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THE DILOGARITHM AND ABELIAN CHERN-SIMONS

Daniel S. Freed & Andrew Neitzke

Abstract

We construct the (enhanced Rogers) dilogarithm function from
the spin Chern-Simons invariant of Cˆ-connections. This leads to
geometric proofs of basic dilogarithm identities and a geometric
context for other properties, such as the branching structure.

1. Introduction

Investigations of the dilogarithm function, in its simplest form defined
via the power series

(1.1) Li2pzq “
8ÿ

n“1

zn

n2
,

date back to Leibniz, Bernoulli, and Euler; one early reference is the
1809 essay of William Spence [S]. In recent times the dilogarithm makes
appearances in hyperbolic geometry, algebraic K-theory, conformal field
theory, and beyond. It and its relatives are the subject of survey articles,
such as [G, K, Z] which provide a wealth of references to the literature.
In their study of the scissors congruence problem, Dupont-Sah [DS]
and subsequently Dupont [D] relate a variant of the dilogarithm func-
tion (1.1) to a Chern-Cheeger-Simons [CS, ChS] characteristic class
of flat principal SL2C-bundles. As part of our study [FN] of “strati-
fied abelianization” of flat SL2C-connections on 3-manifolds, we discov-
ered a geometric construction of this enhanced Rogers dilogarithm using
abelian Chern-Simons theory of flat Cˆ-connections on a 2-dimensional
torus. In this paper we present our construction, and we use it to give
geometric proofs of the basic dilogarithm identities.

We begin in §2 with an exposition of Chern-Simons invariants of Cˆ-
connections. Our work uses a square root for spin manifolds, which we
outline in §3 and develop with proofs in Appendix A. The construction
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of the dilogarithm is carried out in §4 and the identities are proved in §5.
An inspiration for our construction, independent of stratified abelianiza-
tion, is a heuristic computation motivated by topological string theory,
as we explain in Appendix B.

Acknowledgments. We thank Ian Agol, Sasha Goncharov, and Char-
lie Reid for comments and discussion.

2. Classical Chern-Simons theory

The Chern-Simons invariant is defined for pairs pG,�q consisting of
a real Lie group G with finitely many components and a class � P
H4pBG;Zq. In this section we focus on the special case pCˆ, c12q, where
c1 P H2pBCˆ;Zq is the universal first Chern class. Here we briefly indi-
cate the constructions for trivializable Cˆ-bundles. In Appendix A we
provide a general construction based on di↵erential cohomology which
applies to all principal Cˆ-bundles. The treatment in Appendix A em-
phasizes the spin refinement of the Chern-Simons invariant, though it
can be adapted to the non-spin case discussed in this section. The ref-
erences [F1, F2] contain more exposition and details. The basic prop-
erties of classical Chern-Simons theory are compactly expressed in the
language of field theory (Theorem 2.13).

Let W be a closed oriented 4-manifold and P Ñ W a principal Cˆ-
bundle. Then

(2.1)
@
c1pP q2, rW s

D
P Z

is a primary topological invariant of P Ñ W . Chern-Simons [CS] con-
struct a secondary geometric invariant of Cˆ-bundles with connection
as follows. Let M be an arbitrary smooth manifold and ⇡ : P Ñ M a
principal Cˆ-bundle. Let ⇥ P ⌦1

P pCq be a connection and ⌦ P ⌦2
M pCq

its curvature, i.e., ⇡˚⌦ “ d⇥. Define

!p⇥q “ ´ 1

4⇡2
⌦^ ⌦ P ⌦4

M pCq(2.2)

↵p⇥q “ ´ 1

4⇡2
⇥^ ⌦ P ⌦3

P pCq.(2.3)

Then d! “ 0 and d↵ “ ⇡˚!. These are the Chern-Weil and Chern-

Simons forms, respectively. For M “ W a closed oriented 4-manifold,
we have

(2.4)

ª

W
!p⇥q “

@
c1pP q2, rW s

D
;

in particular, the left-hand side is independent of the connection ⇥.
Suppose M “ X is a closed oriented 3-manifold and ⇡ : P Ñ X is

trivializable. For each section s of ⇡ define

(2.5) �p⇥, sq “
ª

X
s˚↵p⇥q.
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If s1 “ s ¨ g for g : X Ñ Cˆ, then

(2.6) ps ¨ gq˚↵p⇥q “ s˚↵p⇥q ´ 1

4⇡2
d

ˆ
s˚⇥^ dg

g

˙
.

Therefore, by Stokes’ theorem �p⇥, sq is independent of s. The Chern-
Simons invariant is

(2.7) F pX;⇥q “ exp
`
2⇡

?
´1�p⇥, sq

˘
P Cˆ.

Remark 2.8. An alternative definition uses the fact that P Ñ X
can be written as the boundary of a principal Cˆ-bundle rP Ñ W over
a compact oriented 4-manifold W with BW “ X. The connection ⇥
extends to a connection r⇥ on rP Ñ W , and by Stokes’ theorem the right
hand side of (2.5) equals

(2.9)

ª

W
!pr⇥q.

This definition works for any (possibly nontrivializable) P Ñ X with
connection, but (2.9) is only independent of the choice of the extension
rP Ñ W modulo integers; see (2.4).

If X is a compact oriented 3-manifold with BX “ Y , then �p⇥, sq is
not independent of s; the exact term in (2.6) produces a boundary
correction. The dependence of exp

`
2⇡

?´1�p⇥, sq
˘
on s is encoded as

follows. Set ⇢ : Q “ P
ˇ̌
Y

Ñ Y and ⌘ “ ⇥
ˇ̌
Q
. Under our hypothesis the

space Sectp⇢q of sections of ⇢ : Q Ñ Y is nonempty; it is a torsor over
MappY,Cˆq. Define the complex line

(2.10) F pY ; ⌘q “
"
f : Sectp⇢q Ñ C :

fpt ¨ hq “ exp

ˆ
´

?´1

2⇡

ª

Y
t˚⌘ ^ dh

h

˙
fptq

for all t P Sectp⇢q, h P MappY,Cˆq
*
.

Then

(2.11) F pX;⇥q :“ exp
`
2⇡

?
´1�p⇥,´q

˘
P F pY ; ⌘q

is a well-defined nonzero element of the line F pY ; ⌘q.
Remark 2.12. By construction, a trivialization t of ⇢ : Q Ñ Y

induces a trivialization C –››Ñ F pY ; ⌘q, i.e., a nonzero element ⌧t P
F pY ; ⌘q.

The formal properties are best summarized in field theory language.
Let Bordx2,3ypSO3 ˆpCˆqrq denote the category1 whose objects are

1For many reasons, among others to construct smooth gluings, the objects are
germs of 3-dimensional data over the 2-dimensional data; see [Se]. Our language



244 D. S. FREED & A. NEITZKE

closed oriented 2-manifolds Y equipped with a Cˆ-connection ⇥Y ; a
morphism pY0,⇥0q Ñ pY1,⇥1q is a compact oriented 3-manifold X

equipped with a Cˆ-connection ⇥X , a di↵eomorphism ´Y0 >Y1 –››Ñ BX
(an oriented manifold M has a canonical reflection ´M with the oppo-

site orientation), and a compatible isomorphism⇥0>⇥1
–››Ñ B⇥X . Com-

position of morphisms is gluing of bordisms, and disjoint union provides
a symmetric monoidal structure. Let LineC denote the groupoid whose
objects are 1-dimensional complex vector spaces and morphisms are
invertible linear maps; tensor product provides a symmetric monoidal
structure.

