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We present a careful study of the chiral symmetry breaking minima and the baryonic directions in
supersymmetric QCD (SU(N,.) with N flavors) perturbed by anomaly mediated supersymmetry breaking
(AMSB). For the s-confining case of Ny = N, + 1 and most of the free-magnetic phase (N, < 1.43N ) we
find that naive tree level baryonic runaways are stabilized by loop effects. Runaways are present, however,
for the upper end of the free magnetic phase (Ny 2 1.43N,) and into conformal window, signaling the
existence of incalculable minima at large field values of O(A). Nevertheless, the chiral symmetry breaking
points are locally stable, and are expected to continuously connect to the vacua of QCD for large SUSY
breaking. The case of Ny = N, requires particular care due to the inherently strongly coupled nature of the
quantum modified moduli space. Due to the incalculability of critical Kihler potential terms, the stability of
the chiral symmetry breaking point along baryonic directions cannot be determined for N, = N . With the
exception of this case, all theories to which AMSB can be applied (N; < 3N,) possess stable chiral
symmetry breaking minima, and all theories with Ny < 1.43N, (aside from Ny = N ) are protected from

runaways to incalculable minima.
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I. INTRODUCTION

One of the greatest challenges facing particle physics and
quantum field theory (QFT) is to establish the phase
structure of strongly coupled gauge theories. In particular,
that of ordinary quantum chromodynamics (QCD), corre-
sponding to the observed color confinement with chiral
symmetry breaking. While eventually we expect lattice
simulations to settle this issue, at least for nonchiral theories,
progress has been quite slow and there are very few analytic
tools at our disposal. One possible approach is to use the
exact results and phase structures of the supersymmetric
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(SUSY) versions of these theories (SQCD) worked out by
Seiberg and others in the 1990s [1-3], and to add small
SUSY breaking perturbations [4-20]. The exact mapping of
SUSY breaking perturbations from the UV theory to its IR
manifestation has been done by linking the SUSY breaking
either to holomorphic quantities [15], or to conserved and
anomalous currents [17-20]. While being successful in
mapping UV supersymmetry breaking to the IR, in many
previous attempts at studying the vacuum structure of softly
broken SQCD the eventual IR phase was incalculable due
to runaways and/or dependence on unknown Kihler terms.
For this reason, they were of limited predictivity.

A systematic study of the phases of SUSY SU(N.)
gauge theories perturbed via anomaly mediated supersym-
metry breaking (AMSB) was initiated in [21], and many
new results using this method have already been obtained.
These include novel symmetry breaking patterns for chiral
gauge theories [22-24], the description of confinement in
SO(N.) theories via monopole condensation [25], and the
phase structure of the SO(N,.) theories while varying the
number N, of matter fields in the vector representation
[26]. The result of the SO(N ) analysis was that the various
exotic SUSY phases collapse as a result of SUSY breaking,
and one is left only with the expected confining and chiral
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symmetry breaking phase. Interestingly, the analysis of the
basic SU(N,.) theories with N, flavors of quarks turns out
to be the most subtle one. A QCD-like vacuum with a chiral
symmetry breaking pattern of the form SU(Ny), x
SU(Ns)g = SU(Ny)p has been identified in [21,27]
which appears to be the global minimum for at least
Ny < N.. However, the N; > N, cases are complicated
by the appearance of baryonic directions, which in many
cases appear to cause a runaway behavior.

The aim of this paper is to carefully examine the SU(N .)
theories for N r= N, and, in particular, the fate of the
baryonic directions [28], thus establishing the phase struc-
ture of the SU(N,.) theories, when it is calculable. We will
show that for the special case of Ny = N, + 1 the potential
baryonic runaway is stabilized by a 2-loop AMSB effect,
while for Ny = N, the theory is incalculable along these
directions, and one cannot conclusively decide if the
baryonic runaways are lifted or not. The lower end N, +
Il <N;< 143N, of the free magnetic phase will again
have the baryonic runaways lifted via 2-loop AMSB, and
one ends up with stable, calculable vacuum with chiral
symmetry breaking. Such a “QCD-like” vacuum with
chiral symmetry breaking exists for any number of
flavors as long as Ny < 3N, (with the possible exception
of Ny = N, where its stability cannot be determined).

