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Abstract: We propose a simple modification of the Goldberger-Wise mechanism for sta-

bilizing the scale of spontaneously broken conformal theories. The source of explicit con-

formal symmetry breaking is a relevant operator with a small coefficient, as opposed to

the usual mechanism of an almost marginal operator with an order-one coefficient. In the

warped 5D picture this relevant stabilization corresponds to a small tadpole for the bulk

scalar on the UV brane, which can be technically natural if it is the only source for the

breaking of a symmetry (for example, a discrete Z2). This modification of the stabilization

mechanism has significant consequences for the nature of the conformal phase transition,

since the radion/dilaton potential is no longer shallow. The bounce action is significantly

reduced, leading to a weaker first-order phase transition instead of the supercooled and

strongly first-order transition seen in Goldberger-Wise stabilization. This also leads to

reduction of gravitational wave signals which, however, may still be observable at future

detectors. We present numerical and analytical studies of the phase transition and the

resulting gravitational wave signal strength, assuming that the effective dilaton potential

provides a good leading approximation. While the dilaton is not expected to be generically

light in this setup, in order to keep perturbative control over the effective theory one needs

to mildly tune the dilaton quartic to be somewhat small.
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1 Introduction

One of the deepest mysteries of particle physics is the smallness of the observed Higgs

mass [1, 2] and vacuum expectation value (VEV) compared to the scale where the Standard

Model (SM) is expected to be completed into a fuller theory, which is näıvely expected to

lie around the Planck or GUT scale. Generically, the Higgs mass is expected to have a

power-law dependence on the high scales at which any physics beyond the Standard Model

manifests itself. Hence it is difficult to understand how the Higgs mass ended up being so

much lighter, which is the well-known “Higgs hierarchy” or “naturalness” problem.

A commonly studied solution to this hierarchy problem is Higgs compositeness (see [3,

4] for reviews and [5–43] for studies in the field), where some new interaction becomes

strong close to the weak scale, producing light composites including the Higgs boson itself,

and thus providing a dynamical stabilization of the hierarchy.1 Composite Higgs models

can also be studied via their holographic implementation [7, 8], where the large hierarchy

manifests itself as a warped extra dimension whose size is stabilized at large values and a

corresponding exponentially small IR scale. In the simplest models proposed by Randall

and Sundrum (RS) [5, 6] the warped extra dimension is a slice of anti-de Sitter (AdS) space,

spanning from the UV to the IR branes at its ends and corresponding to a near-conformal

1A variation of this idea is Technicolor, in which the strong dynamics directly break the electroweak

symmetry, similar to the dynamics of QCD. This idea, however, does not produce a light Higgs boson and

is also expected to lead to large electroweak precision corrections, so it is strongly disfavored.
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theory in the dual 4D implementation [9, 10]. Fields localized close to the IR (including

the Higgs boson) correspond to composites, while those in the UV are elementary (which

usually includes some of the light SM fermions). The appearance of the IR brane can

be interpreted as a spontaneous breaking of the conformal symmetry. The corresponding

Goldstone boson is the radion excitation, associated to fluctuations of the IR brane [11–

14]. In the 4D theory the radion is interpreted as the dilaton, the Goldstone boson of

spontaneously broken scale invariance. The VEV of the dilaton/radion field sets the size of

the warped extra dimension and consequently the IR scale. The solution to the hierarchy

problem then comes down to the question of how to stabilize the dilaton/radion at large

field values.

An elegant stabilization method was provided by Goldberger and Wise [44], who

posited that a nearly marginal operator of dimension 4+ ϵ gets an expectation value. This

leads to an exponentially large extra dimension in the 5D picture, through the exponential

dependence of the dilaton VEV on 1/ϵ. It was first realized in [45] that this Goldberger-

Wise stabilization mechanism has profound consequences for the early-universe behavior

of these models [46–55]. At high temperatures the conformal symmetry is restored, and

the theory is essentially a hot conformal field theory (CFT). The holographic interpreta-

tion of this hot CFT is the modification of the AdS background to AdS-Schwarzschild —

a different solution to the same Einstein equations, corresponding to a black brane so-

lution in 5D AdS space, with a black hole horizon at a finite proper distance from the

UV brane and spanning the full 4D space [45]. The transition between the unbroken and

broken CFT phases corresponds to the nucleation of bubbles of the IR brane. Goldberger-

Wise stabilization yields a dilaton potential whose minimum is very shallow, resulting in

a large contribution to the bounce action in the dilaton region, in turn making it difficult

to complete the phase transition. This leads to the standard prediction that the RS phase

transition is supercooled, strongly first-order, and often cannot complete until the temper-

ature is well below the weak scale (the conditions for supercooled phase transitions were

recently analyzed in detail in [56]). Another important consequence of Goldberger-Wise

stabilization is on the spectrum of gravitational waves emitted during the phase transi-

tion [46]. Since the phase transition is strongly first order, one expects strong stochastic

gravitational wave signals produced from bubble wall collisions. These could be detected at

next-generation gravitational wave observatories, such as LISA [57, 58], DECIGO [59–62],

and BBO [63–65].

In this paper we point out that there is a simple variation of the Goldberger-Wise

stabilization mechanism that would significantly alter the nature of the RS phase transition.

Instead of having an almost marginal operator with small anomalous dimension obtain a

VEV after a long running, one can have a relevant operator as the source of the spontaneous

breaking of conformality. In this case the generation of a large hierarchy requires that the

coefficient of this operator is very small in the UV, which can easily be made technically

natural via a discrete symmetry. For example, in the Goldberger-Wise framework one

can enforce a Z2 symmetry for the bulk scalar, which is softly broken by a small tadpole

on the UV brane. Deviating from regular Goldberger-Wise stabilization, in our “relevant

stabilization” scenario the bulk mass of the bulk scalar is not small, and the hierarchy is
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generated by the smallness of the UV brane tadpole. This significantly alters the shape of

the potential for the dilaton, such that it is no longer much lighter than the other Kaluza-

Klein (KK) excitations. Since the potential is no longer very shallow, the bounce action

is expected to be significantly reduced. This weakens the strength of the phase transition,

allowing it to complete with no supercooling. The resulting gravitational wave spectrum

is peaked at a higher frequency and the overall signal strength is reduced.

