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Abstract: We construct the Faddeev-Kulish dressed multiparticle states of electrically and
magnetically charged particles, incorporating the effects of real and virtual soft photons.
We calculate the properties of such dressed states under Lorentz transformations, and find
that they can be identified with the pairwise multi-particle states that transform under
the pairwise little group. The shifts in the dressing factors under Lorentz transformations
are finite and have a simple geometric interpretation. Using the transformation properties
of the dressed states we also present a novel, fully quantum field theoretic derivation of
the geometric (Berry) phase obtained by an adiabatic rotation of the Dirac string, and
also of the Dirac quantization condition. For half integer pairwise helcity, we show that
these multiparticle states have flipped spin-statistics, reproducing the surprising fact that
fermions can be made out of bosons.
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1 Introduction

In his seminal paper [1] from 1931, Dirac initiated the study of quantum electric charges in
the presence of magnetic monopoles. In modern language, Dirac’s main argument is that
one should not be able to detect the magnetic flux carried by the Dirac string by performing
an Aharonov-Bohm [2] experiment around it, since the string is purely a gauge artifact.

Dirac’s quantization argument can be restated in terms of the geometric phase of the
charge-monopole system. The concept of a geometric phase in quantum physics was first
explored by Pancharatnam [3] in the context of optics, and by Berry [4] for general quantum
systems. A geometric phase occurs when the Hamiltonian H(αi) for a quantum system
depends on a set of external parameters, αi. If the parameters αi are varied adiabatically
over a closed loop in the parameter space, the eigenstates |n;αi〉 return transformed by an
overall phase,

|n;α〉 → eiγB |n;α〉 , (1.1)
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with the geometric phase (the Berry phase) γB given by

γB = i

∫
C
dαi 〈n;α| d

dαi
|n;α〉 , (1.2)

and C is a closed curve in the parameter space.
In his original paper [4], Berry described the Aharonov-Bohm phase as a special case

of a geometric phase: we can take a quantum particle of charge e in a box and consider the
Hamiltonian H( ~X) of the box as a function of its position ~X, were ~A( ~X) is a background
electromagnetic field (in this case generated by a monopole). Now consider moving the box
in space along an infinitesimal closed trajectory, such that the system picks up a geometric
phase γB = e

∫
C
~A · d ~X = eΦm, proportional to the overall magnetic flux captured by a

Stokes surface linked to the trajectory C of the box. In this context, the geometric phase
is the same as the Aharonov-Bohm phase [2] γAB generated by the flux Φm. But for an
infinitesimal trajectory, the phase is either γAB = 0 or γAB = eg, depending whether or
not the Stokes surface intersects the Dirac string. Since the Dirac string is an unobservable
gauge artifact, we arrive at the Dirac quantization condition:

q ≡ eg

4π
=
n

2
, (1.3)

where n is an integer.
Though a ground-breaking achievement at the time, there is something unsatisfying

about the above argument for the geometric phase of a charge-monopole system and the
corresponding Dirac quantization. First, it treats the monopole and the charge on unequal
footing—the monopole is taken to be a static, classical object, while the charge is fully
quantum mechanical. Such an uneven treatment lacks elegance, especially due to the in-
herent electric-magnetic duality of Maxwell’s equations with magnetic charges. Secondly,
the geometric phase associated with the Dirac string does not rely on any non-relativistic
expansion, hence it should be possible to cast it in the language of Quantum Field Theory
(QFT). Despite progress in relating the Aharonov-Bohm phase to the 4D linking number
generated by soft-photon resummation [5], a complete QFT description of the geometric
phase is missing from the literature, even 90 years after Dirac’s original paper. Lastly, the
geometric phase associated with the Dirac string is intimately related to the extra angular
momentum stored in the EM field sourced by the charge and the monopole. It is then
natural to ask what form this relation takes in a fully quantum-field-theoretic treatment of
charge-monopole multiparticle states.

The current work explores the geometric phase associated with general multiparticle
states of relativistic charges and monopoles. As such, it is the first 4D QFT realization of
a geometric phase. A fundamental element in our construction is the use of multiparticle
states that cannot be spanned by tensor products of a finite number of single particle states.
Indeed, tensor product states cannot have a geometric phase, since there is no such phase
associated with single-particle states. In order for a geometric phase to appear we need a
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coherent state with an indefinite number of particles1.
The multiparticle states associated with dyons, monopoles and charges are known to

not be tensor product states, as was shown in detail by some of the present authors [7–
9], following the work of Zwanziger [10]. Under Lorentz transformations, these charge-
monopole, or “pairwise" states transform with an extra “pairwise helicity” little group phase
which exactly mirrors the electromagnetic contribution to the angular momentum from the
coherent state of soft photons.

The original mathematical definition of these states in [7] was purely group theoretical,
and did not clarify the dynamics underlying these states. In this paper we present a
simple definition of these states as the soft-photon dressed states (also known as Faddeev-
Kulish dressed states) of QED with monopoles, aka “Quantum Electro-Magneto Dynamics"
(QEMD). These dressed states were previously shown to solve the IR problem for QEMD
[11–13]. Here we go one step further and show that these dressed states are identical to the
pairwise states from [7–10]. Moreover, they transform with a geometric phase which leads
to half-integer Dirac quantization and, for half integer pairwise helicity, to an inversion of
their spin statistics (e.g. “making fermions out of bosons”).

This paper is organized as follows; In Section 2 we present a concise summary of the
results derived in this paper. In Section 3 we briefly review the construction of pairwise
multiparticle states, with a special emphasis on the full functional form of the pairwise little
group phase ϕLG and its relation to the Dirac string direction nµ. In Section 4 we briefly
review the Faddeev-Kulish [14] dressing of asymptotic states in QED, and generalize it to the
case of QEMD [15]. Our first main result is derived in detail in Section 5, namely that the
dressed states of QEMD transform under Lorentz transformation exactly the same way as
pairwise states. To do this, we act with the Noether chargeMµν for Lorentz transformations
in QEMD on the Faddeev-Kulish dressing via commutation. As a byproduct of our work,
we evaluate the shift in the Faddeev-Kulish phase ΦFK under Lorentz transformations,
and show that it is finite (compared to log divergent in pure QED). Furthermore it has a
geometric meaning as a dihedral angle between two 3-hyperplanes in 4D. Our second main
result of the paper is given in Section 6, where we compute the geometric phase associated
with a 2π rotations of pairwise/dressed QEMD states. This geometric phase turns out to
be ±2π

∑
qij , exactly half of the Aharonov-Bohm phase associated with the Dirac string.

However the geometric phase we calculate is independent of the direction of the string, and
so it is allowed to take the values 0, ±π, . . . leading to half-integer Dirac quantization. In
particular, for half-integer

∑
qij , the system flips its spin-statistics, as was shown long ago

in the static monopole limit [16–22]. Finally, in Section 7 we summarize our observations
and point out some interesting future directions in other dimensions.