In contrast, for Ny 2 1.43N . the baryonic directions will
indeed contain runaways. We stress that these runaways do not
invalidate the theory since they are cured once the field
vacuum expectation values (VEVs) are of O(Aqcp ). Here the
IR description breaks down and one must return to the UV
description, where the theory is stabilized by AMSB. Instead,
they merely signal that the global minimum lies in the
incalculable region where field VEVs are of O(Agcp). In
addition, the QCD-like minimum will persist as a local
minimum, and one expects that as the magnitude of SUSY
breaking is increased it will indeed take over as the true
vacuum. Note also that baryonic runaway does not occurin S p
or SO gauge theories. We will discuss these cases elsewhere.

The paper is organized as follows. We first review the
AMSB mechanism and then its application to the case
Ny < N, where chiral symmetry breaking is observed. We
then successively increase the number of flavors, exhibiting
chiral symmetry breaking behavior and discussing the
baryonic directions, before concluding.

II. ANOMALY MEDIATION

Anomaly mediation of supersymmetry breaking
(AMSB) [29,30] (see also [17,31] for earlier work con-
taining some important aspects of AMSB) is parameterized
by a single spurion m that explicitly breaks supersymmetry
in two different ways. One is the tree-level contribution
based on the Kéhler potential and superpotential—which is
easily derived using the conformal compensator formalism
[32]. Tt is given by

Viee = alelj*a;kw* + m*m(@,Kg’fa;‘K - K)
+ m(aini/*a;fK —3W) +c.c. (1)

where ¢'/ is the inverse of the Kihler metric g;; = 9,07K.
For simplicity we will always take m to be real. Note
that (1) breaks the U(1), symmetry explicitly. When the
Kihler potential is canonical, this reduces to the more
familiar

ow
Viee =m <(pi @ - 3W> +c.c. (2)

1

When the superpotential does not include dimensionful
parameters, this expression identically vanishes.

In this case, there are the loop-level supersymmetry
breaking effects from the superconformal anomaly [32].
They lead to trilinear couplings, scalar masses, and gaugino
masses,

Aul) = ~3 it b rdm ()
ma k) = = g um Q)
() = =235 o )

Here, y; = p g InZ;(n), 7 =pfvi and p(g°) = pu i g

When the gauge theory is asymptotically free, m? > 0,
stabilizing the theory against runaway behavior.

Therefore, in a theory described in the UV description
by an SU(N,) gauge group and N, flavors such that
N; <3N, AMSB prepares exactly the state we are
looking for: the squarks and gauginos become massive
while the massless degrees of freedom are those of non-
SUSY QCD. By the UV insensitive nature of AMSB, the
expressions above can be reliably used in the dual (IR)
description of the theory to determine the low-energy
phase.

Here we present some expressions that will be useful
later on. Suppose we have a SU(N,) gauge theory with
gauge coupling g and a superpotential W = ATrq;M;q;,
where the g; (g;) are N flavors of (anti)quarks and M;; is a
gauge-singlet flavor-bifundamental meson. The anomalous
dimensions are

B Crg® Nf/12

7q 47 872 (6)
N2
Tm =~ 871'2 (7)

where Cr = (N2 —1)/(2N,) is the quadratic Casimir of
the dual gauge group. For the 1-loop beta functions one has
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2N bg*
plg’) = 32 (8)
PO2) = =(rm + 27,2 )

where b = 3N, — Ny.

III. Ny < N.: ADS SUPERPOTENTIAL

For completeness we quickly review here the results of
[21] for Ny < N,. The dynamics is described in terms of
the meson fields M;; with the Affleck-Dine-Seiberg (ADS)

superpotential

A3Ne=Np\ 1/(N=Ny)
) . (10)

W= (N.—-N
(Ne =Ny) ( detM
In the SUSY limit, this produces a runaway potential and

hence has no ground states. When M > A2, M ij=Mé

describes the D-flat direction

ij

M=¢* (11)

QS
Il
Q)
|

Here, Q and Q are the quark/antiquark superfields. The
upper part is an N, X N, block, while the lower part is
(N, = Ny) x Ny. Since the Kihler potential is canonical in
the variable ¢, one can use (2) to obtain

1 /AN VNN 2
V=l (P)
AIN=N\ 1/(N=N))