Our goal in this work is to perform the first steps towards studying the nature of the

RS phase transition with relevant stabilization. We will restrict ourselves to studying the

dilaton effective action, assuming that it provides a reliable description of the theory. As

expected, we will show that the bounce action is greatly reduced relative to the Goldberger-

Wise case, making the phase transition weaker. We will also confirm that, within our

approximation, the strength of the gravitational wave signal emitted during the phase

transition is greatly reduced; it may still, however, be observable at future gravitational

wave detectors.

One other consequence of the relevant stabilization mechanism is that the calculability

of the phase transition is also reduced, for two reasons. Firstly, since the bounce action

in the calculable regime is smaller, it will no longer easily dominate over the (so far)

noncalculable contribution of the hot phase. Secondly, since the dilaton is heavier, the

gravitational and scalar KK modes might also become significant in the RS side of the

phase transition. Both of these effects suggest that a more involved numerical study is

necessary to firmly establish the results in this paper, where we only work in the limit of

the dilaton effective action. We expect to address the phase transition in the full theory in

subsequent work.

The paper is organized as follows. We give a general overview of the relevant sta-

bilization mechanism in Section 2. We then derive the effective dilaton potential in our

model in Section 3, showing that our dilaton is heavier than the Goldberger-Wise dilaton.

We discuss preliminary aspects of the phase transition in Section 4, which sets the stage

for detailed analytical and numerical calculations of the phase transition that we present

in Section 5. We find that the gravitational wave signals from relevant stabilization are

higher-frequency and weaker than those from Goldberger-Wise stabilization.

2 The General Picture

In this work, we are studying a composite Higgs scenario arising from the spontaneous

breaking of a CFT, where the spontaneous breaking is triggered by a relevant operator

δL = gdO, where [O] = d < 4. (2.1)

If the coupling were O(1), then the presence of the operator would correspond to a large

explicit breaking of the CFT, and no hierarchy can be generated, as any breaking scale

generated would be not far below the UV scale. However, if the coupling gd is taken to be

very small, then one still has an approximate CFT in the UV, and a large hierarchy can

be created due to the running of this coupling. The form of the running of gd as a function

of the renormalization scale µ is given by gd(µ) = gd (µUV) (µUV/µ)
4−d. Assuming that
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the coupling in the UV gd (µUV) is very small, the breaking of scale invariance is expected

to be triggered when this running coupling becomes sizable at a scale f far below the UV

scale. This generates a UV/IR hierarchy that could be used for composite Higgs models

in the usual way.

One can then find the form of the effective dilaton potential by performing the usual

spurion analysis, restoring scale invariance by treating the CFT breaking couplings as if

they were operators with the correct scaling dimension. If O has dimension d < 4, then

the scaling dimension of its coupling gd is 4− d. In order for the theory to be technically

natural, we will also assume that O is odd under an additional Z2 discrete symmetry. Using

spurion analysis again, we assign the gd coupling to be odd under the same symmetry, which

implies that only even powers of gd show up in the dilaton effective potential. Since g2d has

scaling dimension 8− 2d, there will exist a term in this potential wherein the dilaton field

χ shows up with power 2d− 4 = 2ν, in addition to the standard scale invariant χ4 term in

the effective potential:

Veff(χ) = λχ4 − λ2νµ
4−2ν
UV χ2ν + . . . , (2.2)

where we have introduced the dimensionless coupling λ2ν ∝ γ2, such that γ ∝ gd(µUV)µ
d−4
UV

is a dimensionless parameter characterizing the size of the explicit breaking of scale invari-

ance in the UV. Note that this form of the potential is in agreement with [9]: while in

the generic expression the lowest power appearing is χ2+ν , this is absent for us due to our

assumption of the additional Z2 symmetry.2 We have also assumed that λ > 0 and chosen

the sign of the contribution of the explicit breaking term λ2ν > 0, such that these two terms

can balance each other to generate a stable minimum at f = ⟨χ⟩ = µUV(νλ2ν/2λ)
1/(4−2ν) ∼

µUVγ
1/(2−ν) ≪ µUV. The smallness of the coupling in the UV therefore allows for a large

hierarchy between the stabilized IR scale and the UV scale, as necessary to address the

Higgs hierarchy problem.

One important question to address is whether a description in terms of a dilaton,

corresponding to a mostly spontaneously broken scale invariance, is still valid, since we have

introduced an explicit breaking to trigger the spontaneous breaking of scale invariance.

When this description is invalid, no light dilaton with mass below the breaking scale f

should exist. Hence we find a self-consistency condition on the parameters of the potential

in Eq. (2.2), which can be written as V ′′(χ)
∣∣
χ=f

/f2 ≲ O(1). This will translate into the

condition

8(2− ν)λ ≲ O(1). (2.3)

In the 5D picture, this scenario is realized by a bulk scalar field whose bulk mass term

is negative (but not beyond the Breitenlohner-Freedman bound [66]), such that the profile

of both solutions to the 5D Klein-Gordon equation grows from the UV to the IR brane.

By the AdS/CFT dictionary the bulk mass m2 is related to the dimension of the CFT

operator by d = 2 + ν = 2 +
√
4 +m2/k2, where k is the AdS curvature [9]. Unlike the

Goldberger-Wise case, the bulk mass is not small in absolute size and the scalar has no

VEV on the IR brane. In addition, a small UV brane tadpole is added for this scalar field,

2This can also be understood as assuming the CFT dynamics don’t break the Z2 symmetry, therefore ⟨O⟩
must vanish with the explicit breaking source gd(µUV) and the potential has no linear piece in gd(µUV) [9].
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which is proportional to the explicit CFT breaking parameter γ in the above CFT picture.

As a result, a small VEV is generated on the UV brane, proportional to the size of the

UV tadpole, in the absence of which the entire 5D VEV profile would vanish. As the VEV

profile grows towards the IR, its contribution to the effective potential becomes comparable

to that of the mistuning between the IR brane tension and the bulk CC, and balancing both

terms stabilizes a large hierarchy without any small dimensions. Unlike the Goldberger-

Wise potential, where the hierarchy is due to the small bulk mass corresponding to a small

anomalous mass dimension ϵ = d−4, in our scenario the hierarchy is directly generated by

the technically natural small size of the tadpole.

