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ABSTRACT: We propose a simple modification of the Goldberger-Wise mechanism for sta-
bilizing the scale of spontaneously broken conformal theories. The source of explicit con-
formal symmetry breaking is a relevant operator with a small coeflicient, as opposed to
the usual mechanism of an almost marginal operator with an order-one coefficient. In the
warped 5D picture this relevant stabilization corresponds to a small tadpole for the bulk
scalar on the UV brane, which can be technically natural if it is the only source for the
breaking of a symmetry (for example, a discrete Z3). This modification of the stabilization
mechanism has significant consequences for the nature of the conformal phase transition,
since the radion/dilaton potential is no longer shallow. The bounce action is significantly
reduced, leading to a weaker first-order phase transition instead of the supercooled and
strongly first-order transition seen in Goldberger-Wise stabilization. This also leads to
reduction of gravitational wave signals which, however, may still be observable at future
detectors. We present numerical and analytical studies of the phase transition and the
resulting gravitational wave signal strength, assuming that the effective dilaton potential
provides a good leading approximation. While the dilaton is not expected to be generically
light in this setup, in order to keep perturbative control over the effective theory one needs
to mildly tune the dilaton quartic to be somewhat small.
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1 Introduction

One of the deepest mysteries of particle physics is the smallness of the observed Higgs
mass [1, 2] and vacuum expectation value (VEV) compared to the scale where the Standard
Model (SM) is expected to be completed into a fuller theory, which is naively expected to
lie around the Planck or GUT scale. Generically, the Higgs mass is expected to have a
power-law dependence on the high scales at which any physics beyond the Standard Model
manifests itself. Hence it is difficult to understand how the Higgs mass ended up being so
much lighter, which is the well-known “Higgs hierarchy” or “naturalness” problem.

A commonly studied solution to this hierarchy problem is Higgs compositeness (see [3,
4] for reviews and [5-43] for studies in the field), where some new interaction becomes
strong close to the weak scale, producing light composites including the Higgs boson itself,
and thus providing a dynamical stabilization of the hierarchy.! Composite Higgs models
can also be studied via their holographic implementation [7, 8], where the large hierarchy
manifests itself as a warped extra dimension whose size is stabilized at large values and a
corresponding exponentially small IR scale. In the simplest models proposed by Randall
and Sundrum (RS) [5, 6] the warped extra dimension is a slice of anti-de Sitter (AdS) space,
spanning from the UV to the IR branes at its ends and corresponding to a near-conformal

'A variation of this idea is Technicolor, in which the strong dynamics directly break the electroweak
symmetry, similar to the dynamics of QCD. This idea, however, does not produce a light Higgs boson and
is also expected to lead to large electroweak precision corrections, so it is strongly disfavored.



theory in the dual 4D implementation [9, 10]. Fields localized close to the IR (including
the Higgs boson) correspond to composites, while those in the UV are elementary (which
usually includes some of the light SM fermions). The appearance of the IR brane can
be interpreted as a spontaneous breaking of the conformal symmetry. The corresponding
Goldstone boson is the radion excitation, associated to fluctuations of the IR brane [11-
14]. In the 4D theory the radion is interpreted as the dilaton, the Goldstone boson of
spontaneously broken scale invariance. The VEV of the dilaton/radion field sets the size of
the warped extra dimension and consequently the IR scale. The solution to the hierarchy
problem then comes down to the question of how to stabilize the dilaton/radion at large
field values.

An elegant stabilization method was provided by Goldberger and Wise [44], who
posited that a nearly marginal operator of dimension 4 + € gets an expectation value. This
leads to an exponentially large extra dimension in the 5D picture, through the exponential
dependence of the dilaton VEV on 1/e. It was first realized in [45] that this Goldberger-
Wise stabilization mechanism has profound consequences for the early-universe behavior
of these models [46-55]. At high temperatures the conformal symmetry is restored, and
the theory is essentially a hot conformal field theory (CFT). The holographic interpreta-
tion of this hot CFT is the modification of the AdS background to AdS-Schwarzschild —
a different solution to the same Einstein equations, corresponding to a black brane so-
lution in 5D AdS space, with a black hole horizon at a finite proper distance from the
UV brane and spanning the full 4D space [45]. The transition between the unbroken and
broken CF'T phases corresponds to the nucleation of bubbles of the IR brane. Goldberger-
Wise stabilization yields a dilaton potential whose minimum is very shallow, resulting in
a large contribution to the bounce action in the dilaton region, in turn making it difficult
to complete the phase transition. This leads to the standard prediction that the RS phase
transition is supercooled, strongly first-order, and often cannot complete until the temper-
ature is well below the weak scale (the conditions for supercooled phase transitions were
recently analyzed in detail in [56]). Another important consequence of Goldberger-Wise
stabilization is on the spectrum of gravitational waves emitted during the phase transi-
tion [46]. Since the phase transition is strongly first order, one expects strong stochastic
gravitational wave signals produced from bubble wall collisions. These could be detected at
next-generation gravitational wave observatories, such as LISA [57, 58], DECIGO [59-62],
and BBO [63-65].