2 Summary of Results

Before delving into our detailed derivations, we first present a concise summary of our re-
sults. Our main result is that the pairwise states—those multiparticle states that transform

1Technically coherent states live in a von Neumann space rather than a simple Fock space [6].
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under the Lorentz group with an extra pairwise phase, can be identified with the Faddeev-
Kulish dressed multiparticle states of QEMD. The latter states incorporate the effects of
long distance interactions due to the exchange and radiation of soft photons. The pairwise
states |p1, p2, q12〉, with particle momenta pi and pairwise helicity given by

q12 =
e1g2 − e2g1

4π
, (2.1)

transform under Lorentz transformations with a pairwise little group phase

U (Λ) |p1, p2; q12〉 = e−iq12ϕLG(p1,p2,Λ) |Λp1,Λp2; q12〉 . (2.2)

where the explicit expression for the pairwise phase is

cos [ϕLG(p1, p2,Λ)] = ε̂(p1, p2,Λ
−1n) · ε̂(p1, p2, n) . (2.3)

Here εµ(a, b, c) ≡ εµνρσaνbρcσ and ε̂µ = εµ/
√
ε · ε, while n is an arbitrary 4-vector, identified

with the direction of the Dirac string.
The essence of the Faddeev-Kulish dressing procedure is to modify the interaction

picture perturbation theory. The usual assumption that interactions fall off asymptotically
is not satisfied in QED or QEMD due to the presence of soft photons mediating a long-range
force. Hence the Faddeev-Kulish dressing separates out the asymptotic part (corresponding
to the soft photons) of the interactions, removes it from the interaction Hamiltonian and
uses it to create the Faddeev-Kulish dressed states.2 The resulting Faddeev-Kulish dressed
states |p1, p2⟫ of QEMD are constructed from the traditional Fock-space states as

|p1, . . . , pf⟫ = UQEMD |p1, . . . , pf 〉 , (2.4)

where UQEMD is the dressing factor built out of the asymptotic interaction potential
V I
as(t) = lim|t|→∞ V

I(t), which as explained captures the effect that the interactions do
not asymptotically vanish due to the presence of soft photons. This dressing can be written
as a real dressing factor RFK associated with the generation of a real photon cloud, and a
phase ΦFK associated with virtual photon exchange between asymptotic particles. It has
been shown that the real dressing factor is equivalent to the usual Wilson line treatment
[24]. Together these are defined as

UQEMD ≡ T exp

[
−i
∫ ∞
−∞

dt V I
as ;QEMD(t)

]
= eRFK eiΦFK

RFK = −i
∫ ∞
−∞

dt V I
as ;QEMD(t)

ΦFK =
i

2

∫ ∞
−∞

dt1

∫ t1

−∞
dt2 [V I

as ;QEMD(t1), V I
as ;QEMD(t2)] . (2.5)

In the bulk of the paper we explicitly show that the dressed states constructed in this way
2For a nice review see [23].
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transform exactly as pairwise states should under a Lorentz transformation:

U [Λ] |p1, . . . , pf⟫ = eiΦLG |Λp1, . . . ,Λpf⟫ , (2.6)

where ΦLG ≡
∑

l<m qlmϕLG(pl, pm,Λ) and ϕLG. Hence the Faddeev-Kulish dressed states
can be identified with pairwise states with definite pairwise helicities. The proof will involve
the explicit evaluation of both RFK and ΦFK , as well as their transformations under the
Lorentz generators Mµν . We find that the O(eg) shift of ΦFK under Lorentz transforma-
tions is finite and given by

∆ϕFK(p1, p2, n) = 2 arccos
[
ε̂(p1, p2,Λ

−1n) · ε̂(p1, p2, n)
]
. (2.7)

which is exactly twice the pairwise little group phase. We will also show that the real
dressing factor RFK also contributes to the overall Lorentz rotation of the dressed states,
and its effect (expressed via single and double commutators with the Lorentz generator)
cancels half of ∆ϕFK , leading to an overall little group phase for the dressed states which
is exactly equal to that of the pairwise states.

Using the transformation properties of our dressed/pairwise states we can find a novel,
fully quantum field theoretic derivation of the geometric (“Berry") phase and Dirac quan-
tization associated with any multiparticle states of dyons, monopoles, and/or charges. To
obtain a geometric phase, we consider an adiabatic rotation of the Dirac string nµ (which is
treated as an unobservable parameter of the Lagrangian). Based on our explicit construc-
tion we show that rotating the Dirac string is equivalent to an inverse rotation of the entire
state

|p1, . . . , pf⟫n(τ+δτ) = e−
iδτ
2
ωµνΦµνLG |p1, . . . , pf⟫n(τ) (2.8)

where ωµν are the Lorentz transformation parameters. A 2π rotation will result in a geo-
metric phase of

γB = ±2π
∑
l<m

qlm . (2.9)

Requiring that this phase be a multiple of π gives the usual Dirac quantization condition.
Furthermore, multiparticle states with half integer

∑
l<m qlm will incur a geometric phase

of π, which flips their statistics.

3 A Group Theoretical Derivation of the Pairwise Little Group Phase

In this section we briefly review the construction of the extra phase appearing in multipar-
ticle states carrying both electric and magnetic charges first obtained by Zwanziger in [10]
and identified as the pairwise helicity of the pairwise little group in [7–9]. We will be fol-
lowing Zwanziger’s original argument, except for using the center of momentum (COM)
frame to define the reference momenta, which makes the concept of pairwise little group
much easier to understand.
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Consider a multiparticle state consisting of a scalar charge and a scalar monopole.
This multiparticle state is labeled by the momenta p1, p2 of the two particles, as well as
their pairwise helicity q12 ≡ e1g2/4π [7–10]. Under a Lorentz transformation Λ, this state
transforms in a unitary representation of the Lorentz group:

U (Λ) |p1, p2; q12〉 = e−iq12ϕLG(p1,p2,Λ) |Λp1,Λp2; q12〉 . (3.1)

Note the choice of negative sign in the exponential on the RH side—in the language of
[7–9], this means that out states of the S-matrix approach the state (3.1) at t→∞, while
in-states transform with the opposite phase. The phase ϕLG (p1, p2,Λ) is called the pairwise
phase associated with the momenta p1, p2 and the Lorentz transformation Λ. It is given by

Rz [ϕLG(p1, p2,Λ)]µν ≡
[
L−1

Λp

]µ
ρ

Λρσ [Lp]
σ
ν . (3.2)

The formal definition of electric-magnetic multiparticle states was given in [8], based on the
ideas of [10]. Central to the definition of electric-magnetic multiparticle states is the notion
of the pairwise little group (pairwise LG). This is the subgroup of Lorentz transformations
which keeps two reference momenta fixed. In [7], we defined the reference momenta kµ1 , k

µ
2

as the center f mass (COM) values of pµ1 , p
µ
2 ,

k1
µ = (Ec1, 0, 0, pc) , k2

µ = (Ec2, 0, 0,−pc) . (3.3)

Note that the COM spatial momentum pc and the COM energies Ec1,2 are all Lorentz
invariant, and given by

Eci =
√
m2
i + p2

c , pc =

√
(p1 · p2)2 −m2

1m
2
2

s
. (3.4)

where s = (p1+p2)2. As a first step to defining the pairwise little group (LG) transformation
corresponding to a Lorentz transformation Λ and the momenta p1, p2, we define a canonical
Lorentz transformation Lp so that

p1
µ = [Lp]

ν
µ k1

ν , p2
µ = [Lp]

ν
µ k2

ν . (3.5)

From (3.3), we can infer that

[Lp]
0
µ =

p1
µ + p2

µ√
s

, [Lp]
3
µ =

Ec2 p
1
µ − Ec1 p2

µ√
spc

. (3.6)

Since the columns of [Lp]
ν
µ are orthonormal as 4 vectors, we know that [Lp]

1,2
µ can be any

two orthonormal vectors in the plane perpendicular to p1 and p2. The freedom to choose
them is exactly the freedom to multiply Lp on the right by a U(1) pairwise LG rotation
which keeps k1,2 fixed. We fix this freedom by introducing an arbitrary vector nµ (analogous
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to the Dirac string direction in the field theory language), and defining:

[Lp]
1
µ = −iε̂µ(p1, p2, ε̂(p1, p2, n)), [Lp]

2
µ = iε̂µ(p1, p2, n) . (3.7)

Here εµ(a, b, c) ≡ εµνρσa
νbρcσ and ε̂µ = εµ/

√
ε · ε. Substituting this in the definition of the

pairwise phase (3.2), we get

cos [ϕLG(p1, p2,Λ)] =
[
L−1

Λp

] ρ
2

Λ σ
ρ [Lp]

2
σ

sin [ϕLG(p1, p2,Λ)] =
[
L−1

Λp

] ρ
2

Λ σ
ρ [Lp]

1
σ . (3.8)

