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Abstract

We study Euclidean D3-branes wrapping divisors D in Calabi-Yau orientifold compacti-
fications of type IIB string theory. Witten’s counting of fermion zero modes in terms of
the cohomology of the structure sheaf Op applies when D is smooth, but we argue that
effective divisors of Calabi-Yau threefolds typically have singularities along rational curves.
We generalize the counting of fermion zero modes to such singular divisors, in terms of the
cohomology of the structure sheaf O of the normalization D of D. We establish this by
detailing compactifications in which the singularities can be unwound by passing through
flop transitions, giving a physical incarnation of the normalization process. Analytically
continuing the superpotential through the flops, we find that singular divisors whose nor-
malizations are rigid can contribute to the superpotential: specifically, h% (Op) = (1,0,0)
and h* (Op) = (0,0,0) give a sufficient condition for a contribution. The examples that we
present feature infinitely many isomorphic geometric phases, with corresponding infinite-
order monodromy groups I'.  We use the action of I'" on effective divisors to determine
the exact effective cones, which have infinitely many generators. The resulting nonpertur-
bative superpotentials are Jacobi theta functions, whose modular symmetries suggest the

existence of strong-weak coupling dualities involving inversion of divisor volumes.
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1 Introduction

The vacuum structure of a four-dimensional NV = 1 supersymmetric string compactification
is encoded in its Kahler potential and superpotential. The superpotential is holomorphic
and strongly constrained by non-renormalization theorems. In particular, in type IIB string
theory compactified on an O3/07 orientifold X of a Calabi-Yau (CY) threefold containing
three-form flux [1], the flux superpotential [2] is independent of the Ké&hler moduli of X, to
all perturbative orders in the string loop and o/ expansions [3]. Thus, the potential for the
Kahler moduli is governed, in many parameter regimes, by nonperturbative corrections to
the superpotential, particularly from Euclidean D3-branes wrapped on holomorphic four-
cycles, i.e. effective divisors, in X [4]. Characterizing such nonperturbative superpotential
terms is a step toward understanding the landscape of low energy theories that arise in
flux compactifications.

Evaluating the nonperturbative superpotential involves computing the D3-brane par-
tition function for every effective divisor that can be wrapped by a Euclidean D3-brane.

Each effective divisor D can in principle contribute a term
W o AD(Z, 7_)6—27rVol(D)—27rifD Cy : (1‘1)

where Vol(D) is the volume of D and Cj is the Ramond-Ramond four-form in ten dimen-
sions. The Pfaffian Ap(z, 7) can in general depend on all moduli except the Kédhler moduli,
and we have made explicit the dependence on the axiodilaton 7 and the complex structure
moduli z of X.

Computing the numerical value of the Pfaffian at a given point in moduli space is often
difficult [5-10].! However, if the instanton solution has exact fermion zero modes beyond
the two universal ones then Ap is identically zero. The counting of fermion zero modes
relies on data that is essentially topological, and is more readily computed than Ap(z, 7)
itself. Thus, in favorable circumstances, one can enumerate classes of effective divisors D
that support Euclidean D3-branes whose Pfaffians Ap(z, 1) are not identically zero. This
serves as a first step toward characterizing the nonperturbative superpotential.

For smooth divisors, and in the absence of fluxes, the fermion zero modes are counted

by the dimensions of the orientifold-graded sheaf cohomology groups H. (D, Op). Divisors

1For a review of this subject, see [11].



D that are rigid, connected, and orientifold-even, i.e. with [4,12]
h%(D,0Op) :=dim H}(D,Op) = (1,0,0), h*(D,0p):=dimH*(D,0p)=0, (1.2)

and that — we reiterate — are also smooth, have Pfaffians that are not identically zero,
and so generically contribute to the superpotential.

Unfortunately, the applicability of the above results is severely limited: an effective
divisor class in a general Calabi-Yau threefold often has no smooth holomorphic represen-
tative. Rather, as we will show in §3, effective divisors in Calabi-Yau threefolds typically
have singularities along rational curves. The prevalence of such singularities is linked to
the prevalence of flops. Specifically, in a given Calabi-Yau hypersurface in a toric variety
V obtained from triangulating a reflexive polytope, bistellar flips of the triangulation often
induce flops of the Calabi-Yau threefold.? The number of inequivalent triangulations grows
rapidly with A (V') [13]: see Figure 1. Flops are likewise common in complete intersection
Calabi-Yau threefolds: see [14] for a recent investigation. In this sense, flops, and corre-
spondingly divisor singularities along rational curves, appear to be ubiquitous, at least in
hypersurface and complete intersection Calabi-Yau threefolds.?

For such singular D, satisfying (1.2) does not imply the existence of a nonvanishing
contribution. Thus, in order to understand the overall structure of the nonperturbative
superpotential, one would very much like to adapt the result (1.2) to apply to divisors with
singularities along rational curves. Doing so is the main purpose of the present work.

Specifically, we suppose that a divisor D C X is singular along a rational curve C C D,
and that in a local neighborhood around C, D takes the form of k > 2 smooth irreducible
surfaces intersecting each other transversely along C: see Figure 2. When k£ = 2, such
a singularity is a normal crossing singularity (see e.g. [15]). However, in general one
encounters cases with arbitrarily large k, so we will speak of star-crossing singularities,
with the understanding that the local description is always as stated above.

Our main claim is that for divisors with star-crossing singularities along smooth ratio-
nal curves, fermion zero modes are counted by replacing D with D in (1.2), with D the

normalization of the singular divisor D. Intuitively, the normalization D is a (partial) res-

20nly if the singularity in the ambient variety associated to the flip does not intersect the Calabi-Yau
is no flop induced.

3We note that the extended Kihler cone is contained in the effective cone, so as a consequence of the
abundance of flops the ample cone is typically much smaller than the effective cone. Thus, our claim that
divisor singularities along rational curves are typical is not in contradiction with the well-known fact that
(suitable multiples) of divisor classes in the ample cone have smooth generic representatives.



Figure 1: A cross-section of the secondary fan of fine, regular, star triangulations of the
largest polytope in the Kreuzer-Skarke database (with h''! = 491), with neighboring tri-
angulations corresponding to the same Calabi-Yau combined. Fach interior boundary
corresponds to a bistellar flip, which induces star-crossing singularities on divisors. Figure
courtesy of Andres Rios-Tascon.

olution of D resulting from splitting apart the components that intersect along the curve
C: see Figure 3. A precise definition of the normalization D is given in §3.2.
We claim that for D a divisor with star-crossing singularities along smooth rational

curves, if

h%(D,0p) = (1,0,0), h*(D,0p5) =0, (1.3)

then there is a nonperturbative superpotential term from Euclidean D3-branes, even if D
does not fulfill (1.2). We will use the notation®

¥1(D) :=h% (D,0p) , (1.4)
in terms of which the condition (1.3) takes the form

+2(D) = (1,0,0), **(D)=0. (1.5)

4The symbol * is the rune ‘hagal’, which denotes the sound h, and, conveniently, depicts a star-crossing
singularity with k& = 3.



Figure 2: A star-crossing singularity = Figure 3: The normalization of a k = 3
with £ = 3 locally intersecting compo- star-crossing singularity.
nents.

We refer to divisors satisfying (1.5) as star-rigid.

We will arrive at the criterion (1.5) by examining Calabi-Yau compactifications for
which the normalization map acquires a physical incarnation as the birational map relat-
ing two geometric phases that are connected by a flop transition.> Concretely, we suppose
that D is a divisor with star-crossing singularities in a Calabi-Yau threefold X that is bi-
rationally equivalent to another Calabi-Yau threefold X’ ~ X in which the corresponding
divisor D’ is smooth. Such a pair of birationally-equivalent Calabi-Yau threefolds is con-
nected by a series of flop transitions, and the fermion zero modes of half-BPS instantons
can be tracked by analytic continuation from one phase to the other without encountering
discontinuities. Fermion zero modes can thus be counted in a suitable phase where the
corresponding divisor is smooth and (1.2) applies. Using a local description of flop tran-
sitions (see §3), we find that *(D) is a birational invariant, and coincides with h*(D, Op)
when D is smooth, and must therefore count zero modes in every phase.

