
Abstract — In-hand manipulation is challenging for a 
multi-finger robotic hand due to its high degrees of freedom and 
complex interaction with the object. To enable in-hand 
manipulation, existing deep reinforcement learning-based 
approaches mainly focus on training a single 
robot-structure-specific policy through the centralized learning 
mechanism, lacking adaptability to changes like robot 
malfunction. To solve this limitation, this work treats each 
finger as an individual agent and trains multiple agents to 
control their assigned fingers to complete the in-hand 
manipulation task cooperatively. We propose the Multi-Agent 
Global-Observation Critic and Local-Observation Actor 
(MAGCLA) method, where the critic can observe all agents’ 
actions globally, and the actor only locally observes its 
neighbors’ actions. Besides, conventional individual experience 
replay may cause unstable cooperation due to the asynchronous 
performance increment of each agent, which is critical for 
in-hand manipulation tasks. To solve this issue, we propose the 
Synchronized Hindsight Experience Replay (SHER) method to 

synchronize and efficiently reuse the replayed experience 

across all agents. The methods are evaluated in two in-hand 
manipulation tasks on the Shadow dexterous hand. The results 
show that SHER helps MAGCLA achieve comparable learning 
efficiency to a single policy, and the MAGCLA approach is 
more generalizable in different tasks. The trained policies have 
higher adaptability in the robot malfunction test compared to 
the baseline multi-agent and single-agent approaches. 

I. INTRODUCTION

Dexterous robot hands have the high potential to enable 
in-hand manipulation, which is one of the essential functions 
for manufacturing [1], assembly [2], and assisted living [3]. 
The rapid development of miniaturized actuators and sensors 
has provided hardware foundations for dexterous robotic 
hands, such as the Shadow hand [4], an anthropomorphic 
robotic hand with 24 degrees of freedom (DoFs), in which 20 
joints are independently controllable. It has been used in 
complex in-hand manipulation tasks such as solving a Rubik’s 
Cube [5]. With the readiness of robot hardware, researchers 
have been putting efforts into developing generalizable and 
adaptable methods for in-hand manipulation applications. 

Deep reinforcement learning (DRL) [6] has shown its 
abilities in recent research [4, 5, 7] to solve dexterous in-hand 
manipulation tasks thanks to its learning capability, which 
enables the robot to find an autonomous control policy by 
interacting with the task environment through exploration and 
exploitation. However, current DRL-based approaches for 
in-hand manipulation only train a single policy with the global 
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observation of the whole environment as the input and outputs 
global actions to control the entire robot hand to interact with 
the object. As a result, the policy becomes robot-structure- 
specific and object-specific, lacking adaptability to changes 
[8], such as robot malfunction. Because the changes will affect 
the whole policy, leading to performance reduction or task 
failure. Current efforts [4, 5] to improve the adaptability of the 
single DRL policy for in-hand manipulation rely on adding 
randomized noise to the sensor, control signal, and appearance 
if using visual input. These approaches help the DRL policy 
adapt to the uncertainty and disturbance in the environment 
but do not adapt to changes like robot malfunction. 

Multi-Agent DRL has shown high adaptability in multiple 
robot control tasks [9-11] because of the decentralized 
learning approach, which improves the system flexibility and 
resilience [12-14] by limiting the influence of the changes on 
local agents instead of the whole system. Literature [15][16] 
has shown that a multi-agent DRL setup can control multiple 
robot arms individually by completing manipulation tasks like 
picking up objects. Similarly, we can treat each finger of the 
robot hand as a small robot arm because each finger can be 
individually controlled. As an inspiration, this work proposes 
to consider robot fingers as individual manipulators that 
cooperate to complete the manipulation task (Fig. 1). To the 
authors’ knowledge, it is the first time solving in-hand 
manipulation with the multi-agent DRL approach.  