By explicit matrix multiplication, we arrive at [10]

cos [ϕLG(p1, p2,Λ)] = ε̂(p1, p2,Λ
−1n) · ε̂(p1, p2, n)

sin [ϕLG(p1, p2,Λ)] = ε̂(p1, p2,Λ
−1n) · ε̂(p1, p2, ε̂(p1, p2, n)) , (3.9)

this gives the pairwise LG phase as a function of p1, p2, Λ, and the arbitrary 4-vector n. We
note that our choice of canonical Lorentz transformation (3.7) is only unique up to a U(1)

pairwise LG z-rotation, which by definition leaves the reference momenta (3.3) invariant.
Defining a more general rotation

Lp → LpRz [χ(p1, p2)] , (3.10)

we have

ϕLG(p1, p2,Λ)→ ϕLG(p1, p2,Λ) + χ(p1, p2)− χ(Λp1,Λp2) . (3.11)

For a multiparticle pairwise state3, the transformations multiply, and so we have

U(Λ) |p1, . . . , pf ; q12, q13, . . . , qn−1,n〉 = eiΦLG |Λp1, . . . ,Λpf ; q12, q13, . . . , qn−1,n〉 .
(3.12)

where

ΦLG ≡ −
∑
l<m

qlm ϕLG(pl, pm,Λ) . (3.13)

Note the minus sign here, which comes from(3.1). Finally, we can consider the pairwise
little group phase associated with an infinitesimal Lorentz transformation. Defining Λµν =

exp(δτωµν ) for δτ infinitesimal and ωµν an antisymmetric matrix, we can expand to first
3Here we consider scalars for simplicity.
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order in δτ and get

ΦLG ≡
δτ

2
ωµν ϕ

µν
LG +O(δτ2)

Φµν
LG = −

∑
l<m

qlm ϕ
µν
LG;lm

ϕµνLG;lm =
τlm

ε2(pl, pm, n)
n[µεν](pl, pm, n) . (3.14)

Here τlm ≡
√

(pl · pm)2 −m2
lm

2
m.

4 The Soft Photon Dressed States of Monopole QED

4.1 Dressed States in QED

The IR problem of QED and its solution via dressed states is a deep and rich topic in
QFT, and we will not attempt to review it in detail. For historical background and some
current developments, see [25–29] and references within. For the purposes of this paper,
we will focus on the Faddeev-Kulish [14] approach for the definition of soft-photon-dressed
asymptotic states, following earlier work in [30–35] (see also [23, 36]).

The main idea is the definition of the interaction-picture asymptotic potential

V I
as ;QED(t) ≡ lim

|t|→±∞
V I
QED(t) , (4.1)

where V I
QED(t) is the linear interaction term of the gauge field Aµ with the charged current:

V I
QED(t) = −

∫
d3x [jµAµ] . (4.2)

The label I on V I
QED means that we should substitute the interaction picture mode expan-

sions for the relevant fields (c.f. (4.7)). The dressed quantum states of QED are then given
by

|p1, . . . , pf⟫QED = UQED |p1, . . . , pf 〉

UQED ≡ T exp

[
−i
∫ ∞

0
dt
(
V I
as;QED

)]
. (4.3)

The finite S-matrix for QED is given by

Sfinite(1,...,g|1,...,f) ≡ ⟪p1, . . . , pg|SQED |p1, . . . , pf⟫ . (4.4)

where

SQED = T exp

[
−i
∫ ∞
−∞

dt (VQED)

]
. (4.5)
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Is the usual Dyson S-matrix for QED. In short, we can calculate QED processes with the
usual Feynman rules for QED derived from SQED, as long as we use dressed states as
our asymptotic states. The result is guaranteed to be IR finite, with some subtleties that
were recently addressed more carefully [26–29]. In this paper we will be rather cavalier
with regards to these subtleties (e.g. using BRST instead of the Gupta-Bleuler condition),
as they are not critical for the derivation of the Lorentz transformation rule for dressed
charge-monopole states.

4.2 Quantum Electro-Magneto Dynamics

In this paper, we compute the IR dressing factors for QEMD. There are many formula-
tions of this theory—by Schwinger [37], Yan [38], Zwanziger [15, 39], and Blagojevic and
Sjevanovic [40], to name just a few. They were all shown to be equivalent—for example
in [41]. Here and below we use the local two-potential Lagrangian formulation due to
Zwanziger [15, 39].

The Lagrangian for this theory is given in terms of the redundant vector fields Aµ and
Bµ, to which the electric (magnetic) current je (jg) couples as

LIint = −
[
jµeAµ + jµgBµ

]
. (4.6)

Here the ”interaction picture" label I on LIint means that we should substitute in it the
mode expansions for the fields in the interaction picture. Though they seem to be separate
degrees of freedom, the fields Aµ and Bµ are constrained and related. This is most explicitly
expressed in their interaction picture mode expansions in terms of creation and annihilation
operators:

Aµ(x) =
∑
λ=±

∫
d3k

(2π)3

1

2ωk

[
ε∗λµ (~k)aλ(~k)eik·x + ελµ(~k)a†λ(~k)e−ik·x

]

Bµ(x) =
∑
λ=±

∫
d3k

(2π)3

1

2ωk

[
ε̃∗λµ (~k)aλ(~k)eik·x + ε̃λµ(~k)a†λ(~k)e−ik·x

]
(4.7)

where [
aλ(~k), a†λ′

(
~k′
)]

= δλλ′(2π)3 (2ωk) δ
3
(
~k − ~k′

)
. (4.8)

Here ελµ are the polarization vectors, ενλε
∗
λ′ν = δλλ′ , while ε̃aµ are the dual polarization vectors

satisfying

k[µε̃
λ∗
ν] = εµν

(
k, ελ∗σ

)
. (4.9)

These can be taken to be [13, 42, 43]

ε̃ λ
µ = −Aµνεν λ, Aµν ≡

εµν(n, k)

n · k + iε
, (4.10)
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where nµ is an arbitrary spacelike 4-vector which stands for the direction of the Dirac
string. We see that indeed Aµ and Bµ are not separate fields but rather different linear
combinations of the same creation and annihilation operators for the photon. The relation
(4.10) also shows that a gauge transformation which shifts ε also shifts ε̃, and so the gauge
freedom is indeed just a U(1) rather than two separate ones for Aµ and Bµ. For future
reference, we also define

aµ ≡
∑
λ=±

ε∗λµ (~k)aλ(~k) , ãµ ≡
∑
λ=±

ε̃∗λµ (~k)aλ(~k) , (4.11)

as well as their hermitian conjugates. Finally, we can express the electromagnetic field
strength and its dual as [15]

Fµν =
1

n2

[
FµνA − F̃

µν
B

]
, F̃µν =

1

n2

[
F̃µνA + FµνB

]
, (4.12)

where

FµνA = n[µ|nρ(∂ρA
|ν] − ∂|ν]Aρ) , FµνB = n[µ|nρ(∂ρB

|ν] − ∂|ν]Bρ) . (4.13)

Substituting the mode expansions (4.7), we have

FµνA = in[µ|nρ
{∫

d3k

(2π)3

1

2ωk

[
(kρa

|ν] − k|ν]aρ)e
ik·x − (kρa

ν]† − kν]a†ρ)e
−ik·x

]}

FµνB = in[µ|nρ
{∫

d3k

(2π)3

1

2ωk

[
(kρã

|ν] − k|ν]ãρ)e
ik·x − (kρã

ν]† − kν]ã†ρ)e
−ik·x

]}
,(4.14)

and so

Fµν =
inρ

n2

{∫
d3k

(2π)3

1

2ωk

[
(kρn

[µaν] − kρεµν(n, ã)− n[µkν]aρ + εµν(n, k)ãρ)e
ik·x

−(kρn
[µaν]† − kρεµν(n, ã†)− n[µkν]a†ρ + εµν(n, k)ã†ρ)e

−ik·x
]}

F̃µν =
inρ

n2

{∫
d3k

(2π)3

1

2ωk

[
(kρε

µν(n, a) + kρn
[µaν] − εµν(n, k)aρ − n[µkν]ãρ)e

ik·x

−(kρε
µν(n, a†) + kρn

[µãν]† − εµν(n, ka†ρ − n[µkν]ã†ρ)e
−ik·x

]}
.