In §5 we will detail examples for which the above argument applies directly, i.e. where
the star-crossing singularities of a divisor D can be unwound by suitably transitioning
between adjoining geometric phases using flop transitions. However, we also conjecture
that *% counts zero modes more generally, for any divisor D with star-crossing singularities

along rational® curves.

5Strictly speaking, the flop transition and the normalization map differ by the blowups of one or more
smooth points, but this does not affect the counting of fermion zero modes: see §3.2.
SDivisors with singularities along higher-genus curves will generally support additional zero modes



The two geometries we use to illustrate the counting of fermion zero modes turn out to
have striking properties, which we explore in the second part of this work (§5). Both feature
infinite series of flops connecting isomorphic geometric phases, with corresponding infinite-
order monodromy groups I' that act on curve and divisor classes. By examining the action
of I' on effective divisors, we determine the exact effective cones in these geometries. These
cones have infinitely many generators related by the action of I', and give rise to infinitely
many nonperturbative superpotential terms. Summing up these contributions, we express
the nonperturbative superpotential in each geometry in terms of a Jacobi theta function.
The modular transformation properties of the theta function suggest the existence of a
connection between two regimes of the effective theory related by inversion of the volumes
of certain divisors. We speculate that these configurations are related by a heretofore
unknown strong-weak coupling duality.

The organization of this paper is as follows. In §2 we review general facts about flops
and about nonperturbative superpotential terms from Euclidean D3-branes. In §3 we recall
the local description of a flop, we explain how flops produce star-crossing singularities in
divisors, and we give a precise definition of the normalization of a divisor. In §4 we
analytically continue the superpotential through a series of flops that connect a divisor
with a star-crossing singularity to its normalization. We present two explicit examples
in §5. In each case we compute the exact effective cone and express the nonperturbative

superpotential in terms of a Jacobi theta function. We conclude in §6.

2 Cones, flops, and superpotentials

To fix our terminology and notation we will review some well known aspects of Calabi-Yau
geometry, with an emphasis on flop transitions, as well as Calabi-Yau compactifications of

type 1IB string theory.

2.1 Mori, Kahler, and effective cones

Let X be a Calabi-Yau threefold, and let Kx C H*(X,R) be its Kdahler cone, i.e. the set
of cohomology classes of closed (1,1)-forms J = —2ig,;dz* A dz’ such that g,; defines a
smooth Hermitian metric on X. Here the holomorphic indices a, b range from 1 to 3, and

the antiholomorphic indices @, b range from 1 to 3. Via Yau’s proof of the Calabi conjecture,

from strings stretching from one component to another: see §4.1.



for each choice J € Kx there exists a unique Ricci-flat metric g,; on X. Integer classes in
KCx define ample line bundles, which are in one to one correspondence with ample divisor
classes. The cone generated by line bundles that have non-trivial global holomorphic
sections is the effective cone Ex, and integer classes in Ex define effective divisor classes.
We have Kx C Ex. The closure Ex is the pseudo-effective cone.

The cone dual to Kx, denoted My C H*(X,R), is the Mori cone, and integer classes
in Mx define effective curve classes. The cone dual to Ex, denoted Mov(X), is the cone
of movable curves, and we have Mov(X) C Mx. Effective curves [C] € My, effective
divisors [D] € Ex, and the Calabi-Yau X are calibrated with respect to the Kéhler form

J € Kx, i.e. their volumes measured in the metric g,; are given by

Vol(C) = /J, Vol(D) :/ 1J/\J, Y = Vol(X) :/ lJ/\J/\J. (2.1)
c D2 x 6

A few words are in order about how the cones defined above can be computed in concrete
examples. We will focus on smooth Calabi-Yau hypersurfaces X in toric fourfolds V'
obtained from the Kreuzer-Skarke dataset [16], and for simplicity we further restrict to
favorable embeddings X C V, i.e. cases in which A (V) = A1 (X). As every effective curve
in M x is also effective viewed as a curve in V', we have the natural inclusion Mx C My,
where My, is the Mori cone of V. The Mori cone of a toric d-fold is generated by the
torus-invariant subvarieties associated with the (d — 1)-dimensional cones of the toric fan,
so obtaining My is computationally straightforward. It is often the case that a set of
birationally-equivalent but non-isomorphic toric varieties {V;} all have the same Calabi-
Yau threefold X as their generic anticanonical hypersurface. This happens when the V; are
related to each other via bistellar flip transitions, in such a way that X does not intersect
the singularities of the ambient varieties that occur along the transition loci. Using this,
we may obtain a better approximation of My via Mx C M} := M;My;,.

One can use M) as a starting point to obtain the exact Mori cone of X [17]. For
this, one uses the fact that My is the BPS cone of M-theory compactified on X. Using
tools developed in [18,19] one can compute the BPS indices — Gopakumar-Vafa (GV)
invariants — associated with integer points in M{..” We denote by MV the cone over all
sites in Ho(X,Z) ~ Hy(V,Z) with non-vanishing GV invariants, and we can use this cone
to further bound the Mori cone of X, M§Y C My C M{. In many cases, including all
examples in this paper, one finds® M§$Y = M}, which implies My = M§Y = M. The

"For progress in computing GV invariants at large h!(X), see the upcoming work [20].
80ne can obtain the exact Mori cone M x even when MSY # MY [17], but this will not be necessary
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Kéhler cone is then obtained by computing the dual cone of M.

The effective cone of the ambient variety is easily computed: it is generated by the
torus-invariant divisors associated with the h'"'(V) + 4 edges of the toric fan. In general,
one has a map H?*(V,Z) — H?*(X,Z) defined via intersecting a divisor class of V with
the Calabi-Yau hypersurface X, and for favorable embeddings this is an isomorphism.
In particular, every effective divisor D C V defines an effective divisor D := DN X in
H?(X,Z), and thus & C Ex.° In general & C Ey, and we will call a divisor class

(D] € (Ex\Ev)NH?*(X,Z) an autochthonous divisor. We will comment on how to compute
Ex in §2.2.

2.2 Flop transitions and the cone of effective divisors

For each point on the boundary OKx of the (closure of the) Kihler cone, a set of effective
curves shrinks to zero volume, and thus the Calabi-Yau metric degenerates. For a generic
choice of J € 0Ky, all vanishing curves are integer multiples of an irreducible curve class
C,, and we distinguish among the following possibilities that can occur at finite distance

in moduli space (see e.g. [21]):
(a) C, shrinks, but no effective divisors shrink. We call this a flop wall of Kx.

(b) C, shrinks, and an effective divisor D, containing C, degenerates to a curve of genus

g, leading to non-abelian enhancement to su(2) [22,23].

(c) C, shrinks, and an effective divisor D, containing C, shrinks to a point. This is a

strong coupling boundary, featuring tensionless strings.

Throughout this paper, we will focus on (a), flop walls. Importantly, it makes sense to
continue the Calabi-Yau geometry past a flop wall into a region where fcv J < 0, producing
a new Calabi-Yau threefold X’. In X’ the class [C,] ceases to be effective, but instead —[C,]
becomes effective, and the threefolds X and X’ are birationally equivalent, though not
generally isomorphic. Indeed, a Calabi-Yau threefold is, via Wall’s theorem [24], uniquely
specified as a real manifold by its Hodge numbers (h™!, h?1), triple intersection numbers,

and second Chern class. While the Hodge numbers are invariant across a flop transition,

in our examples.
9Note that the inclusion is reversed in comparison to the inclusion of Mori cones.



the triple intersection numbers and second Chern class transform non-trivially [25, 26],

/D/\D’/\D”—> D/\D’AD”:/D/\D’/\D”—ng(C-D)(C-D’)(C-D”),
X X

Xl

ca(X) — co(X') = co(X) +2nd[C], (2.2)

where D, D' and D" are divisor classes in H?(X), C - D denotes the intersection pairing
between the vanishing curve and D, and n? denotes the genus zero GV invariant of the
class [C], which for a flop transition is equal to the number of holomorphic representatives
in the class [C].