Theorem 2.13. The exponentiated Chern-Simons invariant is a sym-

metric monoidal functor

(2.14) F : Bordx2,3ypSO3 ˆpCˆqrq ›Ñ LineC .

In other words, F is an invertible field theory, often called classical

Chern-Simons theory.
As mentioned in footnote 1, one can extend F to a theory defined

on smooth families. Thus if Y Ñ S is a fiber bundle with fibers closed
oriented 2-manifolds, and Q Ñ Y is a principal Cˆ-bundle with con-
nection ⌘, then the Chern-Simons theory produces F pY{S; ⌘q Ñ S, a
complex line bundle with covariant derivative. Its curvature is

(2.15) curv pF pY{S; ⌘q ›Ñ Sq “
?´1

2⇡

ª

Y{S
⌦p⌘q ^ ⌦p⌘q,

where ⌦p⌘q P ⌦2
YpCq is the curvature of the Cˆ-connection ⌘. Parallel

transport along a path � : r0, 1s Ñ S is the value of F p�˚Y; �˚⌘q on the
pullback connection �˚⌘ on �˚Q Ñ �˚Y. In particular, holonomies of
F pY{S; ⌘q Ñ S are computed as values of F on mapping tori.

Remark 2.16. Cheeger-Simons [ChS] introduce di↵erential char-
acters and write the Chern-Simons invariant of a closed oriented 3-
manifold in those terms. The entire theory F fits into the theory of
di↵erential cohomology [HS, BNV], beginning with a di↵erential lift of
c12 P H4pBCˆ;Zq. We develop this idea in Appendix A.

Our application of F in §4 is to families of flat Cˆ-connections. In
the remainder of this section we observe some properties which reflect
the topological nature of F on flat connections.

First, a principal Cˆ-bundle P Ñ M over any smooth manifold M
admits a flat connection if and only if c1pP q P H2pM ;Zq has finite order.
In particular, if H1pMq is torsionfree, then only trivializable principal

in the text is a simplification. Also, it is crucial to extend to parametrized families
of Cˆ-connections, for example to capture the variation formula for Chern-Simons
invariants, as we recount below. See [ST] for field theories sheafified over smooth
manifolds.
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Cˆ-bundles on M admit flat connections. The equivalence class of a flat
connection on P Ñ M is a lift r⇥s P H1pM ;C{Zq of c1pP q P H2pM ;Zq
in the long exact sequence of cohomology groups induced from the short
exact sequence Z Ñ C Ñ C{Z of coe�cients.

Theorem 2.17. (i) Let ⇥ be a flat connection on a principal Cˆ
-

bundle ⇡ : P Ñ X over a closed oriented 3-manifold. Then its

Chern-Simons invariant is

(2.18) F pX;⇥q “ exp
´
2⇡

?
´1 x r⇥s ! c1pP q , rXs y

¯
,

r⇥s P H1pM ;C{Zq.
(ii) Let ⌘ be a flat connection on a principal Cˆ

-bundle ⇢ : Q Ñ Y over

a closed oriented 2-manifold. Then the trivialization ⌧t P F pY ; ⌘q
in Remark 2.12 depends only on the homotopy class of the section t
of ⇢.

(iii) Let ⇥ be a flat connection on a principal Cˆ
-bundle ⇡ : P Ñ X

over a compact oriented 3-manifold with boundary. Suppose s is

a section of ⇡. Then F pX;⇥q “ ⌧Bs in F pBX; B⇥q.
Proof. Part (i) is easy unless ⇡ does not admit a section, in which

case the techniques here do not apply; we supply a proof at the end of
Appendix A. For (ii) observe that the integrand in (2.10) is the product
of two closed 1-forms, so only depends on their de Rham cohomology
classes. The generalization of (iii) to arbitrary connections ⇥ is

(2.19) F pX;⇥q “ exp

ˆ
2⇡

?
´1

ª

X
s˚↵p⇥q

˙
⌧Bs,

which is essentially the construction of (2.11). For flat ⇥ the Chern-
Simons form ↵p⇥q vanishes. q.e.d.

3. The spin refinement

On spin manifolds Chern-Simons theory refines to a theory S with
S b2 – F . The extra factor of 2 flows from that in the primary invari-
ant (2.1) on spin manifolds: if P Ñ W is a principal Cˆ-bundle over a
closed spin 4-manifold W , then

(3.1)
1

2

@
c1pP q2, rW s

D
P Z.

In this section we state the properties of S we need; proofs are deferred
to Appendix A.

Remark 3.2. The function

(3.3)
H2pW ;Zq ›Ñ Z

x fi›Ñ 1

2
xx ! x, rW sy
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is a quadratic refinement of the bihomomorphism

(3.4)
H2pW ;Zq ˆ H2pW ;Zq ›Ñ Z

x , y fi›Ñ xx ! y, rW sy

There is a compatible quadratic form on H1pX;C{Zq for X a closed
spin 3-manifold [MS, LL]; it computes the value of S pX;⇥q for flat
connections ⇥.

As in Theorem 2.13 the formal properties are summarized in the
statement that S is an invertible field theory (which can be evaluated
on fiber bundles). Manifolds in the domain bordism category of S carry
a spin structure. The codomain of S is the Picard groupoid sLineC
whose objects are Z{2Z-graded (super) lines and whose morphisms are
even isomorphisms of super lines. The monoidal structure is tensor
product, and the symmetry implements the Koszul sign rule.

Theorem 3.5. Spin Chern-Simons theory is a symmetric monoidal

functor

(3.6) S : Bordx2,3ypSpin3 ˆpCˆqrq ›Ñ sLineC .

There is an isomorphism S b2 – F .

Remark 3.7. The invariant of a Cˆ-connection over a closed spin 3-
manifold has a description analogous to that in Remark 2.8. In that case
we must bound X by a compact spin 4-manifold and put the factor 1{2
in the integral (2.9).

For convenience we state further properties of S simultaneously for
families of 2- and 3-manifolds. Consider the sequence

(3.8) P
⇡››Ñ M�

p››Ñ S

of smooth maps in which p is a fiber bundle of smooth manifolds, or
of bordisms; ⇡ is a principal Cˆ-bundle with connection ⇥ P ⌦1

P pCq;
and � is a spin structure on the relative tangent bundle T pM{Sq Ñ S.
Let dimppq : M Ñ Z•0 be the locally constant function whose value
at m P M is the dimension of the relative tangent space TmpM{Sq.
Let ⌦p⇥q P ⌦2

M pCq be the curvature of ⇥. The following is proved in
Appendix A.

Theorem 3.9. (i) If dimppq “ 3 and the fibers of p are closed,

then S pM�{S;⇥q : S Ñ Cˆ
satisfies

(3.10)
dS pM�{S;⇥q
S pM�{S;⇥q “ ´

?´1

4⇡

ª

M{S
⌦p⇥q ^ ⌦p⇥q.
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(ii) Continuing, if �1
is a spin structure whose di↵erence with � rep-

resents a class � P H1pM ;Z{2Zq, then the ratio of spin Chern-

Simons invariants is

(3.11)
S pM�1{S;⇥q
S pM�{S;⇥q “ p´1qp˚p�!c1pP qq,

where c1 is the mod 2 reduction of the first Chern class.

