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We develop a first-principles model for the relativistic magnetic reconnection rate in strongly magnetized
pair plasmas. By considering the energy budget and required current density near the x-line, we analytically
show that in the magnetically dominated relativistic regime, the x-line thermal pressure is significantly
lower than the upstream magnetic pressure due to the extreme energy needed to sustain the current density,
consistent with kinetic simulations. This causes the upstream magnetic field lines to collapse in, producing
the open outflow geometry which enables fast reconnection. The result is important for understanding a
wide range of extreme astrophysical environments, where fast reconnection has been evoked to explain
observations such as transient flares and nonthermal particle signatures.
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Introduction.—Magnetic reconnection is a fundamental
plasma phenomenon which explosively converts magnetic
energy into plasma energy. Inflowing plasma carries
magnetic flux into the diffusion region. There plasma is
energized and ejected around the x-line into the exhaust
(see Fig. 1). Reconnection is thought to play a critical role
in ubiquitous astrophysical environments where the mag-
netic field energy density can exceed the rest mass energy
density of the ambient plasma [1], characterized by the
asymptotic magnetization parameter σ0 ≡ B2

x0=4πn0mc2.
Here, Bx0 and n0 are the asymptotic (background) recon-
nection magnetic field strength and particle density, respec-
tively. When σ0 ≫ 1, relativistic effects become important.
The reconnection rate is the most important characteristic
of magnetic reconnection since it describes how fast
reconnection processes magnetic flux and indicates the
particle acceleration timescale. Fast reconnection, on the
order of R0 ∼ 0.1 in normalized units, has been evoked to
explain transient gamma-ray flares in active galactic nuclei
(AGNs) [2,3], the dissipation of magnetic “hair” in black
hole (BH) magnetospheres [4], BH accretion disk coronal
heating and flares [5], gamma-ray bursts in pulsar nebula
[6,7], the rapid dissipation of Poynting flux in pulsar winds
[8,9], and giant magnetar flares [10]. Electron-positron
(pair) plasmas are thought to dominate the plasma envi-
ronment of pulsar winds [11] and play a significant role in
BH magnetospheres, including AGN/BH jets [12,13].
Highly magnetized electron-ion plasmas may be relevant
in BH accretion discs [5] and tera-electron-volt flares in
relativistic AGN jets [2,14]. In these contexts, reconnection
can accelerate particles to ultrarelativistic energies and
produce broad nonthermal spectra [15–18]. Despite
the great interest in pair and relativistic electron-ion
reconnection to explain numerous puzzling observations

in astrophysics, there is yet no first-principles theory for the
rate of reconnection in these astrophysical plasmas [1].
It was recently shown that in nonrelativistic (σ0 ≪ 1)

electron-ion plasmas, reconnection is fast because Hall
electromagnetic fields divert inflowing Poynting flux
around the x-line. Electrons remain frozen-in within the
ion diffusion region, and as the primary out-of-plane
current carrier, they drag reconnecting magnetic field lines
into the out-of-plane Hall quadrupole magnetic field.
Inflowing electrons are subsequently deflected by this
Hall magnetic field into the outflow direction, carrying
the magnetic energy away from the x-line. The resulting
energy void prevents thermal pressure build-up at the
x-line, and upstream magnetic field lines bend in to
maintain force balance along the inflow [19]. This creates
the open outflow geometry necessary for fast reconnection
[20]. The x-line pressure depletion is also observed during
fast reconnection in relativistic pair plasmas [21]. However,
the cause of this depletion must be drastically different
since the plasma species’ equal mass eliminates the Hall
effect, and all inflowing magnetic energy can be transferred
to the plasma at the x-line. Similarly, in the large σ limit of
electron-ion reconnection, the scale separation between
species may be less relevant since the effective relativistic
masses of electrons and ions become equivalent, indicating
that relativistic electron-ion reconnection behaves similarly
to pair plasma reconnection where the Hall effect is
absent [22].
In this Letter, we identify an entirely different mecha-