For later reference, we also write down how the holomorphic Euler characteristic x (D, Op)
of a divisor D transforms:

(D, On) —s (D, Op) +ng(C~D—|r1)(Ci-3!D)(C-D— 1) |

(2.3)

and note that x(D, Op) remains invariant if C - D € {—1,0,1}.

Flops in threefolds have been classified in [27]. Those associated to codimension-one
walls of the Kahler cones of smooth Calabi-Yau threefolds correspond to the shrinking of
rational curves with normal bundle O(—1) & O(—1), O & O(—-2), or O(1) & O(-3) [28]. In
the simplest case with normal bundle O(—1) & O(—1) — which will be the relevant case
in this paper — the local neighborhood around the vanishing curve is well-approximated
by the total space of its normal bundle, the resolved conifold [29,30]. Examples of flops
with normal bundle O @ O(—2) and O(1) @ O(—3) appear in [28,31].

The union K of all the Kéhler cones of a set of Calabi-Yau threefolds related to each
other by flop transitions is called the extended Kdhler cone. By construction, exterior walls
of K are either of type (b) or (c): at each wall of IC an effective divisor shrinks. Thus,
given the extended Kéahler cone IC, one can determine the generators of the effective cone
by enumerating the divisor classes that shrink on 9KC. A related result is that the image
of the extended Kahler cone under the map J %J A J € HY(X,R) is equivalent to the
cone of movable curves Mov(X), i.e. to the dual of the effective cone [32].

In our examples in §5 we will determine the exact extended Kahler cone K by enumer-
ating all possible geometrical phases related to each other via flop transitions, and use this

to determine the effective cone Ex.



2.3 Symmetric flops

Though the formulas (2.2) suggest that generic pairs of Calabi-Yau threefolds connected
via flops are not isomorphic to each other, in special circumstances there may exist a change
of basis of H*(X,7Z),

{HY™ = (5™, H = AL, (2.4)
parameterized by an integer matrix A € GL(h''(X),Z) acting on the basis divisors, such
that

/Ha/\Hb/\Hc: H, NH,\NH., and /Ha/\CQ(X): H! A cea(X'). (2.5)
X X

X’ '
In this case X ~ X’ via Wall’s theorem [24], and we follow [14,33] in calling such a flop
a symmetric flop. Even though the Calabi-Yau threefolds on the two sides of the flop are
isomorphic, upon continuing through the flop wall the change of basis A acts non-trivially
on the curve and divisor classes. Thus, a path in Kahler moduli space starting and ending
at suitable points in geometric phases that are related to each other via a symmetric flop
gives rise to a non-trivial monodromy in Kéhler moduli space. If A* # I for all nonzero
¢ € 7, it follows that there are in fact infinitely many isomorphic phases related to each
other via symmetric flops, as in [14,33]. We will encounter such behavior in the examples
of §5.

In such a case, the monodromy group I' contains the infinite-order subgroup I'y :=
{A*, ¢ € Z}. In our examples we will see that the action of I'y can be used to show
that the Fuclidean D3-brane superpotentials can be summed into certain Jacobi forms.
Moreover, we will be able to use the action of the monodromy group to obtain exact,

infinitely-generated effective cones.

2.4 Nonperturbative superpotentials in type IIB orientifolds

We conclude this section with a brief review of the conditions for a contribution to the
superpotential in compactifications of type IIB string theory.

A prerequisite for an instanton to generate a nonzero superpotential contribution is that
the instanton has precisely the two universal zero modes corresponding to the measure of
the superspace integral.

For instance, in M-theory on a compact Calabi-Yau fourfold Y, an M5-brane wrapping

10



a holomorphic divisor D C Y may contribute to the superpotential. As shown in [4],
for smooth divisors, and in the absence!® of bulk fluxes, the zero modes are counted
by the dimensions of the cohomology groups of the structure sheaf Op, hi(D,Op) :=
dim H (D, Op). In particular, a sufficient condition for such an M5-brane to generate a

superpotential term is that these dimensions obey
(D,0p) =1, h(D,0p)=0 Vi>0, (2.6)

which we abbreviate as h*(D,Op) = (1,0,0,0). Divisors satisfying this condition are
referred to as rigid, because they do not admit any massless bosonic deformations.

In N/ = 1 compactifications of type IIB string theory on Calabi-Yau orientifolds, the
relevant cohomology groups are those that are even under the orientifold action, and a
sufficient condition for a non-vanishing superpotential contribution from a Euclidean D3-

brane on a smooth divisor D is
hjr(D, Op) =(1,0,0), hA*(D,0p)=0, (2.7)

where the bullet now stands in for ¢ = 0, 1, 2.

Witten’s argument starts with the fact that given an M5-brane wrapped on a smooth
divisor D C Y, its worldvolume fermions take values in the spinor bundle constructed out
of the normal bundle of D in Y. One thus expects the condition (2.6), and likewise (2.7),
to be modified when the embedding of the divisor D C Y is sufficiently singular so that
the notion of a normal bundle becomes ambiguous.*!

The focus of this work is to provide a new prescription for divisors with singulari-
ties along rational curves, which — as explained in the Introduction §1 — is the generic

situation.!?

0T type IIB orientifolds, zero modes can be lifted by background three-form flux, or by a nontrivial
gauge bundle on the D3-brane worldvolume, allowing a wider range of divisors D to support superpotential
terms [34-37]. Such effects will not be relevant for this work. Furthermore, we note that zero mode
counting for bound states of irreducible Euclidean D3-branes can be subtle: some of the zero modes of
one component can be lifted by the presence of the other component, potentially leading to non-trivial
poly-instanton corrections [38]. In this paper we will consider only irreducible Euclidean D3-branes.

1 The conormal bundle enjoys an unambiguous generalization to the conormal sheaf, which can be used
as a starting point that leads to results consistent with those of the present work.

12For a related discussion see e.g. [39].
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3 Flop transitions and divisor singularities

We will now give an explicit local description of the simplest kind of flop transition, in-
volving a local conifold geometry, and use this to define and understand star-crossing

singularities.

3.1 Local conifold geometry of a flop

In §2.2, we reviewed how flop transitions relate distinct Calabi-Yau threefolds via curves
that shrink to codimension-three singularities, at walls in the Kéhler cone where no divisors
shrink. In this section, we will review local descriptions of the ensuing singular varieties
and their small resolutions. We will use this to demonstrate that divisors intersecting
the shrinking curves multiple times undergo non-trivial topological transitions, whereby
codimension-one singularities are created.

As mentioned in §2.2, the possible normal bundles of rational curves that can shrink
along flop walls are O(—=1)®O(—1), OB O(-2), or O(1)®O(-3) [27,28,31]. In this work,
we will focus on the simplest case of O(—1) ® O(—1). Our discussion naturally extends to
the other cases [40].

For a rational curve C C X with normal bundle Ngx = O(—1) & O(—1) the local
geometry around C C X is approximated by the resolved conifold X< [29,30]. We can

res
describe X<f

< locally as a codimension-two hypersurface in C* x P! via

M- (a) —0, with M:= (‘T “) , (3.1)
o} u oy

with (z,y,u,v) € C* and [o : 3] € P!. Note that (3.1) implies the constraint det M = 0,
as a and [ cannot vanish simultaneously. Away from the locus M = 0 we can solve for
[ : (] in terms of (z,y,u,v) and therefore we can define a blow-down map

Polow-down : X — X .= {det M = 0} c C*, (3.2)

res sing -

defined by “forgetting” the coordinates [a : £]. The map Ppiow-down i One-to-one everywhere
except at the origin py := {M =0} € X

~1 ~ Pl ;
Sings a0 Ay qoum (Po) = P defines an exceptional

P! that resolves the singularity at the origin of Xs"ifng, and is identical to the rational curve
C.

