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THE DILOGARITHM AND ABELIAN CHERN-SIMONS

DANIEL S. FREED & ANDREW NEITZKE

Abstract

We construct the (enhanced Rogers) dilogarithm function from
the spin Chern-Simons invariant of C*-connections. This leads to
geometric proofs of basic dilogarithm identities and a geometric
context for other properties, such as the branching structure.

1. Introduction

Investigations of the dilogarithm function, in its simplest form defined
via the power series

0 n
(1.1) Lip(2) = n; —
date back to Leibniz, Bernoulli, and Euler; one early reference is the
1809 essay of William Spence [S]. In recent times the dilogarithm makes
appearances in hyperbolic geometry, algebraic K-theory, conformal field
theory, and beyond. It and its relatives are the subject of survey articles,
such as [G, K, Z] which provide a wealth of references to the literature.
In their study of the scissors congruence problem, Dupont-Sah [DS]
and subsequently Dupont [D] relate a variant of the dilogarithm func-
tion (1.1) to a Chern-Cheeger-Simons [CS, ChS]| characteristic class
of flat principal SLy C-bundles. As part of our study [FIN] of “strati-
fied abelianization” of flat SLo C-connections on 3-manifolds, we discov-
ered a geometric construction of this enhanced Rogers dilogarithm using
abelian Chern-Simons theory of flat C*-connections on a 2-dimensional
torus. In this paper we present our construction, and we use it to give
geometric proofs of the basic dilogarithm identities.

We begin in §2 with an exposition of Chern-Simons invariants of C*-
connections. Our work uses a square root for spin manifolds, which we
outline in §3 and develop with proofs in Appendix A. The construction
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of the dilogarithm is carried out in §4 and the identities are proved in §5.
An inspiration for our construction, independent of stratified abelianiza-
tion, is a heuristic computation motivated by topological string theory,
as we explain in Appendix B.

Acknowledgments. We thank Tan Agol, Sasha Goncharov, and Char-
lie Reid for comments and discussion.

2. Classical Chern-Simons theory

The Chern-Simons invariant is defined for pairs (G, \) consisting of
a real Lie group G with finitely many components and a class \ €
H*(BG;Z). In this section we focus on the special case (C*, ¢12), where
c1 € H?(BC*;Z) is the universal first Chern class. Here we briefly indi-
cate the constructions for trivializable C*-bundles. In Appendix A we
provide a general construction based on differential cohomology which
applies to all principal C*-bundles. The treatment in Appendix A em-
phasizes the spin refinement of the Chern-Simons invariant, though it
can be adapted to the non-spin case discussed in this section. The ref-
erences [F1, F2] contain more exposition and details. The basic prop-
erties of classical Chern-Simons theory are compactly expressed in the
language of field theory (Theorem 2.13).

Let W be a closed oriented 4-manifold and P — W a principal C*-
bundle. Then

(2.1) {e1(P)*,[W]) € Z

is a primary topological invariant of P — W. Chern-Simons [CS] con-
struct a secondary geometric invariant of C*-bundles with connection
as follows. Let M be an arbitrary smooth manifold and 7: P — M a

principal C*-bundle. Let © € QL(C) be a connection and 2 € Q3,(C)
its curvature, i.e., 7*Q = dO. Define

(2.2) w(©) = —ﬁ QAQ el ()
(2.3) a(0) = —ﬁ O A0 €QL(0).

Then dw = 0 and dao = 7*w. These are the Chern-Weil and Chern-
Simons forms, respectively. For M = W a closed oriented 4-manifold,
we have

(2.4) fW w(©) = (e (P [W])

in particular, the left-hand side is independent of the connection ©.
Suppose M = X is a closed oriented 3-manifold and 7: P — X is
trivializable. For each section s of 7 define

(2.5) (O, s) JX *a(0).



DILOGARITHM AND CHERN-SIMONS 243
If s =s-gfor g: X - C*, then
1
(2.6) (s-9)*a(©) = s*a(O) — 2 d<5*@ A dgg) .
Therefore, by Stokes’ theorem I'(0©, s) is independent of s. The Chern-
Simons invariant is
(2.7) F(X;0) =exp (2mv/—-1T(O,s)) € C*.

Remark 2.8. An alternative definition uses the fact that P — X
can be written as the boundary of a principal C*-bundle P — W over
a compact oriented 4-manifold W with ¢W = X. The connection ©
extends to a connection © on P — W, and by Stokes’ theorem the right
hand side of (2.5) equals

(2.9) wa(é).

This definition works for any (possibly nontrivializable) P — X with
connection, but (2.9) is only independent of the choice of the extension

P — W modulo integers; see (2.4).
If X is a compact oriented 3-manifold with 0X =Y, then I'(0, s) is

not independent of s; the exact term in (2.6) produces a boundary
correction. The dependence of exp (27n/—1 re, s)) on s is encoded as

follows. Set p: @ = P!Y—> Y and n = @{Q. Under our hypothesis the

space Sect(p) of sections of p: Q — Y is nonempty; it is a torsor over
Map(Y,C*). Define the complex line

(2.10) Z#(Y;n) = {f Sect(p) — C:

ey =ep (<5 [ a9 s
T Jy
for all t € Sect(p), h € Map(Y, (CX)}.
Then
(2.11) F(X;0) :=exp (2rV/—1T(0,-)) € Z(Y;n)

is a well-defined nonzero element of the line .#(Y; 7).

Remark 2.12. By construction, a trivialization ¢ of p: @ — Y
induces a trivialization C — .%#(Y’;n), i.e., a nonzero element 7, €

F(Yin).

The formal properties are best summarized in field theory language.
Let Bord(s 3,(5O3 x(C*)V) denote the category! whose objects are

!For many reasons, among others to construct smooth gluings, the objects are
germs of 3-dimensional data over the 2-dimensional data; see [Se]. Our language
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closed oriented 2-manifolds Y equipped with a C*-connection Oy; a
morphism (Yp,0p) — (Y7,0;) is a compact oriented 3-manifold X
equipped with a C*-connection O x, a diffeomorphism —Yy11Y; — 0X
(an oriented manifold M has a canonical reflection —M with the oppo-
site orientation), and a compatible isomorphism @110 =5 00x. Com-
position of morphisms is gluing of bordisms, and disjoint union provides
a symmetric monoidal structure. Let Lines denote the groupoid whose
objects are 1-dimensional complex vector spaces and morphisms are
invertible linear maps; tensor product provides a symmetric monoidal
structure.