There are several consequences of the absence of small dimensions in our scenario which

make it distinct from the Goldberger-Wise case. First, the dilaton mass is of the same order

as the IR scale, suppressed only by the CFT breaking coupling at the minimum gd(f) ∼ λ,

where λ is taken to be somewhat small for perturbativity. This differs from the Goldberger-

Wise limit, in which the dilaton mass is suppressed by the anomalous dimension ϵ1/2 [13].

Next, the bounce action for the conformal phase transition is not enhanced by any small

parameters, in contrast to Goldberger-Wise stabilization where the bounce action scales

as 1/ϵ3/4 [46]. As a result, the phase transition is more weakly first-order and can easily

complete without significant supercooling. This therefore alleviates the problem of eternal

inflation, present in much of the parameter space of Goldberger-Wise stabilization [45] (see

a modern expanded analysis in [56]). This also leads to a more rapid phase transition

and thus weaker gravitational wave signatures with a higher peak frequency relative to the

Goldberger-Wise case. We will see these effects clearly in Section 5.

Our proposed stabilization mechanism shares some similarities with that proposed

in [18], where the operator Og which breaks scale-invariance is marginal with a small

imaginary anomalous dimension 2
√
−ϵ. Such operators can appear in CFTs where the IR

fixed point merges with a UV fixed point, and the appearance of the imaginary anomalous

dimension is interpreted as the loss of conformality. In the dual AdS picture, this can

be realized by a bulk field with a mass below the Breitenlohner-Freedman bound, which

therefore becomes tachyonic. The analysis of [18] showed that in this scenario the dilaton

mass is light but not parametrically smaller than the IR scale, similar to what is achieved

in our model through a relevant operator. Interestingly, while in our model the heaviness

of the dilaton renders the phase transition weakly first-order, the model of [18] is believed

to lead to strong supercooling.

3 Dilaton Potential from the 5D Picture

We now calculate the effective dilaton potential of our stabilization mechanism in the 5D

picture. The minimum of this potential will correspond to a hierarchically small dilaton

VEV compared to the UV cutoff scale given by the AdS curvature µUV = k, thereby

generating the UV/IR hierarchy needed to solve the naturalness problem.

We work in the RS background, with the metric

ds2 = e−2ky dx2 − dy2 , (3.1)
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where y is the orbifolded fifth dimension. The UV and the IR branes are the two orbifold

fixed points at y = 0 and y = yc, respectively. This metric is a solution to the Einstein

equations when the bulk CC is Λ = −24M3
5k

2 and the brane tensions are tuned to ΛUV =

−ΛIR = 24M3
5k, where M5 is the 5D Planck mass [5].

We introduce a free scalar Φ in the bulk, whose action is given by

SΦ =

∫
d4x dy

√
g

[
1

2
gMN∂MΦ∂NΦ− 1

2
m2Φ2

−
√
gind√
g
VUV(Φ)δ(y)−

√
gind√
g
VIR(Φ)δ(y − yc)

] (3.2)

where gind is the determinant of the induced metric on the branes. Φ respects a Z2 sym-

metry which is softly broken by a small tadpole on the UV brane:

VUV(Φ) =
1

2
mUVΦ

2 + γk5/2Φ, VIR(Φ) =
1

2
mIRΦ

2. (3.3)

γ is dimensionless and can be taken to be very small since it is the only source of Z2 breaking

and thus technically natural. One way to generate a small γ is via a Yukawa coupling

ΦψLψR, with one of the fermions odd under the Z2 symmetry. A fermion condensate can

be generated from the dynamics of some new confining gauge group similar to QCD. The

scale of the condensate is controlled by dimensional transmutation and can be naturally

smaller than the UV scale.

For the zero modes of Φ, which are only y-dependent, the solutions to the bulk equa-

tions of motion (EOM) are e(2±ν)ky, where ν ≡
√

4 +m2/k2. We assume that 0 < ν < 2 so

that on the UV brane, the second solution dominates. The profile of Φ is localized towards

the IR brane, and may be written as

Φ(y) = Φ0e
(2−ν)ky

(
1 + Φ1e

2νky
)
. (3.4)

The boundary conditions (BCs) on the branes are

2Φ′(0) = mUVΦ(0) + γk5/2, −2Φ′(yc) = mIRΦ(yc). (3.5)

This fixes the coefficients of the 5D VEV profile in Eq. (3.4) to be

Φ1 = −τIRe
−2νkyc

τIR + 4ν
, Φ0 = − γk3/2

τUV +Φ1(τUV − 4ν)
≃ −γk

3/2

τUV
, (3.6)

where we defined the mass mistunings on the IR and UV branes as

τIR ≡ mIR/k + 4− 2ν, τUV ≡ mUV/k − (4− 2ν). (3.7)

The zero mode should be stable under small perturbations, otherwise the generated

dilaton potential itself will also be unstable. We verify this by perturbing the solution

Φ(y) + ϕ(xµ, y) and plugging it back into SΦ. The effective 4D mass of the perturbation

is obtained by solving the EOM for ϕ in the limit of small 4D momentum p≪ ke−kyc and

then integrating out the extra dimension, which is found to be m2
ϕ ∝

(
τUV + τIRe

−2νkyc
)
k2.
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A positive UV mass mistuning τUV therefore ensures the zero-mode perturbations are not

tacyhonic and the solution is stable.

As shown in App. A, the effective 4D potential of the dilaton is obtained by integrating

out the bulk matter and substituting in the solutions to the EOM and BCs. Following this

procedure with SΦ, integration by parts leaves us with only the boundary terms, since it

is quadratic in Φ:

V (χ) = −
∫

dyLΦ = −Φ′(0)Φ(0) + VUV + e−4kyc
(
Φ′(yc)Φ(yc) + VIR

)
. (3.8)

Once we impose the BCs in Eq. (3.5) we are left with the tadpole contribution

V (χ) =
1

2
γk5/2Φ(0) =

τIRγ
2

2τUV(τIR + 4ν)
k4−2νχ2ν + const., (3.9)

where χ ≡ ke−kyc is the dilaton. This is the key piece of our potential — the dilaton

can have any power between 0 and 4 while the size of this coupling is proportional to γ2,

which can be hierarchically small. In the dual CFT this is the second term in Eq. (2.2)

which is quadratic in gd(µUV), as anticipated from the Z2 symmetry of O. No χ2+ν term

is generated due to the vanishing VEV of Φ on the IR brane.