We propose the Multi-Agent Global-observation Critic and 
Local-observation Actor (MAGCLA), which belongs to the 
category of Centralized Training and Decentralized Execution 
(CTDE) [17] method. CTDE is widely adopted in multi-agent 
actor-critic DRL methods. The rationale of CTDE is that the 
critic can observe extra information to benefit the actor’s 
training while the actor does not need the extra information in 
execution. In MAGCLA, the Global-observation critic means 
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Figure 1.  The finger-based multi-agent DRL approach partitions the hand 
structure and assign each agent to control a specific portion of the hand (5 

fingers and a wrist in our case). The agents can learn to cooperate to complete 

the task. This multi-agent approach is generalizable to different tasks and the 

trained policies have higher adaptability to robot malfunction. 
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that in addition to the environment state, the critic of an agent 
also has a global observation of all other agents’ actions. 
Compared to conventional CTDE methods, the uniqueness of 
MAGCLA is that the actor can observe its neighbor’s actions 
instead of only its own state. Observing neighbors’ 
information helps agents learn cooperative behavior in a multi-
agent setup [18-20], which is critical for in-hand manipulation. 

As with most DRL approaches, MAGCLA relies on a replay 
buffer to manage the exploration experience. In the multi-
agent in-hand manipulation setup, if updating each agent with 
individually sampled experience as in conventional multi-
agent approaches, the agents’ performance increments may 
not follow the same pace, causing unstable training and 
converging to low-performance policies. We propose the 
Synchronized Hindsight Experience Relay (SHER) to solve 
this issue, expanding the HER method [21] to a multi-agent 
setup. SHER synchronizes the experience sampling across all 
agents to ensure that the agents’ performance increments are 
at the same pace. SHER works well for all off-policy multi-
agent DRL approaches in in-hand manipulation tasks. In 
summary, the contributions of this work are: 
1) Model the in-hand manipulation task as a finger-based

multi-agent setup for the first time.
2) Develop a MAGCLA method to enable finger cooperation

in in-hand manipulation.
3) Develop a SHER method for stable performance

increments by synchronizing the experience sampling
across all agents.

4) Validate the MAGCLA and SHER methods on the Shadow
dexterous hand in two in-hand manipulation tasks and
compare their generalizability and adaptability with the
existing single-agent and multi-agent DRL approaches.

II. RELATED WORK

A. Learning-based In-Hand Manipulation
Conventional analytical control methods rely on solving
partial-differential kinematics equations [22] or optimizing
toward objective functions [23], bringing high computational
costs with complex robot hand structures. Thus, real-time
processing [24] is usually challenging with analytical
methods. The complex interaction with the object also makes
the manipulation task difficult for the analytical methods.

Single-agent DRL methods have demonstrated their 
capability to handle in-hand manipulation tasks [4, 5]. The 
OpenAI Gym [25] toolkit implements challenging in-hand 
manipulation tasks [26] with the Shadow robot hand as a 
standard benchmark. With the maturity of single-agent DRL-
based in-hand manipulation, recent literature focuses on 
implementing the DRL agent trained in simulation to the 
physical robot hand to complete real-world tasks, such as 
solving a Rubik’s cube [5] or rotating a block to a target pose 
[4]. Randomization [27] is applied to sensing, actuation, and 
appearance to improve the policy adaptability to noise and 
disturbance. Learn from demonstration methods [28] are also 
used to improve training efficiency by initializing the DRL 
policy for in-hand manipulation tasks such as rotating door 
handles and using a hammer or screwdriver. 

B. Multi-Agent Approach in Learning-based Robot Training
Multi-agent DRL methods have been adopted in complex
multiple robot control [9][10] for their high adaptability,
thanks to their decentralized learning mechanism. In [16], a
dual-arm multi-agent DRL approach was proposed to solve

cooperative grasping tasks. Another dual-arm setup is 
reported in [29] to solve the table-carrying task. Recently, a 
multi-arm DRL motion planner was proposed to generate a 
trajectory for an 8-arm system to reach its target end-effector 
poses [15]. Although, the principle of in-hand manipulation is 
like multi-arm cooperation, where the fingers cooperate to 
complete the manipulation. However, the multi-agent DRL 
methods are not yet studied for in-hand manipulation. 