Crucially, the singular variety XSCifng can alternatively be resolved by blowing up a dif-

12



ferent exceptional P': we instead consider

MT. (5> =0, (3.3)

where the new exceptional C ~ P! is likewise parameterized by homogeneous coordinates
& : 5’] € P! over the origin of C*. The two distinct resolutions are birationally equivalent,
i.e. there is a one-to-one map

XEN\C+— XEN\C, (3.4)

res res

and interpolating from one X< to X via shrinking C and then blowing up C is a flop
transition.

For our purposes it will be important to understand how divisors that intersect flop
curves behave under flop transitions. For simplicity we start our discussion with a divisor
D intersecting the curve C ~ P! transversely in a single point. We can represent D locally
by the constraint o = 0, which by (3.1) implies v = y = 0. Thus, the topology of D
is simply C?. Note however, that upon imposing the constraint v = y = 0 the defining
equation (3.1) collapses to zaw = ua = 0, which has two branches: one of them gives an
isolated point x = y = u = v = 0 and the other is our divisor D.

In the new phase, however, v = y = 0 implies
za+uB =0, (3.5)

so in the flopped geometry, the divisor D has the topology of C? blown up at the origin.
We thus conclude that under a flop transition involving the shrinking of an exceptional
curve C ~ P!, a divisor D intersecting C transversely in a single point, i.e. with intersection
pairing D-C = 1, gets blown up at the intersection point. The new exceptional curve C~P!
is contained in the new divisor 5, consistent with the intersection pairing D-C = —1 that

follows from the homology relations
[Cl=-[c], [D]=I[D]. (3.6)

Conversely, a divisor D that contains C with intersection pairing D - C = —1 will intersect
the new effective curve C transversely after the flop transition. This result is well-known
and appears, for instance, in the discussion of geometric transitions of orientifold planes in
Calabi-Yau orientifold models [41,42].

13



Next, we would like to understand what happens to a divisor D that intersects the
conifold curve C in k > 1 points. Locally, we can represent such a divisor as the vanishing

locus of a degree k polynomial in the homogeneous coordinates [a : 3],

k
0=fi=> ca'f. (3.7)
i=0

Generally, the coefficients ¢; can be functions of the coordinates (x,y,u,v) but close to
the conifold curve C we can treat them as constants, ¢; = ¢;|z—y—u—v—o. Therefore, again
locally, the defining polynomial f; factorizes into k solution branches, each of which is
equivalent to a divisor intersecting C once. Globally, fx need not factorize and the & local
branches may correspond to k disjoint local neighborhoods of a single irreducible divisor.
But, by virtue of our discussion of the special case k = 1, we already know how each
of the k distinct local branches transforms under the flop: each sheet locally looks like
a copy of C2, and the flop induces a blowup transition in all sheets. As the blowup P!
of each sheet is identified with the exceptional curve C in the resolved conifold, the flop
transition glues together all k sheets by identifying their respective blowup P!s. It is
straightforward to show that for generic choices of the ¢;, each pair in the set of k sheets
intersects each other transversely in the exceptional curve C. For k = 2 this means that
the divisor D has a normal crossing singularity along the exceptional curve C. For general
k we obtain a slightly more general divisor singularity of k local sheets that intersect each
other transversely pairwise. As explained in the Introduction, we term this a star-crossing

singularity.
Now suppose that, in some geometric phase X, C is an effective curve that shrinks to
a conifold along a wall of the Kahler cone. From the above we learn that for any divisor
class [D] obeying [D] - [C] < —1, every representative D of [D] necessarily has a non-trivial

star-crossing singularity, and in particular is not smooth.!?

3.2 The normalization of a divisor

Let D be a divisor that is smooth except for a star-crossing singularity along a rational
curve C, and is birationally equivalent to a smooth divisor D via a flop transition of the
ambient Calabi-Yau threefold.

13The condition [D] - [C] < —1 implies that Ox (D) is not ample, consistent with the fact that generic
divisors associated with very ample line bundles are smooth.
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We will now describe the divisor transition D to D as the composition of two elementary
operations. The first is the normalization D < D, defined in this context® as the blow-
up of the relevant P!'s on X. One can think of this as replacing the intersection curve
C by k disjoint copies C;, i = 1,...,k, with one glued into each of the k£ local branches.
The normalization D is thus smooth. The normalization process for a k = 3 star-crossing
singularity is shown in Fig. 2 and 3.

Each of the curves C; is a curve of self-intersection number —1 in D and can thus be
blown down to a smooth point. The divisor transition D to D is precisely the pullback to

the normalization, followed by the blow-down. We note that
he (f), (95) - h’(l_), 05) , (3.8)

as both D and D are smooth, and blowing down curves of self-intersection number —1
leaves h*® invariant.

Importantly, it follows that
+3(D, Op) = hi(D, Op) (3.9)

is invariant under flop transitions. Furthermore, in the presence of star-crossing singular-
ities with k& > 2 one has

This follows from the non-trivial transformation property (2.3) of the holomorphic Euler
characteristic which, for k > 2, implies x(D, Op) > x(D, Op).

4 Zero mode counting for singular divisors from ana-

lytic continuation

In the previous section we saw that flop transitions between Calabi-Yau threefolds (X, X )
can induce non-trivial geometric transitions between divisors (D,f)). In particular, we
reiterate that flop transitions induce star-crossing singularities in divisors that intersect

the flop curve with intersection number > 2, while they resolve star-crossing singularities

14The normalization is a canonical partial desingularization process. In general, this prescription can
induce and resolve singularities in various ways. However, in the present context, the normalization
procedure will precisely resolve the singularities along smooth, rational intersection curves.
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for intersection numbers < —2. Using this, we will now seek a formula for fermion zero

mode counting on divisors with star-crossing singularities.

4.1 A local argument

We will start with a heuristic argument. Given two irreducible divisors D and D’ that
intersect each other along a curve C = D N D’, one may wrap D-branes on both divisors.
The zero modes living on the brane system then come from open strings starting and
ending on either D or D’. Therefore, the zero modes of D U D’ should consist of those of
D, those of D', plus, possibly, extra zero modes from strings stretching between D and D’.
The positive/negative chirality spinor bundles on C are equal to the line bundles VK and
VE @Q%, respectively, where K denotes the canonical bundle on C and Q%' is the bundle
of (0,1)-forms. In the presence of worldvolume fluxes F on D and F' on D’ the physical
fermions on C take values in the spinor bundle of C twisted by the line bundle £ with
c1(L) = (F — F')|c. Thus, the positive/negative chirality fermion zero modes localized
on the intersection curve are counted by h°(vK ® £) and h' (VK ® L), respectively, with

chiral index

Netinal = X(CVE @ L) = WVE & L) — BM(VE @ L) = /Ccl(/l) EERY
As a consequence, for trivial worldvolume fluxes the spectrum of zero modes living at the
intersection curve is non-chiral. Moreover, if the intersection curve has genus g = 0 we
have VK = O(—1), which satisfies h'(v/K) = 0. Then, there arise no zero modes at all
from the intersection curve. We thus conclude that for a pair of divisors intersecting each
other transversely along a rational curve, the physical zero modes are simply those of D
and those of D’.'> This means that the fermion zero modes are counted by those of the
normalization DU D’. It would be surprising if the localized modes from open strings
stretching between the two components were sensitive to whether or not the divisor is
globally the union of two irreducible components or not, so one would expect that if a
divisor D has local star-crossing singularities along rational curves then the zero modes of
its normalization D should still count the physical zero modes. Note that this conclusion
also holds in the presence of non-trivial worldvolume flux on D, because F = F' if D

is irreducible. Hence, we arrive at our main claim that *%(D,Op) counts physical zero

15Note that if the intersection curve has genus g > 0, then generically additional fermion zero modes
will be generated. For this reason we focus our analysis on rational intersection curves.
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modes.
Thus, given k£ smooth and irreducible divisors D; intersecting each other along rational

curves, their union D := U;D; obeys
*¥31(D,0p) =Y *%(D;,0p,). (4.2)

This makes sense from a physical standpoint, because we expect that each component D;
carries its own independent fermion zero modes, without additional zero modes along the

intersection loci, at least in the absence of a non-trivial gauge bundle.