For comparison, in the Goldberger-Wise mechanism [44] the scalar has a small bulk

mass ϵ ≡
√
4 +m2/k2 − 2 ≪ 1 with nonzero VEVs on both branes, which induces cou-

plings χ4+ϵ, χ4+2ϵ whose coefficients are O(1) in units of k. It is dual to an almost marginal

operator of dimension 4+ ϵ where conformal invariance is broken both explicitly and spon-

taneously [9]. However, as pointed out in [9], it is not necessary for the bulk scalar to obtain

a VEV on the IR brane for the Goldberger-Wise mechanism to work, in which case only

the χ4+2ϵ term is generated. Our mechanism is similar to Golberger-Wise stabilization of

this second variety with ϵ < 0.

To complete our construction of the dilaton potential, we mistune the IR and UV

tensions. The former will induce a χ4 term in the potential, and the latter will give a

constant term. The entire dilaton potential is therefore

V (χ) =
24M3

5

k3
[
λχ4 − λ2νk

4−2νχ2ν + V1
]
. (3.10)

The overall scaling is added for later convenience. In our 5D realization, the coefficient of

the first term is given by

λ2ν = − k3

48M3
5

τIR
τUV(τIR + 4ν)

γ2. (3.11)

The existence of a non-trivial minimum requires λ2ν > 0, so the IR mass mistuning must

lie in the range 0 > τIR > −4ν.

This potential admits a minimum at

⟨χ⟩ = k

(
λ2νν

2λ

)1/(4−2ν)

∼ kγ1/(2−ν). (3.12)
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A small value for ⟨χ⟩ /k is generated by the technically natural γ, even when the power

is not large. This is the novel feature of our stabilization mechanism: a large hierarchy of

scales is generated without any small operator dimensions, but rather by a small explicit

breaking of the CFT. This is unlike the Goldberger-Wise mechanism, where the large

hierarchy is due to the smallness of ϵ while the scalar VEVs on the branes are of the same

order. Note that as ν approaches 2 our stabilizing operator becomes almost marginal and

1/(2− ν) grows large, so γ no longer needs to be small to generate a large hierarchy. In this

limit our mechanism coincides with the Goldberger-Wise one with anomalous dimension

ϵ = ν − 2.

We set V (⟨χ⟩) ≈ 0, a tuning corresponding to the standard CC problem which is not

addressed in this work. The dilaton potential is then

V (χ) =
3N2λ

2π2
⟨χ⟩4

[
(χ/⟨χ⟩)4 − 1− (χ/⟨χ⟩)2ν − 1

ν/2

]
. (3.13)

Here we used the holographic relation N2 = 16π2(M5/k)
3. With the kinetic term, the

dilaton action is

Sχ =

∫
d4x

[
3N2

4π2
(∂χ)2 − V (χ)

]
. (3.14)

The mass of the dilaton is given by

m2
χ =

2π2

3N2

∂2V

∂χ2

∣∣∣∣
χ=⟨χ⟩

= 8λ(2− ν)⟨χ⟩2, (3.15)

which for relevant operators is of the same order as the IR scale. In contrast, as the

operator becomes almost marginal (ν → 2) the dilaton’s mass is suppressed by the small

anomalous dimension, as is the case in the Goldberger-Wise mechanism [13]. The dilaton

potential in the relevant stabilization mechanism is steeper than for the Goldberger-Wise

stabilization, as illustrated in Fig. 1. Because the dilaton mass is no longer suppressed,

the graviton [6, 12] and scalar [13, 15] KK modes might become significant. To ensure the

lowest-lying KK modes are not excited, we will require that mχ ≲MKK, as anticipated in

Eq. (2.3) in the CFT picture.

Our analysis of the stabilization mechanism was done entirely within the effective

dilaton theory, which would break down if the backreaction on the metric is too large. We

estimate this backreaction is small when the potential on the IR brane, VIR(Φ)+24λM3
5k, is

smaller than the IR brane tension ΛIR. This condition also ensures that the CFT breaking

is spontaneous. While the CFT-breaking coupling blows up for a small enough χ, i.e. below

χ∗ where V (χ∗)/χ
4
∗ = 4π (the potential is dominated by the CFT breaking term), at χ =

⟨χ⟩ both couplings balance one another and are of the same order. Therefore, at χ = ⟨χ⟩,
for small enough λ the CFT-breaking term is still perturbative, and correspondingly the

bulk scalar field does not significantly backreact on the AdS background, which is broken

spontaneously by the appearance of the IR brane.

In the following, we will explicitly study our model for the benchmark point ν =

1.2,mIR = −4k with the two UV mass mistunings τUV = 3, 10. The first mode of the
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Figure 1. A sketch of the free energy of the CFT. The free energy of the cold, confined phase is

given by the dilaton potential in RS, with the Goldberger-Wise mechanism in blue and the relevant

stabilization mechanism we propose in green. On the left side the free energy of the hot, deconfined

phase is given by the AdS-S metric, as a function of the horizon temperature Th (red) [45].

stabilizing scalar is the lightest KK mode with MKK = 2.1⟨χ⟩, independent of the value

of τUV (the mass of the first graviton KK mode is larger, ≈ 3.8⟨χ⟩). The backreaction on

the metric is small when λ ≲ 0.13 (λ ≲ 0.6) for τUV = 3 (τUV = 10), which also guarantees

the dilaton is lighter than the KK modes. Thus the validity of the dilaton EFT requires a

mild tuning of the quartic.

4 Phase Transition

As the universe cools down, the CFT undergoes a phase transition from the hot deconfined

phase to the cold confined phase. In the dual 5D picture, the hot phase is described by a

black brane solution to the Einstein equations; in the limit where the UV brane is taken

to the AdS boundary this solution is just the AdS-Schwarzschild metric.3 The cold phase

is dual to the usual RS picture with an IR brane. The phase transition proceeds via

nucleation of IR brane bubbles within the black brane background [45].