Theorem 2.13. The exponentiated Chern-Simons invariant is a sym-
metric monoidal functor

(2.14) F : Bordy 3,(SO3 x (C*)Y) —> Line. .

In other words, .% is an invertible field theory, often called classical
Chern-Simons theory.

As mentioned in footnote !, one can extend .# to a theory defined
on smooth families. Thus if Y — S is a fiber bundle with fibers closed
oriented 2-manifolds, and Q@ — Y is a principal C*-bundle with con-
nection 7, then the Chern-Simons theory produces .#(Y/S;n) — S, a
complex line bundle with covariant derivative. Its curvature is

VL G0y A o),

27 13/5

1

(2.15) curv (#(Y/S;n) — 9) =

where Q(n) € Q;((C) is the curvature of the C*-connection n. Parallel
transport along a path v: [0,1] — S is the value of .Z (v*Y;~v*n) on the
pullback connection v*n on v*Q — ~*Y. In particular, holonomies of
F(Y/S;n) — S are computed as values of .% on mapping tori.

Remark 2.16. Cheeger-Simons [ChS] introduce differential char-
acters and write the Chern-Simons invariant of a closed oriented 3-
manifold in those terms. The entire theory .# fits into the theory of
differential cohomology [HS, BN'V], beginning with a differential lift of
c1? € H*(BC*;Z). We develop this idea in Appendix A.

Our application of # in §4 is to families of flat C*-connections. In
the remainder of this section we observe some properties which reflect
the topological nature of % on flat connections.

First, a principal C*-bundle P — M over any smooth manifold M
admits a flat connection if and only if ¢; (P) € H?(M;Z) has finite order.
In particular, if H;(M) is torsionfree, then only trivializable principal

in the text is a simplification. Also, it is crucial to extend to parametrized families
of C*-connections, for example to capture the variation formula for Chern-Simons
invariants, as we recount below. See [ST] for field theories sheafified over smooth
manifolds.
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C*-bundles on M admit flat connections. The equivalence class of a flat
connection on P — M is a lift [@] € H'(M;C/Z) of ¢1(P) € H*(M;Z)
in the long exact sequence of cohomology groups induced from the short
exact sequence Z — C — C/Z of coefficients.

Theorem 2.17. (i) Let © be a flat connection on a principal C* -
bundle m: P — X over a closed oriented 3-manifold. Then its
Chern-Simons invariant is

(218) F(X;0) = exp(2nv=1([6] — a1 (P), [X])),
[©] € HY(M;C/Z).

(ii) Letn be a flat connection on a principal C*-bundle p: Q — 'Y over
a closed oriented 2-manifold. Then the trivialization 7, € F(Y ;1)
in Remark 2.12 depends only on the homotopy class of the section t
of p.

(iii) Let © be a flat connection on a principal C*-bundle m: P — X
over a compact oriented 3-manifold with boundary. Suppose s is

a section of . Then F(X;0) = 1, in F(0X;00).

Proof. Part (i) is easy unless m does not admit a section, in which
case the techniques here do not apply; we supply a proof at the end of
Appendix A. For (ii) observe that the integrand in (2.10) is the product
of two closed 1-forms, so only depends on their de Rham cohomology
classes. The generalization of (iii) to arbitrary connections © is

(2.19) F(X;0) = exp <2m/fl L s*a(@)) Tos

which is essentially the construction of (2.11). For flat © the Chern-
Simons form «(O) vanishes. q.e.d.

3. The spin refinement

On spin manifolds Chern-Simons theory refines to a theory . with
S®? ~ Z. The extra factor of 2 flows from that in the primary invari-
ant (2.1) on spin manifolds: if P — W is a principal C*-bundle over a
closed spin 4-manifold W, then

(3.1) S {a(PR W) ez

In this section we state the properties of . we need; proofs are deferred
to Appendix A.

Remark 3.2. The function
H*(W;Z) — Z
3.3) 1
( v 5 oo, W)
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is a quadratic refinement of the bihomomorphism
H*(W;Z) x H*(W;Z) — Z
o,y ==y W)
There is a compatible quadratic form on H!(X;C/Z) for X a closed

spin 3-manifold [MS, LL]; it computes the value of . (X;©) for flat
connections O.

(3.4)

As in Theorem 2.13 the formal properties are summarized in the
statement that % is an invertible field theory (which can be evaluated
on fiber bundles). Manifolds in the domain bordism category of . carry
a spin structure. The codomain of . is the Picard groupoid sLine
whose objects are Z/2Z-graded (super) lines and whose morphisms are
even isomorphisms of super lines. The monoidal structure is tensor
product, and the symmetry implements the Koszul sign rule.

Theorem 3.5. Spin Chern-Simons theory is a symmetric monoidal
functor

(3.6) & Bordy 3y (Sping x (C*)V) — sLineg.
There is an isomorphism /9% ~ F .

Remark 3.7. The invariant of a C*-connection over a closed spin 3-
manifold has a description analogous to that in Remark 2.8. In that case
we must bound X by a compact spin 4-manifold and put the factor 1/2
in the integral (2.9).

For convenience we state further properties of . simultaneously for
families of 2- and 3-manifolds. Consider the sequence

(3.8) P M, 2598

of smooth maps in which p is a fiber bundle of smooth manifolds, or
of bordisms; 7 is a principal C*-bundle with connection © € QL(C);
and o is a spin structure on the relative tangent bundle T'(M/S) — S.
Let dim(p): M — ZZ° be the locally constant function whose value
at m € M is the dimension of the relative tangent space T,,(M/S).
Let Q(0) € Q2,(C) be the curvature of ©. The following is proved in
Appendix A.