In this paper we point out that there is a simple variation of the Goldberger-Wise
stabilization mechanism that would significantly alter the nature of the RS phase transition.
Instead of having an almost marginal operator with small anomalous dimension obtain a
VEV after a long running, one can have a relevant operator as the source of the spontaneous
breaking of conformality. In this case the generation of a large hierarchy requires that the
coefficient of this operator is very small in the UV, which can easily be made technically
natural via a discrete symmetry. For example, in the Goldberger-Wise framework one
can enforce a Zy symmetry for the bulk scalar, which is softly broken by a small tadpole
on the UV brane. Deviating from regular Goldberger-Wise stabilization, in our “relevant
stabilization” scenario the bulk mass of the bulk scalar is not small, and the hierarchy is



generated by the smallness of the UV brane tadpole. This significantly alters the shape of
the potential for the dilaton, such that it is no longer much lighter than the other Kaluza-
Klein (KK) excitations. Since the potential is no longer very shallow, the bounce action
is expected to be significantly reduced. This weakens the strength of the phase transition,
allowing it to complete with no supercooling. The resulting gravitational wave spectrum
is peaked at a higher frequency and the overall signal strength is reduced.

Our goal in this work is to perform the first steps towards studying the nature of the
RS phase transition with relevant stabilization. We will restrict ourselves to studying the
dilaton effective action, assuming that it provides a reliable description of the theory. As
expected, we will show that the bounce action is greatly reduced relative to the Goldberger-
Wise case, making the phase transition weaker. We will also confirm that, within our
approximation, the strength of the gravitational wave signal emitted during the phase
transition is greatly reduced; it may still, however, be observable at future gravitational
wave detectors.

One other consequence of the relevant stabilization mechanism is that the calculability
of the phase transition is also reduced, for two reasons. Firstly, since the bounce action
in the calculable regime is smaller, it will no longer easily dominate over the (so far)
noncalculable contribution of the hot phase. Secondly, since the dilaton is heavier, the
gravitational and scalar KK modes might also become significant in the RS side of the
phase transition. Both of these effects suggest that a more involved numerical study is
necessary to firmly establish the results in this paper, where we only work in the limit of
the dilaton effective action. We expect to address the phase transition in the full theory in
subsequent work.

The paper is organized as follows. We give a general overview of the relevant sta-
bilization mechanism in Section 2. We then derive the effective dilaton potential in our
model in Section 3, showing that our dilaton is heavier than the Goldberger-Wise dilaton.
We discuss preliminary aspects of the phase transition in Section 4, which sets the stage
for detailed analytical and numerical calculations of the phase transition that we present
in Section 5. We find that the gravitational wave signals from relevant stabilization are
higher-frequency and weaker than those from Goldberger-Wise stabilization.

2 The General Picture

In this work, we are studying a composite Higgs scenario arising from the spontaneous
breaking of a CFT, where the spontaneous breaking is triggered by a relevant operator

0L = gq0, where [O] =d < 4. (2.1)

If the coupling were O(1), then the presence of the operator would correspond to a large
explicit breaking of the CFT, and no hierarchy can be generated, as any breaking scale
generated would be not far below the UV scale. However, if the coupling g4 is taken to be
very small, then one still has an approximate CFT in the UV, and a large hierarchy can
be created due to the running of this coupling. The form of the running of g, as a function
of the renormalization scale y is given by ga(u) = ga (uv) (puv/w)* ™% Assuming that



the coupling in the UV g4 (uuv) is very small, the breaking of scale invariance is expected
to be triggered when this running coupling becomes sizable at a scale f far below the UV
scale. This generates a UV/IR hierarchy that could be used for composite Higgs models
in the usual way.

One can then find the form of the effective dilaton potential by performing the usual
spurion analysis, restoring scale invariance by treating the CFT breaking couplings as if
they were operators with the correct scaling dimension. If O has dimension d < 4, then
the scaling dimension of its coupling g4 is 4 — d. In order for the theory to be technically
natural, we will also assume that O is odd under an additional Z5 discrete symmetry. Using
spurion analysis again, we assign the g4 coupling to be odd under the same symmetry, which
implies that only even powers of g4 show up in the dilaton effective potential. Since g§ has
scaling dimension 8 — 2d, there will exist a term in this potential wherein the dilaton field
x shows up with power 2d — 4 = 2v, in addition to the standard scale invariant y* term in
the effective potential:

Ver(X) = A = A7 + - (2.2)

where we have introduced the dimensionless coupling Ag,, o 72, such that v oc gq(pvv) u%},‘l
is a dimensionless parameter characterizing the size of the explicit breaking of scale invari-
ance in the UV. Note that this form of the potential is in agreement with [9]: while in
the generic expression the lowest power appearing is x>*¥, this is absent for us due to our
assumption of the additional Z; symmetry.? We have also assumed that A > 0 and chosen
the sign of the contribution of the explicit breaking term Ao, > 0, such that these two terms
can balance each other to generate a stable minimum at f = (x) = puv(vAz,/2A) Y32 <
puvy/ 2" <« puy. The smallness of the coupling in the UV therefore allows for a large
hierarchy between the stabilized IR scale and the UV scale, as necessary to address the
Higgs hierarchy problem.

One important question to address is whether a description in terms of a dilaton,
corresponding to a mostly spontaneously broken scale invariance, is still valid, since we have
introduced an explicit breaking to trigger the spontaneous breaking of scale invariance.
When this description is invalid, no light dilaton with mass below the breaking scale f
should exist. Hence we find a self-consistency condition on the parameters of the potential
in Eq. (2.2), which can be written as V" (x)| f? < O(1). This will translate into the
condition

x:f/
82—-v)A S 0(1). (2.3)

In the 5D picture, this scenario is realized by a bulk scalar field whose bulk mass term
is negative (but not beyond the Breitenlohner-Freedman bound [66]), such that the profile
of both solutions to the 5D Klein-Gordon equation grows from the UV to the IR brane.
By the AdS/CFT dictionary the bulk mass m? is related to the dimension of the CFT
operator by d = 2+ v = 2+ /4 + m?/k?, where k is the AdS curvature [9]. Unlike the
Goldberger-Wise case, the bulk mass is not small in absolute size and the scalar has no
VEV on the IR brane. In addition, a small UV brane tadpole is added for this scalar field,