(iii) If dimppq “ 3 and the fibers of p are compact with boundary,

then S pM�{S;⇥q is a section of the even complex line bundle

S pBM�{S;⇥q Ñ S; its covariant derivative is

(3.12) rS pM�{S;⇥q “
«

´
?´1

4⇡

ª

M{S
⌦p⇥q ^ ⌦p⇥q

�
S pM�{S;⇥q.

(iv) Continuing, suppose s : M Ñ P is a section of ⇡. Its restriction Bs
to BM induces a trivialization ⌧Bs of S pBM�{S;⇥q Ñ S. Then

(3.13) S pM�{S;⇥q “ exp

˜
´

?´1

4⇡

ª

M{S
s˚⇥^ ⌦p⇥q

¸
⌧Bs.

(v) If dimppq “ 2 and the fibers of p are closed, then S pM�{S;⇥q Ñ
S is a complex super line bundle with covariant derivative; its

curvature is

(3.14) curv pS pM�{S;⇥q ›Ñ Sq “
?´1

4⇡

ª

M{S
⌦p⇥q ^ ⌦p⇥q.

Its Z{2Z-grading is p˚
“
c1pP q

‰
: S Ñ Z{2Z, where c1 is the mod 2

reduced first Chern class.

(vi) Continuing, a section t : M Ñ P of ⇡ induces a trivialization

⌧t : S Ñ L of the Chern-Simons line bundle, relative to which the

connection form is

(3.15)
r⌧t
⌧t

“
?´1

4⇡

ª

M{S
t˚⇥^ ⌦p⇥q.

(vii) Continuing, given h : M Ñ Cˆ
set t1 “ t ¨ h : M Ñ P . Then

(3.16) ⌧t1 “ ✏t,h exp

˜
´

?´1

4⇡

ª

M{S
t˚⇥^ dh

h

¸
⌧t,

where

(3.17) ✏t,hpsq “ p´1q�sprhssq, s P S.

Here �s : H1
`
p´1psq;Z{2Z

˘
Ñ Z{2Z is the quadratic refinement

of the intersection pairing given by the spin structure on the fiber

p´1psq, and rhss P H1
`
p´1psq;Z{2Z

˘
is the reduction modulo two

of the homotopy class of h
ˇ̌
p´1psq.
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Corollary 3.18. In the situation of Theorem 3.9 (vii), if ⇥ is flat

then (3.16) only depends on the homotopy class of h.

Proof. The factor ✏t,h in (3.17) depends only on the homotopy class
of h modulo two. If ⇥ is flat, then t˚⇥ is a closed 1-form, and the inte-
gral in (3.16) reduces to the cohomology pushforward p˚ : H2pM ;Cq Ñ
H0pS;Cq applied to rt˚⇥s ! rhs, as in Theorem 2.17(ii). q.e.d.

In the setup of Theorem 3.9, suppose given two families over the same
base S and maps

(3.19)

P
 ̃ //

⇡

✏✏

P 1

⇡1

✏✏
M�

 //

⇡⇡

M 1
�1

⇧⇧
S

such that  is a di↵eomorphism of spin manifolds,  ̃ is an isomorphism
of principal Cˆ-bundles, and  ̃ preserves the connections:  ̃˚⇥1 “ ⇥.

Theorem 3.20. (i) If dimppq “ 3 and the fibers of p are closed,

then S pM 1
�1{S;⇥1q “ S pM�{S;⇥q.

(ii) If dimppq “ 2 and the fibers of p are closed, then there is a flat

isomorphism of spin Chern-Simons line bundles

(3.21)

S pM�{S;⇥q

!!

 // S pM 1
�1{S;⇥1q

||
S

(iii) Continuing, if t : M Ñ P and t1 : M 1 Ñ P 1
are sections of ⇡,⇡1

such that  ̃ ˝ t “ t1 ˝  , then the induced trivializations ⌧t, ⌧t1 of

the line bundles in (3.21) satisfy ⌧t1 “  ˝ ⌧t.
We leave the reader to formulate and prove (1) functoriality for the

case dimppq “ 3 and the fibers of p are compact manifolds with bound-
ary, and (2) the behavior of S under reversal of orientation. Theo-
rem 3.20 follows from the constructions in Appendix A.

4. The dilogarithm from abelian Chern-Simons

In §4.1 we use the spin Chern-Simons theory of §3 to construct a
holomorphic function L on an abelian cover of the thrice punctured
complex projective line. We identify it with the enhanced Rogers dilog-
arithm in §4.2.
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4.1. Construction of L. Fix the standard torus

(4.1) T “ R2
L
Z2

and standard coordinates ✓1, ✓2 on R2. The first homology group H1pT q
has generators the coordinate loops t fiÑ pt, 0q and t fiÑ p0, tq, 0 § t § 1,
in p✓1, ✓2q coordinates. Let � be the spin structure on T characterized
by the property that the coordinate loops inherit the bounding spin
structure. Introduce

(4.2)
pMT “ C2

MT “ pCˆq2

with standard coordinates u1, u2 and µ1, µ2, respectively. Define the
principal Z2-bundle

(4.3)
e : pMT ›Ñ MT

pu1, u2q fi›Ñ peu1 , eu2q
The notation (4.2) is deliberately evocative of moduli spaces; see Re-
mark 4.9 below.

The trivial Cˆ-bundle

(4.4) ⇢̂ : pMT ˆ T ˆ Cˆ ›Ñ pMT ˆ T

with section t̂0 carries a complex connection form ⌘̂ characterized by

(4.5) t̂˚
0 ⌘̂ “ ´u1 d✓

1 ´ u2 d✓
2 P ⌦1

pMT ˆT
pCq.

The action of Z2 on the base of (4.4) lifts to the total space:

(4.6) pn1, n2q ¨ pu1, u2, ✓1, ✓2,�q
“

´
u1`2⇡

?
´1n1, u2`2⇡

?
´1n2, ✓

1, ✓2, exp
“
2⇡

?
´1pn1✓

1`n2✓
2q

‰
�

¯
,

where pn1, n2q P Z2 and � P Cˆ; the connection form ⌘̂ is preserved.
Hence the Cˆ-bundle (4.4) with connection descends to a Cˆ-bundle

(4.7) ⇢ : Q ›Ñ MT ˆ T

with connection ⌘. Its curvature is the di↵erential of (4.5):

(4.8) ⌦p⌘q “ ´dµ1

µ1
^ d✓1 ´ dµ2

µ2
^ d✓2.

This formula shows that the bundle ⇢ in (4.7) is topologically nontrivial.
(The base MT ˆ T deformation retracts to a 4-torus; the restrictions to
two sub 2-tori have nonzero first Chern class.)

Remark 4.9. The connection ⌘ on ⇢ in (4.7) defines a universal

family of flat Cˆ-connections over T . Namely, ⌘ is flat on the fibers of
the projection to MT , and its holonomies at pµ1, µ2q P MT about the
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standard cycles on T are µ1, µ2, as follows from (4.5).2 Furthermore, the
pullback under (4.3) is a universal family of flat Cˆ-connections over T
equipped with a homotopy class of trivializations of the underlying Cˆ-
bundle. This explains the moduli space notation (4.2). Also, MT is a
holomorphic symplectic manifold; see (4.16) below.

