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ABSTRACT: We present a novel construction for a Higgs-VEV sensitive (HVS) operator, which
can be used as a trigger operator in cosmic selection models for the electroweak hierarchy
problem. Our operator does not contain any degrees of freedom charged under the SM gauge
symmetries, leading to reduced tuning in the resulting models. Our construction is based
on the extension of a two Higgs doublet model (2HDM) with a softly broken approximate
global Dg symmetry (the symmetry group of a square). A cosmic crunching model based on
our extended Higgs sector has only a percent level tuning corresponding to the usual little
hierarchy problem. In large regions of parameter space the 2HDM is naturally pushed towards
the alignment limit. A complete model requires the introduction of fermionic top partners
to ensure the approximate Dg symmetry in the fermion sector. We also show that the same
extended Higgs sector can be used for a novel implementation of the seesaw mechanism of
neutrino masses.
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1 Introduction

Since the discovery of the 125 GeV Higgs ten years ago, all of its measured properties have
been consistent with the Standard Model (SM). Yet, there are several theoretical and ex-

perimental motivations for considering models of new physics with extended Higgs sectors.

These motivations include, among others, the Higgs naturalness problem (a.k.a. the hierarchy

problem) and the explanation of neutrino masses.



Traditional approaches to the hierarchy problem use symmetries to protect the mass
of the Higgs (for example, weak-scale supersymmetry), and typically predict new colored
states around the TeV scale. Consequently, these models face pressure from the lack of
discovery of beyond the SM particles at the LHC. This has motivated the development of
new paradigms for addressing Higgs naturalness; in particular, a number of cosmological
approaches to the hierarchy problem have been proposed in recent years [1-10]. In these
models the quadratically divergent corrections to the Higgs mass are unsuppressed. Instead
some novel dynamics selects a small Higgs vacuum expectation value (VEV) in the early
universe.

A generic feature of cosmological naturalness models is the presence of a “trigger oper-
ator”, an operator which is sensitive to the Higgs VEV [9]. The trigger operator couples to
new physics, and induces (or “triggers”) a cosmological event, such as a phase transition, pre-
venting large Higgs VEVs. Common trigger operators in the literature include |H|?, tr GG
(where G is the gluon field strength), and in the context of the two Higgs doublet model
(2HDM), ! ®,.

The presence of an operator that acquires a VEV which is sensitive to the Higgs VEV in
some useful way is not unique to cosmological naturalness models. Another example occurs
in neutrino physics, in particular the type II seesaw mechanism. Here a new scalar field A
is introduced to the SM which couples to the left-handed leptons as Z°AL, and is therefore
charged under the SM gauge group. The scalar potential of this model has a term HAH,
which makes A sensitive to the Higgs VEV: (A) ~ (|H|?)/ma. The mass of A is assumed to
be much larger than the electroweak scale, which means that the VEV of A is also suppressed
relative to the Higgs VEV, and this feature is what accounts for the small neutrino mass.

Let us refer to this broad class of operators as Higgs VEV-sensitive (HVS) operators.
The HVS operators introduced above have one thing in common: they are composed of fields
charged under the SM gauge group. In certain situations this is undesirable. For example,
in Ref. [7], the choice of the |H|? trigger leads to electroweak gauge boson partners; some
degree of fine-tuning is then required to push the mass of these states up to the TeV scale to
avoid experimental bounds. Furthermore, this dependence on the SM gauge group limits the
application of such operators, due to the often-strong constraint of gauge invariance.

The aim of this paper is to build a trigger/HVS operator entirely of SM singlets which
nevertheless tracks the Higgs VEV. Our construction will be based on a 2HDM with additional
discrete symmetries. The key role will be played by the finite group Dg, corresponding to the
symmetries of a square (hence the title Higgs squared). This will allow us to introduce the
SM singlet field B, which will be the trigger/HVS operator that we are after. We will show
that B acquires a VEV of the form (B) o viv2/A where v1,v9 are the VEVs of the two Higgs
doublets and A is the UV cutoff, while having a mass of O(A). The Dg symmetry serves two
purposes in our model: i) it forbids terms in the scalar potential which would prevent the
sensitivity of (B) to the Higgs VEVs and ii) if not explicitly broken and vy, vy # 0, it leads
to v? = v3 = v?/2. In combination this will allow us to cap the Higgs VEV v? = v? + v3
by imposing an external (cosmological) constraint on the VEV of B, our trigger operator.



Note that [11] also considered a similar finite symmetry in the context of a 2HDM in order to
address ii) and obtain a partially natural 2HDM. Our model is distinguished by the presence
of the B scalar which allows us to extend the partial to full naturalness.

The Dg symmetry has some interesting phenomenological consequences. Foremost it
requires fermionic partners for the SM fermions in order to construct Dg-invariant Yukawa
couplings. However, an exact Dg symmetry would predict degenerate Higgs bosons and
fermionic partners degenerate with the SM fermions. Thus we allow the Dg symmetry to
be softly broken by vector-like masses of the fermionic partners and a small difference in the
Higgs mass parameters p? = mél — méQ < A. Experimental constraints force the fermionic
partners to be heavier than O(TeV) (see Section 4.3) which introduces the little hierarchy
into our model, corresponding to a percent-level tuning.

At low energies the phenomenology of our model is that of a 2HDM with 2 CP-even
Higgses, one CP-odd Higgs and one charged Higgs — all except one CP-even Higgs having
electroweak-scale masses — with the addition of TeV-scale fermionic partners. In particular
the low-energy phenomenology is insensitive to the mechanism that ensures a small B VEV.
However, the selection of a small B VEV forces us into particular corners of the 2HDM
parameter space which naturally splits into two regions, characterized by the mass of the
non-SM-like CP-even Higgs. In the first region, the CP-even Higgs is much lighter than the
SM-like Higgs, with a mass as small as O(100 MeV). This light Higgs is long-lived, and its
phenomenology is similar to a scalar that mixes weakly with the SM Higgs. Interestingly, in
this regime the 2HDM is naturally pushed toward the so-called “alignment limit”, in which the
two CP-even Higgses align “parallel” and “perpendicular” to the direction of the electroweak
VEV. Any phenomenologically viable 2HDM needs to be close to the alignment limit and our
model achieves this naturally in this region. For other examples in the literature of naturally
aligned 2HDMs, see Refs. [11-15].

In the second region of parameter space, the second CP-even Higgs has a mass of the
same order as the SM-like Higgs, and it may be the heavier or the lighter of the two. The
phenomenology is essentially that of a generic 2HDM in this regime. The electroweak scale is
natural, but the alignment limit is not, such that some amount of tuning is required to reach
the proximity of the alignment limit.

The paper is organized as follows. We start in Section 2 with a high-level overview
of how our setup solves the hierarchy problem. We also discuss an explicit realization of a
cosmological selection mechanism of a small B VEV, based on a modification of the crunching
mechanism previously employed to address fine-tuning problems in Refs. [7, 16]. Following this
qualitative overview we properly introduce our 2HDM extended by the B scalar in Section 3
and demonstrate that its VEV scales as (B) ~ v?/A. This sets the stage for the exploration
of its phenomenology in Section 4. In Section 5 we outline a second application of our
mechanism: generating small neutrino masses through a modification of the type II seesaw
mechanism. We introduce a complex scalar field A with a mass of order A. The symmetries
of our model forbid a dimension-4 interaction of A to left-handed leptons but allow for a
dimension-5 one involving B. The B scalar leads to a suppression of the neutrino mass and



allows A to be as low as 10® GeV, in contrast to the A ~ 10'* GeV typical of seesaw models.

2 Overview

In this section we give an overview of our model in the context of the hierarchy problem.
As we will explain in Section 5, the model can be used for neutrino physics as well. At the
heart of our model is a SM singlet, real scalar field B. We will assume that a mechanism
auxiliary to our model constrains the VEV of B to lie in a finite range, 0 < |(B)| < Beit,
where Bt may be exponentially smaller than the cutoff of the theory without fine-tuning.
We will shortly discuss one possible such mechanism which adapts the crunching dynamics
introduced in Ref. [7].

In order to communicate the low scale Bt to the SM and use it to solve the hierarchy
problem, we want B to track the Higgs VEV in such a way that the 0 < |(B)| < Berit regime
corresponds to Higgs VEVs of order TeV or smaller. This can be achieved through a trilinear
coupling of B and two Higgs fields, schematically H H B, if in addition the tadpole term B is
suppressed or absent. There are two simple ways to do this: either we interpret B as a pNGB,
which would require its potential to be suppressed by the spurion that breaks the Goldstone
symmetry, or we introduce some symmetry which forbids the tadpole term altogether. We
follow the latter route. However, this route is infeasible with only one Higgs doublet, since a
coupling of B to H'H would require B to be a singlet under all symmetries, while coupling
B to HH is not possible if B is an SM gauge group singlet. To overcome this we will consider
a 2HDM with two Higgses ®; and ®.

By introducing a Zo symmetry under which B and one of the Higgs doublets ®5 are odd
we can allow the term

cpeAB(®] Dy + L), (2.1)

while forbidding the tadpole term of B. To see how this helps us, consider the quadratic
terms of the Higgses and B,

V D e A2 (@10 + 1dy) + 12 (01 d) — Bl dy) + cpA?B2. (2.2)

We will assume that the parameter cg is cosmologically scanned, and that cp is positive. In
a 2HDM to solve the hierarchy problem both Higgs VEVs must be <« A. Further, in order for
B to have a non-zero VEV, they must both be non-zero. If 1?2 is of order A? then these two
conditions cannot be satisfied simultaneously. In order to achieve u? < A? we need another
symmetry that has Zy as a subgroup and allows ¢y, cpa,cp but forbids p?, such that u? is
a small, technically natural explicit breaking of this symmetry. The simplest choice is to use
a Dg nonabelian discrete symmetry, the symmetry group of a square. The same symmetry
was studied in the absence of B and in the context of the hierarchy problem in [11].