nism leading to fast reconnection in relativistic pair
plasmas. We show that in the magnetically dominated
relativistic regime, the x-line thermal pressure cannot
balance the upstream magnetic pressure due to the energy
needed to sustain the extreme current density. The
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implosion of the upstream magnetic pressure into the x-line
triggers fast reconnection. With this insight, we develop a
first-principles model for the reconnection rate in strongly
magnetized pair plasmas with a simple magnetic field
reversal. The model predictions compare well to fully
kinetic particle-in-cell (PIC) simulations.
Theory.—Our model of the x-line plasma pressure

considers two basic properties of pair plasma reconnection:
the energy budget around the x-line and the current density
necessary for the field reversal. As in Liu et al. [19], these
properties are analyzed within a Gaussian surface with the
bottom-left corner at the x-line, illustrated by the dotted
rectangle in Fig. 1. The surface extends to the current sheet
half-thickness δ in the z direction and has small width l ≪
δ in the x direction, as shown in Fig. 1(b). The inflow,
outflow, and out-of-plane directions are z, x, and y,
respectively. The asymptotic background conditions of
magnetic reconnection can be very different from the
microscale conditions at the edge of the diffusion region,
as illustrated in Fig. 1(a) [20]. Thus, asymptotic and
microscale quantities are denoted with “0” and “m” sub-
scripts, respectively. We will also refer to local quantities
around the diffusion region by the labeled surfaces in
Fig. 1(b). Note that surface 1 is at the microscale. Electron
and positron species are specified by (−) and (þ) sub-
scripts, but due to the symmetry between species, we omit
subscripts unless relevant.
Quantities in the proper frame of a species are primed.

Roman letters index the three-dimensional Euclidean space
(i ¼ x, y, z). Greek letters index the four-dimensional flat
space-time (α ¼ 0; x; y; z), and we use the mostly positive
metric tensor ηαβ ¼ diagð−1; 1; 1; 1Þ. The speed of light
c ¼ 1, but we write the unit where instructive. In the
following analysis, we follow the tensor formalism of
Zenitani [23]. The stress-energy (SE) tensor is obtained
from the particle four-velocity uα ¼ ðγ; γvÞ and Lorentz
factor γ ¼ 1=½1 − v2�1=2 as

Tαβ ¼ m
Z

fðuÞuαuβ d
3u
γ

; ð1Þ

which is a four tensor because it is a linear combination of
the dyadic four-tensor uαuβ and since the distribution
function fðuÞ and d3u=γ are both Lorentz invariant. The
normalization of fðuÞ is defined by

R
fðuÞd3u ¼ n.

Although generally not explicitly denoted, fðuÞ is also a
function of location.
For the remainder of this Letter, all velocities refer to the

Eckart velocity. The Eckart four-velocity Uα
E ≡ Nα=n0

where Nα ≡ R
fðuÞuαðd3u=γÞ is the particle number flux

four vector and n0 ¼ ð−NαNαÞ1=2 is the proper density [24].
In the Eckart frame, the spatial components Ui

E ¼ 0, and
thus the spatial components of the particle number flux four
vector vanish (i.e., Ni ¼ 0), indicating the rest frame of the
bulk fluid. Similarly, the Eckart three-velocity Vi

E ≡
Ui

E=ΓE with ΓE ≡ 1=½1 − V2
E�1=2 the Lorentz factor of

the Eckart frame. Hereafter, we set Uα ¼ Uα
E and Vi ¼ Vi

E.
With this background, the relativistic electron Ohm’s law

is written as

EþV×B¼−
1

Γen0
½∂jðEUiUjþQijþPijÞþ∂tTi0�; ð2Þ

where Qij is the heat flux tensor and Pij is the pressure
tensor [23]. See the Appendix A for the full derivation. It is
known that in the relativistic regime, the bulk inertia term of
Ohm’s law balances the reconnection electric field Ey at the
edge of the diffusion region [23,25,26], as seen by
comparing the blue to the red curve in Fig. 2(a). In
Appendix A, we evaluate Eq. (2) at the transition region
close to surface 1 and find that the current sheet width is
approximately the pair plasma inertial length based on the
proper density inside the current sheet:

δ ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mc2

8πn03e
2

s
: ð3Þ

This prediction is validated in Fig. 2(a) and has been noted
in previous works [11,27]. Close to the x-line, the relativ-
istic compression of the plasma in the current sheet is based
on the Lorentz factor of the bulk flow in the
y direction, Γy ≡ 1=½1 − V2

y3�1=2, so that Ampère’s law is
Bxm=4πδ ¼ 2en03ΓyVy3. Plugging in Eq. (3), we solve for