C. Centralized Training and Decentralized Execution
CTDE is originally developed for simulation to real-world
transfer applications [30], allowing high dimension input for
the critic network and low dimensional observation input for
the actor, so the critic can benefit from more information
while training in simulation, and the actor can adapt to the
sparse information in the real world. CTDE was widely
adopted in multi-agent actor-critic DRL approaches to
improve learning stability and policy performance. CTDE
allows the agents’ critics to observe extra information of other
agents during the training and only use the actors as control
policies in testing without such extra information. MADDPG
[31] and COMA [32] are well-known CTDE methods in
multi-agent actor-critic. The proposed MAGCLA is more like
MADDPG because each agent in MAGCLA has its own actor
and critic rather than a shared critic in COMA. The difference
between the proposed MAGCLA and MADDPG is that the
actor of an agent in MAGCLA can still observe the actions of
its neighbors instead of only its own state. The extra neighbor
information helps the agents to understand their interactions
and learn cooperative behaviors.

D. Advanced Experience Replay Strategy
Advanced experience-replay strategies like HER, Prioritized
Experience Replay [33], and their derivatives have been
proposed to reuse the experience efficiently. HER is a post-
experience editing method proposed to accelerate single-agent
training in target-based tasks, such as pushing, sliding, pick-
and-place [21], and in-hand manipulation [26]. The rationale
of HER is that when the agent is exploring a goal 𝐺  and
collecting a trajectory (𝑠1, … , 𝑠𝑇), where 𝑠 is the state, it may
end up with a state 𝑠𝑇  that is not the target, making the
trajectory a failed exploration. However, we can edit the 
trajectory in the replay buffer by treating the last state 𝑠𝑇 as a
new goal 𝐺′ and resample the reward based on the transition
to the new goal 𝐺′ . Then the failed trajectory becomes a
successful trajectory which can be used for policy updating. In 
this work, the proposed SHER method adopts the HER 
strategy and expands it to the multi-agent setup with an 
experience synchronization approach to help the agents to 
learn cooperative behaviors. 

III. METHODOLOGY

This section introduces the modeling of the multi-agent in-
hand manipulation and the agent representation in III.A. The 
development of the MAGCLA is explained in III.B. The 
SHER method is shown in III.C.  

A. Multi-agent Modeling and Representation
We model the multi-agent in-hand manipulation as a Markov
game [34], a multi-agent extension of the Markov Decision
Process [35]. The Markov game contains 𝑁 agents, a set of
action space 𝐴1, … , 𝐴𝑁, and a set of observations 𝑂1, … , 𝑂𝑁

that are assigned to each agent. Each agent follows a policy 
𝜋𝜃𝑖

: 𝑂𝑖 × 𝐴𝑖 ↦ [0,1] . A state 𝑆  is defined to describe the
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Markov game. The execution of all agents’ actions produces 
the transition to the next state by following the state transition 
function 𝛤: 𝑆 × 𝐴1 × … × 𝐴𝑁 ↦ 𝑆′.  A reward function is
designed for each agent based on the state and action 
𝑟𝑖:× 𝐴𝑖 ↦ ℝ. The agent 𝑖 should maximize its expected total

reward 𝑅𝑖 = ∑ 𝛾𝑡𝑇
𝑡=0 𝑟𝑖

𝑡, where 𝛾 is a discount factor, 𝑡 is the
time step, and 𝑇 is the maximum time steps.  

For multi-agent in-hand manipulation, the action space 𝐴𝑖

of agent 𝑖 is based on the hand partitions (Fig. 2). In this work, 
we assign each agent to control one of the fingers and an 
additional agent to control the wrist. The rationale for not 
assigning more agents to control each motor or fewer agents 
to control two or more fingers is that the aim is to maximize 
the independence of each agent and keep its functionality as a 
manipulator. The wrist agent controls the palm to adjust the 
hand pose during the manipulation process. The observable 
state helps the agent assess the state information in the 
manipulation process. The observable state is denoted as 𝑥, 
including the positions and velocities of the robot’s joints and 
the Cartesian position and rotation of the object represented 
by a quaternion as its linear and angular velocities. The action 
and state spaces are normalized to -1 to 1 for stable training 
and to avoid overfitting.  