The VEV of B takes the schematic form (B) ~ vjva/A. As explained we assume that
the hidden sector constrains the size of the VEV of B. If v; ~ vy ~ v (where v? = v} + v3)



this directly constrains the VEV of the Higgses, which will then naturally be much smaller
than A (case 1). If however, v < vy (say), the constraint on (B) does not directly relate
to a bound on v2. But Eq. (2.2) shows that v3/v} ~ (cyA? — p?)/(cyA® + p?), assuming
v1, v # 0. This tells us that v9 < vy can only occur if ¢y ~ [LQ/AQ. Thus in this case, we are
pushed to a value of the Higgs VEV of v? ~ u? which is again much smaller than A (case 2).
Therefore, both of these cases solve the hierarchy problem. We summarize them as

tanf ~ 1,0 <A (case 1), tanff > 1,v~p (case 2) (2.3)

where tan 5 = vy /v;.

To understand when each case occurs in our model, first note there exists a single mini-
mum of our scalar potential with (B) # 0 and consequently also vi, vy # 0. There is a critical
point where vy, (B) = 0, which occurs at a characteristic value of the Higgs mass parameter
CHO ~ u?/A%. Tt is convenient to define a dimensionless parameter r, which is linear in cg
and vanishes at the critical point:

_ o no, (2.4)
CH,0
The VEV (B) is roughly related to r as
4
p
(B)? ~ Vi (2.5)

Note that (B)? increases monotonically with r and vanishes when r = 0. We will show that
the Higgs VEVs scale as

2
v? ~ (1 47), tanfB~ = 41 (2.6)
r

From Eq. (2.6), we see that v? also increases monotonically with 7. Therefore B is sensitive
to the Higgs VEV. As we approach the critical point » — 0, v ~ p? and v; — 0.

Specifically, when r < 1 (equivalently |(B)| < u?/A), we have vy > v1 and v? ~ p?. This
corresponds to our second case that solves the hierarchy problem in Eq. (2.3). Further away
from the critical point, for » > 1, we have tan 8 ~ 1 and v? ~ p?r. As long as r < A%/p? it
follows that v? < A2, corresponding to the first case in Eq. (2.3).

For this mechanism to work it is critical that the Dg symmetry is only softly broken.
This forces us to introduce fermionic partners for the SM fermions to construct Dg invariant
Yukawa couplings. We softly break the Dg symmetry in the fermion sector through TeV
scale vector-like mass terms for the fermionic partners. We further assume that p?, the
soft-breaking parameter in the scalar potential, is loop suppressed compared to the vector-
like mass terms of the fermionic partners. Thus to prevent a radiatively unstable hierarchy
between the two soft-breaking parameters the fermionic partner mass and p?, whose natural
value is a loop factor below the fermion partner mass, we concentrate on the region r < 1 for
which this tuning is minimized.

The upshot is that we solve the hierarchy problem when r < 1, corresponding to [(B)| <
u?/A. We obtain a naturally small electroweak scale of order . After electroweak symmetry
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Figure 1. An illustration of how our physical quantities change in the different r regions. The x-axes
start at the point corresponding to r = 0, and the dashed lines give the rough scale of the parameters
at a fixed r. The left panel shows quantities of mass dimension 1. The right panel shows quantities of
mass dimension 0.

breaking, we will have five physical scalar fields. The one associated with B sits roughly at
the UV scale A. The others comprise the usual 2HDM fields: two CP-even Higgses which we
denote s and h (contrary to normal 2HDM convention), a CP-odd Higgs A, and a charged
Higgs H*. Their masses are

m? ~ ,uzra m}%a m%{ivm% ~ Mg(l + 7"). (27)

The mass of h sits at the same scale as v. Thus we can interpret it as the SM-like Higgs. In the
region r < 1, the mass of s is generically much smaller than the EW scale and its couplings
to the SM (proportional to the alignment parameter sin(8 — «)) are suppressed, leading to
interesting phenomenology. The scaling of the model parameters with r is summarized in
Figure 1.

2.1 The hidden sector

To solve the hierarchy problem some hidden sector dynamics must select a small VEV for B.
One way to do this, although certainly not the only way, is through the crunching mechanism
introduced in Ref. [7]. We briefly describe the mechanism here; a self-contained, more detailed
description is provided in Appendix B. The way in which one obtains a small (B) does not
affect the phenomenology we discuss in Section 4.

We postulate a multiverse of causally disconnected patches wherein a scanning sector sets
the Higgs mass-squared parameter, cp, and thereby r and (B), in each patch, up to some
cutoff scale. We introduce a spontaneously broken conformal sector that couples to the scalar
singlet operator B2, which now justifiably can be called a “trigger operator”. In the 5D dual
description of the conformal field theory (CFT), this means B propagates in the AdS bulk,



while the remaining SM fields are localized on the UV brane. The interaction between B and
the dilaton (the Goldstone boson of spontaneously broken scale invariance) causes each patch
to rapidly undergo a cosmological crunch unless the VEV of B lies in a finite range,

0 < By < [(B)| < Barit. (2.8)

Essentially, the dilaton potential is sensitive to (B). A value of (B) larger than B triggers
a phase transition in the dilaton, leading to a vacuum with a large negative cosmological
constant which causes a crunch. The only cosmologically long-lived patches are those where
(B) lies inside this range. Thanks to the conformal symmetry, we can naturally have B, <
A. The crunching sector also generates (for example, through the addition of a bulk confining
gauge group) a minimal VEV By such that patches where |(B)| < By crunch, removing small
or vanishing Higgs VEVs from the landscape. An explicit form for the dilaton potential is
given in Apppendix B.

Because B is an SM singlet, our model does not suffer from the phenomenological draw-
backs of Ref. [7] — namely, electroweak-scale Kaluza—Klein partners of the electroweak gauge
bosons, resulting in a little hierarchy and an ©(10~#-102) tuning in the crunching sector.
We do not have Kaluza—Klein modes of any SM fields, and thus no little hierarchy nor tuning
in the crunching sector. In addition, the phenomenology of our model is very different from
Ref. [7]. Our main experimental signatures are those of a 2HDM, rather than a GeV-scale
dilaton like in Ref. [7].

We emphasize again that a different mechanism could be used to select a small B VEV.
Moreover, the 2HDM phenomenology is totally independent of the crunching mechanism.

3 The Model
With the above motivation in mind, let us now construct the full model.

3.1 The scalar potential

The model is based on a 2HDM with a Zs symmetry. We have two complex scalar fields ®1,
and @, carrying the Higgs representation, (1,2); /2, of SU(3) x SU(2) x U(1). We take 1 to
be even and ®2 to be odd under the Z; symmetery. In addition, we introduce a real scalar
field B which is a singlet under the SM gauge group, and is odd under Zy. On top of the Zs
symmetry we include a CP symmetry under which ®; — ®7, and B — B.

The most general scalar potential invariant under the full symmetry is given by

V(®1, D2, B) = Vg(P1, P2) + Vp(B) + Vaop(P1, P2, B). (3.1)



§ | Symbol Type SM-rep | Dg irrep | Zo X Zo irrep
3.1 o Complex scalar | (1,2);/; r9 Oy~ (—,+)
Py~ (+,-)
3.1 B Real scalar (1,1)o r__ (=, —)
35| @3 LH Weyl (3,2)1/6 T4t (+,+)
35| Ty RH Weyl (3,1)y/3 T Tig~ (—,+)
tr ~ (+,-)
35| Tr LH Weyl (3,1)2y3 | T4+ (+,+)
5 L LH Weyl (1,2)_12 Tyt (+,+)
5 A Complex scalar | (1,3); T4 (—,—)

Table 1. A summary of the fields introduced to our model and its applications. The fields below the
double horizontal lines are of relevance to the neutrino model in Section 5 only, and can otherwise be
ignored.

where
V! e A2 i 2! i Loatan? o 1y aha 2
@(‘I’la ‘DQ) =cpgA (‘I)1(I)1 + (I)zq)2) +p ((I)1(I)1 - (I)Q(I)?) + 5)‘1((1)1@1) + 5)\2(@2(1)2)

1
+ N (B121) (DhPa) + Ny(@] Do) (BY01) + S N5(B]82)” + (Bh21)T)  (3.2)

1 1
Vp(B) = 5cBA232 + ZABB‘l (3.3)
Vop(®1, 02, B) = cppAB(®®y + ®I®)) + A\ B0 ®) 4+ \ypB>01®, (3.4)

and all parameters are real. We assume that all mass scales which are not protected by sym-
metries (see Section 3.2) are of the same order as the UV cutoff A with order-one coefficients
¢i. The reason for the primes in Eq. (3.2) will become apparent in Section 3.3.

3.2 Technical naturalness and accidental symmetries

When p = 0, ] = )\, and A\jp = A\ap the scalar potential has an enhanced Dg symmetry.
This makes it technically natural to have u < A.