Theorem 3.9. (i) If dim(p) = 3 and the fibers of p are closed,
then S (M,/S;0): S — C* satisfies

d.7(M,/S;0) _\/j
S (M,/S;0) 4« M/S

(3.10) Q(0) A Q(6).
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(i1) Continuing, if o’ is a spin structure whose difference with o rep-
resents a class 6 € HY(M;Z/27), then the ratio of spin Chern-
Simons invariants is

3.11 TN ) ()P (6—Ti(P))
10 ,/s:0) - Y
where €1 is the mod 2 reduction of the first Chern class.
(iii) If dim(p) = 3 and the fibers of p are compact with boundary,
then /(M,/S;0©) is a section of the even complex line bundle

S (0M,/S;©) — S; its covariant derivative is

V-l

47 M/S

Y

(3.12) vy(Mo/s;@):[ Q(0) A Q(O)| 7 (M,/S;0).

(iv) Continuing, suppose s: M — P is a section of w. Its restriction 0s
to OM induces a trivialization T,, of &/ (0My/S;©) — S. Then

V-1

(3.13) S (M5/5;0) = exp <_ ar Juys

s*O A Q(@)> The-

(v) If dim(p) = 2 and the fibers of p are closed, then . (M,/S;0) —
S is a complex super line bundle with covariant derivative; its
curvature is

V=1
47 M/S
Its Z/2Z-grading is p«|ci(P)]|: S — Z/2Z, where €1 is the mod 2

reduced first Chern class.
(vi) Continuing, a section t: M — P of m induces a trivialization

(3.14) curv (S (M,/S;0) — S) = Q(0) A Q(0).

7.+ S — L of the Chern-Simons line bundle, relative to which the
connection form is

V-1
(3.15) Vi NI e A 0.
T dr Jmys
(vii) Continuing, given h: M — C* sett' =t-h: M — P. Then
V=1 dh
(3.16) Ty = €1, €XP <_47r s t*O A W |
where

(3.17) e p(s) = (=)D ses.

Here o5: H' (p~'(s); Z/2Z) — Z/2Z is the quadratic refinement
of the intersection pairing given by the spin structure on the fiber
p~1(s), and [hs] € H' (p~*(s); Z/27Z) is the reduction modulo two

of the homotopy class of h‘p,l(s).
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Corollary 3.18. In the situation of Theorem 3.9 (vii), if © is flat
then (3.16) only depends on the homotopy class of h.

Proof. The factor € p N (3.17) depends only on the homotopy class
of h modulo two. If © is flat, then t*© is a closed 1-form, and the inte-
gral in (3.16) reduces to the cohomology pushforward p,: H?(M;C) —
H(S;C) applied to [t*©] — [h], as in Theorem 2.17(ii). q.e.d.

In the setup of Theorem 3.9, suppose given two families over the same
base S and maps

(319) Mo- w M//

such that ¢ is a diffeomorphism of spin manifolds, ¢ is an isomorphism
of principal C*-bundles, and v preserves the connections: 1*@’ = ©.

Theorem 3.20. (i) If dim(p) = 3 and the fibers of p are closed,
then #(M.,/S;0") = #(Ms/S;©).

(ii) If dim(p) = 2 and the fibers of p are closed, then there is a flat
isomorphism of spin Chern-Simons line bundles

S (M,/S;0) —— F(M.,/S;0')

(3.21) \ /
s

(iii) Continuing, if t: M — P and t': M — P’ are sections of m, 7’
such that 1 ot = t' o4, then the induced trivializations 1,7, of
the line bundles in (3.21) satisfy 7, = Vo T,.

We leave the reader to formulate and prove (1) functoriality for the
case dim(p) = 3 and the fibers of p are compact manifolds with bound-
ary, and (2) the behavior of . under reversal of orientation. Theo-
rem 3.20 follows from the constructions in Appendix A.

4. The dilogarithm from abelian Chern-Simons

In §4.1 we use the spin Chern-Simons theory of §3 to construct a
holomorphic function L on an abelian cover of the thrice punctured
complex projective line. We identify it with the enhanced Rogers dilog-
arithm in §4.2.



DILOGARITHM AND CHERN-SIMONS 249

4.1. Construction of L. Fix the standard torus
(4.1) T = R?/7?

and standard coordinates ', 02 on R2. The first homology group H;(T)
has generators the coordinate loops ¢ — (¢,0) and t — (0,¢), 0 <t < 1,
in (61,62) coordinates. Let o be the spin structure on T’ characterized
by the property that the coordinate loops inherit the bounding spin
structure. Introduce

M, = C?

My = (C*)?

with standard coordinates ui,us and uq, pe, respectively. Define the
principal Z2-bundle

(4.2)

~

e: My — My,

4.3
(4.3) (1, 1) — ("1, %)

The notation (4.2) is deliberately evocative of moduli spaces; see Re-
mark 4.9 below.
The trivial C*-bundle

(4.4) pA:J\’;[TxTxCX—ﬂ\A/[TxT
with section £y carries a complex connection form 7 characterized by
(4.5) t5h = —uy dO' — up df? € Q;Q[TxT((C).

The action of Z? on the base of (4.4) lifts to the total space:
(4.6) (nl, 712) : (’LL1, ug, 91, 02, )\)
= <u1+2ﬂﬁn1,uQ—|—27r\/—1n2,91,02,exp[27r\/—l(n191+n292)]/\>,

where (n1,n2) € Z? and A € C*; the connection form 7 is preserved.
Hence the C*-bundle (4.4) with connection descends to a C*-bundle

(4.7 p: Q— M, xT
with connection 7. Its curvature is the differential of (4.5):
dpn

dpz
4.8 Q(n) = ——— A dot — =
(4.8) () o i

This formula shows that the bundle p in (4.7) is topologically nontrivial.

A db?.

(The base M, x T' deformation retracts to a 4-torus; the restrictions to
two sub 2-tori have nonzero first Chern class.)

Remark 4.9. The connection 1 on p in (4.7) defines a universal
family of flat C*-connections over T. Namely, n is flat on the fibers of
the projection to M, and its holonomies at (u1, u2) € M, about the
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standard cycles on T are p1, pto, as follows from (4.5).2 Furthermore, the
pullback under (4.3) is a universal family of flat C*-connections over T’
equipped with a homotopy class of trivializations of the underlying C*-
bundle. This explains the moduli space notation (4.2). Also, M, is a
holomorphic symplectic manifold; see (4.16) below.