B. Global-Observation Critic and Local-Observation Actor
MAGCLA uses a centralized critic for agent 𝑖 to approximate
the action-value function 𝑄𝑖  with a global observation

𝑜𝑐𝑟𝑖𝑡𝑖𝑐 = (𝑥, 𝑎1, … , 𝑎𝑁) (1) 
where 𝑥 ∈ 𝑆, (𝑎1, … , 𝑎𝑁) ∈ 𝐴𝑁 are the actions of all agents.
The observation of all agents’ actions in the critic can help the 
agent to understand their contribution to the manipulation task 
and how their action interacts with others and the object, 
enabling finger cooperation. For actor 𝑖, the observation is: 

𝑜𝑎𝑐𝑡𝑜𝑟𝑖
= (𝑥, 𝑎𝑖−1, 𝑎𝑖 , 𝑎𝑖+1) (2) 

which means that the actor can observe its neighbors’ actions. 
It should be noted that 𝑜𝑎𝑐𝑡𝑜𝑟𝑖

 is flexible. In practice, the wrist

actor observes all agents’ actions. The thumb actor only 
observes the index, and the little actor only observes the ring. 

MAGCLA adopts the deterministic policy gradient [36] 
method for continuous action space. For each agent 𝑖, we train 
a continuous actor 𝜇𝜃𝑖

, where 𝜃𝑖 is the network parameters and

𝑝𝜋 is the state distribution, to maximize the objective function.

𝐽(𝜇𝜃𝑖
) = 𝔼𝑠~𝑝𝜋[𝑅𝑖] (3)

The gradient of the actor can be calculated as:  

∇𝜃𝑖
𝐽(𝜇𝜃𝑖

) =

𝔼𝑥,𝑎~𝐷 [∇𝜃𝑖
𝜇𝜃𝑖

(𝑎𝑖|𝑜𝑎𝑐𝑡𝑜𝑟𝑖
)∇𝑎𝑖

𝑄𝑖
𝜇(𝑜𝑐𝑟𝑖𝑡𝑖𝑐)|

𝑎𝑖=𝜇𝜃𝑖
(𝑜𝑎𝑐𝑡𝑜𝑟𝑖

)
] (4)

The gradient utilizes the extra information of all agents’ 
actions in the critic observation to help the actor’s training. 𝐷 
is the replay buffer which contains a transition tuple 
(𝑥, 𝑥′, 𝑎1, … , 𝑎6, 𝑟1, … , 𝑟6). The critic is updated by minimizing
the loss function 

ℒ(𝜃𝑖) = 𝔼𝑥,𝑎,𝑟,𝑥′[𝑄𝑖
𝜇(𝑜𝑐𝑟𝑖𝑡𝑖𝑐) − 𝑦]

2

where 𝑦 = 𝑟𝑖 + 𝛾𝑄𝑖
𝜇′

(𝑜′
𝑐𝑟𝑖𝑡𝑖𝑐)|

𝑎′
𝑖=𝜇

𝜃′
𝑖
(𝑜′

𝑎𝑐𝑡𝑜𝑟𝑖
)

(5) 

𝜇′ is the target policy with delayed parameters 𝜃′ for stable

updating. Each agent’s target policy 𝜃𝑖
′
 are updated at the end

of every epoch as: 

𝜃𝑖
′  ← 𝜏𝜃𝑖 + (1 − 𝜏)𝜃𝑖

′ (6) 

where 𝜏 is the learning rate.  