The group Dsg is one of the lowest-order nonabelian groups and corresponds to the sym-
metry group of a square. This order-8 group is generated by a 90° rotation a and reflection
x along the horizontal axis. Put formally, it has the presentation

2

Dg = (z,a | a* = 22 = zaza = e), (3.5)

Note that in the 2HDM literature the group Dsg is often replaced with a Zy x Z» symmetry, and the
representation r2 of Dg with a projective representation of Zs x Za; see e.g. [17].



Irrep a T {e,a?,x,a’x} = Zy x Zy decomp.|{e,x} = Zy decomp.

T | 1 +1 (+,+) +
r—4| -1 +1 (+,+) +
e (=) -
r__ -1 -1 (—,—) -

z (ﬁ’ _01> (3 _°1> (+,5)® (=, 4) et

Table 2. The irreducible representations of Dg, and their decompositions under relevant subgroups.

where e is the identity. The first condition tells us that four 90° rotations is equal to the
identity, the second that two reflections is equal to the identity, and the last that a 90° rotation
followed by a reflection, repeated twice, is equal to the identity. Since Dg is non-abelian it
has at least one irrep which is not one-dimensional. In fact it has exactly one, which is
two-dimensional. All of the irreps of Dg are summarized in Table 2.

In the Dg symmetric limit of the scalar potential the two Higgs doublets ®; and ®5 can
be combined into the 2D irrep ro, while B sits in the 1D irrep we denote r__. Here the
subscript “——" tells us the representation of a and x, respectively.

The Zy symmetry group of our model corresponds to the sugbroup of Dg consisting of
reflections {e, x}. However, looking at the potential in Eqgs. (3.1)—(3.4) one can easily deduce
that it is strictly invariant under the larger subgroup of Dg generated by reflection and 180°
rotation (e.g. a?z and z). This subgroup is isomorphic to Zy x Zy, with ®; transforming in
the (—,+) irrep, @9 transforming in the (+, —) irrep and B transforming in the (—, —) irrep.

In the following we will assume that our model possesses this approximate Dg symmetry
which is only softly broken in the fermion sector through TeV scale vector-like masses for
fermionic partners of the SM fermions which we introduce in Section 3.5. This breaking is
communicated to the scalar sector via loops of SM fermions and their partners, with the
dominant contribution originating from the top quark. Thus p? is generated radiatively and
neglecting O(1) numbers it is therefore naturally of the size

s ViMZ oA

~ log —— :
o T 08 (3.6)

where y; is the top Yukawa coupling and My is the bare vector-like mass parameter for the
top partner. The phenomenological requirement that pu? < thM% /(167%) introduces a little
hierarchy into our model. See Section 4.4 for a discussion about the required tuning.

3.3 Minimizing the potential

In this section we want to study the analytic minimization of the scalar potential. To do
this, we will make some generic assumptions about the model parameters which we give
in Appendix A. Among others these include conditions to ensure the boundedness of the



potential and stability of minima with (B) # 0 and (B) < A, which will be our focus in
the following. Via the assumptions made in Appendix A, such a minimum is also CP- and
charge-conserving. The symmetry of our model allows us to rotate the Higgs VEVs into the
form

v 0 v 0
(®1) = 7 (cosﬁ) s (®g) = 7 (sinﬁ) : (3.7)

Given this alone, it is not possible to find the minima of V analytically. Thus we note that
when (B) < A and when A\p — A\op is small (due to the approximate Dg symmetry), then V'
can be approximated by the same potential with A\p =0 and A\ip = Aop =: AoB.

Even after this approximation is made, the minima cannot be found analytically. On
solving the minimization equations, we can write (B) as a complicated function of the form

(B)? = f(v}, A, 1, cBa, ey Ni, ABa)- (3.8)

Although complicated, f can be shown to have two useful properties which together allow us
to call B2 a HVS operator:

1. It increases monotonically in v? when all other inputs are fixed.

2. At (B) = 0 we have v ~ p.

The first result is in part due to our generic assumptions in Appendix A . The second result
can be explained by the fact that when (B) is zero, the 2HDM must be in the inert phase,
meaning the VEV lies in just one of ®; or ®5. Since the only generic thing distinguishing
these Higgses in the potential is 12, this occurs at cg ~ pu?/A? and thus v? ~ p2.

A function 2% = f(y?) which increases monotonically as 3? increases, and which is zero
at y? ~ c for some c, has the property that being in a region close enough to x = 0 implies
that 2 ~ c. Applying this to our function above tells us that (B) close to zero implies
y? ~ p? < A?. If we assume that |(B)| < u, then it is appropriate to neglect A\;p and \op
entirely, whilst keeping the quadratic terms in ®. 'We will at this point also set \] = X, =: .
The quantity \] — A} is expected to receive radiative corrections logarithmic in the ratio of
the top to top partner mass (which we will shortly introduce) [11]. A detailed analysis shows
that setting \] = A, does not change the qualitative features of our model. Full expressions
for quantities found in the following when A| # A, are given in Appendix A. Let us denote
by V the potential with Az, A1, A2 = 0 and A = M.

Finding the minima of V is analytically possible since we can use the minimization
condition for B to replace it with

B=-5%(3l, + ala)). (3.9)
CBA
On substituting this into V, we get a potential Vo (®1, P2) of the same form as Vi (P1, ®2),
except with quartic coefficients \; instead of \;, which are related to each other by

2
C
N=X A=X;, Ms=N5— CLB‘P (3.10)

,10,



In what follows we will use the notation Asy5 := A3+ Ag + A5 and g5 := Mg + As.

The potential Vg (Pq,P2) is simply that of a general 2HDM with a specific Zy x Zy
symmetry, so we can use standard results to study it (see e.g. [18, 19] and references therein).
Recall we are interested in minima of the potential for which both v, v # 0 and consequently
also (B) # 0. There is one such minimum for our potential, with Higgs VEVs as given in
Eq. (3.7). This exists for ¢y < ¢y with

A+ Azas /ﬁ

= . 3.11

At the critical point, i.e. for cg = cpp, it holds that (B) = v; = 0. For the following
discussion it is convenient to introduce a dimensionless parameter r, which is linear in cy

CH — CH,0
r=—".

3.12
— (3.12)

The condition ¢y < cp,p for the existence of the phase translates into r» > 0, since cg o < 0.
Expressing the Higgs VEVs in terms of r yields

’U2 .
2 A= Aaas
2
tan® g = S+l (3.14)

(1+4r), (3.13)

(recall tan 5 = va/v1). Using Eq. (3.9) we can find an explicit expression for the VEV of B

A _ 2cpe 3

To remake a connection to the hierarchy problem, we observe that both v? and |(B)]
increase monotonically with r and for » — 0 (i.e. close to the critical point) the VEV
(B) — 0. This fact will be used to cosmologically ensure that we sit near the critical point,
where as can be seen from Eq. (3.13) v? ~ p2(1+r) , and in particular v? ~ p? in the case
when r < 1.

3.4 Mass eigenstates and spectrum

To study the physical scalar sector in full generality, we should ideally return to studying
V. However, since we are interested in the region where cy < 1 we can integrate B out.
This returns us to the potential Vg which we arrived at above through algebraic means. By
studying Vs instead of V' we miss the presence of a physical particle primarily made up of
(B — (B)) whose mass is dominated by cp, as well as small corrections to the masses of the
other physical particles.

Studying Vg has the advantage that practically all the hard work has been done for us; we
summarize the results here (see e.g. [19]). The 8 complex components in ®; and ®o get split
into two CP-even real scalar singlet fields h and s (where we define ms < my,), one CP-odd

— 11 —



real scalar singlet field A, one charged complex scalar H*, and three Goldstone bosons which
are eaten by the gauge sector. The masses of the scalars are given by

m% = =502, (3.16)
1
mis = —§A45u2, (3.17)
2
M s 2) 2\ \/ )‘%45
= 14+7)E ——4/ 1+ 25221 +72). 3.18
©? A — Asa5 ( ) A — A3a5 A2 ( ) (3.18)

The CP-even Higgses h and s will, in general, be misaligned compared to the fields ¢
and ®5. As is tradition for the 2HDM, we do not actually measure the misalignment relative
to @1 and ®5, but relative to the fields in the Higgs basis H; and Ho, defined through the

relation
Hy\ [ cosB sinf Py
(Hg) o (— sin 3 cosﬁ) (@2) ' (3.19)

This basis is chosen so that all the VEV sits in Hy, that is (Hz) = 0. Writing H; = (H;", HY)”,
the physical Higgses h and s (in the usual 2HDM parlance these are respectively called H
and h) will be a linear combination of v/2ReH} — v and v/2ReHY. We define the angle 8 — «

such that
h\  [cos(B—a) —sin(8—a)\ [V2ReH) —v (3.20)
s]  \sin(B—a) cos(B—a) V2ReHY |’ '
where we choose (5 — ) such that cos(8 — a) > 0, which fixes uniquely the definitions of h
and s. If cos(8 — a) =1 the VEV and h directions align, whilst if | sin(5 — «)| = 1 the VEV

aligns with the s direction. The full expression for sin(8 — «) is obtainable, however we just
report it here to leading order in r (around r = 0):

sin(f — ) = —A_AA?"“’\/? +0 (r?’/?) : (3.21)

3.5 The fermion sector

In the following we construct a fermion sector in which the Dg symmetry is only softly broken
by fermion mass terms, at the expense of explicitly breaking the symmetry down to Zs (see
the discussion at the end of Section 3.2). We restrict our discussion to the top sector, reducing
the mention of the other fermions to the broad statement that they follow analogously.