The critical temperature of the phase transition Tc is determined by matching the free

energies of the confined and deconfined phases. The former is given by the dilaton effective

potential in Eq. (3.13), Fconf(χ) ≈ V (χ) (for T ≲ MKK(χ)); the latter is Fdeconf(T ) =

−π2N2T 4/8 + V0. The constant term V0 can be found by identifying a common limit to

the two phases [45, 47], leading to V0 =
3N2λ(2−ν)

2π2ν
⟨χ⟩4. Solving for Fconf(⟨χ⟩) = Fdeconf(Tc),

3With the UV brane, the solution is no longer stationary. It corresponds to a radiation dominated

universe which expands with time, which can be thought of as a moving UV brane [67, 68].
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the critical temperature is thus

Tc =
⟨χ⟩
π

[
12λ

2− ν

ν

]1/4
. (4.1)

We remark that the free energy of the deconfined phase can be written as Fdeconf(T ) =

π2N2(T 4
c − T 4)/8.

The phase transition proceeds when the bubble nucleation rate Γ ∼ T 4e−Sb , where Sb
is the Euclidean bounce action, is larger than the Hubble parameter H4. For T < Tc we

can approximate

H2 ≈ Fdeconf(T = 0)

3M2
Pl

=
π2N2T 4

c

24M2
Pl

. (4.2)

This leads to an upper bound on the bounce action for the phase transition to complete:

Sb ≲ 4 log
MPl

Tc
. (4.3)

Thus for a TeV-scale dilaton VEV and critical temperature, the phase transition does

not complete until Sb ≲ 140 [48, 49]. In part of the parameter space for the standard

Goldberger-Wise mechanism, this condition is never satisfied and the universe is stuck in

eternal inflation with a positive CC in the deconfined phase. In our scenario, this doesn’t

occur for sufficiently large λ.

First-order phase transitions can lead to stochastic gravitational wave signatures re-

sulting from bubble wall collisions. The strength of the gravitational wave signal is con-

trolled by the inverse duration of the phase transition βGW, which is approximately given

by [69, 70]
βGW

H
= T

dSb
dT

∣∣∣∣
T=Tn

(4.4)

where Tn is the nucleation temperature at which the phase transition occurs, and H is

the Hubble parameter at T = Tn. The gravitational wave signal strength is inversely

proportional to (βGW/H)2 [69, 70].

The dynamics of the phase transition are controlled by the bounce solution which in-

terpolates between the vacua of the two phases [71, 72]. However, the dilaton effective

theory of the confined phase breaks down when the temperature is larger than the mass of

the lightest KK mode, T > MKK ∼ ⟨χ⟩ (see Fig. 1 and [45]), and part of the bounce occurs

in the noncalculable regime of the deconfined phase. A computation of the dynamics of

the phase transition performed entirely within the 4D dilaton EFT will therefore always

have some theoretical uncertainty. This uncertainty is greater for our scenario than in the

conventional Goldberger-Wise case for the two reasons already mentioned in the introduc-

tion: our dilaton is heavier, so the effect of the KK modes is more important; and since

the calculable portion of the bounce is much smaller, it does not necessarily dominate over

the noncalculable part.

In principle, it is possible to obtain the exact bounce solution by solving the full 5D

EOM — which are Euclidean-time Einstein equations with two coordinates, the radial

direction of the bounce and the direction of the extra dimension — and in fact this has
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been done numerically in a similar scenario in [73]. This has yet to be accomplished for the

black brane-RS bounce, and is beyond the scope of this paper. In what follows we will work

entirely within the dilaton effective theory despite this inherent uncertainty. Nevertheless,

we will see that we can still make useful predictions with regard to the bounce action

(Fig. 2), nucleation temperature (Fig. 3), and gravitational wave signals (Fig. 4).

Since we cannot obtain the exact bounce solution of the full 5D theory, we instead use

a proxy trajectory in the effective 4D theory. Following [45], we glue the free energies of

the confined and deconfined phases at χ = 0, taking the dilaton potential to be Fconf(χ)

for χ > 0 and equal to Fdeconf(T ) for χ < 0. Note that there is a discontinuity in this

potential at χ = 0, which grows with T and vanishes as T → 0. We then consider bounce

configurations χ(r) interpolating between the vacua χ = 0 and χ = ⟨χ⟩, with the boundary

conditions χ′(0) = 0 and χ(∞) = 0.

5 Results

5.1 Thin-wall Analysis

It is instructive to first analyze the bounce in the thin-wall approximation [71, 72]. This is

a good approximation when the temperature T is close to Tc, and provides useful intuition

for the bounce more generally.

The O(3)-symmetric bounce action4 is given by [72]

Sb =
16π

3

S3
1

∆V 2T
, (5.1)

where ∆V = π2N2(T 4
c − T 4)/8 is the potential difference between the ends of the bounce,

and S1 is the bubble wall surface tension. The surface tension is determined by the potential

as

S1 =

∫ ⟨χ⟩

0
dχ

√
2V (χ). (5.2)

Using the potential in Eq. (3.13), we then find the bounce action at leading order in the

expansion parameter δ = 1− T/Tc:

Sb ≈
N2

31/4λ3/4δ2
F (ν)3,

F (ν) =

(
ν

2− ν

)3/4 ∫ 1

0
dx

√
1− x2ν

ν/2
− (1− x4).

(5.3)

The thin-wall approximation is valid when δ ≪ 1.

We remark that the bounce action scales as N2/λ3/4 and is independent of ⟨χ⟩, which
remains true outside of the thin-wall limit. Furthermore, the bounce is not enhanced

further by any small parameters, unlike the case of Goldberger-Wise stabilization where

the bounce is enhanced by the small explicit breaking of scale invariance [46]. Because of

4The O(4)-symmetric bounce action is always larger in the thin-wall limit, so the bounce is dominated

by O(3)-symmetric bubbles.
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this, it is possible for the phase transition to complete promptly, i.e. without supercooling

where T ≪ Tc.

Using Eq. (4.4), the inverse duration of the phase transition in the thin-wall approxi-

mation is
βGW

H
=

2

δ
Sb. (5.4)

Note this is to be evaluated at the nucleation temperature, at which Sb ≈ 140, as explained

below Eq. (4.3).

5.2 Numerics

Next we compare the thin-wall results above to numerical calculations of the phase tran-

sition computed using the FindBounce package [74]. The usual boundary conditions need

to be modified for the purpose of the computation due to the aforementioned potential

discontinuity. The effect of the discontinuity can be absorbed into a modification of the

boundary condition χ(∞) = 0 to χ′(r∗)
2/2 = δV , where r∗ is the point at which χ(r∗) = 0

and δV is the size of the discontinuity. The bounce solution for r > r∗ is simply χ(r) = 0.