Γy ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σm

2

�
n1
n03

�s
; ð4Þ

where σm ¼ B2
xm=4πn1mc2 is the microscale magnetization

parameter.
Next, we consider the energy available to support the

x-line plasma pressure. The energy conservation equation
is obtained from the vanishing four divergence of the time
component of the total SE tensor:

∂αðT0α
ðþÞ þ T0α

ð−Þ þ T0α
EMÞ ¼ 0; ð5Þ

(a) (b)

FIG. 1. Panel (a) depicts the reconnection geometry, including
the distinction between asymptotic and microscale quantities.
Panel (b) is an enlargement of the dotted box in panel (a), the
Gaussian surface to the upper right of the x-line.
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where Tαβ
EM¼ð1=4πÞ½FαμFβ

μ−ηαβFμνFμν=4� is the electro-
magnetic SE tensor.Wewish to analyze this equation within
the Gaussian surface indicated by the dotted box Fig. 1. By
symmetry around the x-line, the energy fluxes through
surfaces 3 and 4 vanish. In steady state ∂t ¼ 0, so we use
the divergence theorem to rewrite Eq. (5) asZ

1

ðT0z
ðþÞ þ T0z

ð−Þ þ T0z
EMÞdx

þ
Z
2

ðT0x
ðþÞ þ T0x

ð−Þ þ T0x
EMÞdz ¼ 0: ð6Þ

With a cold upstream plasma, γ ≃ 1 in the inflow region.
Thus, by Eq. (1),

ðT0z
ðþÞ þ T0z

ð−ÞÞj1 ≈ 2n1mc2Vz1: ð7Þ
In this Letter we aim to analytically show that Pzzjxline

(i.e., a thermal spread in vz) is significantly lower than the
asymptotic magnetic pressure in the large-σ0 limit [as in the
comparison of the green and red curves in Fig. 2(b)]
because the current carrier bulk flow kinetic energy takes
most of the incoming magnetic energy. While there is in
reality some thermal spread, for the purposes of this model
we assume the plasma is cold in the vy and vx directions,
which minimizes the energy required to sustain the current.
Since d3u ¼ γ5d3v, we consider the distribution function
g≡ γ5f ¼ FðvzÞδðvx − VxÞδðvy − VyÞ, so that g is the
number density in three-velocity phase space. Then

ðT0x
ðþÞ þ T0x

ð−ÞÞj2 ≈ 2m
Z

f2uxcd3u ¼ 2m
Z

g2γvxcd3v

¼ 2mVx2c
Z

F2ðvzÞγðvzÞdvz
¼ 2hγðvzÞi2n2mc2Vx2; ð8Þ

where we define γðvzÞ≡ γðvx ¼ Vx; vy ¼ Vy; vzÞ and the
ensemble average hAi≡R

gAd3v=
R
gd3v. Last, the inflow-

ing electromagnetic energy flux T0z
EMj1 ¼ −EyBxm=4π. The

plasma is frozen-in in the upstream, so Ey ¼ −Vz1Bxm. The
result is

T0z
EMj1 ¼

B2
xm

4π
Vz1: ð9Þ

In the j∂xBzj ≪ j∂zBxj limit, we can ignore the outflowing
EM energy flux: T0x

EMj2 ≈ 0. Combining Eqs. (7)–(9) with
Eq. (6), we obtain

�
2n1mc2 þ B2

xm

4π

�
Vz1lþ 2hγðvzÞi2n2mc2Vx2δ ≈ 0: ð10Þ

With the particle number continuity equation
n1Vz1lþ n2Vx2δ ¼ 0, we solve Eq. (10) for

hγðvzÞi2 ≈ 1þ σm
2
: ð11Þ

Finally, we can estimate the x-line pressure. At the mid-
plane Vz ¼ 0, so the total Pzz at surface 3 is given by

ðTzz
ðþÞþTzz

ð−ÞÞj3¼2m
Z
f3
u2z
γ
d3u¼2m

Z
g3γv2zd3v

¼2mc2
Z
F3γðvzÞ½1−V2

x3−V2
y3−1=γðvzÞ2�dvz

¼2n3mc2
�hγðvzÞi3

Γ2
y

−
�

1

γðvzÞ
�

3

�
; ð12Þ

where we used the fact that Vx3 → 0 in the l → 0 limit.
Using the inequality h1=Ai ≥ 1=hAi for A > 0 and
n3 ¼ Γyn03, we then arrive at