Note that there is now a minimum at

AN (N, + N ;) A\ NVe=Np)/Ne
s r) ) M (13)

M, = A2 (e TR
Y < 3NC _Nf m

The minimum is indeed at M > A% which justifies the
weakly coupled analysis. The SU(N ), x SU(Ny) flavor
symmetry is dynamically broken to SU(N ). The case of
nonhomogeneous values for the diagonal entries of M was
considered in [33]. There it was shown that the minimum is
indeed found at MU (¢ 511

The massless particle spectrum consists of the Nambu-
Goldstone bosons (pions) [34]. The scalar and fermion
partners of the Nambu-Goldstone bosons (NGBs) have
masses that grow with m. Naively increasing m beyond A,

the only remaining degrees of freedom are massless NGBs.
This matches the expectations of QCD with a small number
of flavors. There is no sign of a phase transition and the two
limits are likely continuously connected.

IV. Ny=N,.: QUANTUM MODIFIED CONSTRAINT

In this section we give a complete analysis of the case of
the quantum modified constraint, finding that previous
discussion requires modification.

The low-energy degrees are meson fields M;; and singlet
baryon/antibaryon fields B (B), whose moduli space is
subject to the quantum modified constraint

detM — BB = A?Ne. (14)

We first treat the general case N, > 2, and treat the case
N, = 2 separately at the end.

There are two ways to frame the theory before the
addition of AMSB. The first is to implement the constraint
in the superpotential via a Lagrange multiplier field X.
However due to the constraint (14), the fields have VEVs of
O(A). Therefore, higher order terms in the Kihler potential
are not suppressed relative to the canonical term and the
formula (2) cannot be trusted.

Instead we should perform a nonlinear analysis using the
constraint (14). For simplicity, we will use units where
A = 1. The moduli space contains two special points of
enhanced symmetry: the meson point M =1, B=B =0
with unbroken baryon number, and the baryon point
M =0, B=-B=1 with unbroken flavor symmetry.
We perform AMSB around each of these points.

A. Meson point

To satisfy the constraint at the meson point we make the
change of variables

, | 1
M= (1+BB)1/NceH:1+N—BB+H+§H2+--~ (15)

where IT is a traceless complex matrix. In what follows we
will work to quadratic order. The Kihler potential is built
out of flavor invariants, e.g., TrM'M, (TrM'M)?,
TrMTMM'M, etc. Notice that they will all contribute at
quadratic order in the hadron superfields. Let us examine
the IT contribution of the first term:

1 1
TrM™M > TrIT'TI + ETrH2 + ETrHTZ. (16)

A useful formula going forward will be the tree level
AMSB potential corresponding to K = ¢ g+ a/2(p* +¢'?).
Using the general formula (1), we get
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Vausg = & m’@ g + gmz((pz +¢")
= (@ + a)m*(Rep)? + (a? — a)m*(Imgp)?.  (17)

Setting @ = 1 corresponds to the Kéhler potential for
each component of IT in (16), so that the ImIl are the
massless pions, the Goldstone bosons of broken chiral
flavor symmetry. Goldstone’s theorem ensures that all
meson flavor invariants of the Kihler potential will give
contributions proportional to the right-hand side of (16).
Moreover, they will (in aggregate) come with a positive
sign in order for the I to have a physical kinetic term. Thus,
the Rell will have a positive mass, stabilizing this direction.

Turning to the baryons, things are not as clear. The most
general form of the Kéhler potential at quadratic order is

KoaB'B+BB)+ (BB tce) (18

where this includes contributions (15) from meson field
traces. We cannot know the ratio f//a and thus are unable to
determine whether the meson point is stable with respect to
baryonic runaway to an incalculable minimum.

B. Baryon point

Here we parametrize the baryon and antibaryon with a
single complex field b:

B=(1—detM)"/?¢b (19)
B =—(1 —detM)"/?e7?. (20)

Like at the meson point, we expect to find a Goldstone
boson, now from spontaneously broken baryon number.
Consider for example the Kihler potential terms

B B+B'B=2+(b+b")>+---. (21)

Again using (17), we identify Imb as the Goldstone boson,
while Reb has positive mass. Regarding the mesons
however, only the quadratic term must come with a positive
sign (to give positive kinetic term). The coefficients of all
higher order flavor invariants in the Kihler potential are
unknown. With the application of (1), these will ultimately
determine if the baryon point is stable once AMSB is
turned on.