4.2 An analytic continuation argument

We can further substantiate our claim by using the fact that Euclidean D3-branes wrapped
on effective divisors contribute to superpotential-like interactions in the effective theory. By
superpotential-like, we mean terms in the effective action of the form [ d?6... that cannot
be written as f d*0 ..., but we also allow superspace derivatives in the argument. One
should be able to analytically continue holomorphic couplings throughout Kahler moduli
space, at least in regimes where all the instanton actions remain large.

Importantly, holomorphy forbids any contributions to the superpotential (or more gen-
erally superpotential-like interactions) from Euclidean (p,q) strings wrapped on curves.
As a consequence, no relevant instanton action becomes small upon undergoing a flop
transition. In fact, given a facet of the Kéhler cone corresponding to a flop, we can scale
up the Kéhler parameters along the facet to make divisor volumes (and thus the relevant
instanton actions) arbitrarily large.

Thus, given a contribution to a superpotential-like interaction from a Euclidean D3-
brane wrapped on a divisor D, one expects that its Pfaffian Ap(z,7) should in fact be
invariant under flop transitions, and in particular the zero mode counting should remain
invariant.'® Therefore, as long as there exists at least one geometric phase in which D is

smooth (the divisors considered in the examples in §5 satisfy this property), the zero mode

16There is a slight subtlety with this argument: given a flop transition involving the shrinking of a
curve that intersects O7-planes non-trivially, the Freed-Witten anomaly [43] implies a half-integer B-field
along that curve, which implies that one can analytically continue from one phase to the next without
encountering a singularity (see e.g. [44] for a discussion of this). If, however, the shrinking curve does
not intersect O-planes it might not be possible to choose a half-integral B-field to avoid the singularity.
However, even in this case, one should always be able to avoid the singularity by perturbing an orientifold-
compatible non-zero mode of the B-field by an arbitrarily small but non-zero amount to move around the
singularity.
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counting should be the standard one applied in that particular phase. Moreover, since D
is smooth in said phase, it is equal to its normalization, and therefore the zero modes are
counted by *¥%(D,Op) in that phase. But as we have seen that *%(D,Op) is invariant

under flops, it follows that *% (D, Op) counts zero modes in any phase.

4.3 Superpotentials and symmetric flop transitions

Before we discuss concrete examples we would like to make one more point. As explained
in §2.3, a flop transition connecting two geometric phases that are diffeomorphic to one
another is called a symmetric flop transition [33], and we will consider Calabi-Yau compact-
ifications admitting infinite series of symmetric flop transitions. Although a fundamental
domain of moduli space can be obtained by restricting to any one of the diffeomorphic
phases, the flop transitions carry important topological information, because they induce
non-trivial monodromies of the curve and divisor lattices upon continuing from one phase

to the next. The monodromies can be thought of as linear transformations A acting as

., Q=A@ (4.3)
Hy(X,Z) — Hy(X,Z), ¢+ (AHT-q. (4.4)

Because the monodromy relates different effective divisor classes, it can have important
implications for instanton physics. In particular, let us assume that a given divisor D
contributes to the nonperturbative superpotential as evaluated in some geometric phase.
Then, as in §4.2, by analytic continuation through the flop transition X — X’ 2 X,
we learn that a Euclidean D3-brane wrapped on the divisor class A - Cj must contribute
to the EFT of the phase X’ in precisely the same way that a Euclidean D3-brane on Cj
contributes in X: at least, these contributions must be equal in the absence of backgrounds
that spontaneously break the monodromy symmetry. This observation has particularly
interesting consequences if the monodromy group has infinite order. In this case, the

superpotential must contain an infinite number of terms

W(T) D Ap(z,71) Z e~ 2" neqp) 7N =iC1 (4.5)

LETL

In our examples in §5 we will see that such sums can give rise to Jacobi forms.
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5 Modular superpotentials

In this section we discuss two explicit examples of Calabi-Yau orientifolds that feature non-
trivial (and in fact infinitely many!) contributions to the superpotential from Euclidean
D3-branes wrapping star-rigid divisors with star-crossing singularities. These terms can
be summed into Jacobi theta functions, and thus have interesting modular transformation

properties.

5.1 Example 1

We consider the anticanonical hypersurface in a toric variety V' defined by a toric fan whose
elements are the cones over the simplices of a fine regular star triangulation (FRST) T
(ignoring points interior to facets) of a reflexive polytope A° C Ng := N ® R that is the
convex hull of a set of lattice points in N ~ Z*. The points in A°N N not interior to facets

are the origin, and the columns of

-1 -1 0 -1 -1 1 1
-1 1 -1 -1 -1 1 1

(5.1)
o -1 1 0 1 -1 0
o -1 1 1 0 0 -1
A GLSM charge matrix is given by
000 1 0 01
Q=000 0 1 10}, (5.2)
112 -1 -100

and one may choose 7 such that the Kihler cone conditions are t* > 0, where the ¢ are the
Fayet-Iliopoulos parameters associated with the rows of ). In this case, the Stanley-Reisner
(SR) ideal is generated by {zizo23, T427, T526}.

Equation (5.2) identifies V as a P! x P! fibration over the base P?,, and in particular it
admits two distinct P! fibrations. Over each point in P?,, setting x4 = 0 defines a point in
the first P!, while 25 = 0 defines a point in the second P!. Hence, the intersection surface
D4N Dy is equivalent to the base of the fibration. We note a symmetry exchanging the two

P! factors, acting on the curve basis {C',C? C?} by permuting C' <> C? and permuting the
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prime toric divisors as
D4 — D5, D@ g D7 . (53)

We choose the divisor classes (Hy, Hy, H3) := ([D7], [Ds], [D1]) as a basis of Hg(V,Z) such
that the columns of () correspond to the charges of the prime toric divisors, and we expand
the Kéhler form J as

3
J =Y t"H,. (5.4)
a=1

In the limit ¢t — 0 the first P! factor of the fibration shrinks to zero size, while in the
limit #2 — 0 the second factor shrinks. In the limit 3 — 0 the base shrinks. Therefore,

the Kéhler cone Ky of the ambient variety V is given by
>0, a=1,23. (5.5)

At each of the three walls, effective divisors, surfaces, and curves shrink to zero volume.
Next, we consider the anticanonical hypersurface X C V| which is a Calabi-Yau three-
fold. Intersecting the H, with X, we obtain a basis of H4(X,Z), and the independent

triple intersection numbers kg := H, - Hy - H. are

1 1
’Clab = , ’CQab = < 1> ; IC333 = 07 (56)

[ SU =

where we only display the kg with a < b < c.