(a) (b) (c)

FIG. 2. Panel (a) shows the out-of-plane electron Ohm’s law around the x-line. Panel (b) plots the total pressure balance including both
species along the inflow symmetry line, demonstrating that Pzzjxline ≪ B2

x0=8π. The Poynting flux time derivative balances fluctuations
far upstream. Panel (c) shows the electron proper density n0 and the normalized jBj=n ratio along the inflow symmetry line. Orange
vertical bars show the prediction of the diffusion region thickness based on Eq. (3). All plots are from the σ0;init ¼ 100 simulation run at
t ¼ 379=ωp, but similar features are observed in all runs.
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Pzzjxline ≤ 2n03mc2
�hγðvzÞi3

Γy
−

Γy

hγðvzÞi3

�
: ð13Þ

Equation (13) makes clear the factors affecting the x-line
thermal pressure. hγðvzÞi3 is controlled by the energy per
particle that includes thermal motions in vz. Γy is purely
controlled by the current carrier bulk flow. If all available
energy is used to drive the current, then Γy ≃ hγðvzÞi3, and
Pzzjxline becomes very small. Conversely, if only a small
fraction of the total energy is needed to drive the current,
Pzzjxline can become significant. Approximating hγðvzÞi3 ≈
hγðvzÞi2 in the l → 0 limit, we substitute Eq. (11) for
hγðvzÞi3 and Eq. (4) for Γy to solve for the x-line pressure
ratio:

8π Pzzjxline
B2
xm

≤ 2
½2þ ðσm=2Þ�ðn03=n1Þ − 1

½1þ ðσm=2Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðσm=2Þðn1=n03Þ

p : ð14Þ

The only free parameter in Eq. (14) is the proper com-
pression ratio n03=n1. To determine this ratio, we first
observe in simulations that the proper density around the
x-line matches the inflow asymptotic density: n03 ≈ n0.
Second, the upstream magnetic flux tube expands close
to the diffusion region as the exhaust opens. The cold
upstream plasma does not quickly redistribute itself along
the expanding field lines. Thus, local conservation of mass
content within flux tubes implies that n0=n1 ≈ Bx0=Bxm
[28–30]. These two features are justified in Fig. 2(c). It
follows that

n03=n1 ≈ Bx0=Bxm: ð15Þ

In the cold upstream plasma limit where Pzzjxline ≈ Pzzj0δ,
we close Eq. (14) using the following relations which were

derived in Liu et al. [19,20] based on the force balance
along the inflow symmetry line and the assumption
that separatrix field lines have the same slope, Slope [see
Fig. 1(a)], inside and outside the diffusion region:

S2lope ≈ 1 −
8πPzzjxline

B2
xm

ð16aÞ

Bxm

Bx0
≈
1 − S2lope
1þ S2lope

: ð16bÞ

Results.—Using Eqs. (14)–(16) we numerically solve for
the microscale and asymptotic x-line pressure ratios as a
function of σm or σ0. Note that the relation between σm and
σ0 is obtained numerically from the same equations. The
results are shown in Fig. 3, where we compare the
theoretical predictions (solid curves) to a series of four
2.5D pair plasma PIC simulations (markers) with different
initial magnetizations σ0;init. Figures 3(a) and 3(b) show
excellent agreement between the simulation x-line pres-
sure ratios and the predicted scaling relation with both
σm and σ0. In Fig. 3(b), we find a simple scaling of
8πPzzjxline=B2

x0 ∼ 2
ffiffiffiffiffiffiffiffiffiffi
2=σ0

p
in the σ0 ≫ 1 limit (dashed

curve). Note that fast reconnection is realized as long as
8πPzzj xline=B2

x0 < 1 [21].
We can also predict the reconnection rate from the x-line

pressure ratio. The reconnection rate normalized to the
asymptotic magnetic field is defined as R0 ≡ cEy=Bx0VA0,
where VA0 is the asymptotic upstream Alfvén speed. This
can be written as

R0 ≃
�
Bzm

Bxm

��
Bxm

Bx0

��
Vout;m

VA0

�
; ð17Þ

(a) (b) (c)

FIG. 3. Panel (a) shows the microscale x-line pressure ratio as a function of both σm and σ0. Panel (b) shows the pressure ratio relative
to the asymptotic magnetic pressure as a function of σ0. The dashed purple curve is the σ0 ≫ 1 limit of the numerical solution, 2

ffiffiffiffiffiffiffiffiffiffi
2=σ0

p
.

