.

For instance, consider if the current situation resembles Fig. 3(c),

where an operator is behind the robot. If ψhuman
i is near 0 and

thusBi= 0 (region 1 of Fig. 4), then αi = P(Hi).This gives the

operator more control and tempering too aggressive assistance.

If ψhuman
i begins to increase where Bi= 1 (near the max of

Fig. 4), then at this time point, the control authority goes towards

the robot at αi = P(Ri). Providing more active assistance in

tune with the operator. If ψhuman
i continues much faster at the

next time point where a transition from Fig. 3(c) to (a) occurs,

the Bi goes toward 0 (region 3 of Fig. 4) which pulls the robot

toward the human’s expected control authority as αi = P(Hi)
and boosts too timid assistance (P(Hi) is dynamic, and changes,

so, they are not the same P(Hi)). This does not mean the robot

provides zero assistance but uses the operator’s expected control

authority allocation. In this transition phase, αi first increases

from P(Hi) to P(Ri) in Fig. 3(c) then keeps increasing from

P(Ri) to P(Hi) in Fig. 3(a). P(Hi), P(Ri) and Bi change

along each dimension; thus, each αi will be different. The linear

model for (8) should not impact the operator’s perception of

rotational assistance as they could hold similar αi but with two

different poses. Rather the human-robot policy misalignment

would have a higher influence (i.e., the robot wants π − θrobotj ,

and the operator has the desired π + θhuman
j ).

IV. EXPERIMENTAL RESULTS

A. Simulation Setup

For easier visualization of the results and qualitative anal-

ysis of each αi and the outcome of their respective actions,

a simplified telemanipulation scenario with three DOF (two

translational and one rotational) shown in Fig. 5(a) is used.

Success occurs when the robotic hand is radius, R, away from the

goal position and within a radian tolerance, δ, from the normal

direction to the goal position. The tolerances resemble real

scenarios where a point goal is not enough. The simulated human

trajectories sample a probability distribution that attempts to

grasp the object’s handle. The robot’s target pose has noise at the

target position to simulate when a robot is not precise enough

to achieve the desired pose. 1000 simulated trajectories were

used to compare the baseline S controller (mentioned in III.A)

and the Dimension-Specific (DS) controller. Fig. 5(b) shows all

three trajectory distributions. The robot policy for the DS and S

controllers is to follow the shortest distance and smallest angle

to the goal. The DS controller starts with aBi of 1 (fully willing)

because no previous human actions indicate otherwise.

B. Simulation Results

Qualitative analysis comes in two forms. The first is the

appearance of output robot trajectories for the same human

trajectory. Our approach aims to align more with the principal

axis the operator is trying to achieve. Fig. 5 shows this is evident

compared to the singular α that over-dominates the trajectory

(i.e., although the operator is moving primarily in the y-direction,

the S controller forces motion in the x-direction). Fig. 5(d) also

demonstrates the trends of P(H) in green and P(R) as red (S)

and purple (DS). There is a large difference in the human’s and

S controller’s x-position, causing disagreement in the control

allocation of P(H) and P(R). There is less disagreement when

considering humans and DS. The second qualitative test is to

compare αi. The αi in Fig. 6 corresponds to the distributions in

Fig. 5. The expected operator actions proceed in the y-direction

before the x-direction. The DS controller should provide more

control authority in y before the x-direction. In the top plot of

Fig. 6, the αi is relatively low. As the operator is not moving

in this dimension, giving more control to the operator in this

dimension can prevent the robot from over-extending its motion

in an undesired path. Whereas, in the middle plot, the operator

moves toward the component goal making the αi go higher,

and reduces the authority the operator experiences, allowing the

robot to provide more assistance in this direction. Further, the S

controller calculates (3) before developing an output action with
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Fig. 6. αi distributions for the trajectories shown in Fig. 5.

Fig. 7. Operators see the robot perspective on the screen while they move their
hand freely over the table. The Xbox Kinect captures hand posture to extract the
palm pose and the amount each finger is open or closed. The information is then
sent to the robot to execute the motion.

(1), which is why the same alpha is along all components. The

DS controller value for αθ has two trends. The first trend is at

the beginning of the trajectory; the human’s current and target

heading are close to one another. The human angle does not have

significant deviations, so the robot is afforded more control with

αθ. The second trend occurs when the human heading begins to

deviate, signaling to the robot that the human wants to assume

more control to achieve a desired heading, driving αθ lower

overall. This becomes more apparent in a real-world scenario.