In order to construct Dg-invariant Yukawa couplings we have to embed the RH top quark
into 7y, i.e. we introduce a partner for the RH top quark with identical quantum numbers
under the SM gauge group to obtain a full Dg doublet Tx ~ ro, with Tp = (Tl r,tr)T.? Using
this we can write down the Dg-invariant term

EDs D) _yt@?,&)TR +h.c. = _ytagi)lTlR — %@3‘1)251% + h.c. s (322)

2A tilde over a fermionic field variable marks it as a bare, i.e. non mass-eigenstate field.
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where <i>i = 109®P*. To raise the mass of the non-SM component we introduce a left-handed
field Ty, ~ 74, which can be viewed as a vector-like partner to T; z. This allows for the
Dg-breaking but {1, x}-preserving term

LpgD —MT?LTHR + h.c. (3.23)

There are no other terms we can add in the fermionic sector which are consistent with the
Zs symmetry.
After electroweak symmetry breaking, the mass terms for the top sector can be written

as
~ = ytisinﬁ ytLCOSﬁ TlR
(7 TL)( 0 M. ) (m) 320

ignoring a small amount of mixing between this sector and the first and second generations.
After diagonalizing the mass matrix this reduces to

LD _thLtR — mTTLTR (325)

where t7, T, tr and T denote the corresponding eigenvectors, and the mass eigenvalues are
given by

1 2,,2 2,,2 2,,2
miy = M2 |1+ g;\; Fol+ (yt ) + 9% cos28 |, (3.26)
T

which at leading order in y;v /M7 reduces to

2,2 2,2 2,2
2 _ YtvT .2 Yrv 2 _ pr2 Yrv
my = =5 —sin B+O<M%>’ mT—MT+(’)<M%>. (3.27)

That is, for y;v/Mjz < 1 the phenomenology of the top quark is essentially identical to the
one of a type-I 2HDM.

4 Phenomenology

At low energies < A the heavy trigger field B can be integrated out and the model is mapped
onto a CP-conserving 2HDM, with potential Vg as defined above. The low-energy phe-
nomenology of the scalar sector is therefore completely determined by the six free parameters
{eg A%, 1%, A, A3, M1, A5} of the 2HDM scalar potential.

The only imprint of the heavy B at low energies is the value of the Higgs mass parameter
cy through the allowed range of r values. We discard the region with r > 1, since that
would require y < v < My (because v? ~ p?(1+ r)) instead of p ~ v < Mgz, where
the second inequality is needed to ensure that the top partners evade current experimental
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bounds. That would again introduce a radiatively unstable large hierarchy, now between the
two soft breaking parameters p and M+, and therefore would not provide a solution to the
hierarchy problem.

When varying from r < 1 to r ~ O(1) one interpolates from a 2HDM which is arbitrarily
close to an inert 2HDM (i2HDM), and therefore naturally in the alignment limit, to a generic
2HDM with a natural electroweak scale. For this reason we will discuss the r <« 1 and
r ~ O(1) regions separately in the following.

Before discussing the 2HDM phenomenology in detail let us give a short overview of the
main features of the two different regions of parameter space.

e r < 1: This region, which we will discuss in detail in Section 4.2, is characterized by a

2

2 ~rm3. At the same time we are automatically

very light CP-even Higgs with mass m
in the alignment limit with |sin(8 — «)| < 1 and also tan 5 > 1, such that couplings of
s, A, H* to SM fermions and sV'V couplings are strongly suppressed, while couplings
of the heavy CP-even mass eigenstate h, which we identify with the SM Higgs boson,
are SM-like. Due to tan 8 > 1 the phenomenology in this region is similar to that of an
i2HDM, with the difference that s is only long-lived, but not stable, and therefore does
not constitute a viable dark matter candidate. The strongest constraints in this region
originate from searches for invisible Higgs decays or Higgs signal strength measurements
since h — ss, AA, H"H~ decays are unsupressed if they are kinematically accessible.
Thus the prediction my < my, /2 pushes us unavoidably into a slightly fine-tuned region
of parameter space where |\345| < |Ag5| in order to suppress h — ss decays, which are

mediated by the coupling As4s.

e r ~ O(1) : In this region the model is a generic 2HDM with a natural electroweak scale.
We are not automatically pushed into the alignment limit and thus a certain amount
of tuning among the parameters in the scalar potential is necessary to obtain SM-like
couplings for the CP-even mass eigenstate that we identify with the SM Higgs. The
SM-like Higgs can be either the lighter or heavier mass eigenstate in this scenario. Since
the phenomenology of the model in this region of parameter space is identical to the
one of a completely generic 2HDM we do not discuss it in detail but refer the interested
reader to Refs. [18-20].

Another phenomenologically interesting feature of the model are the vector-like fermions
which are needed to construct Dg invariant Yukawa couplings, as discussed in Section 3.5. In
Section 4.3 we estimate current bounds on their masses.

4.1 Theoretical constraints and electroweak precision tests

Let us start the exploration of the model’s phenomenology by collecting theoretical and
experimental bounds which are independent of the value of r.

Some regions of parameter space do not lead to a theoretically consistent model. In order
for the potential to be bounded from below the quartics of the scalar potential have to satisfy
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(see e.g. [18])
A>0, A3>-—), )\3+)\4—‘)\5‘>—)\. (4.1)

Note that these bounds are automatically satisfied for any set of parameters in the full theory
for which the potential in Eq. (3.1) is bounded from below. However, in this section it is more
convenient to work completely in the EFT and impose these bounds on the EFT parameters.

We also restrict the size of the quartic couplings to avoid low-scale Landau poles. This is
done by solving numerically the RG equations for the A; [18] from the electroweak scale, taken
to be the Z mass Mz, up to some larger scale Apandau, assuming that the main contribution
comes from mixing among the scalar quartics. If the sum of squared quartics exceeds 104, i.e.
> )\?(ALandaU) > 10*, which roughly corresponds to the strong coupling limit \; > (47)2,
we assume that at least one of the couplings has hit a Landau pole at the scale Afandau O
below and exclude the corresponding set of parameters. We have checked that the resulting
exclusion contours depend only weakly on the exact value of the threshold used in the Landau
pole bound. These bounds are typically stronger than tree-level perturbative unitarity bounds
on the couplings.

Another set of bounds which are relevant to all regions of interest are electroweak precision
tests in the form of the oblique S,T and U parameters [21]. The T parameter especially
receives considerable contributions when there is a large mass splitting between the charged
and uncharged Higgses. We compute the oblique corrections following [22] and cross-check
our results with the publicly available code 2HDMC [23]. We constrain our parameter space
by requiring that the contributions to S,7" and U do not deviate by more than 2¢ from the
PDG values [24]

1 092 —0.80
S=-001+010, T=003+012, U=002+011, p=| 092 1 -093],
—0.80 —0.93 1
(4.2)
where p is the correlation matrix. This is achieved by evaluating

Xery =X V7 x, (4.3)

with the covariance matrix V corresponding to p and x = (S — S,T-1T,U— U)T, and
demanding that X?S'TU < 8.03, corresponding to deviation of at most 20.

Note that electroweak fits which include a recent measurement of the W mass by the CDF
collaboration at the Tevatron [25] prefer larger values of the S and T' parameter (see e.g. [26]).
However, since the reported value is considerably higher than in previous measurements at
the Tevatron and LEP [27], ATLAS [28] and LHCD [29] and is in serious tension with the SM
prediction, we take a conservative approach and compute bounds based on the PDG values
as outlined above.
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4.2 r < 1: alignment region

In the limit » — 0 we arrive at an i2HDM which is characterized by SM-like Higgs couplings
and an unbroken Zy parity under which all BSM Higgses, i.e. {s, H + A}, and fermion partners
are odd and all SM particles even. Thus all couplings with an odd number of BSM Higgses
are suppressed by at least v1/v ~ /r (cf. Eq. (3.14)). In addition the mass of the lighter
CP-even scalar mg is much less than the one of the heavier, SM-like Higgs; in particular
m?2/ m%l ~ r. As such the phenomenology splits into two essentially disconnected parts, the
first focusing on s — for which the heavy scalars are irrelevant — and the second on the
CP-odd and charged Higgses A and H*. In the study of A and H* the light Higgs scalar
can effectively be taken as massless.

The phenomenology related to the light Higgs scalar s: There are broadly two
classes of experimental bounds on s. The first class of experimental probes is related to
unsurpressed trilinear Higgs couplings containing s, and their effect on Higgs precision data.
The second consists of statements relating to the interaction of s with fermions, which can
be experimentally probed in flavor precision measurements. Let us start by exploring the
trilinear couplings.

Neglecting terms suppressed by r, the only trilinear coupling of s to the other Higgses is

1
—5)\345vs2h. (4.4)

This puts strong constraints on A345 since the decay h — ss is always kinematically accessible
in the r < 1 region. Depending on the lifetime of s it either decays within the detector
and modifies the Higgs signal strength or escapes the detector and contributes to the invisible
Higgs width. Current global Higgs signal strength measurements are 1.06+0.07 at ATLAS [30]
and 1.02709% at CMS [31], whereas the invisible Higgs width is constrained to be BR(h —
inv) < 0.15 at 95% CL at ATLAS [32] and BR(h — inv) < 0.18 at CMS [33]. All of these
give approximately the same bound

35| < 0.01. (4.5)

Thus in general |A345] < |45/, which corresponds to a tuning since Asg5 = 0 does not lead
to an enhanced symmetry. Conversely, we do not have to tune the parameters to reach the
alignment limit, which is automatic in this region of parameter space. We will comment more
on the tuning in Section 4.4.