2This can also be understood as assuming the CFT dynamics don’t break the Z» symmetry, therefore (0)
must vanish with the explicit breaking source gq(puv) and the potential has no linear piece in gq(puv) [9].



which is proportional to the explicit CFT breaking parameter « in the above CFT picture.
As a result, a small VEV is generated on the UV brane, proportional to the size of the
UV tadpole, in the absence of which the entire 5D VEV profile would vanish. As the VEV
profile grows towards the IR, its contribution to the effective potential becomes comparable
to that of the mistuning between the IR brane tension and the bulk CC, and balancing both
terms stabilizes a large hierarchy without any small dimensions. Unlike the Goldberger-
Wise potential, where the hierarchy is due to the small bulk mass corresponding to a small
anomalous mass dimension € = d — 4, in our scenario the hierarchy is directly generated by
the technically natural small size of the tadpole.

There are several consequences of the absence of small dimensions in our scenario which
make it distinct from the Goldberger-Wise case. First, the dilaton mass is of the same order
as the IR scale, suppressed only by the CFT breaking coupling at the minimum gg(f) ~ A,
where ) is taken to be somewhat small for perturbativity. This differs from the Goldberger-
Wise limit, in which the dilaton mass is suppressed by the anomalous dimension €'/2 [13].
Next, the bounce action for the conformal phase transition is not enhanced by any small
parameters, in contrast to Goldberger-Wise stabilization where the bounce action scales
as 1/€3/4 [46]. As a result, the phase transition is more weakly first-order and can easily
complete without significant supercooling. This therefore alleviates the problem of eternal
inflation, present in much of the parameter space of Goldberger-Wise stabilization [45] (see
a modern expanded analysis in [56]). This also leads to a more rapid phase transition
and thus weaker gravitational wave signatures with a higher peak frequency relative to the
Goldberger-Wise case. We will see these effects clearly in Section 5.

Our proposed stabilization mechanism shares some similarities with that proposed
in [18], where the operator O, which breaks scale-invariance is marginal with a small
imaginary anomalous dimension 2v/—e¢. Such operators can appear in CFTs where the IR
fixed point merges with a UV fixed point, and the appearance of the imaginary anomalous
dimension is interpreted as the loss of conformality. In the dual AdS picture, this can
be realized by a bulk field with a mass below the Breitenlohner-Freedman bound, which
therefore becomes tachyonic. The analysis of [18] showed that in this scenario the dilaton
mass is light but not parametrically smaller than the IR scale, similar to what is achieved
in our model through a relevant operator. Interestingly, while in our model the heaviness
of the dilaton renders the phase transition weakly first-order, the model of [18] is believed
to lead to strong supercooling.

3 Dilaton Potential from the 5D Picture

We now calculate the effective dilaton potential of our stabilization mechanism in the 5D
picture. The minimum of this potential will correspond to a hierarchically small dilaton
VEV compared to the UV cutoff scale given by the AdS curvature puyyv = k, thereby
generating the UV/IR hierarchy needed to solve the naturalness problem.

We work in the RS background, with the metric

ds® = ek dz? — dy?, (3.1)



where y is the orbifolded fifth dimension. The UV and the IR branes are the two orbifold
fixed points at y = 0 and y = y,, respectively. This metric is a solution to the Einstein
equations when the bulk CC is A = —24Mg?k:2 and the brane tensions are tuned to Ayy =
—Ar = 24M3k, where M3 is the 5D Planck mass [5].

We introduce a free scalar @ in the bulk, whose action is given by

Sp = /d% dy /g [;gMN(’?nf(I)&N@ - %mQQDQ
(3.2)

Gind Gind
VI A D)6 (y) — YRR (D)8 (y — e
7o uv(®)d(y) NG R(P)I(Y — ve)

where ging is the determinant of the induced metric on the branes. ® respects a Zs sym-
metry which is softly broken by a small tadpole on the UV brane:

1 1
Vov(®) = 5mUV<1>2 + VKO D, ViR(®) = 5mm<1>2. (3.3)

v is dimensionless and can be taken to be very small since it is the only source of Zs breaking
and thus technically natural. One way to generate a small v is via a Yukawa coupling
DY 1pr, with one of the fermions odd under the Zs symmetry. A fermion condensate can
be generated from the dynamics of some new confining gauge group similar to QCD. The
scale of the condensate is controlled by dimensional transmutation and can be naturally
smaller than the UV scale.

For the zero modes of ®, which are only y-dependent, the solutions to the bulk equa-
tions of motion (EOM) are e?F)kY where v = /4 + m2/k2. We assume that 0 < v < 2 so
that on the UV brane, the second solution dominates. The profile of ® is localized towards
the IR brane, and may be written as

o(y) = @06(2—”>ky(1 v @162”@/). (3.4)
The boundary conditions (BCs) on the branes are
20'(0) = muy®(0) + k2, —28'(y.) = mmr®(ye). (3.5)

This fixes the coefficients of the 5D VEV profile in Eq. (3.4) to be

—2vkyc k3/2 k3/2
o= _RE T gy = 7 ~ I (3.6)
TR +4v Tuv + @1(Tuv — 4v) UV
where we defined the mass mistunings on the IR and UV branes as
TIREmIR//{?—{—Zl—QV, TUVszv/ki—(4—2V). (37)

The zero mode should be stable under small perturbations, otherwise the generated
dilaton potential itself will also be unstable. We verify this by perturbing the solution
®(y) + ¢(a*,y) and plugging it back into S¢. The effective 4D mass of the perturbation
is obtained by solving the EOM for ¢ in the limit of small 4D momentum p < ke *¥¢ and
then integrating out the extra dimension, which is found to be m?b x (TUV + TIRe_Q”kyC)k:Q.