(4.15)

Similar interaction picture mode expansions exist for electrically and magnetically
charged matter—though matter fields with different charges are indeed separate degrees
of freedom and not linear combinations of the same creation and annihilation operators.
For concreteness we consider here f scalar fields φl(x) with l = 1, . . . , f with electric and
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magnetic charges (el, gl). We then have the mode expansion

φl(x) =

∫
d3p

(2π)3

1

2ωp

[
bl(~p)e

ip·x + d†l (~p)e
−ip·x

]
, (4.16)

where [
bl(~p), b

†
m

(
~p′
)]

=
[
dl(~p), d

†
m

(
~p′
)]

= δlm(2π)3 (2ωp) δ
3
(
~p− ~p′

)
. (4.17)

4.3 Dressed States in QEMD

After writing down the interaction potential and mode expansions for QEMD (in Zwanziger’s
two-potential language), we are now ready to compute the Faddeev-Kulish dressing factors
in this theory. Previous authors [11–13] have already calculated the IR dressing for QEMD
in the one-potential formulation of [40]. However, these authors focused on the real dressing
factor RFK and the way that it solves the IR problem for QEMD in a similar way to QED.
Here we focus instead on the Faddeev-Kulish phase ΦFK for QEMD. We show, that, in fact,
this phase is associated with the extra electromagnetic angular momentum of the charge
monopole system, and is directly linked to the pairwise little group.

To generalize the Faddeev-Kulish dressing factors to the electric-magnetic case, we start
with the interaction-picture asymptotic interaction term in two-potential QEMD

V I
as ;QEMD(t) = − lim

|t|→∞

∫
d3x

[
jµeAµ + jµgBµ

]
, (4.18)

where

jµe = i
∑
l

el (φl∂
µφ∗l − φ∗l ∂µφl) , jµg = i

∑
l

gl (φl∂
µφ∗l − φ∗l ∂µφl) . (4.19)

Note that the label I on V I
as ;QEMD(t) means that we should substitute into (4.18) the

interaction picture mode expansions (4.7) and (4.16). A similar interaction term was also
considered in [43], in the context of the leading soft photon theorem for QEMD. Note also
that we purposely leave out the ”seagull" interactions AµAµφφ∗ and BµBµφφ

∗, since it is a
non-generic feature of our choice of scalar QEMD and gives an O(e2g2) contribution. We
leave the study of this term for future work.

Substituting the mode expansions for φl, A, B, we get

V I
as ;QEMD(t) = −

∑
l

∫
Dl p

∫
d3k

(2π)3

1

2ωk

pµ

ωp

{
el

[
aµ(~k)e

i p·k
ωp
t
+ a†µ(~k)e

−i p·k
ωp
t
]

+ gl

[
ãµ(~k)e

i p·k
ωp
t
+ ã†µ(~k)e

−i p·k
ωp
t
]}

, (4.20)

where

ρl(~p) ≡ bl(~p)b
†
l (~p)− d

†
l (~p)dl(~p) , (4.21)
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are the scalar charge density operators, and∫
Dl p ≡

d3p

(2π)3

ρl(~p)

2ωp
. (4.22)

The dressed electric-magnetic state in this case is

|p1, . . . , pf⟫ = UQEMD |p1, . . . , pf 〉 , (4.23)

with the dressing factor

UQEMD ≡ T exp

[
−i
∫ ∞
−∞

dt V I
as ;QEMD(t)

]
= eRFK eiΦFK

RFK = −i
∫ ∞
−∞

dt V I
as ;QEMD(t)

ΦFK =
i

2

∫ ∞
−∞

dt1

∫ t1

−∞
dt2 [V I

as ;QEMD(t1), V I
as ;QEMD(t2)] . (4.24)

Note that the lower limit t = −∞ in the time integration of (4.24), which is different from
the choice of t = 0 in [28] (the lower limit is disregarded in the original Faddeev-Kulish
paper [14]). Our choice of t = −∞ reflects the fact that our dressed multiparticle states
are defined independently of any S-matrix—they are simply a collection of plane waves for
particles 1, . . . , f embellished with all possible soft photons radiated from/between them.
Our choice of lower limit is completely consistent with the BRST condition of [26]. It would
be interesting to construct a full IR finite S-matrix given our choice of lower limit, and in
particular to study its interplay with asymptotic symmetries in the spirit of [29, 44].

5 Dressed States as Pairwise States

In this section we derive one of the main results of this paper, namely that the dressed states
defined in the previous section transform under Lorentz in the same way as the pairwise
states from Section 3. In other words, we want to show that for any Lorentz transformation
Λ

U [Λ] |p1, . . . , pf⟫ = eiΦLG |Λp1, . . . ,Λpf⟫ , (5.1)

where ΦLG ≡
∑

l<m qlmϕLG(pl, pm,Λ) and ϕLG is the pairwise little group phase defined in
Section 3. Note that the unitary representation U [Λ] in the above equation is no longer our
choice, but is actually uniquely defined by the action of our theory, two potential QEMD
[15]. In particular, for an infinitesimal Lorentz transformation Λµν = exp(δτωµν ), its unitary
representation is given by

U [Λ] = exp

[
i

2
δτ Mµνωνµ

]
, (5.2)
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where Mµν is the Noether generator of Lorentz transformations in QEMD, whose explicit
expression is given below. Substituting the infinitesimal transformation (5.2) in (5.1) and
presenting the dressing explicitly, we have

exp

[
i

2
δτ Mµνωνµ

]
eRFK eiΦFK |p1, . . . , pf 〉 = eiΦLG eRFK eiΦFK |Λp1, . . . ,Λpf 〉 . (5.3)

As we shall see below, the phase factor ΦFK evaluates to a c-number when acting on the
multiparticle state to its right, and so we can commute it freely. Rearranging, we have

e−RFK exp

[
i

2
δτ Mµνωνµ

]
eRFK e−i∆ΦFK |p1, . . . , pf 〉 = eiΦLG |Λp1, . . . ,Λpf 〉 , (5.4)

where ∆ΦFK = ΦFK |Λp −ΦFK |p. We proceed by expanding both sides to leading order in
δτ . For future reference we define

∆ΦFK ≡
δτ

2
ωµν ∆Φµν

FK +O(δτ2) . (5.5)

We then have{
e−RFKMµνeRFK −∆Φµν

FK

}
|p1, . . . , pf 〉 = Φµν

LG |p1, . . . , pf 〉 , (5.6)

where Φµν
LG is given in (3.14). We will now prove (5.6) by explicit calculation, using the

explicit expressions for RFK , ∆ΦFK and Mµν in QEMD. As a first step we can use the
Baker-Campbell-Hausdorff lemma on the left hand side,{

[Mµν , RFK ] +
1

2
[[Mµν , RFK ] , RFK ]−∆Φµν

FK

}
|p1, . . . , pf 〉 = Φµν

LG |p1, . . . , pf 〉 .

(5.7)

Note that higher commutators in the expansion vanish since the second commutator is
already a c-number. We now turn to calculate the left hand side of this equation. We begin
by evaluating ∆ϕFK , and later recall the expression forMµν and calculate its commutators
with RFK .