In summary, we can say very little about the behavior of
AMSB-deformed QCD in the singular case when Ny = N ..
Neither global nor local minima can be identified, though
based on the behavior of theories with more or fewer
flavors we can conjecture a chiral symmetry breaking
minimum at the meson point. This ambiguity can be traced
to the quantum modified constraint, making the theory
inherently strongly coupled.

C.N,=2

When N, = 2, the quarks and antiquarks belong to the
same representation of the gauge group. Thus, the flavor
symmetry is enhanced to SU(4), with the meson M
transforming in the antisymmetric representation. This
meson can be decomposed into the meson, baryon, and
antibaryon of the unenhanced flavor symmetry. The
quantum modified constraint becomes M*M* = 1, with
a=1,...,6, meaning the moduli space has 5 complex
dimensions. The constraint breaks the flavor symmetry to
Sp(4), leading to 5 Goldstone modes. Due to the kinetic
term positivity arguments made above, their scalar partners
have positive mass.

Thus, the enhanced symmetry causes the chiral sym-
metry breaking minimum to be stable in the case of N, = 2.
Similar results were found in [18]. Note that N, =2 is a
special case of the Sp gauge theories that will be discussed
elsewhere.

V. Ny=N,+1: S-CONFINEMENT

For this case we find a stable chiral symmetry breaking
minimum, and demonstrate that there are no runaway
directions. At the leading order we take a canonical
Kihler potential for low energy fields B, B, and M, which
is justified when B, B, M < A where the theory is weakly
coupled. The superpotential is

W = aBMB — fdetM (22)
where we are again working in A = 1 units and a and f are
unknown order one numbers used to make the Kéihler

canonical. The potential obtained is

Vsusy = &*(|(MB), > + |(BM),*)
+ ‘aBaBb _ﬁdetM<M_1)ab‘2 (23)

VAMSB = _(Nc - Z)ﬁm detM 4+ c.c. (24)

Seeking the minimum of this potential, we look along the
direction

[«
)
<

M= . . (25)
0 0 v

Using flavor rotations the baryon and antibaryon take this

form without loss of generality. They break the flavor

symmetry to SU(N,), x SU(N,), justifying the inhomo-

geneous diagonal VEVs of M. For fixed det M, any off-
diagonal terms would simply increase Vgygy, justifying
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their omission. Finally, given that we are taking m real, it is
enough to look for minima with all fields real.

Using the fact that for fixed bb, the quantity b> + b is
minimized when b = b, the potential is

V = 22?x?b* + (ab® — poe)? + N f2x2p?Nel)
—2(N, = 2)pmxvNe. (26)

Again we treat the general case N, > 2 first, and the case
N, = 2 separately afterwards.

The crucial observation implicit above is that the baryon
fields do not acquire tree-level SUSY breaking whose mass
originates from AMSB and they do not induce threshold
corrections when they are integrated out, called “non-
decoupling effects” in [32].

A. Baryon number conserving direction, b =0

For the baryon number conserving direction b = 0, one
finds a minimum

N, —-2)m\w=
v=x= <<CNC,B)m> . Vg = —O(m2Ne/ (Ne=)y

(27)

This is the chiral symmetry breaking minimum that we
hope to be continuously connected to that of non-SUSY
QCD. First we must check that it is not disturbed by loop
effects coming from the marginal Yukawa term in (22). The
baryons acquire a mass av, and integrating them out and
using (4) yields a 2-loop mass for the meson

(2N, + 3)a(v)*m?
(167°)?

(28)

iy =
Along the direction we are considering, this gives a

potential

(Nc + 1)(2Nc + 3)&(0)4 2,2
(167[2)2 m-v-.

V2—loop = (29)

Notice that at the point (27), this is also O(m?Ne/Ne=1),
However, since it is 2-loop suppressed, it does not
destabilize the chiral symmetry breaking minimum.

We should finally check the effects of higher order terms
in the Kihler potential, the leading ones being (TrM'M)?
and TrM MMM with unknown coefficients (including
signs). Using (1), we find that these give potential terms
~m?v*. At the point (27), these are higher order in m and
can be neglected.