In order to determine the experimental signals that s will give, it is important to keep
in mind that its linear couplings to the SM are suppressed by powers of mg/my. This
suppression is strong enough such that s is long-lived in a large region of parameter space.
The phenomenologically relevant couplings are of the form

2 2 2 B 2 2
Ly Cays ( S ”?Zﬁ) ~ Cogg LSS+ Cos T IESHTHT - (46)
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with

M CoSQ  A3q5 Mg A\ Mg

Csyy = si —a) ~— , Csr = — ~——, Cpgs=|1——)—, (4.7
vy =sin(8—a) — i sin 8 X mp H* ( )\45> — (4.7)

where we assumed that |Asz45] < A and omitted the previously discussed ssh coupling in
Eq. (4.4) and the coupling to the top partners. At energies E ~ mgy < v it is convenient to
work with an effective Lagrangian in which the top quark, its partner, the W- and Z-boson
and the heavy Higgses are integrated out [34]

mf r CSS]S] Qs S q a puv CS’Y’Y Qem S v
Leg = ——F -G* G*H -0 _F,, F* 4.8
eff v sffsff + 1270 v MW + o0 v nv ) ( )
with . .
Csgg = Cors s Csyy = Qi Ciste — ZCsvv - ECSHi ) (4.9)

where Q; = 2/3 is the charge of the top quark. The Wilson coefficients Cy49 and C, receive
one-loop contributions when integrating out the top and its partner as well as the electrically
charged Higgs and W-boson.? Note that Eq. (4.8) is essentially the low-energy Lagrangian of
a real scalar mixing with the Higgs through a small mixing angle Csry ~ my/mj, < 1. This
is similar to the phenomenology of the crunching dilaton model [7], which features a light
scalar, the dilaton, weakly mixing with the Higgs. The principal difference is that the dilaton
of Ref. [7] has an additional tree-level coupling to the photon.

Using this Lagrangian we can determine the lifetime of s, which we show as a function of
its mass my in the left panel of Figure 2. Hadronic final state contributions for m,; < 2 GeV
are taken from [37]. The left panel of Figure 2 shows that the light Higgs is indeed long-lived
over a large mass range. This is due to the mgs/mj; < 1 suppression of the couplings to the
SM and the small Yukawa couplings to the kinematically accessible final states. Note that
decays to photons only give a subleading contribution to the decay width over the entire mass
range shown in the plot.

With the lifetime at hand, we can now study experimental probes of the light Higgs.
These are mainly sensitive to the coupling to SM fermions. Thus, it is pertinent to study the
Csrf vs. m, parameter space. At low masses (ms S 5 GeV) the light Higgs affects meson
decays and thus the strongest constraints come from flavor precision measurements. Also
note that s is long-lived in the lower mass region (see left panel of Figure 2) and therefore
it causes displaced decay vertices or escapes the detector without decaying and shows up as
missing energy.

In the right panel of Figure 2 we collect all bounds on the scalar-fermion coupling. How-
ever, note that we only show the tightest constraints with subleading constraints being avail-
able in [37, 38]. The blue lines show the model prediction for the scalar-fermion coupling |Cy |
with [Ag45] = 1072,1073,107* as a function of the mass my for r in the range 1077 <r<107!

3Note that Csgy and Cs,~ are insensitive to parameters of the top partner. This is a well-known phenomenon
in the Composite Higgs literature and can be traced back to the fact that our model allows for only one invariant
that generates the top mass [35, 36].
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Figure 2. Left: proper lifetime contour along 10~7 < r < 107! of the light CP-even Higgs s for
various values of A345. The decay widths into hadronic final states are taken from [37]. Right: bounds
on the light CP-even Higgs in the |Cs¢f|-my, plane. The blue lines show the same contours as in the
left panel, where we vary 1077 < r < 107! and fix A and 2 such that we reproduce m;, = 125 GeV
and v = 246 GeV. For an overview of the bounds and their origin see the main text.

and A, p? fixed such that we reproduce mj, = 125 GeV and v = 246 GeV. We now give a
detailed account of all the individual bounds that entered the figure:

e LEP: LEP searches for neutral Higgs bosons in the ete™ — Z*h channel with hadronic
Z decays (orange band) [39] are sensitive to light scalars. At masses ms 2 5 GeV they

~

are the strongest constraint on our model.

e B decays: The strongest bounds from B decays originate from searches for displaced
B — hptp~ decays at LHCb (green band) [40, 41]. The bound shown in Figure 2 is
adapted from [37].

e Kaon decays: Below the muon threshold my; < 2m, searches for rare Kaon decays
are most sensitive to our scenario. Note that in this region because of its long lifetime
s usually escapes the detector before decaying and shows up as missing energy. The
bounds originate from K — 7 + X searches with invisible X measured by the NA62
collaboration (red band) [42—44] and the E949 collaboration (silver band) [45]. We also
show recasts of the CHARM beam dump experiment (gray band) [46] adapted from [38]
and of PS191 (cyan band) [47).

e Astrophysical bounds: There are also astrophysical and cosmological constraints.
The extraordinary success of BBN in predicting the abundances of light elements con-
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strains the lifetime of the light scalar. In order not to spoil the well-established predic-
tions, s decays cannot inject a considerable amount of energy during BBN. Requiring
that the s abundance decays before BBN occurs puts a bound on its lifetime of roughly
7 < 1s. The exact BBN bound (purple band) we show depends on the decay channels
and is taken from [48]. There are also bounds from supernova cooling [49-51] which are
subleading to BBN bounds in the region of parameter space we are interested in.

e Future sensitivity: FASER 2 (black line) [52], MATHUSLA (yellow line) [53, 54] and
SHiP (magenta line) [55] will be able to probe a large region of parameter space for
ms > 2m,. However, there is no current or planned experiment which will close the
gap between NA62 and the BBN bound. This would require to improve the sensitivity
on BR(K*t — 7n%h) from BR(K* — 7th) ~ 107! currently reached by the NA62
collaboration for my, < 2m,, down to BR(K+ — 7h) ~ 10713 [38].

The phenomenology related to H* and A:  Let us now turn to bounds on the charged
and pseudoscalar Higgses H* and A. In the r < 1 regime their phenomenology is to a good
approximation completely determined by {45, A5} or equivalently their masses {mp+,ma}.
This is the case since we can effectively take ms/my, sin(3—a),tan™! 8 ~ 0, and my,, v fixed to
their SM values. Under these assumptions one retains an approximate Zo symmetry (which
is exact when r = 0) under which ®; and the fermion partners are odd. This symmetry
strongly suppresses couplings with an odd number of BSM Higgses {s, H, A} and makes
the phenomenology for A and HT practically identical to that of an i2HDM. Thus, in the
following we will assume that s is stable and invisible in collider searches. We collect all
constraints in the mg+-m4 plane in Figure 3.

e EWPT: We show constraints from electroweak precision observables (red bands) and
from requiring that there is no Landau pole in the scalar quartics below 10 TeV (gray
band, 103,10 TeV as dashed gray lines), following the strategy we explained in Sec-
tion 4.1. The strong bounds from EWPT are mainly driven by large contributions to
the T parameter which prefers mq ~ mgx«.

e W/Z width: Strong constraints also originate from the unsuppressed
W*HFs WHHTA, ZsA, ZHtH~ couplings which modify the well-measured W
and Z decay widths [58-61] if these decays are kinematically accessible. In order to
avoid these constraints one has to require

mp +mg+ > my, ma+mgs >my, mp+ma>myz, 2mpge >myg, (4.10)

which for the current setup approximately translates into ma4 > myz and my+ > my
and is shown in Figure 3 (green band).

e LEP: Ref. [56] performed a reinterpretation of LEP-II limits for neutralino production
in terms of the i2HDM and found a limit of

ma > 100 GeV (4.11)
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Figure 3. Experimental constraints on the charged and pseudoscalar Higgs masses in the r < 1
regime for my,, sin(3 — ), tan™! 8 ~ 0 and A345 = 0.01 fixed to its maximal allowed value. The white
region shows the allowed parameter space. In red we show the 20 bounds from electroweak precision
tests as discussed in Section 4.1. The region shaded in gray corresponds to parameter values which
develop a Landau pole in the scalar quartics below 10 TeV. For reference we also show as dashed lines
how far this region would extend in order to prevent a Landau pole below a scale of 103, 10% TeV. The
green region is excluded by W and Z width measurements which forbid unsuppressed W+ — H*h
and Z — hA decays. The cyan and purple shaded regions are bounds from recast LEP-II limits for
neutralino production [56] and LHC dilepton searches [57], respectively.

for ma — mg > 8 GeV, which we show in Figure 3 (cyan band).

LEP-I1 is also sensitive to charged Higgs pair production e™e™ — HT™H~ which results

in a bound of
mg+ > 70 GeV (4.12)

which was found in a recast of LEP bounds on charginos in [62]. This constraint does
not show up on our plot, however.

e LHC: An even stronger bound on my4 than Eq. (4.11), which we show in Figure 3
(purple band), is obtained from a recast of dilepton searches at LHC run 1 [57] which

results in
my > 130 — 140 GeV (4.13)

for ms ~ 0, where the exact bound weakly depends on mg+. To our knowledge there
is no updated analysis with run 2 data. A simple rescaling of the bound shows that it
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could improve up to m4 > 170 GeV for approximately massless s. However, in order
to set a robust bound a dedicated analysis is needed.