A positive UV mass mistuning 7yy therefore ensures the zero-mode perturbations are not
tacyhonic and the solution is stable.

As shown in App. A, the effective 4D potential of the dilaton is obtained by integrating
out the bulk matter and substituting in the solutions to the EOM and BCs. Following this
procedure with S¢, integration by parts leaves us with only the boundary terms, since it
is quadratic in ®:

Vix) = - / dy Lo = —'(0)2(0) + Vv + e (¥ () ®(ye) + Vir)- (3.8)
Once we impose the BCs in Eq. (3.5) we are left with the tadpole contribution

2
Vix) = %7k5/2q>(0) = #;:—1—41/)]64_2”)(% + const., (3.9)
where y = ke "¢ is the dilaton. This is the key piece of our potential — the dilaton
can have any power between 0 and 4 while the size of this coupling is proportional to 72,
which can be hierarchically small. In the dual CFT this is the second term in Eq. (2.2)
which is quadratic in g4(puuv), as anticipated from the Zs symmetry of ©. No x?*" term
is generated due to the vanishing VEV of ® on the IR brane.

For comparison, in the Goldberger-Wise mechanism [44] the scalar has a small bulk
mass € = /4 +m?/k? — 2 < 1 with nonzero VEVs on both branes, which induces cou-
’ X4+26

operator of dimension 4 + € where conformal invariance is broken both explicitly and spon-

€ whose coefficients are O(1) in units of k. It is dual to an almost marginal

plings x**
taneously [9]. However, as pointed out in [9], it is not necessary for the bulk scalar to obtain
a VEV on the IR brane for the Goldberger-Wise mechanism to work, in which case only
the x*2¢ term is generated. Our mechanism is similar to Golberger-Wise stabilization of
this second variety with e < 0.

To complete our construction of the dilaton potential, we mistune the IR and UV
tensions. The former will induce a x* term in the potential, and the latter will give a
constant term. The entire dilaton potential is therefore

24 M3

A = Ao k42X 4+ 1) (3.10)

The overall scaling is added for later convenience. In our 5D realization, the coefficient of
the first term is given by

— . 3.11
48M53 TU\/(TIR—{—KLI/)’Y ( )

)\21/ =

The existence of a non-trivial minimum requires A9, > 0, so the IR mass mistuning must
lie in the range 0 > 1R > —4v.

This potential admits a minimum at

g\ 1/ 2) )
(x) :k( ;A ) ~ k), (3.12)



A small value for (x) /k is generated by the technically natural -, even when the power
is not large. This is the novel feature of our stabilization mechanism: a large hierarchy of
scales is generated without any small operator dimensions, but rather by a small explicit
breaking of the CFT. This is unlike the Goldberger-Wise mechanism, where the large
hierarchy is due to the smallness of € while the scalar VEVs on the branes are of the same
order. Note that as v approaches 2 our stabilizing operator becomes almost marginal and
1/(2 — v) grows large, so v no longer needs to be small to generate a large hierarchy. In this
limit our mechanism coincides with the Goldberger-Wise one with anomalous dimension
e=v—2.

We set V({x)) =~ 0, a tuning corresponding to the standard CC problem which is not
addressed in this work. The dilaton potential is then

RIVED)
V(X) - 271'2

(0 [(X/<x>)4 . WH] | (3.13)

v/2

Here we used the holographic relation N2 = 1672(Ms/k)®. With the kinetic term, the
dilaton action is

S, = /d“x [?;]7\:22(&()2 - V(x)]- (3.14)

The mass of the dilaton is given by

, 2712 9*V

mi= v G| =Re-n? (3.15)

x={x)

which for relevant operators is of the same order as the IR scale. In contrast, as the
operator becomes almost marginal (v — 2) the dilaton’s mass is suppressed by the small
anomalous dimension, as is the case in the Goldberger-Wise mechanism [13]. The dilaton
potential in the relevant stabilization mechanism is steeper than for the Goldberger-Wise
stabilization, as illustrated in Fig. 1. Because the dilaton mass is no longer suppressed,
the graviton [6, 12] and scalar [13, 15] KK modes might become significant. To ensure the
lowest-lying KK modes are not excited, we will require that m, < Mxkxk, as anticipated in
Eq. (2.3) in the CFT picture.

Our analysis of the stabilization mechanism was done entirely within the effective
dilaton theory, which would break down if the backreaction on the metric is too large. We
estimate this backreaction is small when the potential on the IR brane, Vig (®)+24AM, g’k:, is
smaller than the IR brane tension Ajg. This condition also ensures that the CFT breaking
is spontaneous. While the CF'T-breaking coupling blows up for a small enough y, i.e. below
X+ where V (x«)/x} = 47 (the potential is dominated by the CFT breaking term), at x =
(x) both couplings balance one another and are of the same order. Therefore, at x = (x),
for small enough A the CFT-breaking term is still perturbative, and correspondingly the
bulk scalar field does not significantly backreact on the AdS background, which is broken
spontaneously by the appearance of the IR brane.