B. Baryon number breaking direction, b # 0

In general one can minimize (26) with respect to b and x,
finding

b = [—ijf - 2x? (30)
a
x:W‘ (31)

Plugging these in we find the runaway potential found

in [33]

(Nc _ 2)2ﬁ m2oNe.

V], = —
|b,x 2(X

(32)

However, we must account for loop corrections. The
bottom N, components of B and B acquire a mass av, so
we integrate them out. This gives, to all but the upper-left
component M, the 2-loop mass (28). At this point, the
remaining superpotential is simply W = aB,M,,B,. M,
then obtains a mass at the lower scale v/2ab. Integrating it
out results in 2-loop AMSB masses for B; and B,

mi =" (33)

Adding up these contributions along the direction we are
considering, this gives a potential

2
m
VZ—IOOp = m [NC (ZNC + 3)(1(”)4U2 + 6a<b)4b2]

(34)

Clearly the first term is dominant. Importantly however,
this is the same order in m as the tree level runaway (32)
and lower order in v since N, > 2. While it is loop
(logarithmically) suppressed, this is a smaller effect than
the power suppression of (32). Therefore, around the origin
where v <1, the loop effects stabilize the tree level
runaway.

In this case there is also a trilinear AMSB term coming
from (3) that goes as ~mb*x with 1-loop suppression. Like
the second term in (34), this is subdominant. Finally,
subleading terms in the Kihler lead to power suppressed
potential terms that can be neglected.

What we have shown is remarkable: the chiral symmetry
breaking point for small m is stable and the AMSB loops
effects play a subleading role. However, when we consider
a possible runaway direction, the loops come in to save the
day. While we cannot be sure of what happens when the
fields are O(A), there are no runaways from the origin and
the chiral symmetry breaking point stands a good chance of
being the global minimum.

C.N, =2

In this case tree-level AMSB vanishes because the
superpotential is marginal. Due to the positive 2-loop
masses, the meson and baryon fields are pushed to the
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origin of moduli space, where the theory experiences
confinement without chiral symmetry breaking. This does
not match expectations of non-SUSY QCD and we expect a
different global minimum to emerge in the large SUSY
breaking limit. A similar phenomenon was seen for a
Standard-Model-like chiral SU(5) gauge theory in [35].

VL. N, +1 < Ny <3/2N,.: FREE MAGNETIC PHASE

For this range of flavors the SUSY theory is in the free
magnetic phase and the IR is described by an SU(N,)
(N,=N ¢ — N,) gauge theory with quarks and antiquarks

in representations ¢;(C], 1) and g;(1, ) of the SU(N) x
SU(N/) flavor group, respectively. Additionally, the mag-
netic theory has a gauge-singlet meson M;; in the ([, E) of
the flavor symmetry. The superpotential is given by

where all fields have already been normalized to have
canonical Kihler potentials. Importantly, only the deep IR
behavior of the theory is specified and we do not have
control over the relative strengths of the gauge interaction
and the Yukawa interaction 4 in Eq. (395).

The case of the free magnetic phase is very subtle, and
so far has not been properly analyzed. In fact, this phase is
expected to be beset by baryonic runaway directions,
so that no useful information can be obtained. We show
that for the majority of the free magnetic phase
(N.+1 <Ny <1.43N,) the baryonic runaway directions
are lifted, and the chiral symmetry breaking minimum is
stable and likely the global minimum of the theory. The
analysis itself is quite involved, as one has to examine
several branches, which we will present below.

We proceed by first analyzing the baryonic direction,
where the entire dual gauge group is Higgsed. As mentioned,
the free magnetic phase for Ny < 1.43N, is free of runaways
in this direction. We next exhibit the chiral symmetry
breaking minimum along the mesonic direction. Finally,
we check the mixed directions, where only some meson
VEV:s are turned on, to ensure that they contain no runaways.

A. RG analysis and baryonic branches

In a small neighborhood of the origin of moduli space,
the theory is allowed to run into the deep IR. As suggested
by the name, the theory is IR free, with both the gauge
coupling g and Yukawa coupling running to zero. However,
their coupled beta functions make them run asymptotically
to the IR attractor given by

_d g
~dlogul*’

(36)

This allows A to be written in terms of g, and we can use (4)
to find the 2-loop masses of the dual squarks and the mesons

(-b)g* N3 =3N,N. - N2 +1

2 _ _ 2 37
M4 = (1622)2 2N, + N, m*(37)
(_I;)Nclng

where b = 3N, — N ¢ is negative. The mesons maintain a
positive mass throughout the free magnetic window, as do
the dual squarks for most of the window. However, at the
upper end Ny 2 1.43N. (in the large N, limit), the dual
squark mass turns negative and we expect a baryonic
runaway toward an uncalculable minimum.