First, one can show that none of the effective varieties in V' whose volumes shrink
at the walls of Ky intersect the Calabi-Yau X in shrinking subvarieties. Therefore, a
priori, the Kahler cone Ky of X could be bigger than that of V. However, using mirror
symmetry [18-20,45] one can compute the Gopakumar-Vafa (GV) invariants [46,47] of the

basis curves of the Mori cone inherited from V| giving
n(()l’o’o) - 487 n(()o’l’o) - 48 ; n(()o’o’l) - 1 . (5'7)

Thus, all three generators are effective in X and one actually has Kx = ICy .
Using the intersection form, one sees that the curve class [C] = (0,0, 1) can be repre-
sented by the complete intersection Dy N D5 C X. This identifies the curve as a weight

two hypersurface in the base P, ; 9, i.e. a single P!, consistent with its GV invariant. Its
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normal bundle is

(0x(Dy) @ Ox(D5))| ~ Op1 (1) & O (-1). (5.8)

Thus, C shrinks to a conifold as 3 — 0.
The other two generators of the Mori cone cannot be written as complete intersections
in X. However, one can study them as codimension-three varieties in V. To see how this

works for the curve class (1,0,0), consider writing the Calabi-Yau defining equation as
f = AQZEi + A1{E4l‘7 —f- AQIE% s (59)

where the A; are generic sections of Oy (2H, + (4 — i)Hs). The A; do not depend on
the projective P! coordinates [z4 : x7], so the codimension-three locus defined by Ay =
A; = Ay = 0 is a disjoint set of copies of the P! fiber parameterized by [z4 : x7]. As
f = 0 along this locus, this set of P's is contained in the Calabi-Yau. Moreover, the A;
can be viewed as generic sections of line bundles on the base of the P! fibration, and it
is therefore a straightforward exercise in intersection theory to confirm that there are 48
Pl’s, as predicted by the GV invariant computed via mirror symmetry. Similarly, using
that [z5 : x6] are projective coordinates on the other P! fiber, one shows that there are
48 isolated P'’s in the class (0,1,0). Near each isolated P!, we can define a local patch
~ C3 x P!, and use (Ay, A1, As) as coordinates along C3. With this local description,
one can use standard algebraic methods, implemented in Macaulay?2 [48], to show that the
normal bundle of each isolated P! is O(—1)®O(—1). Therefore, the local geometry around
each of the vanishing curves is again isomorphic to the resolved conifold.

One arrives at the same conclusion via the following alternative route. We consider the
wall of Kx where the curve with charge (0,0, 1) shrinks. Using the intersection form (5.6)
we find
. e (t1)? 1 6
5JAJ — 5A~ the2 |, A=13 6

(12)? 1 6

As det A = 24 # 0, there cannot exist any effective divisor class ¢*H, with the property

(5.10)

Hq

— =W

that its calibrated volume vanishes identically along the locus where the curve with charge
(0,0,1) shrinks. Hence, recalling the discussion of §3, we conclude that continuing past
this wall of the Kéahler cone is a flop transition.

Next, starting in the phase X, we consider passing through the wall where the curve

with charge (1,0,0) shrinks. In this case, one sees that the unique divisor class D that
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satisfies [ 3J A Jln—g =0, and [, 3J A J|nsg > 0, for all £22 > 0, is
D:=(-1,1,2) = —H, + Hy + 2H3 = —D7 + D¢ + 2D, . (5.11)

Thus, if D were effective, it would be the unique divisor class that shrinks in the limit
tt — 0,
Vol(D) = / %J AT =21t + 382+ 263) 20 0. (5.12)
D
However, using the methods of Appendix B of [49], one can show that D is not effective.
Thus, we conclude that continuing through this wall of the Kéhler cone also constitutes a
flop transition.

We have now established in two separate ways that the walls of Kx are flop walls, and
we can proceed to discuss the neighboring phases. On the other side of the wall where
t3 — 0, we encounter another geometric phase X’. Its Mori cone generators have charges
(0,1,1), (1,0,1) and (0,0,—1), and their GV invariants are

n?LL[)) - 56, n(()o’Lo) - 56, n?[)’O’il) — 1 . (513)

At the two walls of Kx that correspond to the shrinking of the first two generators, the
prime toric divisors D4 and Dj, respectively, shrink to points, while the overall volume of
X stays finite. Thus, these two walls are facets of the extended Kahler cone. The third
generator can be flopped to return to the phase X.

Beyond the wall where t! — 0, we again encounter a geometric phase X”. Its Mori

cone generators have charges (2,1,0), (—1,0,0) and (4,0,1) and GV invariants
n(()2’170) - 487 /n/(()_17070) - 4:87 /n/(()47071) - 1 . (5.14)

Note that these are the same as the GV invariants of the generators of X. Indeed, one may
compute the transformed triple intersection numbers and second Chern class, using (2.2),
and express them in a basis of divisors dual to the generators of the new Mori cone. One
finds that indeed the new triple intersection numbers and second Chern class are exactly
the same as those of X computed in our original basis.

Hence, X ~ X", i.e. we encounter a symmetric flop. The linear transformation that
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maps the generators of the Mori cone of X to those of X" is

4

0] . (5.15)
1

As A* # T for all £ # 0, we have uncovered an infinite series of symmetric flops where the
Mori cone generators of the ¢-th phase are obtained by multiplying the generators of the
Mori cone of X by the matrix (A_Z)T. Similarly, we obtain an infinite series of effective

divisors by applying A’ to the columns of Q. The result is

000 1—¢ —/ —/ 1—/
A-Q=100 0 4 1+ 1+/ l . (5.16)
1 1 2 —1—=204202 —14+20+420> 4204202 —20+ 202

The divisors Af - Q) take values in a cone whose extremal generators are the images of Dy

under the monodromy group generated by A, i.e.
DY =1 —0,0,-1—20+20), (5.17)

with D = D, and DM = Ds. Starting from each symmetric image of X one can also
flop to a phase isomorphic to X', and the divisors that shrink at the outer walls of these
new phases are precisely the D with appropriate £. Therefore, we find that the effective
cone of X (and all flopped phases) is

£(X) = spang, {DV},_ . (5.18)

In particular, the divisors D® are all irreducible. A projection of the three-dimensional
extended Kahler cone, IC, is shown in Fig. 4. All divisors in this series except D, and
Dy are autochthonous, i.e. they are not inherited from intersecting effective divisors of the
toric ambient variety V with the Calabi-Yau hypersurface. Furthermore, there are four
autochthonous divisors, namely DY D@ A='D; and A2D;, that are easily seen to be
complete intersection surfaces in V' along which the defining polynomial of X vanishes
identically. To find these divisors we rewrite the defining polynomial f as

f=a1g" + a2 = 227 + 2205 = 2261V + w605) = w50tV + 2268V (5.19)
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Figure 4: A projection of the three-dimensional extended Kéhler cone, K, for Example 1.
The center region is K, the Kahler cone of the original toric phase, X. The green regions
represent flops that map X to a birationally equivalent, but non-isomorphic phase, while
the pastel rose and lavender regions represent flops to isomorphic phases. At the outer
boundaries, D4, D5, and their infinite set of images under A* shrink to a point.
where the gg ) are generic sections of the appropriate line bundles. The four autochthonous
divisors {D® A2D;, DY A~'D;} are the (generically smooth) codimension-two surfaces
gii) = gg) =0,7=1,...,4. For ¢ ¢ {—1,0,1,2}, with some effort one can confirm
explicitly (at least for small enough /) using line bundle cohomology that the divisors
are indeed effective. As ¢ grows, the computation using line bundle cohomology quickly
becomes computationally infeasible, but happily the action of the monodromy group gives
the exact effective cone directly.

Now, D, and Ds are smooth and rigid divisors in X, with Hodge vectors h*(D, Op) =

(1,0,0). As all the D are related to D, via an action of the monodromy group we find
¥(DY, Opw) = (1,0,0) V¢, (5.20)

i.e. all divisors D) are star-rigid. In contrast, h*(D® Op)) satisfies
h* (DY, Opw) = (1,2(€ + 1)6(¢ — 1)(¢€ — 2),0) . (5.21)

Up to this point, we have been studying the topological data of an N’ = 2 compactifi-
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cation on X, but we now turn to constructing an orientifold of X. We choose an involution
Ig: 11— —Z, (522)
acting only on the P[le] base. In the ambient variety, the fixed locus of Zp is

]:B:{xl:0}U{12:x4:x5:O}U{x2:x4:x6:O}
U{I2:$5:$7:O}U{I2:$6:l’7:0}. (523)

The first component descends to a K3 divisor Dy in X (i.e. x(D;) = 24) hosting an O7-
plane, and the triple intersection curves intersect X in 1+ 2 + 2 + 3 = § isolated points
hosting O3-planes. We can cancel the D3-brane and D7-brane tapole by putting 4 D7-
branes on top of the O7-plane, giving rise to gauge algebra s0(8), and introduce 8 mobile
D3-branes.