Define the submanifolds

My = {(ur,u) € My : e 4 e2 =1}

(4.10) ,
My = {(p1, p2) € My sy + pip = 1}
Then

(p1, pr2) — i1

is a diffeomorphism. Also, (4.3) restricts to a principal Z2-bundle
e': M, - M. Then p in (4.7) and its pullbacks and restrictions fit
into a diagram of principal C*-bundles with connection:

(e)*Q €*Q
P p
% to
Mpx T o Ny x T
(4.12)

My x T M, x T

Here e = e x id and € = €' x id;.
Apply the spin Chern-Simons theory . of §3 to the four C*-bundles
with connection (two of them with trivialization) in (4.12). Let

(4.13) L— M,

be the spin Chern-Simons line bundle .7 ((M, xT') /M. ; n) — M. with
its covariant derivative. Observe that the C*-bundle p restricted to uq x
p2 x T is topologically trivial for all (p1, u2) € M, since the restriction

carries a flat connection, from which it follows that (4.13) is an even
line bundle (see Theorem 3.9(v)). The Chern-Simons line bundle (4.13)

2The holonomy is the exponential of minus the integral of the connection form.
The signs are chosen so that (4.28) matches the differential of the dilogarithm.
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and its various pullbacks fit into the diagram

(eh*L’ e*L
S S
M, My
(4.14)
¢ L’ e L
Y
M, ¢ M,

We explain the section 7" of £’ — M/, after the proof of the following.
Proposition 4.15. (i) The curvature of the covariant derivative
on (4.13) is
1 dpr dpg

— A )
2w/ —1 1 U2

(4.16)

The line bundle
(4.17) L — My

1s flat.
(ii) The line bundle (4.17) has trivial holonomy.

Proof. The curvature statement (i) follows from (3.14) and (4.8). We
compute the holonomy about (0,1) € M/, using the family of loops (set

i=+/-1)
Ce:[0,27] — M7,

t > (ee,1 —ee)

(4.18)

Since the curvature vanishes, the result is independent of € € (0,1/2).
The computation for the holonomy about (1,0) € M/, follows by sym-
metry py <> 2. R R
The loop (4.18) lifts to the path T'c: [0, 27] — M/, defined by

u; = loge + it
4.19 ,
(4.19) us = log(1 — ee™),
where for uy choose the branch of the logarithm with log 1=0. Use (3.15)
to compute the connection form of e*£ — M relative to the trivializa-
tion 7y as

1

47/ —1

(4.20) (urdug — uaduy).
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To compute the holonomy integrate (4.20) along IA‘E, and then use
(3.16) to correct for the change of trivialization between the two end-
points (log €,log(1 — e)) and (10ge + 27, log(1 — e)) Set z = pp = e™
and compute
(4.21)

1 2T ctelt log(1 —
Jl uldug—quulz_J 1oge dz-i—f eedt—f Mdz.

-z 0 1—eet z

The first and last terms vanish by Cauchy’s theorem. The integrand
in the second term has norm bounded above by 47e, hence the integral
converges to zero as € — 0.

Turning to the change of trivialization, the gauge transformation is
multiplication by h = 2™ and so by (4.5) the integrand in (3.16) is
the 2-form
(4.22)

(logedf' +log(1—€) d6*) A (2my/—1d0") = —2mv/—1log(1—e) db' A db?;

both it and its integral over T' vanish in the limit ¢ — 0. Finally,
the quadratic function (3.17) is 1 on the coordinate loop in the 6'-
direction, by our choice® of spin structure on 7. Since the holonomy is
independent of €, and the computation converges as ¢ — 0, that limit
suffices to prove that the holonomy is trivial. q.e.d.

It follows that (4.17) admits a C*-torsor T’ of flat nonzero sections 7’.

The pullback (¢/)*£ — J\?[ﬁf has a canonical nonzero section 7, which is

not flat; see (4.20). For each 7/ € 7 define
jay)
T ~
(4.23) ¢:T—9:M’T—>CX.
Varying 7 € 7’ changes ¢ by a multiplicative constant. From (4.20)
compute

dp _ 1
@ dmy/—1

for all 7/ € J’, where recall "1 + e“2 = 1. Write

(4.25) o — exp (% \%)

to define a function

(4.26) L: My — C/Z(2).
Here we use the Tate twists

Z(1) = 2mvV/—1Z

7(2) = Z(1)%?* = 47?7

(4.24) (u1dug — ugduy)

(4.27)

3The value of the quadratic function on the 62-coordinate loop enters the compu-
tation of holonomy around (0, 1) € M. The holonomy of (4.17) is not trivial for any
other spin structure on 7', but see Remark 4.29.
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The function L is determined up to an additive constant: the choice
of 7/ € 77. Any choice satisfies

uldu2 — u2du1
2

Remark 4.29. Our construction uses a particular spin structure on
the torus 7" and the particular choice of lagrangian submanifold M/,

(4.28) dL =

M. There are three other spin structures and correlated choices of
lagrangians which lead to variations of the enhanced Rogers dilogarithm.
We use all four functions in [FN].

4.2. Dilogarithms. We refer to [G, K, Z| and the references therein
for details about the various dilogarithm functions.
The theory begins with the power series

(4.30) —log(l—=2) = Z %
n=1
(4.31) Lip(z) = ). Z—Z

n=1

convergent for z € C satisfying |z| < 1, and analytically continued to
z € C\[1, ). Equation (4.30) is an identity; equation (4.31) defines the
Spence dilogarithm Lis. Differentiate the power series:

log(1 — 2) ug dug
—f dZ = —U2 du1 = —m,
using notation from (4.3), (4.11) and setting z = u1. The last expression

is a meromorphic 1-form on the us-line with simple poles at Z(1) < C
and residues in Z(1). It follows that

F: C\Z(1) — C/Z(2)

ug > Lig(1 —e"?)