C. Synchronized Hindsight Experience Replay
HER has proved effective in helping train a single DRL agent
for in-hand manipulation tasks. When directly implementing
HER to multi-agent in-hand manipulation setup, each agent
individually samples the experience from the replay buffer.
After editing with HER, the agents will be updated with
different trajectories with different goal positions (Fig. 3a).
As a result, the policies may learn conflicting behaviors or
have asynchronous performance improvements. This is
acceptable for most multi-agent tasks as their policies are
independent, where different performed agents cause less
unstable factors to the training. The low-performed agent can
quickly catch up as the training continues [37]. However, in-
hand manipulation tasks require seamless cooperation
between all agents. The task can easily fail because of
mistakes made by weaker performing agents.

To solve the above issue, SHER synchronizes the replayed 
experience across all agents by selecting a shared start state 
𝑥𝛼  for all agents, then samples the same period of experience
with HER for all agents to update the policies (Fig. 3b). Since 
the agents share the same state transitions of the object, the 
SHER-edited trajectories will have the same new goal state. 
The synchronized experience helps to normalize the gradient 

Fig. 3. The comparison between (a) HER and (b) SHER in a two-agent 
setup. 𝑘 is the sample length. In HER, each agent individually samples the 
experience, resulting in different goal state, causing asynchronous 
performance increments. In SHER, the sampled experience is synchronized 
for all agents. The agents update the policies toward the same goal, helping 
the agents learn cooperative behavior. 

Fig. 2. An illustration of the MAGCLA method. The critic of each agent 
has a global observation to the robot hand and all actions of other agents. The 
actor of each agent can observe the actions of its neighbors. For simplicity, 
in the figure, we only draw the actor local observation for the thumb agent. 
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across all the critics and keeps the performance increments of 
all agents at the same pace. The overall proposed MAGCLA 
and SHER are summarized in algorithm 1.  

IV. EXPERIMENTS

A. Task Design
The MAGCLA-SHER approach requires a capable test

platform to derive viable in-hand manipulation applications. 
The approach will be evaluated in a simulated environment 
for ease of training and testing. Specifically, we adopt the 
Shadow hand environments from the OpenAI GYM Robotics 
platform, which runs on the MuJoCo [38] physics simulator. 
We partition the Shadow hand into 6 agents, 5 agents control 
each finger, and the additional agent controls the wrist. Based 
on the hand partition, the 6 DRL agents are wrist (2 DoFs), 
thumb (5 DoFs), index (3 DoFs), middle (3 DoFs), ring (3 
DoFs), and little  (4 DoFs). Two in-hand manipulation 
environments (Fig. 4) are designed to evaluate the 
generalizability of our methods in different tasks:  
1) Block manipulation. A block is placed on the hand’s palm
with a random initial pose. The task is to manipulate the block
around the Z axis to achieve the target pose.
2) Egg manipulation. The task is similar to block
manipulation, but an egg-shaped object is used.
We expect the block manipulation task is more difficult than
the egg manipulation task due to the block’s sharp edge and
slippery surface. In both tasks, a goal is achieved if the
difference in the rotation is less than 0.1 rad. The reward
function is sparse and binary, which gives a reward of 0 if the
goal has been achieved and a reward of -1 if the task failed.
The agents are running at a time step of 0.04s. The policies
are trained with the Message Passing Interface (MPI) [39], a
parallel training tool that can run multiple DRL training
threads to accelerate the experience collection process. The
PC hardware for training includes an Intel 12900K, an Nvidia
RTX3080ti, and 64 GB of RAM. Most hyperparameters are
from [26], but with changes to the number of MPI workers to
4, total epoch to 400, cycles per epoch to 25, and batches per
cycle to 25 for less training time.

B. Evaluation Metrics
The following configurations were implemented for the
ablation study and compared with baselines:

1) MAGCLA with SHER (MAGCLA+SHER)
2) MAGCLA with HER (MAGCLA+HER)
3) MADDPG with SHER (MADDPG+SHER)
4) A single DDPG agent with HER (DDPG+HER)

These experimental setups allow us to compare and test our 
two separate contributions, MAGCLA and SHER. 
Comparing 1) and 2) evaluate the improvements of the SHER 
compared to the HER. Likewise, we compare MAGCLA to 
MADDPG with 1) and 3). We also compare the 
improvements MAGCLA has to the conventional centralized 
control with 2) to 4). Lastly, we compare both our 

contributions in 1) to the centralized agent in 4). Significance 
analysis will be applied to the results. 