Panel (c) shows the reconnection rate R0 and the microscopic inflow speed V in;m=c ≃ Ey=Bxm as a function of σ0. To measure R0 from
simulations, we use Ey ¼ ∂t½maxðAyÞ −minðAyÞ�where Ay is the y component of the vector potential along the midplane. Predictions of
the model are solid curves numerically calculated with Eqs. (14)–(16), and (18). Markers are direct measurements of the respective
quantities from simulations shortly after the reconnection rate peaks.
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where Vout;m is the outflow speed at the edge of the
diffusion region. When σm ≫ 1, Vout;m ∼ VA0 ∼ c [31],
and using Bzm=Bxm ≈ Slope we can solve for the reconnec-
tion rate

R0 ≃ Slope

�
1 − S2lope
1þ S2lope

�
; ð18Þ

where Slope is calculated using Eqs. (16a) and (14), (15).
From Fig. 3(c), the model predicts a slower reconnection
rate R0 ∼Oð0.01Þ for σ0 ∼Oð1Þ, which rapidly increases
to R0 ∼ 0.1–0.3 for σ0 ≳ 10. The prediction yields excellent
agreement with our simulations and previously observed
scaling [17].
Conclusions.—We have shown that in relativistic pair

plasma reconnection, the x-line plasma pressure cannot
balance the upstream magnetic pressure given the need to
maintain the extreme x-line current density. In the absence
of the Hall effect, essentially all inflowing electromagnetic
energy near the x-line can be locally converted to plasma
energy. However, current carriers constantly turn into the
outflow. The energetic requirement to replenish these
current carriers becomes significant at high σ since the
Lorentz factor associated with the current Γy becomes
extremely large. Therefore, only a small fraction of
electromagnetic energy is available to maintain the x-line
pressure Pzzjxline, making it significantly lower than the
asymptotic upstream magnetic pressure B2

x0=8π, leading to
fast reconnection. We derived a simple scaling relation
8πPzzjxline=B2

x0 ∼ 2
ffiffiffiffiffiffiffiffiffiffi
2=σ0

p
in the σ0 ≫ 1 limit. The pre-

dicted reconnection rates agree well with PIC simulations.
While the reconnection outflow geometry opens out due

to x-line pressure depletion in both astrophysical plasmas
and nonrelativistic electron-ion plasmas, the exhaust
dynamics can be different. In the latter, the exhaust pressure
can build up because Hall electromagnetic fields divert
energy to the outflow region, and the energy required for
the primary current carrier (electrons) is negligible [19].
This results in a single, stable x-line. In contrast, pair
plasma reconnection lacks the diversion of energy flow by
Hall fields, and the relativistic current carriers take signifi-
cant energy, causing low pressure within exhausts as well.
Thus, the current layer can collapse even in the “once
opened” exhaust region, explaining the bursty nature that
recursively triggers and ejects magnetic islands [21]. This
time dependency, however, is not the driver and does not
affect the average reconnection rate in collisionless plas-
mas. In comparison, the current in relativistic magnetohy-
drodynamics models requires no energy, and the plasmoid
instability was invoked to explain the fast rate [32,33].
More work is needed to understand how this model

couples with theories of turbulent driving and onset. While
magnetohydrodynamics-scale turbulence may enable fast
reconnection to proceed independently of kinetic physics in

the current sheet [34], some evidence shows that kinetic
(de-scale) reconnecting layers persist and dominate a
current sheet that is filled with external and self-generated
turbulence [35]. Moreover, kinetic effects may enhance
reconnection rates in the presence of broadband turbulence
[36]. In these cases, turbulent driving may lead to fast
reconnection on kinetic scales, as detailed in this Letter.
A resolution to this complex interplay requires separate
dedicated efforts.
In summary, our model provides the critical theoretical

foundation for fast reconnection in collisionless astrophysi-
cal plasmas. We expect these fundamental considerations of
the current-carrier requirement and x-line energy budget to
carry over to three-dimensional (3D) systems.
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Appendix A: Derivation of the relativistic Ohm’s law and
the diffusion region width.—The following derivation of
the relativistic Ohm’s law is due to Zenitani [23]. The
stress-energy tensor can be decomposed as