Define the submanifolds

(4.10)
pM1

T “
 

pu1, u2q P pMT : eu1 ` eu2 “ 1
(

M1
T “

 
pµ1, µ2q P MT : µ1 ` µ2 “ 1

(
.

Then

(4.11)
M1

T ›Ñ CP1zt0, 1,8u
pµ1, µ2q fi›Ñ µ1

is a di↵eomorphism. Also, (4.3) restricts to a principal Z2-bundle

e1 : pM1
T Ñ M1

T . Then ⇢ in (4.7) and its pullbacks and restrictions fit
into a diagram of principal Cˆ-bundles with connection:

(4.12)

p✏1q˚Q1
⇢̂1

{{

✏˚Q
⇢̂

}}

pM1
T ˆ T

t̂1
0

;;

✏1

✏✏

� � // pMT ˆ T

t̂0

==

✏

✏✏

Q1
⇢1

zz

Q
⇢

||

M1
T ˆ T �

�
// MT ˆ T

Here ✏ “ e ˆ idT and ✏1 “ e1 ˆ idT .
Apply the spin Chern-Simons theory S of §3 to the four Cˆ-bundles

with connection (two of them with trivialization) in (4.12). Let

(4.13) L ›Ñ MT

be the spin Chern-Simons line bundle S ppMT ˆT q{MT ; ⌘q Ñ MT with
its covariant derivative. Observe that the Cˆ-bundle ⇢ restricted to µ1ˆ
µ2 ˆ T is topologically trivial for all pµ1, µ2q P MT , since the restriction
carries a flat connection, from which it follows that (4.13) is an even

line bundle (see Theorem 3.9(v)). The Chern-Simons line bundle (4.13)

2The holonomy is the exponential of minus the integral of the connection form.
The signs are chosen so that (4.28) matches the di↵erential of the dilogarithm.
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and its various pullbacks fit into the diagram

(4.14)

pe1q˚L1

}}

e˚L

��

pM1
T

p⌧ 1
0

==

e1

✏✏

� � // pMT

p⌧0

??

e

✏✏

L1

||

L

��

M1
T

⌧ 1

<<

� � // MT

We explain the section ⌧ 1 of L1 Ñ M1
T after the proof of the following.

Proposition 4.15. (i) The curvature of the covariant derivative

on (4.13) is

(4.16)
1

2⇡
?´1

dµ1

µ1
^ dµ2

µ2
.

The line bundle

(4.17) L1 ›Ñ M1
T

is flat.

(ii) The line bundle (4.17) has trivial holonomy.

Proof. The curvature statement (i) follows from (3.14) and (4.8). We
compute the holonomy about p0, 1q P M1

T using the family of loops (set
i “ ?´1)

(4.18)
�✏ : r0, 2⇡s ›Ñ M1

T

t fi›Ñ p✏eit, 1 ´ ✏eitq
Since the curvature vanishes, the result is independent of ✏ P p0, 1{2q.
The computation for the holonomy about p1, 0q P M1

T follows by sym-
metry µ1 Ø µ2.

The loop (4.18) lifts to the path p�✏ : r0, 2⇡s Ñ pM1
T defined by

(4.19)
u1 “ log ✏` it

u2 “ logp1 ´ ✏eitq,
where for u2 choose the branch of the logarithm with log 1“0. Use (3.15)

to compute the connection form of e˚L Ñ pMT relative to the trivializa-
tion p⌧0 as

(4.20)
1

4⇡
?´1

pu1du2 ´ u2du1q.
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To compute the holonomy integrate (4.20) along p�✏, and then use
(3.16) to correct for the change of trivialization between the two end-
points

`
log ✏, logp1 ´ ✏q

˘
and

`
log ✏ ` 2⇡i, logp1 ´ ✏q

˘
. Set z “ µ1 “ eu1

and compute
(4.21)ª

p�✏
u1 du2 ú2 du1 “´

ª

�✏

log ✏

1 ´ z
dz`

ª 2⇡

0

✏teit

1 ´ ✏eit
dt ´

ª

�✏

logp1 ´ ✏zq
z

dz.

The first and last terms vanish by Cauchy’s theorem. The integrand
in the second term has norm bounded above by 4⇡✏, hence the integral
converges to zero as ✏ Ñ 0.

Turning to the change of trivialization, the gauge transformation is
multiplication by h “ e2⇡i✓

1
and so by (4.5) the integrand in (3.16) is

the 2-form
(4.22)`
log ✏ d✓1`logp1´✏q d✓2

˘
^

`
2⇡

?
´1 d✓1

˘
“ ´2⇡

?
´1 logp1´✏q d✓1^d✓2;

both it and its integral over T vanish in the limit ✏ Ñ 0. Finally,
the quadratic function (3.17) is 1 on the coordinate loop in the ✓1-
direction, by our choice3 of spin structure on T . Since the holonomy is
independent of ✏, and the computation converges as ✏ Ñ 0, that limit
su�ces to prove that the holonomy is trivial. q.e.d.

It follows that (4.17) admits a Cˆ-torsor T1 of flat nonzero sections ⌧ 1.
The pullback pe1q˚L Ñ pM1

T has a canonical nonzero section p⌧ 1
0 which is

not flat; see (4.20). For each ⌧ 1 P T1 define

(4.23) ' “ p⌧ 1
0

⌧ 1 :
pM1

T ›Ñ Cˆ.

Varying ⌧ 1 P T1 changes ' by a multiplicative constant. From (4.20)
compute

(4.24)
d'

'
“ 1

4⇡
?´1

pu1du2 ´ u2du1q

for all ⌧ 1 P T1, where recall eu1 ` eu2 “ 1. Write

(4.25) ' “ exp

ˆ
L

2⇡
?´1

˙

to define a function

(4.26) L : pM1
T Ñ C{Zp2q.

Here we use the Tate twists

(4.27)
Zp1q “ 2⇡

?
´1Z

Zp2q “ Zp1qb2 “ 4⇡2Z.
3The value of the quadratic function on the ✓2-coordinate loop enters the compu-

tation of holonomy around p0, 1q P M1
T . The holonomy of (4.17) is not trivial for any

other spin structure on T , but see Remark 4.29.
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The function L is determined up to an additive constant: the choice
of ⌧ 1 P T1. Any choice satisfies

(4.28) dL “ u1du2 ´ u2du1
2

.

Remark 4.29. Our construction uses a particular spin structure on
the torus T and the particular choice of lagrangian submanifold M1

T Ä
MT . There are three other spin structures and correlated choices of
lagrangians which lead to variations of the enhanced Rogers dilogarithm.
We use all four functions in [FN].