During the training process of the above methods, the 
testing set contains unlimited trials with target positions that 
are randomly generated within the range of (−𝜋, 𝜋) 𝑟𝑎𝑑 . 
Instead of logging the episode reward and average reward, the 
task success rate of the target policy is recorded at the end of 
each epoch for a direct and unbiased comparison. The success 
rate is the percentage of successful cases in a validation set 
with 50 trials. Each trial has randomly generated initial, and 
target poses. The success rate will be logged every 20 epochs. 
Each configuration is trained 3 times, each time with 400 
epochs, to obtain the statistical results. A testing set is also 
generated, containing 100 trials with random target poses and 
initial poses unseen in training and validation. The testing set 
is reused in all evaluations for a reproducible comparison. We 
focused on evaluating two metrics:  
1) Method Generalizability. We want to evaluate the
generalizability of our method in different tasks. The measure
is the success rate of the trained policies in the testing set. The
highest success rate configuration has the best generalizability
since it is the main objective of in-hand manipulation.
2) Policy Adaptability. The adaptability of the trained policy
was evaluated with simulated robot malfunction tests. In each
robot malfunction test, one agent for the multi-agent setups
was manually disabled, or the corresponding finger/wrist for
the one-policy setup was disabled. The malfunctioning agent
was not removed; rather, it was manually set to a fully open
state. The disabled wrist was set to a neutral position. Such a
setting maintains the state space of each training
configuration and minimizes the disturbance caused by the
disabled agent. Thus, there are 6 robot malfunction tests. For
simplicity, they are denoted as no wrist, no thumb, no index,
no middle, no ring, and no little. The success rate in each
malfunction test will be recorded. The percentage of
performance reduction will be calculated compared with the
original success rate. The configuration with the lowest
average performance reduction has the best adaptability. The
adaptability evaluation helps further analyze the importance
of each agent for the in-hand manipulation task. The agent
that causes higher performance reduction is more important.

V. RESULTS AND DISCUSSION

A. Training Process
The results of the training process are shown in Fig 5. Overall,
the rotating block task is more difficult than the rotating egg
task. The block’s plane surface and sharp edges easily cause
slippery movement and object falling. In contrast, the egg
object has a symmetric shape and smooth curved surface,
making the grasping more stable and easier to manipulate.

The multiple training processes in both tasks show 
consistent learning curves for all configurations. Overall, the 
single-agent baseline DDPG+HER (red) has the highest 
learning speed and converged success rate compared to all 
multi-agent strategies. The reason is that it only trains a single 
agent, leading higher data efficiency compared to multi-agent 
approach. The multi-agent baseline MADDPG+SHER (green) 
has the lowest learning speed and converged success rate. 
MAGCLA’s learning speed and success rate (blue) are higher 
than the baseline MADDPG (green) when both with SHER. 
MAGCLA+SHER (blue) achieved comparable learning 
speed and success rate as the single agent approach (red).   

Fig. 4. Two in-hand manipulate tasks are used: block, egg. The task is to 
manipulate the object around the Z axis to achive an randomly generated 
target pose (shown on the right of the hand).  
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The multi-agent approaches’ lower learning speed is 
explained in [37] and [40]. The multiple agents need more 
exploration in the early stage to collect experience for 
cooperative learning. Comparing MAGCLA+SHER (blue) 
and MADDPG+SHER (green) proves that the extra local 
observation for the actor can benefit the training. Comparing 
MAGCLA+SHER and MAGCLA+HER (yellow) confirms 
that synchronizing experience replay across all agents 
improves learning efficiency.   