5.1 Calculating ∆Φµν
FK

To calculate the shift ∆Φµν
FK in the dressing phase following an infinitesimal Lorentz trans-

formation, we first need an expression for ΦFK . As a first step to calculating ΦFK , we
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bring (4.24) to a form more fit for Feynman integration in the following way

ΦFK =
i

4

{∫ ∞
−∞

dt1

∫ t1

−∞
dt2 [V I

as ;QEMD(t1), V I
as ;QEMD(t2)] +

∫ ∞
−∞

dt2

∫ t2

−∞
dt1 [V I

as ;QEMD(t2), V I
as ;QEMD(t1)]

}
=

i

4

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2 [V I
as ;QEMD(tmax), V I

as ;QEMD(tmin)] , (5.8)

where tmax = max(t1, t2), tmin = min(t1, t2). To explicitly evaluate the commutator in
(5.8) we need to evaluate polarization sums coming from the mode expansions (4.7). Spe-
cializing to quantum states that satisfy the free Gupta-Bleuler condition kµaµ |ψ〉 = 0, we
have

εα∗µ εαν = gµν → εα∗µ ε̃αν = − εµν(n, k)

n · k + iε
, (5.9)

this form of the magnetic propagator is unique up to gauge transformations which rotate
n and could also change the ε prescription on the spurious n · k pole. An alternative ε
prescription, where (n · k + iε)−1 → 1

2

[
(n · k + iε)−1 + (n · k − iε)−1

]
, is equivalent to a

two-sided Dirac string, and does not change the results derived in this paper.
The expression (5.8) then evaluates to

ΦFK = 4π
∑
l<m

qlm

∫∫
Dl paDm pb

∫ ∞
−∞

dt1
ωa

∫ ∞
−∞

dt2
ωb

Im [I(pa, pb, n)]

I(p1, p2, p3) ≡ −
∫

d4k

(2π)4

iε(p1, p2, p3, k)

(k2 + iε)(p3 · k + iε)
e−ik·∆12(pa,pb) , (5.10)

where ∆µ
12(a, b) = t1aµ

ωa
− t2bµ

ωb
, qlm = (elgm − emgl)/4π, and p3 = n. By a change of

integration variables, it’s easy to see that

ΦFK =
∑
l<m

qlm

∫∫
Dl paDm pb [ϕFK(pa, pb, n)] . (5.11)

where

ϕFK(p1, p2, p3) = 4π Im [I(p1, p2, p3)− I(−p1, p2, p3)− I(p1,−p2, p3) + I(−p1,−p2, p3)]

I(p1, p2, p3) =

∫∫ ∞
0

dt1
ω1

dt2
ω2

I(p1, p2, p3)

=

∫
d4k

(2π)4

iε(p1, p2, p3, k)

(k2 + iε)(p1 · k − iε)(p2 · k + iε)(p3 · k + iε)
. (5.12)

In complete agreement with the calculation [5] of soft-photon resummation using the Wein-
berg formalism [45]. Note that it is this integral that contains the topological linking number
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[5] of the pair. As we shall see below, this integral is not well defined and needs regulariza-
tion. However, here we are actually interested only in the variation of I under a Lorentz
transformation Λ. This variation is well defined and does not require regularization. In
fact, this variation gives us exactly the pairwise LG phase. To see this, we calculate

∆ϕFK ≡ ϕFK(Λp1,Λp2, p3)− ϕFK(p1, p2, p3) . (5.13)

One can easily show that I(Λp1,Λp2, p3) = I(p1, p2,Λ
−1p3) by a simple change of integra-

tion variables, namely

I(Λp1,Λp2, p3) =

∫
d4k

(2π)4

iε(p1, p2,Λ
−1p3,Λ

−1k)

[k2 + iε] [(Λp1) · k − iε] [(Λp2) · k + iε] [p3 · k + iε]
.

=

∫
d4k

(2π)4

iε(p1, p2,Λ
−1p3, k)

[k2 + iε] [p1 · k − iε] [p2 · k + iε] [(Λ−1p3) · k + iε]

= I(p1, p2,Λ
−1p3) . (5.14)

Consequently, we have

∆I = −i
∫

d4k

(2π)4

Tµν(p1, p2, p3, p4) kµkν
(k2 + iε)(p1 · k − iε)(p2 · k + iε)(p3 · k + iε)(p4 · k + iε)

,

(5.15)

where p4 = Λ−1p3, and

Tµν(p1, p2, p3, p4) =
1

2

[
p
{µ
4 εν}(p1, p2, p3)− p{µ3 εν}(p1, p2, p4)

]
, (5.16)

is a symmetric tensor4. We can decompose this tensor as

Tµν(p1, p2, p3, p4) = ε̄ ηµν + i
4∑
i=1

f1i p
{µ
1 p

ν}
i + i

4∑
i=1

f2i p
{µ
2 p

ν}
i . (5.17)

Here we define ε̄ ≡ ε(p1, p2, p3, p4) and εµ(p1, ..., �Api, ..., p4) ≡ (−1)iεµ(p1, ..., pi−1, pi+1, ..., p4),
then the coefficients fij are defined as

fij = i
εµ(p1, ..., �Api, ..., p4)εµ(p1, ..., �Apj , ..., p4)

2ε̄
, (5.18)

Consequently, we can write

∆I = ∆I∗ + f12∆I12 + f31∆I31 + f14∆I14 + f11∆I11

+ f12∆I12 + f23∆I23 + f24∆I24 + f22∆I22 , (5.19)
4Here and below, a{µbν} = aµbν + aνbµ and a[µbν] = aµbν − aνbµ.
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where

∆I∗ =

∫
d4k

(2π)4

−iε̄
(p1 · k − iε)(p2 · k + iε)(p3 · k + iε)(p4 · k + iε)

∆Iij =

∫
d4k

(2π)4

(pi · k)(pj · k)

(k2 + iε)(p1 · k − iε)(p2 · k + iε)(p3 · k + iε)(p4 · k + iε)
. (5.20)

We can explicitly check that all of the Iij sum up to zero, and only ∆I∗ remains. To see
this, we define the master integral

I(v1, v2) =

∫
d4k

(2π)4

1

(k2 + iε)(v1 · k + iε)(v2 · k + iε)
. (5.21)

In terms of this master integral, we have (see appendix A for the detailed calculation)

∆I11 = −f31I(p2, p4) + f12I(p3, p4) + f14I(p2, p3)

f11

∆I22 = −f12I(p3, p4)− f24I(−p1, p3)− f23I(−p1, p4)

f22

∆I12 = I(p3, p4)

∆I13 = I(p2, p4) , ∆I23 = −I(−p1, p4)

∆I14 = I(p2, p3) , ∆I24 = −I(−p1, p3) . (5.22)

Substituting this expansion back in (5.19), we see that all of the Iij cancel out and so by
(5.12),(5.13), and (5.19),

∆ϕFK = −4π Im [ ∆I∗(p1, p2, p3)−∆I∗(−p1, p2, p3)

−∆I∗(p1,−p2, p3) + ∆I∗(−p1,−p2, p3)] , (5.23)

or in other words,

∆ϕFK = 4π Im [∆I∗∗]

∆I∗∗ ≡ −iε̄
∫

d4k

(2π)2

δ (p1 · k) δ (p2 · k)

(p3 · k + iε)(p4 · k + iε)
, (5.24)

where we have use the “cutting identity"

δ(a) = 2πi

(
1

a− iε
− 1

a+ iε

)
. (5.25)

This integral is calculated explicitly in appendix B.1, with the result

∆I∗∗ =
i

2π
arccos [ε̂(p1, p2, p3) · ε̂(p1, p2, p4)] . (5.26)
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Note that while Eq. (5.21) was naively log divergent, ∆I∗∗ is finite, a sign that the final
answer is not sensitive to UV photons, as expected. The resulting shift in the Faddeev-
Kulish phase is then

∆ϕFK(p1, p2, n) = 2 arccos
[
ε̂(p1, p2,Λ

−1n) · ε̂(p1, p2, n)
]
. (5.27)

But this is exactly twice the little group phase ϕLG in (3.9). Consequently, we have

∆Φµν
FK =

∑
l<m

qlm ∆ϕµνFK;lm = 2
∑
l<m

qlm ϕ
µν
LG;lm = −2Φµν

LG , (5.28)

where the minus sign is a consequence of (3.13). This already gives a part of the required
contribution on the left hand side of (5.7). The other half comes from the commutators of
the Lorentz generator Mµν , which we now define.