In the following, we will explicitly study our model for the benchmark point v =
1.2, mr = —4k with the two UV mass mistunings myy = 3,10. The first mode of the
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Figure 1. A sketch of the free energy of the CFT. The free energy of the cold, confined phase is
given by the dilaton potential in RS, with the Goldberger-Wise mechanism in blue and the relevant
stabilization mechanism we propose in green. On the left side the free energy of the hot, deconfined
phase is given by the AdS-S metric, as a function of the horizon temperature T}, (red) [45].

stabilizing scalar is the lightest KK mode with Mk = 2.1(x), independent of the value
of Tyy (the mass of the first graviton KK mode is larger, ~ 3.8(x)). The backreaction on
the metric is small when A < 0.13 (A < 0.6) for 7yy = 3 (7yy = 10), which also guarantees
the dilaton is lighter than the KK modes. Thus the validity of the dilaton EFT requires a
mild tuning of the quartic.

4 Phase Transition

As the universe cools down, the CF'T undergoes a phase transition from the hot deconfined
phase to the cold confined phase. In the dual 5D picture, the hot phase is described by a
black brane solution to the Einstein equations; in the limit where the UV brane is taken
to the AdS boundary this solution is just the AdS-Schwarzschild metric.? The cold phase
is dual to the usual RS picture with an IR brane. The phase transition proceeds via
nucleation of IR brane bubbles within the black brane background [45].

The critical temperature of the phase transition T is determined by matching the free
energies of the confined and deconfined phases. The former is given by the dilaton effective
potential in Eq. (3.13), Feont(x) = V(x) (for T' < Mkk(x)); the latter is Fyecont(T) =
—7m2N2T*/8 + Vi. The constant term Vj can be found by identifying a common limit to
the two phases [45, 47], leading to V) = W(X#. Solving for Feont((X)) = Faecont(T¢),

212y

3With the UV brane, the solution is no longer stationary. It corresponds to a radiation dominated
universe which expands with time, which can be thought of as a moving UV brane [67, 68].



the critical temperature is thus

7= X [mz_y] " (4.1)

s 14

We remark that the free energy of the deconfined phase can be written as Fyecont(1) =
w2 NY(TE —T4)/8.

The phase transition proceeds when the bubble nucleation rate I' ~ T* ™%, where S,
is the Euclidean bounce action, is larger than the Hubble parameter H*. For T' < T, we
can approximate

52 o Faccont(T =0) _ w*N*T;
3M3, 24M3,

This leads to an upper bound on the bounce action for the phase transition to complete:

(4.2)

Sy < dlog MP1, (4.3)
TC

Thus for a TeV-scale dilaton VEV and critical temperature, the phase transition does

not complete until S, < 140 [48, 49]. In part of the parameter space for the standard

Goldberger-Wise mechanism, this condition is never satisfied and the universe is stuck in

eternal inflation with a positive CC in the deconfined phase. In our scenario, this doesn’t

occur for sufficiently large A.

First-order phase transitions can lead to stochastic gravitational wave signatures re-
sulting from bubble wall collisions. The strength of the gravitational wave signal is con-
trolled by the inverse duration of the phase transition Sgw, which is approximately given
by [69, 70]

Bew _ T dS

b 4.4
H SU - (4.4)

where T, is the nucleation temperature at which the phase transition occurs, and H is
the Hubble parameter at T' = T;,,. The gravitational wave signal strength is inversely
proportional to (Baw/H)? [69, 70].

The dynamics of the phase transition are controlled by the bounce solution which in-
terpolates between the vacua of the two phases [71, 72]. However, the dilaton effective
theory of the confined phase breaks down when the temperature is larger than the mass of
the lightest KK mode, T > Mgk ~ (x) (see Fig. 1 and [45]), and part of the bounce occurs
in the noncalculable regime of the deconfined phase. A computation of the dynamics of
the phase transition performed entirely within the 4D dilaton EFT will therefore always
have some theoretical uncertainty. This uncertainty is greater for our scenario than in the
conventional Goldberger-Wise case for the two reasons already mentioned in the introduc-
tion: our dilaton is heavier, so the effect of the KK modes is more important; and since
the calculable portion of the bounce is much smaller, it does not necessarily dominate over
the noncalculable part.

In principle, it is possible to obtain the exact bounce solution by solving the full 5D
EOM — which are Euclidean-time Einstein equations with two coordinates, the radial
direction of the bounce and the direction of the extra dimension — and in fact this has

~10 -



been done numerically in a similar scenario in [73]. This has yet to be accomplished for the
black brane-RS bounce, and is beyond the scope of this paper. In what follows we will work
entirely within the dilaton effective theory despite this inherent uncertainty. Nevertheless,
we will see that we can still make useful predictions with regard to the bounce action
(Fig. 2), nucleation temperature (Fig. 3), and gravitational wave signals (Fig. 4).

Since we cannot obtain the exact bounce solution of the full 5D theory, we instead use
a proxy trajectory in the effective 4D theory. Following [45], we glue the free energies of
the confined and deconfined phases at x = 0, taking the dilaton potential to be Feons(X)
for x > 0 and equal to Fyeconf(7') for x < 0. Note that there is a discontinuity in this
potential at xy = 0, which grows with T" and vanishes as 7" — 0. We then consider bounce
configurations x(r) interpolating between the vacua y = 0 and x = (x), with the boundary
conditions x'(0) = 0 and yx(o0) = 0.

5 Results

5.1 Thin-wall Analysis

It is instructive to first analyze the bounce in the thin-wall approximation [71, 72]. This is
a good approximation when the temperature T is close to T, and provides useful intuition
for the bounce more generally.