Concretely, for Ny 2 1.43N, we consider giving D-flat
VEVs to the dual squark

q= B( Lo, ) (39)
ON(XNF

The effect of this is to Higgs the dual gauge group at the
scale B, and to give masses to the dual antiquarks and some
of the mesons. Substituting their equations of motion
eliminates the superpotential. Equation (37) then translates
into a tachyonic mass for B, where the gauge coupling is
evaluated at the scale B.

The first detailed exploration of baryonic runaways with
SUSY breaking applied consistently between the UV and
IR was undertaken in [15] (see also the more recent [19]).
In both of these works, which used different mechanisms to
break SUSY, baryonic runaways were present throughout
the free-magnetic phase. It is encouraging that AMSB,
while not eliminating them, lifts these directions for most of
the phase.

B. Mesonic branch

In this section we give the meson a VEV with
full rank, repeating the analysis of [21]. This gives masses
to the dual quarks and antiquarks. Without their effects,
the beta function of the gauge theory flips sign, allowing
the theory to generate a new IR dynamical scale
given by

ANe = R3Ve=Nr det M. (40)

The usual superpotential of pure SYM is generated:
W = N.A} = N, (det M)"/N (41)
where as usual we have set A = 1. Upon adding tree level
AMSB, the minimum can be found along the homogeneous

direction M = v1 with the potential

V = Ny oMVl 2 4 (Np = 3N )maNs/Ne e, (42)
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at the point

~ Ne -
3N.—N =T NyNe
v= (( ~f)m> =2 ’ Vmin:_o <m2Nf_2Nr>. (43)
Ny=N,
The 2-loop potential from (38) contributes at the same
order in m, however it is loop suppressed. We find that the
chiral symmetry breaking minimum is stable.

C. Mixed branches

Instead of turning on all of the meson VEVs, we can
choose to turn on only some of them. These will reveal tree
level AMSB contributions within the free magnetic phase
with tree level runaways. However, as in the case of
s-confinement, the AMSB loop effects will stabilize these
directions.

We begin by writing the meson matrix as

Mpg . 0
M= ( e ) (44)
0 MR p)x(N-Ry)

and without loss of generality we look for minima at
diagonal M. We then give the lower component M a VEV.
This gives masses to N — R flavors of quarks, leaving an
SU(N,) gauge theory with R massless flavors and a new
dynamical scale

3N.—R;
AL

= ANy det M (45)
with A the Landau pole of the dual theory. In what follows
we will set A = 1. Finally, we assume that M remains small

compared to bothNZ\A/l and the generated scale A;.
For 1 < R; < N, the remaining theory is of ADS-type
and has the superpotential

- 3Ne=Ry Nc-Rf _
W= (N.- Rf)( detN ) +TrMN  (46)
where N is the meson formed by the remaining massless
dual-quarks. We have ignored 4 as it will be irrelevant for
this discussion. The second term comes from the Yukawa
of the dual theory.

The SUSY equation of motion (EOM) for M sets N = 0.
Evidently, the EOM for N is singular at this point and to
compensate we must have M — co. However, this violates
the assumption of small /. Therefore, even before a small
AMSB deformation can be applied, this branch collapses
back to the mesonic branch already considered.

Next consider the case of R, = NL., which will have
emergent meson and baryon degrees of freedom with a
quantum modified constraint. Furthermore, the super-
potential W = TrMN fixes M =N = 0. We thus find

ourselves at the baryon point where as before the baryons
are stable, but this time with the emergent meson directions
stabilized by a superpotential. The only question that
remains is the M dependence. For simplicity consider
M = v1. The new dynamics will generate at leading order
the Kéhler potential term