As can be seen from Figure 3 the allowed parameter space in the r < 1 regime comprises
exotic Higgses in the mass range 130 GeV < my, my+ < 270 GeV with a small mass splitting.

4.3 Fermion partners

As discussed in Section 3.5, to have a consistent theory with small u, the fermionic sector
requires partner fermions. The top partners are phenomenologically most relevant, and what
we shall discuss here.

The prominent top partner decay channels are through WTb, Zt, ht, H"t, At,st. We
first estimate the branching ratios of these decays and then use them to find experimental
constraints on mp from top partner pair production.

Top partner decay channels: When the mass of the top partner myp is much greater
than the W mass, the Goldstone boson equivalence theorem allows its branching ratios to
be found from its couplings to the Higgs scalars and the SM top. To leading order in the
(assumed small) quantity m;/mq these couplings are given by

\/imt 7
v

LD bL [(G_ + COtﬁH_)tR — (H_ — COtﬂG_)TR] — mTTLTR

(4.14)

my — CoS & sin o

——ttLTR ——h — — s+iA—ic0tﬁG0 + h.c.
v sin 8 sin 8

where G* and G° are the Goldstone bosons which are eaten by W and Z, respectively.

Working close to the alignment limit* cos(8 — ) = 1, the corresponding decay branching

ratios of T" are approximately given by

1
BR(T ) =2BR(T = Zt) = 2BR(T = ht) = ———— 4.1

R(T = W) = 2BR(T - Z6) =2BR(T > ht) = 3o, (1415)

BR(T — H*b) = 2BR(T — At) —2BR(T—>st)—M (4.16)
N N 24 2tan?B’ ’

where the first line are the standard decay channels of a SU(2), singlet vector-like quark and
the second line collects all decays into exotic Higgses.

The main production channel for the top partner at hadron colliders is through QCD
pair production, thus we focus on bounds on the top partners arising from this.” Further,
since the decay signature of the top partners strongly depends on tan 5 and the properties of
the light Higgs s we discuss the » < 1 and r ~ O(1) region separately.

4Note that cos(8 — a) &~ 1 corresponds to the alignment limit when the heavier CP-even mass eigenstate is
identified with the SM-like Higgs boson.
SNote that the cross-section for single production via vector boson exchange is always suppressed by cot? 3.
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r <1 : Since in this region tan/ > 1, T almost exclusively decays into HTb, At, or st.
This can be understood with the help of the approximate Zy symmetry of the Higgs sector
for r < 1 under which the BSM Higgses are odd. The Z; is also a symmetry of the Yukawa
couplings in Eq. (3.22) under which T is odd. Thus only decays of T" into BSM Higgses are
unsupressed and the scalar s, as the lightest Zs-odd particle, will be at the end of the decay
chain.

In addition s is typically long-lived, which will result in displaced decay vertices or the
light Higgs escaping the detector completely. In the following we will assume that s escapes
the detector and shows up as missing energy. This is an excellent approximation for ms < 0.3
GeV. In this scenario the signature strongly resembles that of stop pair production pp — flf{
with subsequent decay either directly into the lightest neutralino #; — tx{ or via charginos
t, — bf(f — bW TXY, where s plays the role of the neutralino. As the topology of these
processes is similar to pp — TT with either T — ts or T — bHT — bW s, we perform a
crude estimate for the bound on the top partner masses by taking into account the different
production cross-sections for colored fermions and scalars as well as the branching ratios in
our model. However, note that this is only an order of magnitude estimate as the shapes of
kinematic distributions are affected by the top partners being fermions rather than scalars;
a dedicated analysis would be required to obtain a robust bound. The currently strongest
bounds on stop pair production are set by a combination of CMS searches at a center of mass
energy of 13 TeV and integrated luminosity of 137 fb~! [63].

In the pp — (f1 — tx9)(f} — £x}*) channel with a massless neutralino a bound of m;, >
1325 GeV at 95% CL is quoted, assuming branching ratios of 1. We can convert this into a
bound on the top partner mass my by equating the stop production cross-section associated

to the stop mass o 1325 GeV) with the cross-section for top partner production in the

ppﬁ\f’{ i1 (
corresponding channel, i.e. we have to solve

BR(T = t5)? 0, 7p(mr) = 0,, 527, (1325 GeV). (4.17)

We compute o, ,pr(mr) using HATHOR [64] and extract the stop production cross-section
from [65]. Solving the above equation for my yields the bound

my > 1310 GeV. (4.18)

The pp — (£ — bWH))(# — bW~ x0*) channel, on the other hand, yields a bound
of mz > 1260 GeV at 95% CL on the stop mass, again assuming a massless neutralino and
branching ratios of 1. Analogously to the first channel we can convert this to a bound on mqp
by solving

BR(T — bH")?BR(HY — Ws)? 0, pr(mr) = 0,, 727, (1260 GeV). (4.19)
On the assumption that BR(HT — W™s) = 1, this gives a lower bound of
mr > 1360 GeV (4.20)

which is slightly stronger than the bound in Eq. (4.18).
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r ~O(1): In this regime the light Higgs is generically heavier ms 22 1 GeV and no longer
long-lived on detector timescales. Additionally the cot 8 suppression is less severe and some
of the typical top partner decay channels, such as T — th, T — bW™, T — tZ, open
up. However, for tan8 > 1 the fraction of these “typical” top partner decays compared
to all decays is at most 50% and generally considerably smaller. The currently strongest
bounds on SU(2); singlet top partners are set by a combined analysis performed by the
ATLAS collaboration on 36.1 fb~! of data collected at a center of mass energy of 13 TeV [66].
This analysis finds a limit of mp > 1300 GeV at 95% CL if one assumes that BR(T —
th,bW™*,tZ) = 1. Adjusting this constraint by a naive rescaling of the top partner production
cross-section by BR(T — th,bW™,tZ)? < 1/4, this yields a bound of mr > 1 TeV for the
largest possible branching ratio, i.e. BR(T — th,bW™,tZ) = 1/2. A more accurate bound
would require a dedicated study which takes into account the decays into exotic Higgs states
and is beyond the scope of the present work.

4.4 Tuning

Even though our model is able to explain a large hierarchy between the electroweak scale
and the cutoff of the theory, some residual tuning is nevertheless required to comply with
experimental observations. This tuning has two major sources which independently arise in
the scalar and in the fermion sector. While the tuning in the scalar sector mainly originates
from the requirement of having a SM-like Higgs boson, the tuning in the fermion sector is
due to the little hierarchy M7 > |u| ~ mp, which is forced on us by the nonobservation
of top partners at the LHC. The top partners are required to make the Yukawa couplings
Dy invariant, i.e. the top partners cancel the quadratically divergent contribution of the top
quark to u?. Note that we share this little hierarchy with other solutions of the hierarchy
problem which have colored fermion partners in their spectrum. Let us also stress that we
do not require gauge partners as the gauge couplings automatically respect the Dg symmetry
by construction. In the following we will give a qualitative overview of the required tuning.

Tuning in the scalar sector: Depending on the region of parameter space, the tuning
in the scalar sector is typically dominated by either reaching the vicinity of the alignment
limit or by suppressing Higgs decays into the light scalar s. In the following we give a short
overview of both sources of tuning.

e Reaching the alignment limit: We have two experimental indications that our
2HDM should be close to the alignment limit, in which sin(8—a) = 0 and the heavy CP-
even Higgs couplings are SM-like. The first is current LHC measurements of the Higgs
couplings which can deviate from their SM values by roughly 10% [30, 31], indicating
that |sin(f — )] < 0.1. The second is fits within the 2HDM which prefer a smaller
deviation from the alignment limit corresponding to |sin(f — a))| < 0.03 [20]. Thus, we
must be near the alignment limit.

The vicinity of the alignment limit is reached in different ways in the r <« 1 and
r ~ O(1) regions. In the r <« 1 region we automatically have |sin(8 — a)| < 1.
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However, some amount of tuning is required when r ~ O(1) as this region of parameter
space corresponds to a generic 2HDM. The amount of tuning which is necessary in
such a scenario has been studied in detail in [67]. They find that the tuning scales
as (|sin(3 — )| tan 8)~! and thus to get |sin(8 — )| ~ 0.01-0.1 we need a tuning of
approximately 1%-10%.5

e Suppressing Higgs decays: There is an additional source of tuning in the scalar
sector when my < my,/2 since the decay of the SM-like Higgs into the light CP-even
mass eigenstate, h — ss, is kinematically allowed. This decay is mediated by the Asys
coupling and is therefore not suppressed by a small mixing angle, sin(8 — «), or by
1/tan 8. In the r < 1 regime, where the decay is always kinematically allowed, to
avoid large contributions to the Higgs signal strength or to the Higgs invisible width we
require that |As45] < [M\45]. Due to the lower bound on the mass of H* (see Section 4.2)
the minimal amount of tuning is given by [ssl < 1 807 Note that this source of tuning

[Aas| ~
disappears when mg > my,/2 which is typically the case for r ~ O(1).

In summary the tuning in the scalar sector is of the order of 1%-10% for both regions of r.
For r < 1 the tuning is dominated by the requirement that [A345| < [A45| to suppress h — ss
decays, whereas for r ~ O(1) the tuning is needed to reach the vicinity of the alignment limit.