(4.32)  dLiy(2) =

(4.33)

is a well-defined function. We lift it under the Z-covering map

My — C\Z(1)

(4.34)
(ur,ug) —  up
Then
1 1
(4.35) F(u2) + QU2 = Lia(2) + 3 log(z)log(1 — 2) mod Z(2)

is a well defined function M, — C/Z(2), and from (4.32) its differen-
tial equals dL in (4.28). Therefore, (4.35) equals L up to an additive
constant. (Recall that in any event L is only defined up to an additive
constant.) The function (4.35) is called the enhanced Rogers diloga-
rithm. It is denoted ‘D’ in [Z).

This discussion proves the following.
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Theorem 4.36. The function L in (4.26), defined up to a constant
using spin Chern-Simons theory with gauge group C*, equals the en-
hanced Rogers dilogarithm.

5. Properties of the dilogarithm

In this section we use the geometric construction of the enhanced
Rogers dilogarithm (§4.1) to derive a few of its standard properties
directly from spin Chern-Simons theory.

Consider first the transformation law under a deck transformation of
the Z2-covering map e’: M/, — M. Fix 7/ € T’ and so a choice of ¢, L;
see (4.23) and (4.25).

Theorem 5.1. For all (uj,uz) € JV/E’T and (ny,no) € 72,
(5.2) L(uj + 2ming, ug + 2ming) =
L(uy,up) + mi(niug — nouy) + 2w°n1ns mod Z(2).
Equation (5.2) appears in [Z, p. 25] and as [APP, (A.18)].
__ Proof. Since the section 7' of (¢)*L — J%if is pulled back via ¢’:
M/, — M., the change in ¢ = 7)/7’ under a deck transformation of €’ is

due to the change in the trivialization 7. Use the general formula (3.16)
to compute. From (4.5) the connection form relative to the trivialization

at (u1,ug) € M/, is

(5.3) uy dO* + ugy db?,
and the relevant gauge transformation is multiplication by the function
(5.4) h = exp(27ri(n191 + n292)).

The integral in (3.16) is then (njus —nous); with the correct prefactor
it contributes the second term in (5.2). The third term derives from
the factor (3.17) in (3.16). The quadratic form o for our choice of spin
structure on T is

(5.5) o(ni,n2) = niny  (mod 2),
where (n1,n2) € Z? is the homotopy class of h in H'(T;Z), relative to
the standard basis. q.e.d.

Next, we prove a reflection identity, which appears as [APP, (A.21)]
and, for a restriction of L, in [Z, p. 23].

Theorem 5.6. For the diffeomorphism
UM, — M

57 (u1,uz) — (uz,u1)

the sum L + V*L is a constant function.
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Of course, the result holds for all 7/ € J7.

Proof. Consider the reflection diffeomorphism
Pv: T — T

(58) (01’92) — (92"91)

on the torus T'. It reverses orientation, maps our chosen spin struc-
ture o to its opposite,® induces the reflection (1, pa) — (2, p1) on the
moduli space M, of flat C*-connections, which lifts to the reflection
(u1,ug) — (u2,u1) on JC/ET, which in turn restricts to (5.7) on JC/E’T Use
formulas (4.5) and (4.6) to compatibly lift the involution to the bundles
in (4.12); the lift preserves the universal connections. The functoriality
of Chern-Simons (Theorem 3.20) implies that the involution lifts to the
Chern-Simons line bundles with covariant derivative in (4.14), except
because orientation on 7' is reversed the bundle £ is mapped to £~1. It
follows that ¥*¢ = !, up to a multiplicative constant. q.e.d.

Remark 5.11. A related identity states that L(z) + L(1/z) is con-
stant; see [APP, (A.24)] for the precise form on the cover J\?[if It can
be proved by a similar method, but the relevant diffeomorphism of T
does not preserve the spin structure, so one needs to expand the theory
as indicated in Remark 4.29.

Finally, we prove the 5-term relation satisfied by the dilogarithm [Z],
[APP, (A.8)]. For that we change notation and use w,v in place of
u1,u2 as the standard coordinates on M, = C2.

Theorem 5.12. The sum L(uj,vi) + -+ + L(us,vs) is independent
of (ui,v;) € Ml, i € Z/5Z, which satisfy

(5.13) Vi = Ui—1 + Uit for all 4.

Remark 5.14. Write z; = e" and assume e + e¥¢ = 1. Then
equation (5.13) implies
(5.15) 1-— 2 = Zi—1%i+1-

4A spin structure on an n-dimensional oriented Riemannian manifold M is en-
coded in a sequence

(5.9) P-L580M) > M
in which 7 is the principal SO,-bundle of oriented orthonormal frames and 7 o p is

a principal Spin,-bundle. The opposite spin structure P’ £— SO'(M) =— M is
constructed by taking the complement of (5.9) in

(5.10) P Xgpp, Ping — O(M) — M,

where either pin group Pint can be used. Here O(M) — M is the principal O,-
bundle of orthonormal frames.
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m(i u;

YD

Figure 1. X is S? with these five solid tori removed.

There is a connected complex 2-manifold M’y of solutions

1—=2 1—y
5.16 , ) y Y, 1—
(5.16) ’ l—zy 1-uy Y Y

to (5.15), parametrized by z,y € C satisfying xy # 0, z # 1, y # 1, and
zy # 1.

Proof. Let X be the compact spin 3-manifold with boundary formed
from S3 by removing a tubular neighborhood of the 5-component link
depicted® in Figure 1. Fix a diffeomorphism 0X ~ T which induces
the basis of first homology indicated in the figure. Alexander duality
implies H;(X) is torsionfree of rank 5, so if a principal flat C*-bundle
over X admits a flat connection then it is trivializable. Let M, be

the moduli space of flat C*-connections on X and r: My — (M)°
the restriction map to the boundary 0X. Define My = r~![(M/)?].
(Remark 5.14 gives an explicit parametrization of M’y.) Similarly, let

~

My be the moduli space of flat C*-connections with a homotopy class
of trivialization, 7: J\A/[X — (J\A/[T)E’ restriction to the boundary, and
J?/E’X = ﬁ_l[(ﬁ[’T)ﬂ. Each component of the link is the outer bound-
ary of a neatly embedded disk D; < X wi:c\h two subdisks removed, as
in Figure 2. For any collection (u;,v;) € M, in the image of 7, apply
Stokes’ theorem to the closed 1-form on D; which is the flat connection
form relative to the trivialization. Its integral over a boundary compo-
nent is minus the log holonomy. Therefore, the relation (5.13) holds on
the image of 7.