K D ah? = av*c (47)

where a is an O(1) number of unknown sign and
C=(N;—R;)/(BN.—Ry) > 1. This will give rise to a
tree level AMSB potential of O(m?v?¢). However, as
before the 2-loop AMSB mass for the meson will give a
positive contribution at O(m?*v?), stabilizing this direction.
For N.+ 1 < Ry < 3N, the IR dynamics of the remain-
ing theory are described by a magnetic dual with gauge
group SU(R; — N.) (except for Ry = N, + 1 where the
theory is s-confining). The superpotential is
W = Trb; N,jbj + TrMN. (48)
The N, b, and b are dual mesons, quarks (baryons), and
antiquarks (antibaryons) formed by the massless dual
quarks. Again the superpotential term (35) has transformed
to enforce N = 0 in the supersymmetric limit. This means
when we introduce tree-level AMSB, N = O(m), and we
were justified in ignoring the s-confining detN term as a
high power of m (assuming N is even full rank). We rescale
the fields by appropriate factors of A; to make them
canonical. Ignoring order one factors we have
Wy = Trb;N;;b; + A, TtMN. (49)
Finally we substitute the value of A; (and set A = 1) to
arrive at
W, = Trb;N;;b; + (det M)/ CN-RITLiIN.  (50)
Let all fields be real and consider the direction given by
N,»i:ni,Mii:xi, bii = _bii =Y fori = 1, ceey (Rf _NC)
and with all other entries 0. Finally let M = v1.
The potential is

V= Z (2y2n? + (v°x; — y3)* + v*Cn?

¢ 2C-2 :
TN —r," ()
(51)

where C is defined as before and remains greater than 1.
Notice that the final term is smaller than the third term in
the first sum by a factor of x*/v? < 1. Therefore, we can
neglect this term and the potential splits into Ry —N,

+2(C = 1)mvn;x;)
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identical parts. In what follows, we suppress the index i.
Substituting the y and n equations of motion, and using
n,x < A, = v° along the way, we get

V], =—(C—=1)2mx%. (52)

As long we keep x < v¢, we can let x, v — 1, signaling
a tree level minimum of —(O(m?) in the incalculable region
where field VEVs are O(A). Note that in this direction all
fields, baryonic and mesonic, are turned on.

However, as we saw for the s-confining runaway, the
loop effects must be considered. While this tree-level
runaway is power suppressed as O(x?) < O(v*C), the
2-loop potential gives a positive contribution with
O(v?). Therefore, there is again no runaway.

When R > 3N ¢» the theory remains IR free and there
are no tree level runaways. As long as N < 1.43N,. the
dual quarks will have positive 2-loop AMSB mass.

In summary, we have demonstrated that there is a
stable chiral symmetry breaking minimum and that for
Ny < 143N, there are no runaways.

VIL 3/2N. < Ny < 3N,: CONFORMAL WINDOW

In the conformal window, the magnetic description is no
longer IR free. Rather, it has a nontrivial fixed point, which
is weakly coupled at the lower end of the window. We will
first analyze the behavior of AMSB in this region and find
baryonic runaways to incalculable minima. Then, we will
turn to the upper end of the window where the electric
theory has a weakly coupled fixed point. As demonstrated
in [27], AMSB makes a relevant deformation and destroys
the superconformal phase. We can only conjecture about
the intermediate region where both descriptions are
strongly coupled. Finally, we demonstrate local chiral
symmetry breaking minima throughout the window.

A. Lower conformal window
We begin by considering N; =3N./(1+¢€) where
e < 1, and will work in the large N, limit and leading

nontrivial order in e for simplicity. For notational conven-
ience, we define

Ne o ; N,

7. (53)

=
1]

”2

o0
[
o0

T

The beta functions of the magnetic theory, including the
2-loop contribution for y, are

B(x) = x(=2y + Tx), (54)

B(y) = =3y*(e =y + 3x). (55)

They admit a Banks-Zaks (BZ) fixed point at
(x0,¥0) = (2¢,7¢). As the theory flows to the IR, x and

y will approach this point from above, along the trajectory
specified by (36). Define 6x = x —x, and oy =y — yj.
Close to the fixed point this yields

ox = % (1 + %6) dy. (56)
The RG flow is
B(y) = 21e*dy (57)
yielding
Sy ~ '€, (58)

Using (4), the meson and dual squark masses are

3
mi, = Eezéym2 (59)
2 3 25 o
my = =€ Sym*. (60)

Thus in the lower conformal window the dual squarks are
tachyonic and there is a runaway to an incalculable minimum.