The divisor Dy is rigid, smooth and orientifold invariant in the toric phase, and Dy
intersects the O7-plane divisor transversely. Therefore, from the condition (1.2) one con-
cludes that Euclidean D3-branes wrapped on D, should generate a superpotential term.7
By holomorphy, it follows that all the D must contribute to the superpotential.

We saw above that the D with —1 < ¢ < 2 are smooth, so the standard rigidity
condition of (1.2) applies, and is indeed fulfilled by these divisors; so it is not surprising
that DY, ..., D@ support superpotential contributions. However, the D with ¢ > 2 or
¢ < —1 have non-trivial star-crossing singularities, so (1.2) is inapplicable, and moreover,
in view of (3.10), is not fulfilled. However, all the D) are star-rigid, i.e. they fulfill (1.5).

Now we will explain why compactifying type IIB string theory on this geometry gives
rise to a modular superpotential. We have learned that the effective cone £(X) is gen-
erated by the divisor classes {D(@}ZGZ of (5.17), all of which have *%(D®) = (1,0,0),
and **(D®) = 0. By virtue of our preceding discussion, all the D) contribute to the
superpotential. Moreover, there are no other star-rigid divisors, so we have identified all
contributing divisors.

It remains to be shown that there exists a D-brane configuration that leaves the mon-

170ne slight complication remains: the intersection curve has genus g = 1, so one expects charged
zero modes from strings stretched between the Euclidean D3-brane and the seven-brane stack. These
zero modes could make the superpotential vanish if the seven-brane gauge group remained un-Higgsed.
However, such zero modes should in general be lifted when the seven-brane gauge group is fully Higgsed,
e.g. by placing the mobile D3-branes onto the seven-brane stack and going to a generic point on the Higgs
branch. We will therefore assume that a superpotential is generated by D4. In any case, this subtlety will
not arise in the example in §5.2.
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odromy symmetry unbroken: as pointed out in [50], such breaking effects can be an issue
in the related construction [51].

The monodromy symmetry A leaves the O7-plane class invariant, and the most straight-
forward interpretation of this is that the orientifold involution leaves the monodromy group
unbroken. Strictly speaking, by continuing from one phase to the next, the orientifold in-
volution might transform to a different one, that also has an O7-plane on a divisor in the
same class [D;]. There is no obvious candidate for such an alternative orientifold, so we
will assume that indeed the orientifold involution gets mapped to itself. Thus, as long
as all D7-branes are placed on top of the O7-plane, the presence of seven-branes does not
break the monodromy symmetry. Finally, the D3-branes can be placed on top of one of the
three O3-planes in the triple intersection locus Dy N Dg N D7, which, likewise, are mapped
to themselves by the monodromy symmetry, and are not contained in the rigid divisors
hosting Euclidean D3-branes.!® Thus, in our orientifold vacuum, provided the D3-brane
and D7-brane position moduli take the special values stated above, all the D contribute
with equal Pfaffian prefactors.

Finally, we arrive at a nonperturbative superpotential given by

W(T, z,7)= A(z,71) Z ¢~ 2r[(A-OT1HTA+ 2 -20-DT3] | 1iti wrapping

LeL
T, +T5—3T3

= A(z,7)e * 2 9y (Z_; 13) + multi-wrapping, (5.24)

where Z_ = i(Ty — T1), 73 := 4113, and Vyo(2; 7) = >,y emil=g)*T+2mill=3)z ig g Jacobi
theta function. The one-loop Pfaffian A(z,7) remains as an overall unknown function of
the complex structure moduli and the dilaton.

Some of the symmetries of the superpotential are generated precisely by the axion shift
symmetries T; — T + ta;, a; € Z, and by the monodromy symmetry group generated by
A. In addition, the superpotential enjoys modular properties'® with respect to modular

transformations of 73, arising from the Jacobi identity

1

(27) = (f,—1> Doz 7) = (—im) e oz 7). (5.25)

T T

The modular transformation symmetry (5.25) of the superpotential suggests the existence

18The classes [Dg] and [D7] are not mapped to themselves under the monodromy group, but with some
effort one can show that, for an appropriate choice of sections of the images of [Dg] and [D7] under the
action of I', the three points Dy N Dg N D7 are actually mapped to themselves.

YFor related investigations of superpotentials with modular properties, see [9,50-54].
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of a rather exotic strong/weak duality symmetry of the effective field theory, involving the
inversion of divisor volumes.

The contributions from Euclidean D3-branes wrapping irreducible star-rigid divisors
D® might be only the lowest terms in a multi-covering expansion? from Euclidean D3-
branes wrapping D arbitrary many times, as is familiar from the worldsheet expansion
of the prepotential in type IIA string theory on a Calabi-Yau threefold. Even if so, we
may trust the leading term proportional to the Jacobi theta function at least when all the
instanton actions are large. This means that our leading term (5.24) approximates the full

superpotential well as long as
Re(TLQ) > Re(Tg) > 0. (526)

In particular, for all values of Z_ and 73 we can neglect possible multi-wrapping effects
provided Re(T} + T3) is suitably large.

It would be very interesting to understand the vacuum structure generated by the super-
potential (5.24). However, in general this would require knowledge of the Kahler potential,
which is difficult to obtain in the desired regime where many (or even infinitely many)
instantons become relevant. Only supersymmetric Minkowski vacua are an exception, as
these arise at points in moduli space where dWW = W = 0, which is an overconstrained but
holomorphic system of equations. But in our case such vacua do not exist, as Jacobi theta

functions only have simple roots.

5.2 Example 2

We now turn to our second example. Again, we construct a Calabi-Yau variety X as the
generic anticanonical hypersurface in a toric variety V. As before, V' is obtained via an
FRST T of a reflexive polytope A° C Nr whose points not in the interior of a facet are

the origin, and the columns of

1 1 -1 -1 -1 -1 -1 -1
-1 0 0 o0 1 1 0 1
o -1 0 0 1 1 1 0
-1 0 0 1 0 1 0 1

, (5.27)

20However, see the recent work [55], which argues that multi-covering contributions are absent in this
setting.
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and thus hY1(V) = b1 (X) = 4. A GLSM charge matrix is given by

0 1

0
-1 -1
-1 -1

: (5.28)

o O O =
o O = O
oS = O O
o O O
o O O
o = O O

which identifies the toric fourfold as a P! x P! fibration over a P! x P! base.?! Each column

of () is associated with a homogeneous coordinate z;, « = 1,...,8, and we again define
132- ={r; =0} CV,and D, := X N lA?l The SR ideal is generated by the monomials

{m128, X227, T3T6, T7 T8, T1T4T5, T35} - (5.29)

We will work in a basis of H*(V,Z) ~ H?*(X,Z) given by the divisor classes Hjg34 :=
[D1.23.4], adapted to the GLSM (5.28), and a dual basis of curves C*, i.e. C*- H, = §%,. One
can choose T such that the generators of the Mori cone of the toric fourfold, expressed in

our basis of curves, are the columns of

010011
101 100
; (5.30)
000101
001010
and the independent triple intersection numbers are
4 8 2 2
8 4 4 iz 0 0
Klabh = , Kogp = 0 2], Kzw= ,  Kas =0. 5.31
lab 0 2 2ab 3ab ( 0) 444 ( )
0
0

As in our first example in §5.1, one can compute the GV invariants of the Calabi-Yau
threefold X to conclude that Mx ~ My, so the Mori cone of X is generated by the six
curves Cy,...,Cq whose coordinates are the columns of (5.30). The prime toric divisor

Dy shrinks to a genus 5 Riemann surface along the facets of Iy where either C3 or Cy4

21The anticanonical hypersurface X C V is therefore torus fibered, and even K3-fibered, in at least two
inequivalent ways.
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shrinks.?? Likewise the divisor D; shrinks along the walls of Kx where either C5 or Cg
shrinks. Thus, these walls are facets of the extended Kahler cone, and the divisors D7 g are
generators of the effective cone, associated with non-abelian enhancement to su(2) with 5
adjoint hypermultiplets.