Tuning in the fermion sector: We now estimate the amount of tuning that is required to
push the top partner mass up to the TeV scale (see Section 4.3). Due to the explicit breaking
of the Dg symmetry by the bare top partner mass M=, one-loop corrections to the mass
coefficients of @I@l and <I>J£<I>2 are not symmetric and thus give a logarithmically divergent
contribution to p2. The combined effect of top and top partner loops give a contribution of
o NeyiMZ oA
op” = ———5—log )
My

- (4.21)

where A is the cutoff of the theory. The other fermionic partners contribute to §u?, however
since the contribution only depends on the product of Yukawa coupling and fermion partner
mass, e.g. Mgz, the fermionic partners for lighter quarks or leptons with y; < 3; can be
naturally heavier without introducing additional tuning. For this reason we assume that the
tuning in the fermion sector is dominated by the leading top partner contribution.

In both the r < 1 and r ~ O(1) regions, p is generically of the order of the SM-like
Higgs mass my. In fact, up to small O(\345) corrections in the r < 1 region we find that
uw=mp/2 =625 GeV. In the r ~ O(1) region pu and my/2 can be separated by an O(1)
factor. The important point for the tuning is that u ~ my is significantly smaller than the
radiative corrections in Eq. (4.21) from TeV-scale top partners. Thus we require a cancellation
with a tree-level contribution such that p? = p2.. + ou?. We quantify the required tuning

In particular, they use the Barbieri-Giudice definition of tuning. This quantifies the logarithmic variation

dlog Q2
dlog6;

of a quantity  with respect to its input parameters ;. The tuning is given by AQ) := max ‘
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between the contributions as

2 2 2
W 9 “ 1 TeV 5
— =3.6-10""" — 4.22
dp? <125 GeV) < M z)’ (422)
where A/M+ = 10%. TeV-scale top partners therefore require around a percent-level tuning.

5 Neutrino masses

A key feature of our model is the presence of the SM-singlet field B which obtains a VEV
much smaller than the EW scale. This can be used in applications beyond the solution of
the hierarchy problem. In particular, it can be used to suppress, but not remove, terms with
particular symmetries. An example of where this is useful is neutrino physics, where the
masses of the neutrinos are small but nonvanishing. In this section we will work through this
example in detail, restricting our attention to an effective field theory.

As a first step we introduce a realization which is independent of the hierarchy problem.
The model is exactly the same as in Section 3 except, for now, we only assume that the total
symmetry group of our model is Zy, i.e. we allow Dg to be maximally broken. In this case
cy ~ p?/A? and p < A is achieved either through tuning or some other mechanism. In
particular we do not assume that the VEV of B is constrained by some cosmological selection
mechanism. Here the VEV of B must be small because the Higgs VEV is small.

As with the type II seesaw mechanism (see e.g. [68] for a review), we introduce into our
model a complex scalar field A ~ (1,3); (which we treat as a 2 x 2 symmetric matrix). We
suppose that it is odd under the Zs. Such a field does not permit a dimension-four interaction
with fermions, but does permit a dimension-five one of the form

%LT@A@LB , (5.1)

where L is the LH SM lepton doublet in the two-component Weyl convention, which is even
under the Zy and y is an O(1) Wilson coefficient. The scalar potential in Section 3 has to be
extended with additional Zs-invariant interactions including A

VA = caAN’TrA*A + ¢ _ADTA* D,
+ A4 B(®TA*®) + T A*®y) + A B(®TA*®; — DL A*Dy)
+ couplings with TrA*A + h.c.. (5.2)

Under the assumption that VA does not dramatically affect the minimization of the
potential in Section 3.3, we get a VEV in the neutral component of A which is dominated by
the c__ term and takes the form
1 w2

4CAAC,J)2 sin283 ~ ——+/r. (5.3)

(A) ~ A
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On substituting this into Eq. (5.1) together with the VEV of B we get

4
(5.4)

my ~ ET.

The upper bound on neutrino masses from Planck data is > m,, < 0.12 eV [69]. In the
standard type II seesaw model, which predicts a neutrino mass of ~ v2/A, this would require
new physics at the scale A ~ 104 GeV for v ~ 246 GeV. With p ~ %mh, the model we have
presented here can have a much lower scale of new physics: A ~ 10° GeV for r = 1, and
A ~ 103 GeV for r = 1076,

However, if we assume an approximate Dg symmetry which is only softly broken, and
there exists some mechanism (like our solution to the hierarchy problem above) which makes
cgr small, then the neutrino masses gain an addition suppression. This is due to the fact that
the c__ term in Eq. (5.2) and the dimension-five term in Eq. (5.1) are not Dg invariant. Thus
both y and ¢__ have to contain powers of the soft-breaking parameter. Assuming that y and
c__ scale like y,c__ ~ p/A the neutrino masses are suppressed by an additional factor of
u?/A? compared to the expression in Eq. (5.4). Note that the suppression depends on the
UV completion and instead of u also the fermion partner mass might appear. However, if we
assume this particular scaling the expected cutoff A ranges, with the same u as above, from
10* GeV at 7 =1 to 103 GeV at » = 1075, As already mentioned this explanation for small
neutrino masses can easily be combined with our solution to the hierarchy problem which for
a unified explanation of small neutrino masses and a light Higgs predicts new physics at the
TeV scale.

6 Conclusion

In this paper we presented a novel construction of a HVS operator, which can serve as a
trigger operator in models which cosmologically select a low electroweak scale. The most
compelling feature of our operator is that it is entirely made out of BSM degrees of freedom
which are uncharged under the SM gauge group. This results in a reduced tuning in the
hidden sector which cosmologically selects the electroweak scale.

Our model is based on a 2HDM extended by a real scalar field B with a softly broken
global Dg symmetry (the symmetry group of a square). Due to the approximate Dg symmetry
the VEV of the real scalar B tracks the Higgs VEV (B) o v?/mp, such that Ogys = B",
n > 11is the HVS operator with the desired properties. In order to ensure the approximate Dg
symmetry in the fermion sector we require vector-like fermionic partners for the SM fermions.

Paired with a hidden sector, such as the crunching sector of Ref. [7], which cosmologically
selects small values of the (B), our model provides a compelling solution to the hierarchy
problem. Some residual tuning of the order of 1%, however, is still required. This mainly
corresponds to the little hierarchy between the Higgs mass and the mass of the vector-like
fermion partners.

In a large part of parameter space the cosmological selection of the electroweak scale
naturally pushes the 2HDM towards the alignment limit and favors a light CP-even Higgs
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scalar s with mass ms; < my. The phenomenology of this light and weakly-coupled scalar
together with further probes of our model were thoroughly discussed in Section 4.

While there are already various models which explain the electroweak scale through
cosmological selection (see e.g. [1-10]) our model has some unique features which we want
to emphasize in the following. In contrast to previous realizations, the Higgs doublets in our
model do not couple directly to the degrees of freedom which are responsible for the selection
of the vacuum. This has the advantage that the Higgs itself neither mixes with degrees of
freedom of the hidden sector nor does it have to be part of the hidden sector. Moreover,
instead of being light and weakly-coupled the mediator between the Higgs and the hidden
sector, i.e. the B scalar in our model, is heavy and sits at the cutoff of the theory.

In this setup the cosmological selection solves only half of the hierarchy problem. The
other half of the solution is symmetry-based, for which the approximate Dg symmetry is
essential. Similarly to traditional solutions to the hierarchy problem, such as composite
Higgs or little Higgs, the symmetry-based part requires new degrees of freedom at the TeV
scale in the form of fermionic partners. However, in our model the mass scale of the fermionic
partners is not directly related to the energy scale A at which the full hierarchy problem is
solved. Thus a discovery of fermion partners would not necessarily reveal the full mechanism
behind the solution of the hierarchy problem.

The applications of our novel HVS operator are not limited to the hierarchy problem. In
Section 5 we explored the possibility to obtain an additional suppression of neutrino masses
in a variation of the type II seesaw mechanism using the smallness of the B VEV. We showed
that this allows us to lower the scale of new physics from roughly the GUT scale in the vanilla
type II seesaw to the TeV scale in our model.

It is hoped that these two applications are not the only interesting ones for our model.
It is further hoped that other ways to have SM-singlet HVS operators can be found, opening
the possibility for distinct solutions to the applications above, and others as well.
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A Details of the model

To aid in the clarity of the main text of the paper, certain specific details were excluded. This
appendix will elucidate these details.

— 27 —



We start by rewriting the equations in Section 3, in the general case of A\ # Ao, where
A1,2 = Aj 5. To do this, it is convenient to define the two parameters

A=A M s

a_1= , ag= , Al
SV ISPV "7 N = s A

which are such that
2
tan® 8 = “a_1 + ao. (A.2)
r

Here, r is defined as in Eq. (3.12) except with A replaced with Ay. The A\; = A9 limit can be
recovered by simply setting a_1,a¢9 = 1.
The generic Higgs VEV is
v2 4 2 ag
—-=—010+7r)+—Q - —)r A3
p? o Az — )\345( ) )\345( a—1) (8-3)
and the VEV of B becomes
A 2¢B& 2r agr?