C. Telemanipulation Setup

Fig. 7 describes the telemanipulation experimental setup. An

Xbox Kinect takes an RGB-D image, and Mediapipe [25] ex-

tracts features used as inputs for the robot control. The operator

directly controls the hand pose (position and orientation) and

the amount each finger opens and closes, eight variables in total.

The operator aims to grasp kitchen utensils from a holder and

place them in a bin. A failure occurs if an object does not reach

the bin or lands on the table. The operator is free to move how

they wish to accomplish the task. The robot is given pick and

place goal poses with induced noise.

The institution’s Institutional Review Board (IRB) approved

a set of experiments. Before participating in the study, written

consent was obtained, acknowledging they understood the robot

TABLE I
TELEOPERATION RESULTS FOR THEIR RESPECTIVE MEANS AND CONFIDENCE

INTERVALS

setup, the purpose of the study, and the potential risks involved

(arm soreness). Three trials were conducted for each arbitration

strategy for each participant. A trial consisted of three runs; each

run had a different object. A randomized order of the control

modes was used to reduce learning effects. 10 participants

volunteered (a total of 90 runs for each arbitration strategy) in

the pilot study. The volunteer breakdown included 25.5 ± 4.15

years of age, with 4 women and 6 men involved.

D. Telemanipulation Results

Task performance. The quantitative analysis is broken down

by success rate, completion time, cosine similarity, and the ratio

of agreement. Due to the smaller number of trials compared

to the simulation results, the metrics have a different analysis.

The success rate uses a Laplace Estimate over the Maximum

Likelihood Estimate to reflect the true success rate. Likewise,

an adjusted-Wald 95% confidence interval creates the bounds of

success. An N-1 Chi-Squared test determines statistical signifi-

cance. All comparisons are in Table I. The DS controller achieves

a higher success rate than the S strategy, but no statistical

significance is found (p= 0.092). The success rate is low for both

strategies due to a few factors that are not related to operator error

as our scenario was designed to reenact real world challenges:

1) induced noise on the 2 goal locations, 2) induced time delay

of the teleoperation scenario, 3) imperfect information as there

was a single camera view so operators must overcome the depth

perception. The induced noise of the goal state provides a more

realistic scenario where imperfect perception causes the robot to

have uncertainty about the goal. The induced time delay provides

a realistic scenario. Therefore, both uncertainties reduce the

success rate of the task.

Time data is notorious for not being positively skewed from a

normal distribution [26]; thus, a log transform of the data must

be used. The geometric mean and 95% confidence interval is

used. A two-sample t-test is used to determine the statistical

significance. The time data was the total trial data (the summed

three runs); it includes both success and failures to determine if

the control strategies limit an operator in multi-step tasks. The

DS controller outperforms the S with a statistical significance

of p = 0.0141. The task performance favors the DS controller

with a better success rate and trial time than the S controller.

Assistance quality of the robot control. Objective measures

for determining user agreement widen the gap further by explor-

ing over-dominance. Two measures used to identify this are the
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cosine distance and ratio of agreement. The former is defined:

∑

actions

1−
Uhuman · Uoutput

‖Uhuman‖‖Uoutput‖

The aim is to determine the alignment of the control vectors

for the robot and the operator. A score of 0 is considered optimal.

The ratio of agreement is defined:

φ =

∑

ag

number of actions
, 0 ≤ φ < 1

ag =

{

1, if Uhuman · Uoutput > 0
0, if Uhuman · Uoutput ≤ 0

This metric determines the number of output actions,Uoutput,

which aligns with the human operator. The aim is to normalize

the number of actions taken and determine a better ratio of

agreeable actions. A score of 1 is considered optimal. The

geometric mean and 95% confidence intervals for both metrics

were generated and placed in Table I. The two-sample t-test is

used to determine the statistical significance. The cosine simi-

larity and ratio of agreement demonstrate that the DS controller

follows human actions more than the S controller. The DS

controller outperforms the S controller for both measures with

p<0.001. This strongly indicates that the DS controller assists

in the direction the operator is moving while further showing the

over-dominance of the robot actions occurring in the S controller.

The DS controller shows greater alignment with the operator

and improved task performance with the objective measures.

The conclusion is that the DS controller benefits the operators

in their preferred dimensions.