The O(3)-symmetric bounce action? is given by [72]

16w S}
5= 3 Aver (5-1)

where AV = 72N?(T* — T*)/8 is the potential difference between the ends of the bounce,
and 57 is the bubble wall surface tension. The surface tension is determined by the potential
as

x)
Si :/0 dx v2V (x). (5.2)

Using the potential in Eq. (3.13), we then find the bounce action at leading order in the
expansion parameter 6 =1 —T/T:

N2
~ Si/ays/ag2

F(v) = (Qiy>3/4/oldx\/1 ;/‘;2” — (1 —x%).

The thin-wall approximation is valid when § < 1.

S F(v)?,

We remark that the bounce action scales as N2/\3/# and is independent of (x), which
remains true outside of the thin-wall limit. Furthermore, the bounce is not enhanced
further by any small parameters, unlike the case of Goldberger-Wise stabilization where
the bounce is enhanced by the small explicit breaking of scale invariance [46]. Because of

4The O(4)-symmetric bounce action is always larger in the thin-wall limit, so the bounce is dominated
by O(3)-symmetric bubbles.
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this, it is possible for the phase transition to complete promptly, i.e. without supercooling
where T' < T..
Using Eq. (4.4), the inverse duration of the phase transition in the thin-wall approxi-
mation is 5
B%W = <50, (5.4)
Note this is to be evaluated at the nucleation temperature, at which Sy &~ 140, as explained

below Eq. (4.3).

5.2 Numerics

Next we compare the thin-wall results above to numerical calculations of the phase tran-
sition computed using the FindBounce package [74]. The usual boundary conditions need
to be modified for the purpose of the computation due to the aforementioned potential
discontinuity. The effect of the discontinuity can be absorbed into a modification of the
boundary condition y(00) = 0 to x'(r«)?/2 = §V, where 7, is the point at which x(rs) = 0
and 0V is the size of the discontinuity. The bounce solution for r > r, is simply x(r) = 0.

As a check of our numerical methods, Fig. 2 depicts the bounce action as a function of
the quartic A for T = 0.57. (0 = 0.5) and T'= 0.97, (§ = 0.1), fixing v = 1.2 and N = 5.
We show our numerical computations alongside the thin-wall result in Eq. (5.3). The 1/X3/4
scaling is manifest. As expected, the thin-wall approximation and the numerical result are
in excellent agreement for § = 0.1, and are of the same order of magnitude when § = 0.5.

Recall that there is a theoretical uncertainty in calculating the bounce action within
the 4D dilaton effective theory, as part of the bounce occurs in the noncalculable regime. To
estimate the error we scale the potential by a constant V' — (1 +¢)V in the noncalculable
regime 0 < x < T'(x/Mxxk), then compute the rate of change of the bounce action under this
scaling, dS,/de. We then take the relative error in the bounce action to be ‘S{l dSy/de ’,
which characterizes the sensitivity of the bounce action to the noncalculable regime. This
error is depicted as shaded bands in Fig. 2. It should be understood as a crude estimate
rather than a rigorous computation of the theoretical uncertainty, which would require a
more involved analysis in the dual 5D picture. Lastly, we show the value of A at which
the scalar field has a significant backreaction on the metric as black lines in Fig. 2. For
Tuv =3 (Tuv = 10) we need A S 0.1 (A < 0.6) to ensure a small backreaction.

Our main results are contained in Figs. 3 and 4. Fig. 3 shows the nucleation tempera-
ture 7;, and the inverse duration of the phase transition Sgw in relevant stabilization. We
again fix ¥ = 1.2 and N = 5 and present both numerical computations and the thin-wall
approximation. We also depict the sensitivity to the noncalculable regime with shaded
bands again. The thin-wall result for 7, is obtained by setting S, = 140 in Eq. (5.3) and
solving for T'/T,; we then use Eq. (5.4) to compute Sgw. Although we present results for
the quartic A ranging from 1072 to 1, recall that for large values the dilaton EFT is no
longer valid. The point the EFT breaks down depends on the 5D model parameters as
depicted in Fig. 2.

For comparison we consider a Goldberger-Wise stabilized dilaton with e = —1/20 (cor-
responding to v = 2 — 1/20), computing 7,, and Sgw in the thick-wall approximation [72]
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Figure 2. Comparison of the thin-wall approximation and numerical results for the O(3)-symmetric
bounce action Sp. The solid lines are numerical calculations and the dashed lines correspond to
the thin-wall approximation. We fix v = 1.2 and N = 5 and choose T' = 0.5T, (blue lines) and
T = 0.97, (red lines), as the quartic A is varied from 0.01 to 1. The inherent error arising from
the breakdown of the dilaton effective theory is depicted by the gray bands. We also include the
value of A at which the backreaction of the bulk scalar on the metric becomes large (black lines)
for TUV — 3 and TUV — 10.

following [49], which is a good approximation in the supercooled limit. In contrast to the
Goldberger-Wise case, our mechanism requires no substantial supercooling for the phase
transition to complete. Consequently, the inverse duration of the phase transition Sgw/H
is larger for our model, of order 10 or 103, whereas for the Goldberger-Wise stabilized
dilaton Bgw/H ~ 10 is typical. This will lead to weaker gravitational wave signals in our
model.