Tαβ ¼ EUαUβ þQαβ þ Pαβ; ðA1Þ

where Uα is an arbitrary flow four velocity. With Δαβ ≡
ηαβ þUαUβ as the projection tensor, E ≡ TαβUαUβ is the
energy density in the Uα-moving frame. Qαβ ¼ qαUβ þ
Uαqβ is the heat flux tensor, where qα ≡ −Δα

βT
βμUμ is the

heat flux four vector. Pαβ ≡ Δα
μΔ

β
νTμν is the pressure tensor

projected in the Uα-moving frame.
With Uα ¼ Uα

E (the Eckart four velocity), the energy-
momentum equation for the electron species is then
given by

∂βT
αβ
ð−Þ ¼ −en0FαβUβ; ðA2Þ

where Fαβ is the electromagnetic tensor. The relativistic
electron Ohm’s law is obtained from the space components
of Eq. (A2):

Eþ V ×B ¼ −
1

Γen0
½∂jðEUiUj þQij þ PijÞ þ ∂tTi0�:

ðA3Þ

Here, V is the electron Eckart three velocity, and Γ is the
Lorentz factor of the Eckart frame.
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As discussed the main text, it is known that in the
relativistic regime, the bulk inertia term of the Ohm’s law
balances the reconnection electric field Ey at the edge of the
diffusion region [23,25,26]. Note that the edge of the
diffusion region coincides with the edge of the current
sheet. Thus, we evaluate Ohm’s law at the transition region
close to surface 1 as follows:

Ey ¼ −Vz1Bxm ≈ −
1

Γen0
∂jðEUyUjÞj

1
: ðA4Þ

At the very edge of the current sheet, the plasma has not yet
been accelerated and is essentially in its upstream state,
where Γ1 ≈ 1,Uy1 ≈ 0, and the internal energy E1 ≈ n01mc2.
In addition, the z-direction derivative dominates, so that
∂jðEUyUjÞ ≈ ∂zðEUyUzÞ. Since Uy1 ≈ 0, the product rule
implies that

∂zðEUyUzÞj1 ¼ EUzð∂zUyÞj1 ¼ EΓVzð∂zUyÞj1: ðA5Þ

With Uz1 ¼ Γ1Vz1, we can rewrite Eq. (A4) as

Bxm ≈
mc2

e
ð∂zUyÞj1: ðA6Þ

At the transition region, Uy is very small but has begun to
increase toward its peak value at the center of the current
sheet. Hence, ð∂zUyÞj1 ≈ −Uy3=δ ¼ Jy3=2en03δ.
Finally, use Ampère’s law Bxm=4πδ ¼ Jy3 to conclude

that the current sheet width is given by the pair plasma
inertial length evaluated inside the current sheet:

δ ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mc2

8πn03e
2

s
: ðA7Þ

Appendix B: The simulation details.—Simulations are
performed with VPIC, which evolves particles with the
relativistic Vlasov equation and fields with Maxwell’s
equations [37]. We test initial asymptotic magnetizations
of σ0;init ¼ 10, 100, 500, and 1000. All runs have x × z
system size 1086de × 1086de and grid size 6144 × 6144,
except for the σ0;init ¼ 1000 run which has grid size
6144 × 12288. The initial configuration is a symmetric
force-free current sheet without background guide field.
The field profile is B0 ¼ Bx0½tanhðz=λÞx̂þ sechðz=λÞŷ�.
The initial current sheet half-width λ ¼ 0.85

ffiffiffiffiffiffiffiffiffiffi
σ0;init

p
de,

where de ≡ ðmc2=8πn0e2Þ1=2 is the upstream pair plasma
inertial length. Reconnection is initiated with a small
magnetic perturbation. Both species have initial temper-
ature T0 ¼ 0.5mc2, and there are around 7.5 × 109

macroparticles.
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