B. Generalizability, Adaptability, Importance Evaluation
The results of the generalizability, adaptability, and agent
importance are shown in Table I. Since the performance for
the MAGCLA in the no-ring test is never reduced, we will not
list the entries in Table I. The highest success rate among the
trained policies for each configuration is logged.
Method Generalizability: Overall, MAGCLA+SHER
achieved the highest success rate in both tasks showing higher
generalizability than other methods. The DDPG method
achieved the second lowest success rate, which means it is not
generalizable in different tasks. MADDPG converged to a bad
policy in the block task and the lowest success rate in the egg
task, which means it has the lowest generalizability. The
reason why MAGCLA+SHER outperforms others is that the
observable neighbor’s actions provide more information to
help the policies learn cooperative behaviors.
Policy Adaptability: All configurations cannot adapt to the
no-wrist test since they failed in most trials. Thus, we do not
consider it when calculating the average performance
reduction. Overall, the proposed MAGCLA achieved the

lowest average performance reduction compared to other 
methods. The reason is that the multi-agent approach 
decomposes the manipulation task, helping each individual 
finger to learn basic and fundamental skills that can be used 
in different tasks. Specifically, MAGCLA+SHER achieved 
the lowest performance reduction in most tests except the no-
little test, in which HER performs better than SHER. The 
reason is that the individual HER reduces the fingers’ 
dependency on each other, providing more chances for the 
ring agent to learn manipulation ability, which accommodates 
the no-little test. While the synchronized experience replay in 
SHER makes the agents rely more on each other, the ring 
agent only learns to keep the object in hand. 
Agent Importance: For all configurations and tasks, the wrist 
is the most important agent, which is reasonable as it controls 
the palm movement and contributes to most of the cooperative 
movement with the fingers. The results show two levels of 
importance for the fingers. The first level is the thumb and 
little fingers, as they have a higher importance level because 
their malfunctions cause higher performance reduction. The 
second level contains the index, middle, and ring fingers, 
which cause lower performance reduction. The reason is that 
during the manipulation, the thumb and little finger take more 
responsibilities to rotate the object while the remaining 
fingers prevent the object from falling, which are redundant 
to each other. The results also show that MADDPG and 
DDPG have much different finger importance in block and 
egg tasks. However, MAGCLA has consistent finger 
importance when comparing the results in block and egg tasks, 
which demonstrate MAGCLA’s higher generalizability in 
similar tasks with different objects.  

C. Configuration Significance Analysis
Table II shows the configurations’ significance analysis. For
generalizability, the analysis applies to the original success
rate. For adaptability, the analysis applies to the average
performance reduction of all finger agents (wrist is not
considered). We chose the N-1 Chi Squared two-tailed test
and considered a p-value less than 0.05 significant.
MAGCLA shows statistical significance in generalizability
and adaptability compared to the multi-agent method
(MADDPG) and single-agent method (DDPG). Compared to
HER, SHER shows less significance in improving
generalizability and adaptability, which is reasonable because
SHER mainly aims to improve training speed. The overall
results show that MAGCLA contributes more to the
improvement in generalizability and adaptability.

TABLE I. EVALUATION OF THE GENERALIZABILITY, ADAPTABILITY AND AGENT IMPORTANCE 

*The highest success rate in generalizability evaluation is bolded, ^ the lowest average performance reduction percentage in adaptability test is
bolded. Gen means generalizability, Ada means adaptability, sr means success rate, and rd means percentage of performance reduction.

Fig. 5. The training process in block and egg rotating tasks. With SHER, 
MAGCLA (blue) achieved comparable learning speed and converged success 
rate as the single-agent DDPG (red) approach. Without SHER, MAGCLA 
(yellow) had lower learning speed and success rate. The conventional multi-
agent approach (MADDPG in green) has the lowest learning speed and 
difficulty to find an optimal policy. 
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D. Finger Cooperation Analysis
The data with MAGCLA+SHER and DDPG+HER in the egg
rotating task was used to analyze the finger cooperative
behaviors because its round and continuous shape presents
clean and clear action pattern.