Fig. 4 contains gravitational wave spectra computed using our numerical results for
the phase transition duration. We depict the gravitational wave abundance Qqwh? as a
function of frequency f for A = 1072,1071, 1, as well as a spectrum for Sqw/H = 10, which
was what we found for Goldberger-Wise stabilization in Fig. 3. We also show projected
sensitivities for three proposed gravitational wave detectors in Fig. 4 — LISA [57, 58],
DECIGO [59-62], and BBO [63-65] — as computed in [75] assuming a signal-to-noise
ratio of 1. We assume the signal arises entirely from bubble collisions, that is, we ignore
contributions from sound waves and turbulence. We model the bubble collisions using the
envelope approximation, reviewed in [69, 70], under the following assumptions: the bubble
wall velocity is 1, the effective number of degrees of freedom during the phase transition is
g« = 100, and the temperature immediately after the phase transition is 1 TeV. In App. B
we justify our approximations and provide explicit formulae for Qqwh?. We note that for
A = 1 the dilaton EFT cannot be trusted, so the results for this benchmark point should
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Figure 3. The ratio of the nucleation temperature to the critical temperature T, /T, (top) and the
ratio of the inverse duration of the phase transition to the Hubble parameter Sgw/H at the time of
transition (bottom). We fix v = 1.2 and N = 5. The solid blue lines are computed numerically, the
dashed blue lines are computed in the thin-wall approximation, and the gray bands estimate the
theoretical error due to the breakdown of the dilaton effective theory. For comparison we include
the corresponding values for a Goldberger-Wise stablized dilaton with e = —1/20 and N = 5 (black
line).
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Figure 4. The gravitational wave abundance spectrum Qgwh?(f) for A = 0.01 (red), A = 0.1
(blue), and X\ =1 (green), fixing v = 1.2 and N = 5. The colored bands indicate the theoretical
error due to the dilaton EFT breaking down. For comparison we include a spectrum for Sgw/H =
10 (black), a typical value for Goldberger-Wise stabilization. We show projected experimental
sensitivities for LISA [57, 58] (orange, dashed), DECIGO [59-62] (purple, dashed), and BBO [63—
65] (turquoise, dashed).

be interpreted with caution.

The gravitational wave signals in our model are weaker by several orders of magnitude
than in Goldberger-Wise stabilization and are shifted towards higher frequencies. As ex-
plained above, this is due to the lack of supercooling and relatively weak first-order phase
transition. Nevertheless, one could still probe all of our benchmark points at DECIGO and
BBO, and all but possibly the A = 1 point at LISA.

6 Conclusions

In this work we have described a new way to stabilize the scale of spontaneously bro-
ken conformal symmetry. Instead of a nearly marginal operator acquiring a VEV like the
Goldberger-Wise mechanism, in our mechanism a relevant operator with a small, techni-
cally natural coefficient gets a VEV. The small coefficient of the relevant operator generates
a large UV/IR hierarchy. We calculated the effective dilaton potential in the dual 5D pic-
ture, and found that our dilaton typically has a mass of the same order as the IR scale, in
contrast to the Goldberger-Wise dilaton whose mass is suppressed by the small anomalous
dimension. One consequence of the enhanced dilaton mass is that a mild tuning of the
dilaton quartic will be required to ensure the validity of our dilaton EFT.

Working within the dilaton effective theory, we studied the dynamics of the conformal
phase transition. Our analytical approximations in the thin-wall limit as well as our numer-
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ical studies generally confirm our intuition about the phase transition: the bounce action
is reduced relative to the Goldberger-Wise case because the dilaton potential is deeper.
Thus, the phase transition is far more weakly first-order and proceeds without substantial
supercooling. The major phenomenological effect resulting from this is that the stochastic
gravitational wave signals from bubble collisions are reduced. However, they may still be
observable at the next generation of gravitational wave detectors.

We emphasize that our use of the 4D dilaton EFT impedes the precision of our calcu-
lations. We cannot trust the dilaton potential near the origin, where the effective theory
breaks down, and also part of the bounce occurs in the deconfined phase which is non-
calculable. Although we have attempted to characterize the theoretical uncertainty in our
computations, a complete treatment of the phase transition would require working in the
full 5D picture and solving the (Euclidean-time) Einstein equations for the bounce config-
uration. We intend to study the phase transition from a 5D perspective more rigorously
in future work.
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A  Derivation of the Effective Dilaton Action

In this appendix we derive the general effective dilaton action in the 5D picture. Similar
results to ours were obtained in [16-18]. We consider the RS action [5] with additional
matter,

S=- / d'zdy [/g(2MER + A) + /GindAuvd(y) + vImaArI(Y — ye)] + Sm, (A1)

where R is the 5D Ricci scalar, the bulk CC and boundary tensions are taken to their RS
values (see Sec. 3) and Sy, is the action of additional matter in the bulk. We add scalar
perturbations to the RS metric in Eq. (3.1) using the following ansatz [13],

ds? = e 2A+E)y | dat da” — (1 + 2F)* dy?. (A.2)

A(y) is the warp factor and F(z#,y) are the scalar perturbations, which we parameterize
as F(z',y) = f(y)r(z*) and identify r(z*) as the radion. When Sy, and F' are taken to
zero, the background solution of the Einstein equations is A = ky.