4.2. Dilogarithms. We refer to [G, K, Z] and the references therein
for details about the various dilogarithm functions.

The theory begins with the power series

´ logp1 ´ zq “
8ÿ

n“1

zn

n
(4.30)

Li2pzq “
8ÿ

n“1

zn

n2
,(4.31)

convergent for z P C satisfying |z| † 1, and analytically continued to
z P Czr1,8q. Equation (4.30) is an identity; equation (4.31) defines the
Spence dilogarithm Li2. Di↵erentiate the power series:

(4.32) dLi2pzq “ ´ logp1 ´ zq
z

dz “ ´u2 du1 “ ´ u2 du2
1 ´ e´u2

,

using notation from (4.3), (4.11) and setting z “ µ1. The last expression
is a meromorphic 1-form on the u2-line with simple poles at Zp1q Ä C
and residues in Zp1q. It follows that

(4.33)
F : CzZp1q ›Ñ C{Zp2q

u2 fi›Ñ Li2p1 ´ eu2q
is a well-defined function. We lift it under the Z-covering map

(4.34)
pM1

T ›Ñ CzZp1q
pu1, u2q fi›Ñ u2

Then

(4.35) F pu2q ` 1

2
u1u2 “ Li2pzq ` 1

2
logpzq logp1 ´ zq mod Zp2q

is a well defined function pM1
T Ñ C{Zp2q, and from (4.32) its di↵eren-

tial equals dL in (4.28). Therefore, (4.35) equals L up to an additive
constant. (Recall that in any event L is only defined up to an additive
constant.) The function (4.35) is called the enhanced Rogers diloga-

rithm. It is denoted ‘ pD’ in [Z].
This discussion proves the following.
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Theorem 4.36. The function L in (4.26), defined up to a constant

using spin Chern-Simons theory with gauge group Cˆ
, equals the en-

hanced Rogers dilogarithm.

5. Properties of the dilogarithm

In this section we use the geometric construction of the enhanced
Rogers dilogarithm (§4.1) to derive a few of its standard properties
directly from spin Chern-Simons theory.

Consider first the transformation law under a deck transformation of
the Z2-covering map e1 : pM1

T Ñ M1
T . Fix ⌧

1 P T1 and so a choice of ', L;
see (4.23) and (4.25).

Theorem 5.1. For all pu1, u2q P pM1
T and pn1, n2q P Z2

,

(5.2) Lpu1 ` 2⇡in1, u2 ` 2⇡in2q “
Lpu1, u2q ` ⇡ipn1u2 ´ n2u1q ` 2⇡2n1n2 mod Zp2q.

Equation (5.2) appears in [Z, p. 25] and as [APP, (A.18)].

Proof. Since the section ⌧ 1 of pe1q˚L1 Ñ pM1
T is pulled back via e1 :

pM1
T Ñ M1

T , the change in ' “ p⌧ 1
0{⌧ 1 under a deck transformation of e1 is

due to the change in the trivialization p⌧ 1
0. Use the general formula (3.16)

to compute. From (4.5) the connection form relative to the trivialization

at pu1, u2q P pM1
T is

(5.3) u1 d✓
1 ` u2 d✓

2,

and the relevant gauge transformation is multiplication by the function

(5.4) h “ exp
`
2⇡ipn1✓

1 ` n2✓
2q

˘
.

The integral in (3.16) is then 1
2pn1u2 ´n2u1q; with the correct prefactor

it contributes the second term in (5.2). The third term derives from
the factor (3.17) in (3.16). The quadratic form � for our choice of spin
structure on T is

(5.5) �pn1, n2q “ n1n2 pmod 2q,
where pn1, n2q P Z2 is the homotopy class of h in H1pT ;Zq, relative to
the standard basis. q.e.d.

Next, we prove a reflection identity, which appears as [APP, (A.21)]
and, for a restriction of L, in [Z, p. 23].

Theorem 5.6. For the di↵eomorphism

(5.7)
 : pM1

T ›Ñ pM1
T

pu1, u2q fi›Ñ pu2, u1q
the sum L ` ˚L is a constant function.
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Of course, the result holds for all ⌧ 1 P T1.

Proof. Consider the reflection di↵eomorphism

(5.8)
 : T ›Ñ T

p✓1, ✓2q fi›Ñ p✓2, ✓1q
on the torus T . It reverses orientation, maps our chosen spin struc-
ture � to its opposite,4 induces the reflection pµ1, µ2q fiÑ pµ2, µ1q on the
moduli space MT of flat Cˆ-connections, which lifts to the reflection

pu1, u2q fiÑ pu2, u1q on pMT , which in turn restricts to (5.7) on pM1
T . Use

formulas (4.5) and (4.6) to compatibly lift the involution to the bundles
in (4.12); the lift preserves the universal connections. The functoriality
of Chern-Simons (Theorem 3.20) implies that the involution lifts to the
Chern-Simons line bundles with covariant derivative in (4.14), except
because orientation on T is reversed the bundle L is mapped to L´1. It
follows that  ˚' “ '´1, up to a multiplicative constant. q.e.d.

Remark 5.11. A related identity states that Lpzq ` Lp1{zq is con-

stant; see [APP, (A.24)] for the precise form on the cover pM1
T . It can

be proved by a similar method, but the relevant di↵eomorphism of T
does not preserve the spin structure, so one needs to expand the theory
as indicated in Remark 4.29.

Finally, we prove the 5-term relation satisfied by the dilogarithm [Z],
[APP, (A.8)]. For that we change notation and use u, v in place of

u1, u2 as the standard coordinates on pMT “ C2.

Theorem 5.12. The sum Lpu1, v1q ` ¨ ¨ ¨ ` Lpu5, v5q is independent

of pui, viq P pM1
T , i P Z{5Z, which satisfy

(5.13) vi “ ui´1 ` ui`1 for all i.

Remark 5.14. Write zi “ eui and assume eui ` evi “ 1. Then
equation (5.13) implies

(5.15) 1 ´ zi “ zi´1zi`1.

4A spin structure on an n-dimensional oriented Riemannian manifold M is en-
coded in a sequence

(5.9) P
⇢››Ñ SOpMq ⇡››Ñ M

in which ⇡ is the principal SOn-bundle of oriented orthonormal frames and ⇡ ˝ ⇢ is

a principal Spinn-bundle. The opposite spin structure P 1 ⇢1
››Ñ SO1pMq ⇡1

››Ñ M is
constructed by taking the complement of (5.9) in

(5.10) P ˆSpinn
Pinn ›Ñ OpMq ›Ñ M,

where either pin group Pin˘
n can be used. Here OpMq Ñ M is the principal On-

bundle of orthonormal frames.
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Figure 1. X is S3 with these five solid tori removed.

There is a connected complex 2-manifold M1
X of solutions

(5.16) x ,
1 ´ x

1 ´ xy
,

1 ´ y

1 ´ xy
, y , 1 ´ xy

to (5.15), parametrized by x, y P C satisfying xy ‰ 0, x ‰ 1, y ‰ 1, and
xy ‰ 1.

Proof. Let X be the compact spin 3-manifold with boundary formed
from S3 by removing a tubular neighborhood of the 5-component link
depicted5 in Figure 1. Fix a di↵eomorphism BX « T >5 which induces
the basis of first homology indicated in the figure. Alexander duality
implies H1pXq is torsionfree of rank 5, so if a principal flat Cˆ-bundle
over X admits a flat connection then it is trivializable. Let MX be

the moduli space of flat Cˆ-connections on X and r : MX Ñ pMT q5
the restriction map to the boundary BX. Define M1

X “ r´1
“
pM1

T q5
‰
.