As a check of our numerical methods, Fig. 2 depicts the bounce action as a function of

the quartic λ for T = 0.5Tc (δ = 0.5) and T = 0.9Tc (δ = 0.1), fixing ν = 1.2 and N = 5.

We show our numerical computations alongside the thin-wall result in Eq. (5.3). The 1/λ3/4

scaling is manifest. As expected, the thin-wall approximation and the numerical result are

in excellent agreement for δ = 0.1, and are of the same order of magnitude when δ = 0.5.

Recall that there is a theoretical uncertainty in calculating the bounce action within

the 4D dilaton effective theory, as part of the bounce occurs in the noncalculable regime. To

estimate the error we scale the potential by a constant V → (1 + ε)V in the noncalculable

regime 0 < χ < T (χ/MKK), then compute the rate of change of the bounce action under this

scaling, dSb/dε . We then take the relative error in the bounce action to be
∣∣S−1

b dSb/dε
∣∣,

which characterizes the sensitivity of the bounce action to the noncalculable regime. This

error is depicted as shaded bands in Fig. 2. It should be understood as a crude estimate

rather than a rigorous computation of the theoretical uncertainty, which would require a

more involved analysis in the dual 5D picture. Lastly, we show the value of λ at which

the scalar field has a significant backreaction on the metric as black lines in Fig. 2. For

τUV = 3 (τUV = 10) we need λ ≲ 0.1 (λ ≲ 0.6) to ensure a small backreaction.

Our main results are contained in Figs. 3 and 4. Fig. 3 shows the nucleation tempera-

ture Tn and the inverse duration of the phase transition βGW in relevant stabilization. We

again fix ν = 1.2 and N = 5 and present both numerical computations and the thin-wall

approximation. We also depict the sensitivity to the noncalculable regime with shaded

bands again. The thin-wall result for Tn is obtained by setting Sb = 140 in Eq. (5.3) and

solving for T/Tc; we then use Eq. (5.4) to compute βGW. Although we present results for

the quartic λ ranging from 10−2 to 1, recall that for large values the dilaton EFT is no

longer valid. The point the EFT breaks down depends on the 5D model parameters as

depicted in Fig. 2.

For comparison we consider a Goldberger-Wise stabilized dilaton with ϵ = −1/20 (cor-

responding to ν = 2− 1/20), computing Tn and βGW in the thick-wall approximation [72]
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Figure 2. Comparison of the thin-wall approximation and numerical results for the O(3)-symmetric

bounce action Sb. The solid lines are numerical calculations and the dashed lines correspond to

the thin-wall approximation. We fix ν = 1.2 and N = 5 and choose T = 0.5Tc (blue lines) and

T = 0.9Tc (red lines), as the quartic λ is varied from 0.01 to 1. The inherent error arising from

the breakdown of the dilaton effective theory is depicted by the gray bands. We also include the

value of λ at which the backreaction of the bulk scalar on the metric becomes large (black lines)

for τUV = 3 and τUV = 10.

following [49], which is a good approximation in the supercooled limit. In contrast to the

Goldberger-Wise case, our mechanism requires no substantial supercooling for the phase

transition to complete. Consequently, the inverse duration of the phase transition βGW/H

is larger for our model, of order 102 or 103, whereas for the Goldberger-Wise stabilized

dilaton βGW/H ∼ 10 is typical. This will lead to weaker gravitational wave signals in our

model.

Fig. 4 contains gravitational wave spectra computed using our numerical results for

the phase transition duration. We depict the gravitational wave abundance ΩGWh
2 as a

function of frequency f for λ = 10−2, 10−1, 1, as well as a spectrum for βGW/H = 10, which

was what we found for Goldberger-Wise stabilization in Fig. 3. We also show projected

sensitivities for three proposed gravitational wave detectors in Fig. 4 — LISA [57, 58],

DECIGO [59–62], and BBO [63–65] — as computed in [75] assuming a signal-to-noise

ratio of 1. We assume the signal arises entirely from bubble collisions, that is, we ignore

contributions from sound waves and turbulence. We model the bubble collisions using the

envelope approximation, reviewed in [69, 70], under the following assumptions: the bubble

wall velocity is 1, the effective number of degrees of freedom during the phase transition is

g∗ = 100, and the temperature immediately after the phase transition is 1 TeV. In App. B

we justify our approximations and provide explicit formulae for ΩGWh
2. We note that for

λ = 1 the dilaton EFT cannot be trusted, so the results for this benchmark point should
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Figure 3. The ratio of the nucleation temperature to the critical temperature Tn/Tc (top) and the

ratio of the inverse duration of the phase transition to the Hubble parameter βGW/H at the time of

transition (bottom). We fix ν = 1.2 and N = 5. The solid blue lines are computed numerically, the

dashed blue lines are computed in the thin-wall approximation, and the gray bands estimate the

theoretical error due to the breakdown of the dilaton effective theory. For comparison we include

the corresponding values for a Goldberger-Wise stablized dilaton with ϵ = −1/20 and N = 5 (black

line).
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Figure 4. The gravitational wave abundance spectrum ΩGWh
2(f) for λ = 0.01 (red), λ = 0.1

(blue), and λ = 1 (green), fixing ν = 1.2 and N = 5. The colored bands indicate the theoretical

error due to the dilaton EFT breaking down. For comparison we include a spectrum for βGW/H =

10 (black), a typical value for Goldberger-Wise stabilization. We show projected experimental

sensitivities for LISA [57, 58] (orange, dashed), DECIGO [59–62] (purple, dashed), and BBO [63–

65] (turquoise, dashed).

be interpreted with caution.

The gravitational wave signals in our model are weaker by several orders of magnitude

than in Goldberger-Wise stabilization and are shifted towards higher frequencies. As ex-

plained above, this is due to the lack of supercooling and relatively weak first-order phase

transition. Nevertheless, one could still probe all of our benchmark points at DECIGO and

BBO, and all but possibly the λ = 1 point at LISA.