5.2 The Angular Momentum Operator in Two-Potential QEMD

The energy momentum tensor in two-potential QEMD is given by [15]:

θµν = θµνEM + θµνϕ,A + θµνϕ,B + θµνg.f. − n
µεν
(
n, (n · ∂)−1 je, (n · ∂)−1 jg

)
θµνEM =

1

2

(
FµαF

αν + F̃µαF̃
αν
)

θµνϕ,V =
∑
l

1

2

(
D
{µ
V,lφl

)(
D
ν}
V,lφl

)∗
− 1

2
ηµν

[
ηαβ

(
Dα
V,lφl

) (
Dβ
V,lφl

)∗
−m2

l φlφ
∗
l

]
, (5.29)

where V = A,B. Dµ
A,l = ∂µ − ielAµ and Dµ

B,l = ∂µ − iglBµ are the electric and magnetic
covariant derivatives. In the quantum theory, θµν is promoted to an operator acting on
multiparticle quantum states. We will not need an explicit expression for the gauge fixing
term θµνg.f., and we refer the reader to [15] for its explicit form. We can choose our physical
Hilbert space such that the last term vanishes as an operator on all physical states. In
this case θµν is a symmetric operator and implies conserved angular momentum (Lorentz)
operators. Specifically, we have

Mµν ≡Mµν
EM +Mµν

matter +Mµν
g.f. , Mµν

i =

∫
d3xx[µθ

0ν]
i . (5.30)
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For later reference, we now insert the mode expansions and (4.16) into (5.30) to get a mode
expansion of Mµν

matter. We get

Mµν
matter = Mµν

kin +Mµν
A +Mµν

A2 + (A, el ↔ B, gl)

Mµν
A = i

∑
l

el

∫
Dl p

∫
d3k

(2π)3

1

2ωk

tp[µ

ωp

{
aν](k)e

ik· pt
ωp + aν]†(k)e

−ik· pt
ωp

}

Mµν
B = i

∑
l

gl

∫
Dl p

∫
d3k

(2π)3

1

2ωk

tp[µ

ωp

{
ãν](k)e

ik· pt
ωp + ãν]†(k)e

−ik· pt
ωp

}
.

(5.31)

We remind the reader that Dl p ≡ d3p
(2π)3

ρl(p)
2ωp

. We will not be interested in Mµν
kin, as it

only reflects the orbital part of the angular momentum and will not have any nontrivial
commutator with RFK . Similarly, we drop the angular momentum coming from the second
term in the expression for θµνϕV in (5.29). When we commute Mµν

A with RFK , this term
gives a vanishing contribution at O(eg), and so we drop it here for simplicity. Finally, we
also do not explicitly consider Mµν

A2 here, since it is a non-generic feature of our choice of
scalar QEMD and gives an O(e2g2) contribution. We leave the study of this term for future
work.

5.3 Angular Momentum Commutators

In this section we prove (5.6), which demonstrates that dressed and pairwise states trans-
form the same way. To this end, we explicitly evaluate

[Mµν
A +Mµν

B , RFK ] and 1
2 [[Mµν

EM , RFK ], RFK ] . (5.32)

One can explicitly check that these are the only terms that contribute to ∆ϕµνlm in (5.7).
Since the former commutators essentially evaluate the angular momentum associated with
the retarded fields sourced by the charge and the monopole, the final parts of our derivation
coincide with sections 2 and 4 of [10].

5.3.1. [Mµν
A +Mµν

B , RFK ]

Since Mµν
A ∼ el, we focus here on the O(gm) contribution to the retarded potential.

This is the term responsible for the extra angular momentum in the electromagnetic field
associated with the charge-monopole pair. We have

[
Mµν
A , RFK

]
=
∑
l<m

qlm

∫∫
Dl paDm pb [IA(pa, pb, n)]

IA(p1, p2, p3) = −8πt

ω1

∫ ∞
−∞

dt′

ω2
Im

{∫
d3k

(2π)3

1

2ωk

p
[µ
1 ε

ν](p2, p3, k)

p3 · k + iε
e
−ik·

(
p
µ
1 t

ω1
−
p
µ
2 t
′

ω2

)}
,

(5.33)
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where IA is evaluated in appendix B.3, with the result that

IA(p1, p2, p3) =
p

[µ
1 ε

ν] (p1, p2, p3)

τ12

m2
2 p31 − p12p23

ε2(p1, p2, p3)
. (5.34)

Similarly, the IB contribution from Bµ is given by −IA|1↔2. Together, these two contri-
butions combine into [10]

IA + IB =
n[µεν] (p1, p2, p3)

ε2(p1, p2, p3)
− εµν(p1, p2)

τ12
. (5.35)

And so the relevant piece of the angular momentum commutator is

[
Mµν
A +Mµν

B , RFK
]

=
∑
l<m

qlm

∫∫
Dl paDm pb

{
n[µεν] (pa, pb, n)

ε2(pa, pb, n)
− εµν(pa, pb)

τab

}
.

(5.36)

5.3.2. 1
2

[[
Mµν
EM , RFK

]
, RFK

]
This commutator is given by

1
2

[[
Mµν
EM , RFK

]
, RFK

]
=

1

2

∫
d3xx[µ

{[
F 0
α, RFK

] [
Fα|ν], RFK

]
+
(
F ↔ F̃

)}
(5.37)

Note that this is the only nonzero contribution, since Mµν
EM is bilinear in EM creation/an-

nihilation operators. The commutators [Fµν , RFK ]
([
F̃µν , RFK

])
has a clear physical

meaning—it is the retarded field strength (dual field strength) generated by the asymptotic
particles in the quantum state. Substituting the mode expansion (4.15) and the definition
of RFK in (4.24) and (4.20), we have

[
FµνEM , RFK

]
=
∑
l

∫
Dl p [IF,l(p)]

IF,l(p) ≡ −2i

∫ ∞
−∞

dt′ Re
{∫

d3k

(2π)3

1

2ωk

[
elk

[µpν] − glεµν (k, p)
]
e
−ik·(x− p

ωp
t′)
}
.

(5.38)

Note that the nµ dependence has dropped off, as it should for all gauge invariants like
the retarded electromagnetic field strength. The factor of 1/2 here comes from the one
in our general formula for the dressing, (4.24). We calculate this integral explicitly in
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appendix B.4, and get the retarded field strength

IF,l(p) = −m
2

4π

el x
[µpν] − gl εµν (x, p)

[(p · x)2 −m2x2]
3
2

, (5.39)

where m = p2. Similarly,

I
F̃ ,l

(p) = −m
2

4π

el ε
µν (x, p) + gl x

[µpν]

[(p · x)2 −m2x2]
3
2

. (5.40)

Substituting in (5.37) and keeping only O(elgm) terms (the O(e2
l , g

2
l ) terms vanish by

symmetry), we have

[
Mµν
EM , RFK

]
=
∑
l<m

qlm

∫∫
Dl paDm pb

[
IµνEM (pa, pb)

]
IµνEM (pa, pb) ≡

m2
am

2
bt

4π

∫
d3x

x[µεν](x, pa, pb)

[(pa · x)2 −m2
ax

2]
3
2
[
(pb · x)2 −m2

bx
2
] 3
2

. (5.41)

The integral IµνEM is also calculated explicitly in appendix B.5. The result is

IµνEM =
εµν(pa, pb)

τab
, (5.42)

and so we have[[
Mµν
EM , RFK

]
, RFK

]
=
∑
l<m

qlm

∫∫
Dl paDm pb

[
εµν(pa, pb)

τab

]
. (5.43)

Summing up the contributions (5.36) and (5.43), we arrive at

[Mµν , RFK ] +
1

2
[[Mµν , RFK ] , RFK ] =

∑
l<m

qlm

∫∫
Dl paDm pb

[
n[µεν] (pa, pb, n)

ε2(pa, pb, n)

]
,

(5.44)

and so {
[Mµν , RFK ] +

1

2
[[Mµν , RFK ] , RFK ]

}
|p1, . . . , pf 〉 = −Φµν

LG |p1, . . . , pf 〉 . (5.45)

Gathering this contribution and the one from ∆Φµν
FK , we finally arrive at (5.7) as required.