(Remark 5.14 gives an explicit parametrization of M1
X .) Similarly, let

pMX be the moduli space of flat Cˆ-connections with a homotopy class

of trivialization, pr : pMX Ñ p pMT q5 restriction to the boundary, and
pM1

X “ ⇢̂´1
“
p pM1

T q5
‰
. Each component of the link is the outer bound-

ary of a neatly embedded disk Di Ä X with two subdisks removed, as
in Figure 2. For any collection pui, viq P pMT in the image of pr, apply
Stokes’ theorem to the closed 1-form on Di which is the flat connection
form relative to the trivialization. Its integral over a boundary compo-
nent is minus the log holonomy. Therefore, the relation (5.13) holds on
the image of pr.

5This link is a close cousin to the “minimally twisted 5-chain link” in [DT, §2.6].
(We thank Ian Agol for bringing this reference to our attention.)
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Figure 2. A 2-manifold neatly embedded in X.

Spin Chern-Simons theory S produces the diagram

(5.17)

ppr1q˚ppL1qb5

yy

ppL1qb5

||

pM1
X

e1
X

✏✏

pr1
// p pM1

T q5
pp⌧0qb5

<<

pe1
T q5

✏✏

pr1q˚pL1qb5

yy

pL1qb5

{{

M1
X

S

99

r1
// pM1

T q5
p⌧ 1qb5

;;

where pL1 “ pe1
T q˚L1 is the pullback of the spin Chern-Simons line bundle

under e1
T : pM1

T Ñ M1
T . Apply Theorem 3.9(iii) to obtain a section S

of pr1q˚pL1qb5 Ñ M1
X ; by (3.12) it is flat. There exists ⌧ 1 P T1 a flat

section of L1 Ñ M1
T , unique up to a 5th root of unity, such that S “

pr1q˚“
p⌧ 1qb5

‰
. Then (3.13) implies that the pullbacks of S and pp⌧0qb5

to pM1
X agree. Recalling (4.23), we see that the ratio pp⌧0{⌧ 1qb5 : p pM1

T q5 Ñ
Cˆ is the product of five exponentiated enhanced Rogers dilogarithms,
and the fact that its pullback to pM1

X is identically one is the 5-term
relation. q.e.d.

Remark 5.18. The choice of ⌧ 1 P T1 in the proof makes the 5-term
sum in the theorem vanish.

Appendix A. Classical spin Chern-Simons theory

In this appendix we sketch proofs of Theorem 3.9 and Theorem 3.20,
which set out basic properties of spin Chern-Simons theory with gauge
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group Cˆ. Theorem 2.17 can be proved by similar methods, or may be
deduced as a corollary of the spin case; we give an argument for part (i)
at the end. In this appendix we freely use generalized di↵erential coho-
mology, as developed in [HS, BNV] and other references. To begin we
work with the universal family of Cˆ-connections as described in [FH];
the parameter “space”6 is BrCˆ.

Remark A.1. An alternative approach to spin Chern-Simons for
compact gauge groups is available using ⌘-invariants and pfa�an lines
of Dirac operators [J]. For a noncompact group one encounters Dirac
operators coupled to non-unitary connections, for which the relevant
parts of geometric index theory are not in the literature.

Let E be the spectrum (in the sense of stable homotopy theory)
defined as the extension

(A.2) HZ ›Ñ E ›Ñ ⌃´2HZ{2Z
of Eilenberg-MacLane spectra with nonzero k-invariant. Its properties
are stated and proved in [F3, §1]. The techniques used there, particu-
larly around (1.13), imply that the short exact sequence

(A.3) 0 ›Ñ H4pBCˆ;Zq i››Ñ E4pBCˆq j››Ñ H2pBCˆ;Z{2Zq ›Ñ 0

does not split. Hence there is a unique class � P E4pBCˆq such that
2� “ ipc12q and jp�q “ c1, where c1 is the mod 2 reduction of the uni-
versal first Chern class c1 P H2pBCˆ;Zq. Let qEC be the complex di↵er-
ential refinement of E, defined as a homotopy fiber product as in [HS,
(4.12)] (with V “ C concentrated in degree zero); see also [BNV, §4.4]
(with C “ C concentrated in degree zero). The di↵erential cohomology
group fits into an exact sequence
(A.4)

0 ›Ñ qE4
CpBrCˆq ›Ñ E4pBCˆq ˆ ⌦4

clpBrCˆ;Cq ´››Ñ H4pBCˆ;Cq,
part of the Mayer-Vietoris sequence derived from the homotopy fiber
product.7 Here ⌦4

clpBrCˆ;Cq is the vector space of closed complex
di↵erential forms; by the main theorem in [FH] it is isomorphic to the
three-dimensional complex vector space of symmetric functions CˆC Ñ
C which are real bilinear. The final map in (A.4) is the di↵erence be-
tween the homomorphism k : E4pBCˆq Ñ H4pBCˆ;Cq defined in [F3,
(1.4)] and the Chern-Weil homomorphism. It follows that the generator
� P E4pBCˆq has a unique di↵erential refinement q� P qE4

CpBrCˆq with

6It is, rather, a simplicial sheaf on the site of smooth manifolds. Computations
may be carried out on a smooth “test” manifold M equipped with a Cˆ-connection,
that is, equipped with a map M Ñ BrCˆ.

7The short exact sequences one usually derives from it for smooth manifolds de-
pend on the de Rham theorem, which does not necessarily hold for BrG if G is
noncompact.
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associated symmetric function pz1, z2q fi›Ñ ´z1z2{8⇡2. This is the uni-
versal class which defines spin Chern-Simons theory. The constructions
which follow use a geometric representative of this class, say a di↵er-

ential E-function as defined in [HS, §4.1]. Its “curvature”, the image
under the homomorphism

(A.5) qE4
CpBrCˆq ›Ñ ⌦4

clpBrCˆ;Cq,
is

(A.6) !spinp⇥univq “ ´ 1

8⇡2
⌦p⇥univq ^ ⌦p⇥univq,

where ⇥univ P ⌦1pErCˆ;Cq is the universal Cˆ-connection [FH, (5.25)]
on the universal Cˆ-bundle

(A.7) ⇡ : ErCˆ ›Ñ BrCˆ.

Recall [FH, Example 5.14] that ErCˆ is the classifying sheaf for triples
pp,⇥, sq consisting of a principal Cˆ-bundle p : P Ñ M with connec-
tion ⇥ and section s. The pullback of (A.7) by ⇡ is canonically trivial-
ized by the section, and this induces a “nonflat trivialization”8 of ⇡˚q�.
The trivialization represents ⇡˚q� by a complex 3-form, the universal
Chern-Simons form

(A.8) ↵spinp⇥univq “ ´ 1

8⇡2
⇥univ ^ ⇡˚⌦p⇥univq

whose de Rham di↵erential is (A.6). Below in (A.17) we give a formula
for this trivialization as an integral of ⇡˚q�.

Turning now to a family P
⇡›Ñ M�

p›Ñ S with Cˆ-connection ⇥,
as in (3.8), we obtain from these universal constructions: a di↵erential
class (rather, a geometric representative) q�p⇥q P qE4

CpMq with curva-
ture !spinp⇥q, as in (A.6); the Chern-Simons form ↵spinp⇥q P ⌦3pP ;Cq;
and an isomorphism of ⇡˚q�p⇥q with the image of ↵spinp⇥q in qE4

CpP q.
The spin Chern-Simons invariant is the pushforward in di↵erential E-
theory:

(A.9) S pM�{S;⇥q “
ª

M�{S
q�p⇥q.

Integration in E, and so in qEC, uses the spin structure �; see [F3, (1.6)].