®This link is a close cousin to the “minimally twisted 5-chain link” in [D'T, §2.6].
(We thank Tan Agol for bringing this reference to our attention.)
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g/

Figure 2. A 2-manifold neatly embedded in X.

Spin Chern-Simons theory . produces the diagram

()" (&) (L)
) / ) ) />
My - (V)?
(5.17)
ey (r’)*(ﬁ’)s (6/T)5 (L')5
% / %’)5
M : ()?

where £/ = (e/7)* L is the pullback of the spin Chern-Simons line bundle
under ef.: J\A/[’T — M’.. Apply Theorem 3.9(iii) to obtain a section .#
of (r')*(£")M — My; by (3.12) it is flat. There exists 7/ € T’ a flat
section of £ — M/, unique up to a 5 root of unity, such that » =
(r)*[(#")¥”]. Then (3.13) implies that the pullbacks of .» and (7)&®
to J%’X agree. Recalling (4.23), we see that the ratio (7/7/)5: (JQ[’T)E’ —
C* is the product of five exponentiated enhanced Rogers dilogarithms,
and the fact that its pullback to J\A/E’X is identically one is the 5-term
relation. q.e.d.

Remark 5.18. The choice of 7/ € T’ in the proof makes the 5-term
sum in the theorem vanish.

Appendix A. Classical spin Chern-Simons theory

In this appendix we sketch proofs of Theorem 3.9 and Theorem 3.20,
which set out basic properties of spin Chern-Simons theory with gauge
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group C*. Theorem 2.17 can be proved by similar methods, or may be
deduced as a corollary of the spin case; we give an argument for part (i)
at the end. In this appendix we freely use generalized differential coho-
mology, as developed in [HS, BN'V] and other references. To begin we
work with the universal family of C*-connections as described in [FH];
the parameter “space”® is By C*.

Remark A.1. An alternative approach to spin Chern-Simons for
compact gauge groups is available using n-invariants and pfaffian lines
of Dirac operators [J]. For a noncompact group one encounters Dirac
operators coupled to non-unitary connections, for which the relevant
parts of geometric index theory are not in the literature.

Let E be the spectrum (in the sense of stable homotopy theory)
defined as the extension

(A.2) HZ — E — Y2HZ/27

of Eilenberg-MacLane spectra with nonzero k-invariant. Its properties
are stated and proved in [F3, §1]. The techniques used there, particu-
larly around (1.13), imply that the short exact sequence

(A3) 0— HY%BC*;Z) - EYBC*) - H*(BC*;Z/2Z) — 0
does not split. Hence there is a unique class A € E4(BC*) such that
2\ = i(c1?) and j(A\) = e, where 7 is the mod 2 reduction of the uni-
versal first Chern class ¢; € H2(BC*;Z). Let Eac be the complex differ-
ential refinement of E, defined as a homotopy fiber product as in [HS,
(4.12)] (with ¥V = C concentrated in degree zero); see also [BNV, §4.4]
(with C' = C concentrated in degree zero). The differential cohomology
group fits into an exact sequence

(A.4)

0 — E{(ByC*) — E*(BC*) x Q(ByC*;C) — H*(BC*;C),

part of the Mayer-Vietoris sequence derived from the homotopy fiber
product.” Here Qél(BV(CX;(C) is the vector space of closed complex
differential forms; by the main theorem in [FH] it is isomorphic to the
three-dimensional complex vector space of symmetric functions C x C —
C which are real bilinear. The final map in (A.4) is the difference be-
tween the homomorphism k: E4(BC*) — H*(BC*;C) defined in [F3,
(1.4)] and the Chern-Weil homomorphism. It follows that the generator
A € E4(BC*) has a unique differential refinement Xe Eé(BV(CX) with

5Tt is, rather, a simplicial sheaf on the site of smooth manifolds. Computations
may be carried out on a smooth “test” manifold M equipped with a C*-connection,
that is, equipped with a map M — BgC*.

"The short exact sequences one usually derives from it for smooth manifolds de-
pend on the de Rham theorem, which does not necessarily hold for By G if G is
noncompact.
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associated symmetric function (z1, 2z0) — —2120/872. This is the uni-
versal class which defines spin Chern-Simons theory. The constructions
which follow use a geometric representative of this class, say a differ-
ential E-function as defined in [HS, §4.1]. Its “curvature”, the image
under the homomorphism

(A.5) E¢(ByC*) — Q4(ByC*; C),
is

. 1 _ .
(A.6) wepin (O™) = ———5 Q(O™) A Q(O™),

872

where 'Y € QY (EgC*; C) is the universal C*-connection [FH, (5.25)]
on the universal C*-bundle

Recall [FH, Example 5.14] that EC* is the classifying sheaf for triples
(p, ©,s) consisting of a principal C*-bundle p: P — M with connec-
tion © and section s. The pullback of (A.7) by 7 is canonically trivial-
ized by the section, and this induces a “nonflat trivialization”® of TN
The trivialization represents X by a complex 3-form, the universal
Chern-Simons form
1

- 8n2

whose de Rham differential is (A.6). Below in (A.17) we give a formula

A8 Qspin (_)univ _ @univ A W*Q (_)univ
P

for this trivialization as an integral of 7w* .

Turning now to a family P - M, %> S with C*-connection ©,
as in (3.8), we obtain from these universal constructions: a differential
class (rather, a geometric representative) \(©) € Eé(M ) with curva-
ture wepin(©), as in (A.6); the Chern-Simons form agpin () € Q3(P; C);
and an isomorphism of 7*X(©) with the image of Qgpin(O) in Eé(P).
The spin Chern-Simons invariant is the pushforward in differential F-
theory:

(A.9) S (M, /S:0) — f 0.
M,/S
Integration in F, and so in E(C, uses the spin structure o; see [F3, (1.6)].