This completes our proof that the dressed states of QEMD transform with exactly the same
pairwise little group phase as the pairwise states defined in Section 3.

– 20 –



6 The Geometric Phase of Dressed-Pairwise States

In the previous sections we proved that the transformation law for pairwise multiparticle
states (3.1) coincides with the one for the dressed multiparticle states of QEMD, (4.23).
In this section we elaborate more on the geometric aspects of this correspondence. A key
element in our derivation of both the pairwise states and the dressed states was the emer-
gence of a geometric phase, or Berry phase. This shouldn’t come as a surprise, since after
all the Aharonov-Bohm phase [2] for a charge encircling a magnetic flux is a quintessential
example of a geometric phase.

To see the geometric phase for the pairwise/dressed states, consider a rotation of the
Dirac string,

nµ(τ) = exp [τω]µν n
ν
0 , (6.1)

where τ parametrizes the amount of rotation. As the Dirac string rotates, we have

|p1, . . . , pf⟫n(τ+δτ) = e−
iδτ
2
ωµνΦµνLG |p1, . . . , pf⟫n(τ) , (6.2)

where Φµν
LG is given in (3.14). Consequently

d

dτ
|p1, . . . , pf⟫ = − i

2
ωµνΦµν

LG |p1, . . . , pf⟫ . (6.3)

The geometric phase of the system is then given by [4]

γBerry = i

∫ 2π

0
dτ ⟪p1, . . . , pf |

d

dτ
|p1, . . . , pf⟫ =

ωµν
2

∫ 2π

0
dτ Φµν

LG

=
∑
l<m

qlm

∫ 2π

0
dτ

τlm n
µ(τ)ωµνε

ν [pl, pm, n(τ)]

ε2 [pl, pm, n(τ)]

=
∑
l<m

qlm

∫ 2π

0
dτ

τlm n
µ
0ωµνε

ν [pl(τ), pm(τ), n0]

ε2 [pl(τ), pm(τ), n0]

(6.4)

where pi(τ) = exp [−τω]µν p
ν
i . Straightforward integration gives

γBerry = ±2π
∑
l<m

qlm . (6.5)

We see that the system indeed has a geometric phase related to a rotation of the Dirac string,
or conversely an inverse rotation of the momenta. To reproduce Dirac quantization, note
that a geometric phase of 2nπ means that our multiparticle state is bosonic, while a phase
of (2n + 1)π means that our state is fermionic. Demanding that the overall multiparticle
state is either a boson or a fermion, we get Dirac quantization, qlm = n/2. Interestingly, the
geometric phase is independent of the direction of the string even if Dirac quantization does
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not hold; instead, Dirac quantization emerges from our rejection of fractional statistics.
Lastly, we comment on the difference between the usual Aharonov-Bohm argument

for Dirac quantization and our geometric phase argument. In the standard argument, the
charge is taken in a closed orbit around the string and picks up an Aharonov-Bohm phase
proportional to the string’s magnetic flux, γAB = 4πq. The demand that the string is not
observable leads to half-integer Dirac quantization, which guarantees that γAB ∼ 0 (mod
2π). In contrast, our geometric phase is string independent, and so it is allowed to be
nontrivial, i.e. γBerry ∼ π, if

∑
q is a half-integer. In this case the overall spin-statistics of

our dressed/pairwise state is flipped. In [16, 18–22]. it was shown that this is completely
consistent with the spin-statistics theorem. Here we provided a complete quantum field
theoretic derivation of this fact, and also explained its origin in the soft photons exchanged
between the charge and the monopole.

7 Conclusions

In this paper we have unified many disparate concepts in the definition of quantum mul-
tiparticle states of charges and monopoles. In particular, we proved that the pairwise
multiparticle states, previously defined using group theory alone, coincide with the soft-
photon dressed states of QEMD. To show this, we explicitly evaluated the action of the
Noether generator Mµν for Lorentz transformations on the dressed states of QEMD, and
showed that they transform with exactly the same phase as predicted by the pairwise little
group for pairwise states.

As a byproduct of our work, we’ve shown that the O(eg) contribution to the soft-
photon phase ΦFK is finite and has a geometric interpretation as a dihedral angle between
two 3-planes in 4D. Moreover, ΦFK plays a key role in setting the Lorentz transformation
properties of QEMD dressed states. This is in contrast with ΦFK in QED which is log
divergent but is usually ignored, and which has no associated little group phase.

In the last part of the paper, we showed how the pairwise little group phase of the
pairwise/dressed states leads to a geometric phase when the Dirac string undergoes a full 2π

rotation. This phase is independent of the string direction and equal to half of the familiar
Aharonov-Bohm phase associated with encircling the Dirac string. Requiring the geometric
phase to be a multiple of π leads to half-integer quantization of qij = (eigj − ejgi)/4π.
Remarkably, for

∑
qij half-integer, the geometric phase is π, and so the overall pairwise /

dressed state acquires opposite spin-statistics. A dressed state of one scalar monopole and
one scalar charge with half integer

∑
qij , for example, transforms as a fermion due to the

photon coherent state sourced by the two mutually non-local charges. This effect, which
has been previously discussed in the background-monopole limit, is now demonstrated for
the first time in a complete QFT setting.

Finally, we wish to comment on two interesting future directions. The first is a general-
ization to mutually non-local charged objects in different dimensions—for example p-branes
and d − p − 4 branes in d dimensions. In particular, in 3D the monopole becomes an in-
stanton connected to a string. The world line of a charge has a linking number with the
string from the monopole/instanton, and we can get Dirac quantization. Repeating the
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calculation of the pairwise and geometric phases in this paper in a 3D setup, we expect to
reproduce fractional statistics for anyons in 3D. Another future direction in 4D is to study
the interplay of our QEMD dressing with the subleading soft photon theorem and with the
subleading asymptotic Ward identity in QEMD. Our conjecture is that these would directly
generalize to QEMD by the replacement Mµν

QED →Mµν
QEMD.
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A Cancellation of Redundant Integrals

By (5.20) we have

∆I11 = pµ1Jµ

J µ ≡
∫

d4k

(2π)4

kµ

(k2 + iε)(p2 · k + iε)(p3 · k + iε)(p4 · k + iε)
. (A.1)

By Lorentz invariance, we can cast J µ in the form

J µ = C2 p
µ
2 + C3 p

µ
3 + C4 p

µ
4 , (A.2)

where  I34

I24

I23

 =

 p2 · J
p3 · J
p4 · J

 =

m2
2 p23 p24

p23 m
2
3 p34

p24 p34 m
2
4


C2

C3

C4

 , (A.3)

and so C2

C3

C4

 =

m2
2 p23 p24

p23 m
2
3 p34

p24 p34 m
2
4


−1  I34

I24

I23

 . (A.4)
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Substituting (A.2) in (A.1), we have

∆I11 = C2 p12 + C3 p31 + C4 p14

= (p12, p31, p14)

m2
2 p23 p24

p23 m
2
3 p34

p24 p34 m
2
4


−1  I34

I24

I23


= −f12I34 + f31I24 + f24I31

f11
. (A.5)

A similar expression holds for ∆I22.