Next, we consider the asymptotic one-parameter scaling limit
(th 2,81 — (ML MW EY ) A= 0. (5.32)
The point A = 0 lies at infinite distance in moduli space, and we have
Vol(Dy278) ~ % — 00, Vol(D3g) ~A— 0, Vol(Dys) = finite, (5.33)

and the overall volume Vol(X) remains finite as well. We have [D3] = [Dg], so we learn that
the vanishing class [Dj3] is also a generator of the effective cone. Similarly, by considering
the scaling limit (5.32) with ¢3 <+ ¢*, one learns that [Dy] is a generator of the effective
cone. We note that X can be thought of as a K3 fibration over P!, by interpreting either
[x3 : zg] or [z4 : 5] as coordinates on the base. The K3 fibers are themselves torus fibered,
and in the above limits, the generic torus fiber of the generic K3 fiber collapses, while the
base of the K3 fibration blows up in such a way that the overall volume remains finite.?
Next, using similar reasoning as in §5.1, one learns that the remaining two walls of the
Kihler cone, where either C! or C? shrinks, give rise to flop transitions.?* The relevant GV

invariants are
ne, =48 and ne, = 48. (5.34)

Flopping either of these curves gives rise to a Calabi-Yau that is isomorphic to the orig-

inal geometry. One verifies that the transformation (2.2) is undone by a basis change

22The fact that Dg shrinks to a curve can be seen from the fact that Vol(Dg) vanishes linearly in
Vol(Cs3,4). The genus of the curve is then determined by a GV computation: g = %ngs +1=5.

28ee [56] for an exploration of scaling limits of this kind.

24The fact that sending C1'? — —C? gives rise to a flop, rather than an su(2) enhancement, depends
on whether any effective divisors shrink along the vanishing loci of these curves. No such effective divisor
exists.
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parameterized by

(5.35)

O O N =
O~ N O
_ O N O

Again, we find that A* # I for any ¢ # 0, and we arrive at an infinite series of flops.
The Calabi-Yau defined by (5.28) has two prime toric divisors that are rigid in the
sense of (1.2):

D7 = 1 and Dg = . (536)

As in our first example, acting on D; with A gives Dg, and acting with further powers of

A gives rise to an infinite series of star-rigid autochthonous divisors. We find

(

AD; = b=t . (5.37)
-1 -1
—1)—-1

In order to specify a four-dimensional N' = 1 supersymmetric solution, we define the

orientifold involution
Ip:x3 — —x3, (538)

and find again that the orientifold is mapped to itself by the symmetric flop transition.
The fixed locus is

FB:{ZE3:O}U{$1:$2:$6:O}
U{ry =26 = 17 = 0} U {22 = 26 = 25 = 0}. (5.39)

The first component is a K3 fiber, i.e. x(D3) = 24, and the triple intersection curves
intersect the Calabi-Yau in 4 4+ 2 + 2 = 8 isolated points. Therefore, the divisor D3 hosts
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an O7-plane and there are eight isolated O3-planes. The D3-brane tadpole is Qp3 = 8,
which can be canceled by including eight mobile D3-branes. Placing four D7-branes on
top of the O7-plane, and placing the mobile D3-branes onto the locus {21 = o = x5 = 0},
then ensures that the monodromy group remains unbroken.

As in our first example in §5.1, we now argue that an infinite series of Euclidean D3-
branes wrapping A’ D; contribute to the superpotential. It suffices to show that the smooth
divisor D7, which acts as a seed for the infinite series, has the right number of zero modes.
We have h$ (D7,0Op,) = (1,0,0) and h* (D7,0Op,) = 0, so the criterion (2.7) is fulfilled.
The divisor D7 intersects the divisor Ds, which hosts the O7-plane, transversely along a
P12 Thus, in contrast to our first example in §5.1, there are no additional charged zero-
modes from 3 — 7 strings, and we conclude that Euclidean D3-branes on D7 contribute to
the superpotential, even when the seven-brane gauge algebra s0(8) remains unhiggsed. As
a consequence, all of the A*D; contribute to WW.

By reasoning that is completely analogous to that of §5.1, the superpotential is now

determined, up to a single overall one-loop Pfaffian:

W = Ap(z,71) Z 2 (T (=T (L)Lt T)) multi-wrapping. (5.40)
LEZ

This sum can again be written in terms of a Jacobi-form:
T1+T:
W = Ap(z, T)G_Qﬂ( = 2_2(T3+T4))1910 (Z_, 134) + multi-wrapping , (5.41)

with Z_ = Z(Tl - Tg), and T34 = 22(T3 + T4)

25The fact that the intersection curve is a P' can be seen from the fact that the genus of the dual
two-face of the polytope is zero. Alternatively, from the GLSM, it is easy to see that the ambient variety
is a P! x P! fibration over P* x P!, and that the Calabi-Yau is an elliptic fibration over P! x P'. Because
of this topology, D3 in the Calabi-Yau is an elliptic fibration over P! (i.e. an elliptic K3) and Dy is P* x P*
(x(D7) = 4). One thus sees that D3 N Dy is a PL.
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6 Conclusions

Understanding nonperturbative contributions to the effective field theories that result from
compactifications of string theory is a crucial step in characterizing the low-energy quan-
tum gravity landscape. In type IIB flux compactifications on orientifolds of Calabi-Yau
threefolds, Euclidean D3-branes wrapping holomorphic four-cycles can in principle con-
tribute to the superpotential, but determining whether a particular four-cycle supports
a nonvanishing contribution requires a counting of fermion zero modes. For the case of
Euclidean D3-branes wrapping a smooth effective divisor D, Witten presented a counting
of fermion zero modes in terms of the cohomology of the structure sheaf Op, and identified
a sufficient condition for a superpotential contribution [4]. However, effective divisors in
Calabi-Yau threefolds are very often singular, and a prescription for counting zero modes
in this general case was lacking.

In this work, we obtained the sufficient condition (1.5) for superpotential contribu-
tions from Fuclidean D3-branes wrapping divisors with a very common type of singularity.
Specifically, we studied divisors with singularities along rational curves, which we termed
star-crossing singularities, that are induced by passing through flop transitions: see Fig-
ure 2. Such singularities can be “unwound” by performing a series of flops to a geometry
that is birationally equivalent to the original Calabi-Yau, and in which the initially sin-
gular divisor becomes smooth. We argued that throughout such flops, the zero modes of
Euclidean D3-branes wrapping effective divisors are tracked by holomorphic objects such
as the superpotential, and therefore the number of physical zero modes remains invariant.
As a consequence, a divisor D with star-crossing singularities contributes to the super-
potential in a particular Calabi-Yau if there exists a birationally-equivalent geometry in
which the image of D is smooth and fulfills the condition of [4]. We showed that the cor-
responding zero modes can be counted in terms of the cohomology of the structure sheaf
of the normalization of D, leading to the condition (1.5).

We applied this prescription to two explicit examples of Calabi-Yau geometries. Within
these compactifications, we showed that an infinite number of Euclidean D3-branes wrap-
ping irreducible effective divisors contributed to the superpotential. In both examples, only
four of the divisors in this infinite series were smooth and rigid in the sense of (1.2). The
rest of the divisors contained star-crossing singularities and were star-rigid, in the sense of
(1.5). Adding up these contributions, we found that the superpotential took the form of a
Jacobi theta function, whose modular transformation property suggests the existence of a

new symmetry involving the inversion of divisor volumes.
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