To further assess whether the assistance benefits the operator,

qualitative analysis can be done by comparing the operator and

robot trajectories. Our video shows the over-dominance issues

regarding rotation differences. The robot output poses differ

significantly for two similar human trajectories. The difference

has major repercussions on the overall perception and adap-

tation of the operator as they must contend with a robot that

dominates control near a goal location. The over-dominance

causes some operators to hesitate as it is not similar to their

hand posture; the operator moves to regain control. Another

approach is to compare the trajectory differences of the oper-

ators and corresponding outputs, Xcurrent, shown in Fig. 8. A

Jensen-Shannon divergence measure compares the distributions

which are bounded between 0 and 1. Two trends are apparent

when analyzing the trajectory distributions. The first is that the

S controller forces the robot behavior to act with a smaller

deviation compared to the DS controller. This is evident by

how Fig. 8(d) shows a rather straight-line trajectory between

the 2 goal locations (pick and place goal), whereas Fig. 8(c)

shows a more diverse suite of trajectories to aid the operator

towards the goals. The divergence between the DS and the S

controllers’ outputs is 0.1896. The second discernable pattern is

how much the robot conforms to the operators. The S controller

(Fig. 8(b) to (d) has a divergence of 0.3017) conforms less to the

human than the DS controller (Fig. 8(a) to (c) has a divergence of

0.2905). The higher divergence between the S controller means

Fig. 8. Trajectory distributions in R3. (a) Human input for DS, (b) Human
input for S, (c) Robot response for DS, (d) Robot response for S. A Jensen-
Shannon divergence metric compares the distributions. (a) to (b) divergence is
0.1293, (c) to (d) is 0.1896, (a) to (c) is 0.2905, and (b) to (d) is 0.3017.

it conforms less than the DS controller. The more concentrated

regions in Fig. 8(b) compared to Fig. 8(a) suggest that operators

were fighting the robot near the pick goal location, which leads

to the credence that the S controller over-dominates the control

and does not allow the human to compensate. All the divergence

values are relatively low and similar to one another as there are

only 2 goal locations to move between (meaning there are limited

strategies for reaching both goals).

V. DISCUSSION

A strategy to enable dimension-specific shared control has

been developed. By breaking down the problem into subprob-

lems, each dimension has an individual arbitration curve that

allows the operator to adapt to the task. Further, we provide

a safeguard to prevent over-dominance. This is evident by

the improved similarity and agreement for the DS controller

over the conventional approach. Although, it is difficult to

say with certainty that the proposed strategy improves task

performance. The low success rates for both strategies prove

that this environment and task were challenging for operators,

which may have also contributed to slower reported times.

In ideal cases, the S controller should be faster as the robot

has higher levels of authority; however, in the real-world, our

approach yields faster times. This is likely due to the operator

handling uncertainties of the robot and reducing unnecessary

adjustment times. The proposed strategy could benefit remote

factory and facility maintenance, telenursing, and assistive living

tasks. For example, the assistive living tasks where operators

may have varying degrees of desired assistance [15], and our

approach can provide an assistance level more in line with the

operator.

Our strategy aims to give appropriate assistance to improve

performance in challenging tasks. The proposed rotational

arbitration is necessary for providing an operator with seamless

assistance and may benefit users with more limited mobility

as the agent can understand when to assume more or less

control of the system. The rotational arbitration’s limitations

are two-fold: 1) the hyperparameter tuning of (5) and (7), and

2) a temporal filter window on both the αi and Bi to smooth

out spikes that could occur in control authority. These are
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relatively straightforward limitations and should be tuned based

on the interface, setup, and tasks the shared control system

needs to handle. Future work directly stemming from this

paper should aim to improve the success rate by 1) devising

new arbitration curves to handle specific control dimensions

(translation vs. rotation) based on properties discussed in this

work and 2) investigating alternative strategies for adjusting

control allocation on the fly (i.e., alternative models to Bi) in a

dimension-specific context to handle the misalignment issues.

Conventional arbitration may hold advantages in a few sce-

narios: 1) in very controlled settings with low uncertainty, 2)

in lower DOF interfaces (i.e., a controller with 2 or 3 DOFs

rather than the 6 DOFs), 3) in tasks that do not require a heavy

influence on rotation such as tracing tasks on a fixed plane. First,

the autonomous agent should yield an optimal action plan where

an operator needs limited interaction. Towards the second, it

may be beneficial for low-DOF interfaces to use a synergy-style

approach [9] where more assistance is warranted. Towards the

third, simpler tasks where automated subroutines shine may

allow the autonomy to offload all user control. Regardless,

our strategy provides an avenue for meaningful shared control

in environments where an operator desires more control over

telemanipulation systems.
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