B Miscellaneous Integrals

B.1 ∆I∗∗

The integral ∆I∗∗ is given by

∆I∗∗ = −iε̄
∫

d4k

(2π)2

δ (p1 · k) δ (p2 · k)

(p3 · k + iε)(p4 · k + iε)
. (B.1)

We can calculate this integral more easily by choosing a particular reference frame and then
uplifting the result to a fully covariant expression. For our purposes, we can choose to work
in the (1, 2) COM frame so that p1 = (E1, pẑ) and p2 = (E2,−pẑ). In this frame we can
easily fix kt and kz by integrating over the delta functions. We have

∆I∗∗ = i
ε̄

p (E1 + E2)

∫
d2k

(2π)2

1

(~p3 · ~k + iε)(~p4 · ~k + iε)

= i(px3p
y
4 − p

y
3p
x
4)

∫
d2k

(2π)2

1

(~p3 · ~k + iε)(~p4 · ~k + iε)
, (B.2)

where ~p3,4 =
(
px3,4, p

y
3,4

)
. The second equality here stems from ε̄ = p (E1+E2)(px3p

y
4−p

y
3p
x
4).

Using Schwinger parameters, we have

∆I∗∗ = i(px3p
y
4 − p

y
3p
x
4)

∫ ∞
0

dα3

∫ ∞
0

dα4

∫
d2k

(2π)2
ei
~k·(α3~p3+α4~p4)

= i(px3p
y
4 − p

y
3p
x
4)

∫ ∞
0

dα3

∫ ∞
0

dα4 δ
(2) [α3~p3 + α4~p4] . (B.3)

Changing variables as ~z = α3~p3 + α4~p4, we have

∆I∗∗ = i

∫∫
A
δ(2) (~z) , (B.4)

Where A = {~z |~z = α3~p3 + α4~p4, 0 ≤ α3, 0 ≤ α4}. Clearly, the integral over the delta func-
tion picks us the part of the 2D plane spanned by linear combinations of ~p3 and ~p4 with

– 24 –



positive coefficients, and so

∆I∗∗ =
i

2π
arccos

(
~p3 · ~p4

|~p3||~p4|

)
. (B.5)

Uplifting this to a fully covariant expression, we have

∆I∗∗ =
i

2π
arccos [ε̂(p1, p2, p3) · ε̂(p1, p2, p4)] . (B.6)

B.2 G(z)

For future reference we define the 4D Green’s function

G(z) =

∫
d3k

(2π)3

1

2ωk
e−ik·z . (B.7)

By the residue theorem, we have

G(z) = lim
µ→0

∫
d4k

(2π)4

i

k2 − µ2 + iε
e−ik·z , (B.8)

where we put a regulator mass that we later take to 0. Using a Schwinger parameter, we
have

G(z) = lim
µ→0

∫ ∞
0

dα

∫
d4k

(2π)4
ei(αk

2−αµ2−k·z)

= − i

16π2
lim
µ→0

∫ ∞
0

dα
1

α2
ei(

z2

4α
+αµ2)

=
1

4π2
lim
µ→0

−iµ|z|K1(iµ|z|)
z2 + iε

=
1

4π2

1

z2 + iε
. (B.9)

B.3 IA

The IA integral of section 5.3 is given by:

IA(p1, p2, p3) = −8πt

ω1

∫ ∞
−∞

dt′

ω2
Im

{∫
d3k

(2π)3

1

2ωk

p
[µ
1 ε

ν](p2, p3, k)

p3 · k + iε
e
−ik·

(
p
µ
1 t

ω1
−
p
µ
2 t
′

ω2

)}
,

(B.10)

where we again defined p3 ≡ n. Evaluating it using a Schwinger parametrization, we get

IA(p1, p2, p3) = −8πt

ω1
Im
{∫ ∞

0
dα

∫ ∞
−∞

dt′

ω2
p

[µ
1 ε

ν](p2, p3, ∂z)G(z)|z=z∗
}
, (B.11)
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where z =
pµ1 t
ω1
− pµ2 t

′

ω2
− αp3. Substituting G(z) from (B.9), we have

IA(p1, p2, p3) = − t
2

ω2
1

2 p
[µ
1 ε

ν] (p1, p2, p3)

π
Im
{∫ ∞

0
dα

∫ ∞
−∞

dt′

ω2

1

(p1t/ω1 − p2t′/ω2 − αp3)4

}

= − t
2

ω2
1

p
[µ
1 ε

ν] (p1, p2, p3) Re


∫ ∞

0
dα

m2
2[

((p1t/ω1 − αp3) · p2)2 −m2
2(p1t/ω1 − αp3)2

] 3
2


=
p

[µ
1 ε

ν] (p1, p2, p3)

τ12

m2
2 p31 − p12p23

ε2(p1, p2, p3)
. (B.12)

B.4 IF,l

The IF,l integral of section 5.3 is given by

IF,l(p) = −2i

∫ ∞
−∞

dt′ Re
{∫

d3k

(2π)3

1

2ωk

[
elk

[µpν] − glεµν (k, p)
]
e
−ik·(x− p

ωp
t′)
}
.(B.13)

We can present IF,l(p) in the form

IF,l(p) = −2i

∫ ∞
−∞

dt′ Re
{
el I

[µ
F (p)pν] − gl εµν (IF (p), p)

}
IµF (p) ≡

∫
d3k

(2π)3

kµ

2ωk
e
−ik·(x− p

ωp
t′)

= i
∂

∂xµ
G

(
x− p

ωp
t′
)
. (B.14)

Substituting G(z) from (B.9), we have

IF,l(p) = − i

2π2

∫ ∞
−∞

dt′

ωp

el x
[µpν] − gl εµν (x, p)(
x− p

ωp
t′
)4 = −m

2

4π

el x
[µpν] − gl εµν (x, p)

[(p · x)2 −m2x2]
3
2

.

(B.15)

B.5 IµνEM
The IµνEM integral of section 5.3 is given by

IµνEM (pa, pb) =
m2
am

2
bt

4π

∫
d3x

x[µεν](x, pa, pb)

[(pa · x)2 −m2
ax

2]
3
2
[
(pb · x)2 −m2

bx
2
] 3
2

. (B.16)

To calculate it, we note that its antisymmetry means that it is spanned by p
[µ
1 p

ν]
2 and

εµν(p1, p2). We can check explicitly that its contraction with the former vanishes, and so
it is only proportional to the latter. Projecting along εµν(p1, p2), we can relate IµνEM to a
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scalar integral as

IµνEM = − IEM
εαβ(pa, pb) εαβ(pa, pb)

εµν(pa, pb) =
IEM
2τ2
ab

εµν(pa, pb)

IEM ≡ −εαβ(pa, pb) IαβEM =
2m2

am
2
bt

4π

∫
d3x
−x2τ2

ab + 2(x · pa)(x · pb)pab −m2
a(x · pb)2 −m2

b(x · pa)2

[(pa · x)2 −m2
ax

2]
3
2
[
(pb · x)2 −m2

bx
2
] 3
2

.

(B.17)

To calculate IµνEM , we first change variables as x = (t, t~y) and arrive at

IEM =
2m2

am
2
b

4π
×∫

d3y
(|~y|2 − 1)τ2

ab + 2(ωa − ~y · ~pa)(ωb − ~y · ~pb)pab −m2
a(ωb − ~y · ~pb)2 −m2

b(ωa − ~y · ~pb)2

[(ωa − ~y · ~pa)2 −m2
a(1− |~y|2)]

3
2
[
(ωb − ~y · ~pb)2 −m2

b(1− |~y|2)
] 3
2

.

(B.18)

Since this is a scalar integral, we calculate it in a particular reference frame, and then “uplift"
the result to its unique covariant form. This frame is the COM frame with −~pb = ~pa = pẑ,
ωi =

√
p2 +m2

i . Using cylindrical coordinates for the integral, we have

IEM = m2
am

2
bτ

2
ab

∫ ∞
−∞

dz

∫ ∞
0

dr
r3

[m2
ar

2 + (ωaz − p)2]
3
2
[
m2
br

2 + (ωbz + p)2
] 3
2

= 2τab ,

(B.19)

and so

IµνEM =
εµν(pa, pb)

τab
. (B.20)
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