Working to leading order in the backreaction §A(y), or equivalently in (k/Ms)%, we

note that the T3}, calculated from S, can be taken at zeroth order. This follows from

1
4M3

(k/Ms)?, leaving T, = TAH}’]SP). TE}SJ) is calculated from Sy = S (y). From the 4D

the Einstein equations, Gy = Trvn, where evidently Gy is already first order in
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Lorentz invariance of S’ (y), it follows that TE’(O) = 0, and the leading order of the (u5)
Einstein equation reads

30ur(f' —24'F) = 0. (A3)
Its solution gives the well-known radion profile f(y) = e [76]. Plugging in this profile to
the rest of the Einstein equations, the (55) component is then

A 0
12k'5A/ + 364 |:|7" = MT55 ( ) (A4)

Note that in the limit of no backreaction and no matter fields, Eq. (A.4) is the EOM of a
massless radion field, as expected in this limit where the radion is not stabilized. The (uv)
components of the EOM include singular pieces in § A”, which impose the Israel junction
conditions

7m,(0)

—2A
2ne 0 A 12M3 o

=+
y=0,yc y=0,yc

We can now compute the effective dilaton action. Its minimum is obtained by solving

(A.5)

05/0r = 0, which corresponds to solving the Einstein equations, imposing the BCs in
Eq. (A.5), as well as solving the EOM of the bulk matter fields in Sy,. Therefore, in the
vicinity of the minimum, the effective dilaton action is given by

sS
Sest(r) = 5 dr. (A.6)

By varying the action .S with respect to r we obtain the Einstein equations,

@_ 0SEH . 0SA n 0Sm (5g
Sr - (5gMN 5gMN 5gMN

/d4xdy \f< 2M5GMN + TMN) 69(57“

(A7)
We now plug in the metric ansatz in Eq. (A.2) to leading order and impose the bulk EOM,
but we do not yet impose the Israel junction conditions in Eq. (A.5). This allows us to
calculate the effective action for the dilaton field away from its minimum, where the IR
brane jump condition is satisfied. The UV brane jump condition will be equivalent to the
requirement that the total 4D CC is zero, which we will assume to be satisfied. This leaves
us with

05 4 3 1,—2A ,(0) ogh”
= F12Mgn,,0A'e T]rn . A.
> /d x\/g[ 50 + 5L o 5 (A.8)

Indeed, we see that a minimum of the action is obtained once the BCs in Eq. (A.5) are
satisfied. We substitute A" from Eq. (A.4) and obtain

24 M3 2 Ye
@ — /d4x [_ - 5 Or (€2kyc _ 1) + E T557(0)6—2A 59

*3 \f“y or

pon . (A9)

0 ¥=0,9c
The first term in this equation is the variation of the kinetic term of the radion [13, 14].
The remaining terms, as we now show, are precisely (5SI(,?) / or to leading order: varying

only the matter fields Sr(r? ) with respect to r gives

550 . ) 6gMN 55&?) 1/, (0 09"
(57’ /d iUdy fTMN 57“ 6’," ) lk+ 2/d xT \/§ uv ? yzo’yc. (Al())
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We separated out the contribution of the singular terms on the branes from the contribution
of the smooth part of the bulk. The latter can be shown to be equal to the second term in
Eq. (A.9),

(0) Ye
0Sm _ /d4$ dy 6_4Af<4T5n§’(0) + 26214,’7/111/7'}5‘[;,(0)) _ /d41']i T£1(0)6—2A ’
bulk 0
(A.11)
where we used the energy-momentum conservation relation
0 =M = o1 a4 AT, (A.12)
In total, we find that
59 24 M3 55
909 _ [ gty M5 o <2kyc_1) m A3
or / Ty T\ + or ( )
and upon integrating we see that the effective dilaton action is given by
12M3
Ser(x) = Lo / a2 Bx 0y + SO (A.14)
Here we reparametrized the radion as the dilaton,
x(x) = kexp(—kyc - r(a;)e%yc>. (A.15)

We have found that the effective dilaton potential is given by integrating the bulk matter
action over solutions to the EOM (including appropriate BCs). The contribution of the
backreaction is already encoded in Eq. (A.14). We use this calculation of the effective
action in Eq. (3.8) in the main text.

B Gravitational Wave Spectrum

Here we provide an explicit expression for the gravitational wave abundance and carefully
consider the assumptions which go into it. The reader is referred to [69, 70] for a pedagogical
review of gravitational waves from first-order phase transitions.

The gravitational wave spectrum arises from three main processes: collisions of bubble
walls, sound waves in the plasma, and turbulence in the plasma. We assumed that the
contribution from bubble wall collisions dominates. Whether this is a good assumption
depends on the ratio of vacuum energy density released in the phase transition to the
energy density of the radiation bath. For us this is given by

15N2 (T2
o= (1) .

where g, is the number of effective relativistic degrees of freedom during the phase transi-
tion. When « is large relative to a characteristic value a, the sound wave and turbulence
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contributions can be safely neglected. Explicitly a. is given by a sum over the masses of
the particles that acquire a mass during the phase transition:

30 )

where the i-th particle has mass m; after the transition and ¢; (2¢;) degrees of freedom for
bosons (fermions).

During the phase transition, the techni-quarks of the CFT sector confine into mesons.
Assuming that the meson masses are all of the order of the dilaton VEV (x), one can
then calculate the ratio o/ for the benchmark points in Fig. 4. We find that o/ax is
always larger than 1 as long as there are less than about 200 mesonic degrees of freedom.
In this case it is justified to neglect the sound wave and turbulence contributions to the
gravitational wave spectrum.

Furthermore, in the a > ao, limit, all of the energy released in the phase transition
contributes to accelerating the bubble walls (as opposed to the bulk motion of the fluid) and
the bubble wall velocity approaches the speed of light. Using the envelope approximation,
the gravitational wave abundance from bubble wall collisions is then given by

H o \2/100\® 3.8(f/f,)**
Qawh®=13x107° < ) < > P , B.3
oW Bewl+a) \ g 1+2.38(f/f,)%® (B.3)
where 8 ,
_ _5 cw T gx \1/6
fp=38x 107" Hz X (100) (B.4)

is the frequency the abundance is peaked at. The signal curves in Fig. 4 were computed
using Eq. (B.3).
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