2

= — . AA4
cp(A2 — Asgs) \l a—1 a2, A4

The physical parameters which are modified for A; # Ay are sin(8 — «) and my, s, which
generalize to

Ao — A
sin(8 — a) = — 22 " 3451 / 2;_1 +0 (7“3/2) , (A.5)

2
M, s 2Xo ap — a—1
= = 1+r)+ —r
©? Ao — )\345( ) a_1
29 )\345 Ao — A3q5 @9 — A1 )\345(&0 + 1) 2
+ ——4/1 2 _ 2, (A6
)\2 - )\345\/ + ( )\% + )\2 a_—1 T 2)\2a_1 " ( )

We now turn to a discussion of the implicit assumptions made throughout the paper. The
main mechanism of our model would not work, or would at least become more complicated,
if other phases existed with (B) # 0. In the region of parameter space with

CB, =\ , —)\215, )\13, )\23 > 0 (A.7)

the only phase to exist with (B) # 0 is the one described in the paper. Having cg > 0
prevents a phase existing with zero Higgs VEV. Having A1p, Aap > 0 prevents the existence
of a phase with one Higgs VEV and (B) # 0, whereas \;, \j; > 0 prevents minima which
break CP or electromagnetism.

There are natural assumptions which have to be made for the positivity of the potential.
On top of those in Eq. (A.7) we need (at least) Ap > 0. Furthermore, to ensure the existence
of our phase with r > 0 we need

A2 A E I A8
17— | Asas — . > 0. (A.8)
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There are certain conditions which guarantee that a small (B) implies small v. One set of

such conditions is given by A, — X} > 0, and the positivity of \] — 5,5 and cp(A] —N45) (N —

Las) (AL + Xy — 20%,5) — epa?(A] — Aj)2. Notice that this last condition holds automatically
if the separation of \] and M\, is small.

Let us briefly discuss the feasibility of these assumptions. As long as cp is sufficiently
larger than 202343, then the conditions on primed parameters can be approximately translated
to unprimed parameters. It can then be seen that nearly all our assumptions follow from
As45 being small (see Eq. (4.5)), and the necessary positivity conditions in Eq. (4.1), which
generalize to

ALQ >0, A3>—vAAy, A3+ — ’)\5‘ > —v/ Ao, (Ag)

B Crunching mechanism

This appendix provides a detailed description of the crunching scenario introduced in Ref. [7],
and how we can apply it to our model.

As explained in Section 2, we imagine a multiverse of causally disconnected patches
wherein a scanning sector sets the Higgs mass-squared parameter in each patch, up to some
cutoff scale A. To dynamically select a small Higgs VEV, we will introduce a spontaneously
broken conformal sector that couples to a scalar singlet “trigger” operator O. For our purposes
we will take O to have mass dimension two and to be nonnegative. The dilaton , a positive-
valued singlet scalar field corresponding to the Goldstone boson of the broken scale invariance,
mixes with the trigger operator. In the 5D dual description of the CF'T, this means the fields
which give rise to O must propagate in the AdS bulk.

The trigger operator must be sensitive to the Higgs VEV. The simplest choice is just
O = |H|?, where H here refers to the SM Higgs; this trigger was employed in Ref. [7]. As
we will shortly see, this choice leads to some undesirable phenomenology. For now we will
discuss a general trigger operator, but eventually we will choose @ = B? in our model, where
B is the scalar singlet introduced in Section 3.

We introduce dynamics such that each Hubble patch rapidly undergoes a cosmological
crunch unless the VEV of O is less than some critical value, (O) < Ogi. This is possible
because the dilaton potential is sensitive to the VEV of the trigger operator. We employ the
Goldberger—Wise mechanism [70] to generate a minimum in the dilaton potential, in which
the vacuum energy is large and negative. Any patch in which the dilaton rolls down to
this minimum will rapidly crunch. IR brane-localized interactions between O and the dilaton
generate a second, metastable minimum in the potential, and this minimum may be long-lived
on cosmological timescales. Crucially, the metastable minimum only exists for (O) < Ogit.

The result of the crunching dynamics is that the only patches of the multiverse which
survive until the present day are those in which (O) < Ogit. In these patches, the dilaton
can safely live in the metastable minimum, and the cosmological history is conventional. All
other patches roll down to the true vacuum and crunch. The value of the Higgs VEV v
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corresponding to the critical value of the trigger operator is hierarchically smaller than the
cutoff Ay, leading to what appears to be a naturalness problem.

B.1 Dilaton potential

More concretely, the dilaton potential is given by

V(x,0) = Vaw(x) + Vox(x; 0), (B.1)
where
X4+5
Vow = —rx* + RGW =5
) (B.2)
2 X2+’y+e 2X27
VOX = KQO i - HGOW - K)4O W

Here k is the inverse AdS curvature, which would be identified with the UV cutoff A of the
theory. The terms in Vgw arise from the usual Goldberger—Wise mechanism. There is the

4+9 term which corresponds to a small explicit breaking

scale-invariant quartic term and the
of scale invariance. The mixing terms in Vp, come from an IR brane-localized potential for
O. The ko and k4 terms arise respectively from brane-localized O and O? terms. When we
take O = B?, these correspond to brane-localized quadratic and quartic terms in B. The
parameter ~ is related to the bulk scaling of @: @ ~ z'77/2 Lastly, allowing terms involving a
field with an approximately marginal dimension €, such as the Goldberger—Wise scalar, yields
the k¢ term. Since we assume O has mass dimension two, these are the only renormalizable
terms allowed in the potential.

A sketch of the potential is shown in Figure 4. This illustrates the existence of a second
metastable minimum in the potential at x = Xmin, which disappears as the VEV of O is

increased beyond the critical value. One can estimate

Yonin ~ (O) ~ & (’”) " (B.3)

Re

Thus, a mild hierarchy between ko and k. can generate a large hierarchy (O), xmin < k,
thanks to the conformal symmetry.

In order to fully solve the hierarchy problem, one must also introduce a mechanism
to forbid vanishing Higgs VEVs (corresponding to positive Higgs mass-squared parameter).
There are multiple ways to accomplish this. One way is to introduce a confining gauge group
in the AdS bulk. This generates an explicit breaking of scale invariance at small , which
adds a term to the dilaton potential of the form y*A*~?, where A is the confining scale. The
effect of this term is to generate a minimum VEV Oy, such that all patches where (O) < Oy
will crunch. (We assume that (O) is small or vanishing when v = 0.)

Another option is to use self-organized localization [71] to disfavor a small or vanish-
ing Higgs VEV. In this approach, the potential of the scanning sector causes patches with
larger (O) (but still less than Ogit) to inflate more rapidly. Consequently, the multiverse is
dominated by patches in which the VEV of O is very close to Ocjt.
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Figure 4. Sketch of the dilaton potential in Eq. (B.1), adapated from Ref. [7]. When the VEV of the
trigger operator O is less than O, there is a metastable minimum at x = xmin (inset, blue curve).
The metastable minimum disappears as (O) is raised beyond O, (red and black curves), leaving only
the true vacuum, which has a large negative energy density.

B.2 Trigger operators

As stated above, the simplest choice of trigger operator is |H|?. However, this requires the
Higgs to propagate in the bulk, and therefore the electroweak gauge bosons must live in the
bulk as well. The model then includes KK modes of the W and Z, whose masses are set by
the location of the metastable minimum ymin. Experiments constrain these KK partners to
lie at the TeV scale or higher. To avoid these constraints, we must have ymin = 1 TeV, which
introduces some fine-tuning into the model.

Here we instead choose the trigger B2. Hence, B propagates in the bulk while all the
other particles lie on the UV brane. This is possible because B is an SM singlet. In order
to solve the hierarchy problem, the critical value of the B VEV at which crunching occurs,

Be.it, must obey

U2

Byt S ? & Terit ,S 1. (B4)

B.3 Phenomenology and cosmology

We now consider the possible phenomenological and cosmological ramifications of using the
crunching mechanism in our model. Since the SM particles are localized on the UV brane,
they couple very weakly to IR-localized modes. The KK modes of the B as well as the dilaton
are IR-localized, so they are essentially irrelevant for phenomenology.

The would-be zero mode of the B gets its potential partly on the UV brane and partly
on the IR brane. The UV brane-localized potential for B causes the would-be zero mode to
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get a large mass m% = 1/2cgA? ~ k? (see eq. (3.3)). Since the cutoff scale k lies far above
the electroweak scale, this mode is not observable at colliders.

Employing the crunching mechanism places cosmological constraints on the model. For
the dilaton potential to be sensitive to VEVs of order Bt < v2 /k, the Hubble scale during
inflation must be less than B.;. The corresponding bound on the scale of inflation M is

M
M; < \/TPU. (B.5)

where Mp is the reduced Planck mass.

Also, we must ensure that the total vacuum energy density in the true vacuum of the
theory is always negative, so that a cosmological crunch is triggered by the dilaton rolling
down to the global minimum of its potential. We therefore require k& > My, so that the
dilaton potential in the true vacuum, which is of order —k*, dominates over any contribution
to the vacuum energy from the inflaton sector. Combining this with the upper bound on M,
it is easy to see that k > M is always satisfied for k 2 fu2/3M113/3 ~ 10* TeV.

Assuming the universe is radiation-dominated immediately after reheating, the Hubble

1/2
H= <9*7r2> Tin (B.6)
90 Mp '

where Try is the reheating temperature. This leads to an upper bound

90 \* [Mp
<
Tri < (g*w2> \/ e (B.7)

Lastly, if a dark confining gauge group in the bulk is used to crunch away patches with

constant at reheating satisfies

(B) < By, we clearly must require By < Bgit. The dynamical scale of the gauge group A sets
the scale of By, and therefore we have

’1)2

A< . B.
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