If the fibers of p are closed of dimension k, then (A.9) lives in qE4´k
C pSq.

In low dimensions we identify

8An explicit model for a nonflat trivialization of a geometric representative of an
qE-cohomology class—a coned di↵erential E-function—is spelled out in [F3, Defini-
tion 5.12]. The data of a 3-form, such as (A.8), is part of that definition.
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(A.10)

qE1
CpSq – MappS,Cˆq

qE2
CpSq –

 
iso classes of complex super line

bundles L Ñ S with connection
(

Parts (i), (v), and (vi) of Theorem 3.9 follow immediately from the
foregoing and the compatibility of the exact sequence (A.4) and inte-
gration. The Z{2Z-grading in (v) is determined by its restriction to
each s P S, and since the grading is a discrete invariant it only depends
on �p⇥q P E4pMq. Writing Ms “ p´1psq, the desired formula follows
from the commutative diagram

(A.11)

E4pMsq j //

p˚
✏✏

H2pMs;Z{2Zq
p˚
✏✏

E2
`
tsu

˘ j // H0
`
tsu;Z{2Z

˘

in which both maps j are isomorphisms and j
`
�p⇥q

˘
“ c1pP q. The

dependence on spin structure in (ii) is an immediate consequence of the
proof of [F3, Proposition 4.4]. For parts (iii) and (iv) use the notion of a
nonflat trivialization of a geometric representative of an qEC-cohomology
class; see footnote 8. If the fibers of p : M Ñ S are compact manifolds
with boundary, a Stokes’ theorem holds (see [HS, §3.4] for one version):

(A.12)

ª

M�{S
q�p⇥q is a nonflat trivialization of

ª

BM�{S
q�p⇥q

with “covariant derivative”

ª

M{S
!spinp⇥q.

For dimppq “ 3 the nonflat trivialization is a nonzero section of a (nec-
essarily even) complex line bundle and (iii) follows. For (iv) we use
the isomorphism of q�p⇥q with the image of s˚↵spinp⇥q in qE4

CpMq and
apply (A.12).

We turn to Theorem 3.9(vii), and for that we prove a formula valid for
any finite dimensional real Lie group G with finitely many components.
Analogous to (A.4) is the exact sequence

(A.13) 0 ›Ñ qE4
CpBrGq ›Ñ E4pBGq ‘ ⌦4

clpBrGq ´››Ñ H4pBG;Cq,
and the main theorem in [FH] identifies ⌦4

clpBrGq with the complex
vector space of G-invariant symmetric bilinear forms g ˆ g Ñ C on
the Lie algebra of G. It follows that qE4

CpBrGq is isomorphic to the

group of compatible pairs q� “
`
�, x´,´y

˘
of a class in E4pBGq and a

symmetric bilinear form. Fix such a pair. Let ⇡ : ErG Ñ BrG be the
universal G-bundle with universal G-connection ⇥univ P ⌦1pErG; gq.
The total space F of the fiber product of ⇡ with itself classifies quartets
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pp,⇥, s0, s1q consisting of a principal G-bundle P Ñ M over a smooth
manifold M equipped with connection ⇥ and sections s0, s1. Use s0 to
trivialize the (universal) bundle, and so construct an isomorphism

(A.14) F
–››Ñ ErG ˆ G.

The sections s0, s1 each induce a trivialization of the pullback of q� to F;
the di↵erence of these trivializations represents an element q⌘ P qE3

CpFq.
Proposition A.15. Under the isomorphism (A.14) the di↵erential

class q⌘ is the sum

(A.16) q⌘ “ q! ` x⇥univ ^ ✓y,
where q! P qE3

CpGq is the integral of q�pr⇥q over S1
for a certain G-

connection r⇥ over S1 ˆ G, and ✓ P ⌦1
Gpgq is the Maurer-Cartan form.

r⇥ is a universal pointed connection: its holonomy around S1 ˆ thu
equals9 h´1 for all h P G.

Proof. The pullback of the universal G-bundle ⇡ : ErG Ñ BrG via ⇡
is a principal G-bundle $ : F Ñ ErG equipped with a canonical sec-
tion s. The latter induces the canonical trivialization (A.14) as well as a
canonical trivial connection⇥s, which under (A.14) maps to the Maurer-
Cartan form ✓. Let �1 Ñ A$ be the a�ne map of the 1-simplex into
the a�ne space of connections on $ which sends the endpoints to ⇥s

and ⇡˚⇥univ. There results a connection r⇥s on the trivial G-bundle
over �1 ˆ ErG. By Stokes’ theorem (A.12) the nonflat trivialization

of ⇡˚q�p⇥univq is

(A.17)

ª

�1

q�pr⇥sq “
ª ⇡˚⇥univ

⇥s

q�.

(The right hand side is shorthand notation for the left hand side.) The
universal Chern-Simons form (A.8) is the same integral with the inte-
grand replaced by its curvature x⌦pr⇥sq ^ ⌦pr⇥sqy.

Working now on the universal bundle ⇢ : P Ñ F, which is equipped
with two sections s0 and s1, there is an a�ne map �2 Ñ A⇢ as depicted

in Figure 3. The class q⌘ is obtained by integrating q� over the path which
begins at the lower left vertex, moves to the top vertex, and then down
to the lower right vertex; we use a gauge transformation to identify the
trivial connections at the initial and final vertices. A version of Stokes’
theorem identifies the di↵erence of the trivializations of the pullback
of q� to F induced by s1 and s0 as

(A.18) q⌘ “
ª ⇥s1

⇥s0

q� ´
ª

�2
x⌦pr⇥q ^ ⌦pr⇥qy,

9The signs work out so that the holonomy is h´1, not h.
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Figure 3. The 2-simplex of connections �2 Ñ A⇢.

where r⇥ is the G-connection over �2 ˆF constructed by a�ne interpo-
lation from the vertices in Figure 3. As before, we identify the connec-
tions ⇥s0 and ⇥s1 by a gauge transformation. In terms of barycentric
coordinates on �2, the map �2 Ñ A⇢ is

(A.19) pt0, t1, t2q fi›Ñ t0⇥s0 ` t1⇥s1 ` t2⇢˚$˚⇥univ.

Write s1 “ s0 ¨ h for h : F Ñ G. Relative to the trivialization s0 and
isomorphism (A.14) we rewrite10 (A.19) as a map to ⌦1

ErGˆGpgq:

(A.20) pt0, t1, t2q fi›Ñ ´t1Adh ✓ ` t2⇥univ.

The last expression, interpreted as an element of ⌦1
�2ˆErGˆGpgq, is

precisely r⇥. Its curvature is

(A.21) ⌦pr⇥q “ ´dt1 ^ Adh ✓ ` dt2 ^⇥univ

` terms not involving dt1 or dt2,

from which

(A.22) ´
ª

�2
x⌦pr⇥q ^ ⌦pr⇥qy “ x⇥univ ^ ✓y.

To identify the first term in (A.18) in terms of aG-connection over S1ˆ
G, restrict (A.20) to the 1-simplex t2 “ 0 to obtain the connection form
´t1Adh ✓. Compare with [F1, (4.14)].11 q.e.d.