B. Upper conformal window

We now examine the upper conformal window via the
electric description, reviewing the results of [27]. Now
Ny =3N./(1+¢€), and we use all conventions of the
previous section. The beta function at 2-loop is

By) = =3y*(e—) (61)

where the BZ fixed point y, = ¢ is now approached from
below as

(=8y) ~ 2. (62)

From (4) and (5) we obtain the squark and gluino masses
2 _ 3, 2
my = e (—=8y)m (63)

m; = = (=8y)m. (64)

N W

As expected the squark mass is positive. As long as
3e? < 1 (this bound is outside of our small ¢ limit and
should be taken with a grain of salt), at some point in the
RG flow the squark and gluino masses will exceed the
renormalization scale. At this point the superpartners can be
integrated out and the superconformal phase is destroyed.
What remains is non-SUSY QCD and must be analyzed
from the (albeit strongly coupled) magnetic description.
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C. Chiral symmetry breaking minimum

We have shown that AMSB, at both the top and bottom
of the conformal window, destroys the superconformal
phase. It is reasonable to assume this is the case throughout
the window. Furthermore, we demonstrated that at the
bottom of the window the theory has a runaway to an
incalculable minimum.

Looking instead for local minima, we examine the
mesonic branch. Just as in the free magnetic phase, this
gives masses to the dual quarks and generates a new
dynamical scale. The superpotential is given by (41).
However, unlike the free magnetic phase where the
Kihler receives logarithmic wave-function renormalization
(which we ignored), in the conformal window we have

Zyy(u) ~ p' 73NNy (65)

which is evaluated at 4 = v, where M = v1. The result is
that the scaling of the local chiral symmetry minimum is
modified to [27]

2
Ny

V = —O(m®), I
(m?) N2 =3N,N, + 3N?

c=1+

(66)

Note that ¢ goes from 4 (N = %NC) to 5 (Ny = 2N,) back
to 4 (N;=3N,).

VIIL. Ny > 3N.: FREE ELECTRIC PHASE

For large number of flavors, the 2-loop squark mass from
AMSB is negative, leading to true runaway behavior.
AMSB cannot be used to understand the non-SUSY theory
in this case.

IX. CONCLUSIONS

We carefully analyzed the behavior of SU(N.) gauge
theories with N flavors upon the application of AMSB,
focusing on the chiral symmetry breaking minima and
potential baryonic runaway directions. For N, + 1 < N, <
3/2N, we found that naive tree level runaways are power
suppressed in comparison to loop effects, which stabilize
these directions. However, a true loop level runaway was
found for the upper end of the free magnetic phase,
Ny 2 1.43N .. This baryonic runaway continued into the
lower end of the conformal window, and we cannot
discount such runaways throughout the window. Such
runaways point to the existence of some noncalculable
minimum at large field values of O(A), which may or may
not correspond to the global minimum of the theory.

The case of Ny = N, required particular care due to the
inherently strongly coupled nature of the quantum modified
moduli space. We found that the theory is best analyzed
after implementing the quantum constraint. Upon applica-
tion of AMSB the stability of the chiral symmetry breaking
point cannot be determined. This is not due to a problem
with the AMSB method, but rather because the Kéhler
potential terms that are critical to this determination are
incalculable.

In summary we found (with the exception of the cases
N;=N.for N.>2 and Ny =N_.+1 for N. =2) that
stable chiral symmetry breaking minima are present for
N; < 3N, upon application of AMSB in the small SUSY-
breaking limit. Furthermore, the theories with Ny < 1.43N,
are protected from runaways to incalculable minima. This
does not prove that there are no deeper minima with fields
of O(A), however we take it to be strong evidence for the
conjecture that in these cases the chiral symmetry breaking
minima are in fact global.

Our analysis was performed in the m < A limit, and the
question remains about the behavior in the nonsupersym-
metric limit of m > A. The existence of the chiral
symmetry breaking minima for all flavors is indicative
that these are continuously connected to the true vacua of
non-SUSY QCD. Irrespective of the potential appearance
of a phase transition between these two limits (see
arguments based on holomorphy in [22,23], and also
see Refs. [36,37]), these are the vacua that are of
phenomenological interest for the study of real-
world QCD.
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