The keyframes are shown in Fig. 6. More visualization can 
be found in the video attachment. Overall, both methods show 
three stages of behavior: preparation, rotation, and 
stabilization. In the preparation stage, the robot hand adjusts 
the object to a comfortable pose for rotation. In the rotation 
stage, the robot hand applies periodic actions to rotate the 
object. In the stabilization stage, the robot hand readjusts the 
object for a stable grasping. Specifically, MAGCLA+SHER 
shows that the thumb and little finger try to keep in contact 
with the egg and apply continuous and conjugate force to 
rotate the egg with a consistent speed, which is called gaiting 
[4] (Fig. 6a). The potential reason for the gaiting behavior is
that in multi-agent approaches, the local observation of the
actor leads to cooperative behaviors that rely on fewer fingers.
This behavior reduces the rotation speed but improves the
stability. The DDPG+HER agent tends to throw up the egg
with quick wrist movement, lets it freely rotate without
contact, and catches it when it drops, which we call tossing.
Such a movement relies on the cooperation between the wrist
to adjust the palm pose to make the egg rotate under the
gravitational effect or applies instant impulses with fingers to
create inertial motion for the rotation. The fingers maintain a
loose grasp to avoid falling when the egg rotates and catch it
once it descends. The global observation of both actor and
critic helps it learn behaviors that rely on more fingers, which
can rotate the object faster but is more unstable. These two
different behaviors explain the lower generalizability of the
single-agent approach, whose aggressive policy takes fewer
steps to complete the task compared to the multi-agent
policies but increases the probability of the object falling in
unseen trials; thus, the multi-agent approaches have better
generalizability in unseen trials, with the sacrifice of time
consumption.

Fig. 7 shows the plot of the object position in the X, Y, and 
Z axes and the rotation angle and speed on the Z axes in the 
same trial. The plots show periodic movement for both 
methods. The X and Y position plots show that MAGCLA 
needs more steps in the preparation stage to adjust the object 
position. Then it needs more periodic actions in the rotation 
stage but less adjustment in the stabilization stage than the 
single agent policy. The Z position plot shows that the single 
DDPG agent has more periodic movement than MAGCLA, 

which means the single agent relies more on the wrist 
movement to achieve the target position, corresponding to the 
tossing movement. The Z rotation angle shows that the single 
policy took fewer steps to achieve the target because it has a 
higher rotational speed, as shown in the velocity plot.  

VI. CONCLUSION

This work first solves the in-hand manipulation task with a 
multi-agent DRL setup and presents the MAGCLA approach, 
providing additional observation of the neighbor’s action to 
the actor. The experiment results show that the MAGCLA 
approach has higher generalizability in different tasks when 
tresting with unseen instance. and trained policies have better 
adaptability to keep performance in robot malfunction. We 
also developed the SHER approach, which synchronizes the 
experience across all agents to improve the learning 
efficiency of MAGCLA to reach a comparable training speed 
to the single-agent approach. In this work, we evaluate the 
MAGCLA-SHER method in two in-hand manipulation tasks, 
but it is the highest potential to be more applicable in more in-
hand manipulation tasks and other multi-agent tasks that 
require more cooperative behaviors. Our future work will 
focus on embedding our methodin more DRL algorithms and 
studying their feasibility in real-world applications.   

Fig. 7. The object position in X, Y, Z axes and the object rotation in Z axis. 
in a single trial. The plots show periodic movement for both methods. 
Compared to single DDPG, MAGCLA needs more steps in the preparation 
stage and has lower rotation speed during rotation stage, but it makes less 
adjustments with the wrist (Z position), making the manipulation more stable. 

TABLE II. SIGNIFICANCE ANALYSIS (TWO TAILED P-VALUE) 

*For simplicity, notations in Table II are: (a) MAGCLA+SHER, (b)
MAGCLA+HER, (c) MADDPG+SHER, (d) DDPG+HER. ^all
significant p-values are bolded. Fig. 6. The keyframes of the manipulation process in the egg rotating task. 

(a) MAGCLA+SHER learned conservative gaiting behavior that keeps 
contact on the egg and slowly rotates. (b) DDPG+HER learned aggressive 
tossing behavior that tosses the object to let it freely rotates. 
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