If the fibers of p are closed of dimension k, then (A.9) lives in Eé_k(S).
In low dimensions we identify

8 An explicit model for a nonflat trivialization of a geometric representative of an
E-cohomology class—a coned differential E-function—is spelled out in [F3, Defini-
tion 5.12]. The data of a 3-form, such as (A.8), is part of that definition.
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EE(S) = Map(S,C*)
(A.10) EA(S) ~ {iso classes of complex super line
bundles £ — S with connection}

Parts (i), (v), and (vi) of Theorem 3.9 follow immediately from the
foregoing and the compatibility of the exact sequence (A.4) and inte-
gration. The Z/2Z-grading in (v) is determined by its restriction to
each s € S, and since the grading is a discrete invariant it only depends
on \(©) € E*(M). Writing My = p~1(s), the desired formula follows
from the commutative diagram

EY(M,) —~ H2(M,; 7,/27)
(A1) p*l lp*
E2({s}) — H'({s}:2/22)

in which both maps j are isomorphisms and j(A(©)) = ¢1(P). The
dependence on spin structure in (ii) is an immediate consequence of the
proof of [F3, Proposition 4.4]. For parts (iii) and (iv) use the notion of a
nonflat trivialization of a geometric representative of an Ec-cohomology
class; see footnote 8. If the fibers of p: M — S are compact manifolds
with boundary, a Stokes’ theorem holds (see [HS, §3.4] for one version):

~

(A.12) J X(@) is a nonflat trivialization off A(©)
M,/S oM,/S

with “covariant derivative” f Wepin(©).
M/S

For dim(p) = 3 the nonflat trivialization is a nonzero section of a (nec-
essarily even) complex line bundle and (iii) follows. For (iv) we use
the isomorphism of A(©) with the image of $*Ospin (©) in Eé(]\/[ ) and
apply (A.12).

We turn to Theorem 3.9(vii), and for that we prove a formula valid for
any finite dimensional real Lie group G with finitely many components.
Analogous to (A.4) is the exact sequence

(A.13) 0 — EX(BuG) — E*BG) @ Q4(ByG) — H*(BG;C),

and the main theorem in [FH] identifies Q}(ByG) with the complex
vector space of G-invariant symmetric bilinear forms g x g — C on
the Lie algebra of G. It follows that E’é(BVG) is isomorphic to the
group of compatible pairs A = (A, {—=,—)) of a class in E*(BG) and a
symmetric bilinear form. Fix such a pair. Let 7: EgG — ByG be the
universal G-bundle with universal G-connection O € QY EyG;g).
The total space F of the fiber product of 7 with itself classifies quartets
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(p, ©, sp, $1) consisting of a principal G-bundle P — M over a smooth
manifold M equipped with connection © and sections sg, s1. Use sg to
trivialize the (universal) bundle, and so construct an isomorphism

(A.14) F =5 EgG x G.

The sections sg, s1 each induce a trivialization of the pullback of Xto F ;
the difference of these trivializations represents an element 7 € E3(5).

Proposition A.15. Under the isomorphism (A.14) the differential
class 1 is the sum

(A.16) =0 + (O™ A Q)

where & € E(%(G) is the integral of N(©) over S' for a certain G-
connection © over S* x G, and 0 € Q}(g) is the Maurer-Cartan form.

© is a universal pointed connection: its holonomy around S x {h}
equals’ h~! for all h e G.

Proof. The pullback of the universal G-bundle 7: EgG — By G via
is a principal G-bundle @w: F — EyG equipped with a canonical sec-
tion s. The latter induces the canonical trivialization (A.14) as well as a
canonical trivial connection Oy, which under (A.14) maps to the Maurer-
Cartan form #. Let A' — A, be the affine map of the 1-simplex into
the affine space of connections on w which sends the endpoints to Oy
and 7*O"Y, There results a connection (:)8 on the trivial G-bundle
over Al x EgG. By Stokes’ theorem (A.12) the nonflat trivialization
of m*X(O™1V) is

~ o~ Tr*@univ ~
(A17) X(8,) = f X
Al
(The right hand side is shorthand notation for the left hand side.) The
universal Chern-Simons form (A.8) is the same integral with the inte-
grand replaced by its curvature (Q(0,) A Q(6;)).

Working now on the universal bundle p: P — JF, which is equipped

with two sections sg and si, there is an affine map A? — A, as depicted

B

in Figure 3. The class 7] is obtained by integrating X over the path which
begins at the lower left vertex, moves to the top vertex, and then down
to the lower right vertex; we use a gauge transformation to identify the
trivial connections at the initial and final vertices. A version of Stokes’
theorem identifies the difference of the trivializations of the pullback
of X to F induced by s1 and sg as

651 ~ ~ ~
(A.18) n= J@ A — A2<Q(@) A Q(O)),

9The signs work out so that the holonomy is h™*, not h.
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p* w* @umv

@SQ @51

Figure 3. The 2-simplex of connections A? — A,.

where © is the G-connection over A% x F constructed by affine interpo-
lation from the vertices in Figure 3. As before, we identify the connec-
tions O4, and O, by a gauge transformation. In terms of barycentric
coordinates on A2, the map A? — A, is

(A.19) (t°,81,12) — 199, + 110y, + t2p* O,

Write s1 = sg - h for h: F — G. Relative to the trivialization sg and
isomorphism (A.14) we rewrite!? (A.19) as a map to Q}EVGXG(Q):

(A.20) (9,1, 1?) — —t1 Ady 0 + 2OV,
The last expression, interpreted as an element of QIAQ xEgGx G(g), is

precisely O. Its curvature is

(A.21) Q(O) = —dt' A Ady 0 + dt* A O™
+ terms not involving dt! or dt?,

from which
(A.22) — A2<Q((:)) A Q(O)) = (O™ A ).

To identify the first term in (A.18) in terms of a G-connection over S* x
G, restrict (A.20) to the 1-simplex t2 = 0 to obtain the connection form
—t' Ady, 0. Compare with [F1, (4.14)].11 q.e.d.

Apply Proposition A.15 with G = C* to Theorem 3.9(vii). First, the
universal C*-bundle Q — S! x C* has first Chern class a generator
of H?(S' x C*;Z) (as follows from (4.8), for example), so from (A.3)
and (A.4)—applied to S x C*—we see that X(Q) is the generator of

8ince s¥©,, = 0, the usual formula for the gauge transform of a connection
implies 0 = 0 + Ad},-1(s§ Oy, ).