6 Conclusions

In this work we have described a new way to stabilize the scale of spontaneously bro-

ken conformal symmetry. Instead of a nearly marginal operator acquiring a VEV like the

Goldberger-Wise mechanism, in our mechanism a relevant operator with a small, techni-

cally natural coefficient gets a VEV. The small coefficient of the relevant operator generates

a large UV/IR hierarchy. We calculated the effective dilaton potential in the dual 5D pic-

ture, and found that our dilaton typically has a mass of the same order as the IR scale, in

contrast to the Goldberger-Wise dilaton whose mass is suppressed by the small anomalous

dimension. One consequence of the enhanced dilaton mass is that a mild tuning of the

dilaton quartic will be required to ensure the validity of our dilaton EFT.

Working within the dilaton effective theory, we studied the dynamics of the conformal

phase transition. Our analytical approximations in the thin-wall limit as well as our numer-
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ical studies generally confirm our intuition about the phase transition: the bounce action

is reduced relative to the Goldberger-Wise case because the dilaton potential is deeper.

Thus, the phase transition is far more weakly first-order and proceeds without substantial

supercooling. The major phenomenological effect resulting from this is that the stochastic

gravitational wave signals from bubble collisions are reduced. However, they may still be

observable at the next generation of gravitational wave detectors.

We emphasize that our use of the 4D dilaton EFT impedes the precision of our calcu-

lations. We cannot trust the dilaton potential near the origin, where the effective theory

breaks down, and also part of the bounce occurs in the deconfined phase which is non-

calculable. Although we have attempted to characterize the theoretical uncertainty in our

computations, a complete treatment of the phase transition would require working in the

full 5D picture and solving the (Euclidean-time) Einstein equations for the bounce config-

uration. We intend to study the phase transition from a 5D perspective more rigorously

in future work.
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A Derivation of the Effective Dilaton Action

In this appendix we derive the general effective dilaton action in the 5D picture. Similar

results to ours were obtained in [16–18]. We consider the RS action [5] with additional

matter,

S = −
∫

d4x dy
[√
g
(
2M3

5R+ Λ
)
+
√
gindΛUVδ(y) +

√
gindΛIRδ(y − yc)

]
+ Sm, (A.1)

where R is the 5D Ricci scalar, the bulk CC and boundary tensions are taken to their RS

values (see Sec. 3) and Sm is the action of additional matter in the bulk. We add scalar

perturbations to the RS metric in Eq. (3.1) using the following ansatz [13],

ds2 = e−2(A+F )ηµν dx
µ dxν − (1 + 2F )2 dy2 . (A.2)

A(y) is the warp factor and F (xµ, y) are the scalar perturbations, which we parameterize

as F (xµ, y) = f(y)r(xµ) and identify r(xµ) as the radion. When Sm and F are taken to

zero, the background solution of the Einstein equations is A = ky.

Working to leading order in the backreaction δA(y), or equivalently in (k/M5)
3, we

note that the Tm
MN calculated from Sm can be taken at zeroth order. This follows from

the Einstein equations, GMN = 1
4M3

5
TMN , where evidently GMN is already first order in

(k/M5)
3, leaving Tm

MN = T
m,(0)
MN . T

m,(0)
MN is calculated from Sm = S

(0)
m (y). From the 4D
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Lorentz invariance of S
(0)
m (y), it follows that T

m,(0)
µ5 = 0, and the leading order of the (µ5)

Einstein equation reads

3∂µr
(
f ′ − 2A′f

)
= 0. (A.3)

Its solution gives the well-known radion profile f(y) = e2A [76]. Plugging in this profile to

the rest of the Einstein equations, the (55) component is then

12kδA′ + 3e4A□r =
1

4M3
5

T
m,(0)
55 . (A.4)

Note that in the limit of no backreaction and no matter fields, Eq. (A.4) is the EOM of a

massless radion field, as expected in this limit where the radion is not stabilized. The (µν)

components of the EOM include singular pieces in δA′′, which impose the Israel junction

conditions

2ηµνe
−2AδA′

∣∣∣∣
y=0,yc

= ± 1

12M3
5

Tm,(0)
µν

∣∣∣∣
y=0,yc

. (A.5)

We can now compute the effective dilaton action. Its minimum is obtained by solving

δS/δr = 0, which corresponds to solving the Einstein equations, imposing the BCs in

Eq. (A.5), as well as solving the EOM of the bulk matter fields in Sm. Therefore, in the

vicinity of the minimum, the effective dilaton action is given by

Seff(r) =

∫
δS

δr
dr . (A.6)

By varying the action S with respect to r we obtain the Einstein equations,

δS

δr
=

(
δSEH
δgMN

+
δSΛ
δgMN

+
δSm
δgMN

)
δgMN

δr
=

∫
d4x dy

√
g

(
−2M3

5GMN +
1

2
TMN

)
δgMN

δr
.

(A.7)

We now plug in the metric ansatz in Eq. (A.2) to leading order and impose the bulk EOM,

but we do not yet impose the Israel junction conditions in Eq. (A.5). This allows us to

calculate the effective action for the dilaton field away from its minimum, where the IR

brane jump condition is satisfied. The UV brane jump condition will be equivalent to the

requirement that the total 4D CC is zero, which we will assume to be satisfied. This leaves

us with
δS

δr
=

∫
d4x

√
g

[
∓12M3

5 ηµνδA
′e−2A +

1

2
Tm,(0)
µν

]
y=0,yc

δgµν

δr
. (A.8)

Indeed, we see that a minimum of the action is obtained once the BCs in Eq. (A.5) are

satisfied. We substitute δA′ from Eq. (A.4) and obtain

δS

δr
=

∫
d4x

[
−24M3

5

k
□r

(
e2kyc − 1

)
+

2

k
T
m,(0)
55 e−2A

∣∣∣∣yc
0

+
1

2

√
gTm,(0)

µν

δgµν

δr

∣∣∣∣
y=0,yc

]
. (A.9)

The first term in this equation is the variation of the kinetic term of the radion [13, 14].