Apply Proposition A.15 with G “ Cˆ to Theorem 3.9(vii). First, the
universal Cˆ-bundle Q Ñ S1 ˆ Cˆ has first Chern class a generator
of H2pS1 ˆ Cˆ;Zq (as follows from (4.8), for example), so from (A.3)
and (A.4)—applied to S1 ˆ Cˆ—we see that q�pQq is the generator of

10Since s˚
1⇥s1 “ 0, the usual formula for the gauge transform of a connection

implies 0 “ ✓ ` Adh´1ps˚
0⇥s1q.

11Set g “ 1 in [F1, (4.14)] to compare; the sign discrepancy is explained by the
appearance of the inverse ‘h´1’ in the gluing formula [F1, (4.13)].
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qE4
CpS1 ˆ Cˆq – H2pS1 ˆ Cˆ;Z{2Zq – Z{2Z. Its integral over S1 is the

nonzero element

(A.23) q! P qE3
CpCˆq – H1pCˆ;Z{2Zq – Z{2Z.

Turning to Theorem 3.9(vii), the integrand in (3.16) equals the second
term of (A.16), so it remains to identify the sign (3.17) with the integral
of the first term in (A.16). Since the curvature of q! vanishes, it su�ces
to compute the pushforward of its image ! P E3pCˆq. Since E is a
truncation of connective ko-theory, there is an isomorphism

(A.24) E3pCˆq – ko´1pCˆq – ko´2pCˆ;R{Zq – Z{2Z.
Set � P ko´2pCˆ;R{Zq the image of ! under (A.24).

Let M be a closed 2-manifold with spin structure � and a map
h : M Ñ Cˆ. Our task is to equate (3.17) with ⇡M˚ h˚� Pko´4ppt;R{Zq –
R{Z, where ⇡M : M Ñ pt. First, deformation retract Cˆ to the circle
group T Ä Cˆ and so homotope h to a map with image T. Then
the generator � P ko´2pT;R{Zq is pushed forward from the generator
↵ P ko´3ppt;R{Zq – Z{2Z via the inclusion e : pt ãÑ T. By a further
homotopy make h transverse to e P T; then its inverse image S Ä M is a
finite union of disjoint embedded circles, and S inherits a spin structure
from M . Arguing from the diagram

(A.25)

S
i //

q

✏✏

M

h

✏✏

⇡M

~~
pt

e // T

we have

(A.26) ⇡M˚ h˚� “ ⇡M˚ h˚e˚↵ “ ⇡M˚ i˚q˚↵ “ q˚a˚↵ “ ↵ ¨ q˚p1q.
Restricted to a component of S, the pushforward q˚p1q P KO´1

pptq – Z{2Z is 0 or 1 according as the spin structure on the compo-
nent bounds or not. Since the homology class of S is Poincaré dual
to rhs P H1pM ;Zq, we conclude that q˚p1q maps to �

`
rhs

˘
under the

isomorphism KO´1pptq – Z{2Z. It remains to observe that multiplica-
tion induces a nonzero pairing

(A.27) KO´3ppt;R{Zq b KO´1pptq ›Ñ KO´4ppt;R{Zq,
as proved for example in [FMS, (B.10)].

The functoriality properties in Theorem 3.20 follow from (A.9) and
the functoriality of the di↵erential characteristic class q� P qE4

CpBrCˆq.
Finally, we sketch a proof of (2.18). Let qc1 P qH2

CpBrCˆq be the
universal di↵erential first Chern class for principal Cˆ-bundles; it is
the di↵erential lift of c1 P H2pBCˆ;Zq with associated linear function
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z fiÑ ?´1z{2⇡, z P C. Its square qc1 ¨ qc1 P qH4
CpBrCˆq is the universal

Chern-Simons class. Let ⇥ be a flat connection on a principal Cˆ-
bundle ⇡ : P Ñ X, where X is a closed oriented 3-manifold. Then since
qc1p⇥q is flat, the product qc1p⇥q ¨ qc1p⇥q is computed by a cup product in
cohomology with C{Z coe�cients, precisely as in (2.18).

Appendix B. A motivating Euler-Lagrange equation

In our construction (§4.1) of the dilogarithm, we introduce (4.10)
the submanifold M1

T Ä MT of flat Cˆ-connections on the torus T “
R2{Z2 such that the holonomies around the standard cycles sum to
one. This condition arises naturally in the stratified abelianization of
flat SL2C-connections [FN]. In this appendix we briefly indicate a
formal computation motivated by the topological string [W], [OV] that
produces this condition on holonomies.

Let M be a closed spin 3-manifold and S Ä M an oriented embedded
circle. For ↵ P ⌦1

M pCq a connection on the trivial Cˆ-bundle over M ,
introduce

(B.1) F p↵q “ ´ 1

8⇡2

ª

M
↵ ^ d↵ ´ 1

4⇡2
Li2

„
exp

ˆ
´
ª

S
↵

˙⇢
.

In this expression Li2 is the Spence dilogarithm (4.31) evaluated at the
holonomy of ↵ about S. Since Li2 is not a global function on C—
see (4.33)—this is ill-defined, so our computation based on (B.1) is
heuristic. The first term in (B.1) is the spin Chern-Simons invariant
(see (A.8)), and the normalization of the second term matches that of
the first: we should view F as defined modulo integers. The di↵erential
of F is

(B.2) dF↵p 9↵q “ ´ 1

4⇡2

ª

M
9↵ ^

“
d↵ ` logp1 ´ zq�S

‰
, 9↵ P ⌦1

M pCq,

where z “ expp´ ≥
S ↵q is the holonomy of ↵ about S and �S is the

distributional 2-form Poincaré dual to S. The critical point (Euler-
Lagrange) equation is

(B.3) d↵ “ ´ logp1 ´ zq�S .
A critical ↵ is flat on the complement of S and the holonomy around a
small loop linking S is exp

 
´

“
´ logp1´ zq

‰(
“ 1´ z. Therefore, on the

torus boundary of a tubular neighborhood of S, a critical connection ↵
is flat and the sum of holonomies about generating cycles is one.

Remark B.4. We can define F on a cover of the space of connections
whose holonomy z about S is not equal to one, namely the cover on
which we choose logarithms for z and 1 ´ z. But the critical point
equation (B.3) takes us to a space of singular connections. In particular,
the holonomy about S is no longer defined. To rectify this, we can from
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the beginning choose an embedding of r0, 1q ˆ S1 ãÑ M such that the
image of t0u ˆ S1 is S, and then replace the argument of Li2 in (B.1)
with the limit of holonomies around loops ttu ˆ S1 as t Ñ 0. This
produces a basis of the first homology of the torus boundary of a tubular
neighborhood of S, so pins down the cycles on which the holonomies
sum to one.

Remark B.5. One possible origin of the action (B.1) is as follows.
We suppose M is a Lagrangian submanifold inside a Calabi-Yau three-
foldX, and we view pM,↵q as defining a Lagrangian boundary condition
in the A type topological string theory of maps ' : p⌃, B⌃q Ñ pX,Mq.
Then F p↵q can be interpreted as the target space e↵ective action of that
string theory. This prediction comes from combining [W] and [OV]: in
[W, (4.50)] it was explained that the e↵ective action should be the
Chern-Simons action plus additional contributions from holomorphic
maps (if any), and in [OV, (3.22)] it was shown that the contribution
from an isolated holomorphic disc ' is Li2pe´xq{4⇡2, where x “ ≥

BD �
˚↵.
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