"Set g = 1 in [F1, (4.14)] to compare; the sign discrepancy is explained by the
appearance of the inverse ‘h~!" in the gluing formula [F1, (4.13)].
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EA(S' x C%) = H2(S" x C*;Z/2Z) =~ 7Z/2Z. Tts integral over S' is the

nonzero element
(A.23) % e EA(CX) ~ HY(C*,Z/22) ~ 7/21.

Turning to Theorem 3.9(vii), the integrand in (3.16) equals the second
term of (A.16), so it remains to identify the sign (3.17) with the integral
of the first term in (A.16). Since the curvature of & vanishes, it suffices
to compute the pushforward of its image w € E3(C*). Since F is a
truncation of connective ko-theory, there is an isomorphism

(A.24) E3(C*) = ko }(C*) = ko ?(C*;R/Z) = Z/27.

Set 3 € ko~2(C*;R/Z) the image of w under (A.24).

Let M be a closed 2-manifold with spin structure ¢ and a map
h: M — C*. Our task is to equate (3.17) with 7 h* Be ko~ (pt; R/Z) =
R/Z, where 7 : M — pt. First, deformation retract C* to the circle
group T < C* and so homotope h to a map with image T. Then
the generator 3 € ko 2(T;R/Z) is pushed forward from the generator
a € ko 3(pt;R/Z) =~ Z/2Z via the inclusion e: pt < T. By a further
homotopy make h transverse to e € T; then its inverse image S < M is a
finite union of disjoint embedded circles, and S inherits a spin structure
from M. Arguing from the diagram

4>M
(A.25) l
pt —>’]r
we have
(A.26) Mp*g = Mp*e,a = nMigta = geato = o - g (1).

Restricted to a component of S, the pushforward g¢.(1) € KO™!
(pt) = Z/27Z is 0 or 1 according as the spin structure on the compo-
nent bounds or not. Since the homology class of S is Poincaré dual
to [h] € H'(M;Z), we conclude that ¢,(1) maps to o([h]) under the
isomorphism KO~!(pt) =~ Z/27Z. It remains to observe that multiplica-
tion induces a nonzero pairing

(A.27) KO 3(pt;R/Z) @ KO~} (pt) — KO~ *(pt; R/Z),
as proved for example in [FMS, (B.10)].

The functoriality properties in Theorem 3.20 follow from (A.9) and
the functoriality of the differential characteristic class A € E¢(BgC*).

Finally, we sketch a proof of (2.18). Let & € ﬁé(BV(CX) be the
universal differential first Chern class for principal C*-bundles; it is
the differential lift of ¢; € H?(BC*;Z) with associated linear function
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2 /=1z/27, z € C. Tts square ¢ - & € H&(ByC*) is the universal
Chern-Simons class. Let © be a flat connection on a principal C*-
bundle 7: P — X, where X is a closed oriented 3-manifold. Then since
¢1(©) is flat, the product ¢ (0©) - ¢1(0) is computed by a cup product in
cohomology with C/Z coefficients, precisely as in (2.18).

Appendix B. A motivating Euler-Lagrange equation

In our construction (§4.1) of the dilogarithm, we introduce (4.10)
the submanifold M/, ¢ M. of flat C*-connections on the torus T =
R2/Z? such that the holonomies around the standard cycles sum to
one. This condition arises naturally in the stratified abelianization of
flat SLg C-connections [FN]. In this appendix we briefly indicate a
formal computation motivated by the topological string [W], [OV] that
produces this condition on holonomies.

Let M be a closed spin 3-manifold and S < M an oriented embedded
circle. For a € Q},(C) a connection on the trivial C*-bundle over M,
introduce

B1)  Fla) - —$ fMa Ada - ﬁLig [exp (- L aﬂ .

In this expression Lis is the Spence dilogarithm (4.31) evaluated at the
holonomy of « about S. Since Liy is not a global function on C—
see (4.33)—this is ill-defined, so our computation based on (B.1) is
heuristic. The first term in (B.1) is the spin Chern-Simons invariant
(see (A.8)), and the normalization of the second term matches that of
the first: we should view F' as defined modulo integers. The differential
of Fis

(B.2) dF,(&) = & A [da +1log(l —2)ds], @ e Qy(C),

4n? [y,
where z = exp(— Ss «) is the holonomy of a about S and dg is the
distributional 2-form Poincaré dual to S. The critical point (Euler-
Lagrange) equation is

(B.3) do = —log(1 — 2)0ds.

A critical « is flat on the complement of S and the holonomy around a
small loop linking S is exp{—[— log(1 — z)]} = 1 — z. Therefore, on the
torus boundary of a tubular neighborhood of S, a critical connection «
is flat and the sum of holonomies about generating cycles is one.

Remark B.4. We can define F' on a cover of the space of connections
whose holonomy z about S is not equal to one, namely the cover on
which we choose logarithms for z and 1 — 2. But the critical point
equation (B.3) takes us to a space of singular connections. In particular,
the holonomy about S is no longer defined. To rectify this, we can from
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the beginning choose an embedding of [0,1) x S <> M such that the
image of {0} x S! is S, and then replace the argument of Lis in (B.1)
with the limit of holonomies around loops {t} x S! as ¢ — 0. This
produces a basis of the first homology of the torus boundary of a tubular
neighborhood of S, so pins down the cycles on which the holonomies
sum to one.

Remark B.5. One possible origin of the action (B.1) is as follows.
We suppose M is a Lagrangian submanifold inside a Calabi-Yau three-
fold X, and we view (M, ) as defining a Lagrangian boundary condition
in the A type topological string theory of maps ¢ : (X,0%) — (X, M).
Then F(«) can be interpreted as the target space effective action of that
string theory. This prediction comes from combining [W] and [OV]: in
[W, (4.50)] it was explained that the effective action should be the
Chern-Simons action plus additional contributions from holomorphic
maps (if any), and in [OV, (3.22)] it was shown that the contribution
from an isolated holomorphic disc ¢ is Liz(e ™) /4n?, where z = §,, ¢*a.
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