The remaining terms, as we now show, are precisely δS
(0)
m

/
δr to leading order: varying

only the matter fields S
(0)
m with respect to r gives

δS
(0)
m

δr
=

∫
d4x dy

1

2

√
gT

m,(0)
MN

δgMN

δr
=
δS

(0)
m

δr

∣∣∣∣∣
bulk

+
1

2

∫
d4x

√
gTm,(0)

µν

δgµν

δr

∣∣∣∣
y=0,yc

. (A.10)
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We separated out the contribution of the singular terms on the branes from the contribution

of the smooth part of the bulk. The latter can be shown to be equal to the second term in

Eq. (A.9),

δS
(0)
m

δr

∣∣∣∣∣
bulk

=

∫
d4x dy e−4Af

(
4T

m,(0)
55 + 2e2AηµνTm,(0)

µν

)
=

∫
d4x

2

k
T
m,(0)
55 e−2A

∣∣∣∣yc
0

,

(A.11)

where we used the energy-momentum conservation relation

0 = ∇MT
m,(0)
M5 = −∂5Tm,(0)

55 + 4A′T
m,(0)
55 +A′ηµνTm,(0)

µν . (A.12)

In total, we find that

δS

δr
= −

∫
d4x

24M3
5

k
□r

(
e2kyc − 1

)
+
δS

(0)
m

δr
, (A.13)

and upon integrating we see that the effective dilaton action is given by

Seff(χ) =
12M3

5

k3

∫
d4x ∂µχ∂

µχ+ S
(0)
m,eff . (A.14)

Here we reparametrized the radion as the dilaton,

χ(x) ≡ k exp
(
−kyc − r(x)e2kyc

)
. (A.15)

We have found that the effective dilaton potential is given by integrating the bulk matter

action over solutions to the EOM (including appropriate BCs). The contribution of the

backreaction is already encoded in Eq. (A.14). We use this calculation of the effective

action in Eq. (3.8) in the main text.

B Gravitational Wave Spectrum

Here we provide an explicit expression for the gravitational wave abundance and carefully

consider the assumptions which go into it. The reader is referred to [69, 70] for a pedagogical

review of gravitational waves from first-order phase transitions.

The gravitational wave spectrum arises from three main processes: collisions of bubble

walls, sound waves in the plasma, and turbulence in the plasma. We assumed that the

contribution from bubble wall collisions dominates. Whether this is a good assumption

depends on the ratio of vacuum energy density released in the phase transition to the

energy density of the radiation bath. For us this is given by

α =
15N2

4g∗

(
T 4
c

T 4
n

− 1

)
, (B.1)

where g∗ is the number of effective relativistic degrees of freedom during the phase transi-

tion. When α is large relative to a characteristic value α∞, the sound wave and turbulence
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contributions can be safely neglected. Explicitly α∞ is given by a sum over the masses of

the particles that acquire a mass during the phase transition:

α∞ =
30

24π2g∗T 2
n

∑
cim

2
i , (B.2)

where the i-th particle has mass mi after the transition and ci (2ci) degrees of freedom for

bosons (fermions).

During the phase transition, the techni-quarks of the CFT sector confine into mesons.

Assuming that the meson masses are all of the order of the dilaton VEV ⟨χ⟩, one can

then calculate the ratio α/α∞ for the benchmark points in Fig. 4. We find that α/α∞ is

always larger than 1 as long as there are less than about 200 mesonic degrees of freedom.

In this case it is justified to neglect the sound wave and turbulence contributions to the

gravitational wave spectrum.

Furthermore, in the α ≫ α∞ limit, all of the energy released in the phase transition

contributes to accelerating the bubble walls (as opposed to the bulk motion of the fluid) and

the bubble wall velocity approaches the speed of light. Using the envelope approximation,

the gravitational wave abundance from bubble wall collisions is then given by

ΩGWh
2 = 1.3× 10−6

(
H

βGW

α

1 + α

)2(100

g∗

)1/3 3.8(f/fp)
2.8

1 + 2.8(f/fp)3.8
, (B.3)

where

fp = 3.8× 10−5 Hz
βGW

H

T

1 TeV

( g∗
100

)1/6
(B.4)

is the frequency the abundance is peaked at. The signal curves in Fig. 4 were computed

using Eq. (B.3).
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[3] B. Bellazzini, C. Csáki and J. Serra, Composite Higgses, Eur. Phys. J. C 74 (2014) 2766

[1401.2457].

[4] G. Panico and A. Wulzer, The Composite Nambu-Goldstone Higgs, vol. 913, Springer (2016),

10.1007/978-3-319-22617-0, [1506.01961].

[5] L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys.

Rev. Lett. 83 (1999) 3370 [hep-ph/9905221].

[6] L. Randall and R. Sundrum, An Alternative to compactification, Phys. Rev. Lett. 83 (1999)

4690 [hep-th/9906064].

[7] K. Agashe, R. Contino and A. Pomarol, The Minimal composite Higgs model, Nucl. Phys. B

719 (2005) 165 [hep-ph/0412089].

– 19 –



[8] R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudoGoldstone boson,

Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259].

[9] R. Rattazzi and A. Zaffaroni, Comments on the holographic picture of the Randall-Sundrum

model, JHEP 04 (2001) 021 [hep-th/0012248].

[10] N. Arkani-Hamed, M. Porrati and L. Randall, Holography and phenomenology, JHEP 08

(2001) 017 [hep-th/0012148].

[11] C. Csaki, M. Graesser, L. Randall and J. Terning, Cosmology of brane models with radion

stabilization, Phys. Rev. D 62 (2000) 045015 [hep-ph/9911406].

[12] T. Tanaka and X. Montes, Gravity in the brane world for two-branes model with stabilized

modulus, Nucl. Phys. B 582 (2000) 259 [hep-th/0001092].

[13] C. Csaki, M.L. Graesser and G.D. Kribs, Radion dynamics and electroweak physics, Phys.

Rev. D 63 (2001) 065002 [hep-th/0008151].

[14] W.D. Goldberger and M.B. Wise, Phenomenology of a stabilized modulus, Phys. Lett. B 475

(2000) 275 [hep-ph/9911457].

[15] W.D. Goldberger and M.B. Wise, Bulk fields in the Randall-Sundrum compactification

scenario, Phys. Rev. D 60 (1999) 107505 [hep-ph/9907218].

[16] B. Bellazzini, C. Csaki, J. Hubisz, J. Serra and J. Terning, A Naturally Light Dilaton and a

Small Cosmological Constant, Eur. Phys. J. C 74 (2014) 2790 [1305.3919].

[17] C. Csaki, J. Hubisz, A. Ismail, G. Rigo and F. Sgarlata, a-anomalous interactions of the

holographic dilaton, Phys. Rev. D 106 (2022) 055004 [2205.15324].

[18] A. Pomarol, O. Pujolas and L. Salas, Holographic conformal transition and light scalars,

JHEP 10 (2019) 202 [1905.02653].
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