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Providing user-understandable explanations to justify recommendations could help users better understand

the recommended items, increase the system’s ease of use, and gain users’ trust. A typical approach to realize

it is natural language generation. However, previous works mostly adopt recurrent neural networks to meet

the ends, leaving the potentially more effective pre-trained Transformer models under-explored. In fact, user

and item IDs, as important identifiers in recommender systems, are inherently in different semantic space as

words that pre-trained models were already trained on. Thus, how to effectively fuse IDs into such models

becomes a critical issue. Inspired by recent advancement in prompt learning, we come up with two solutions:

find alternative words to represent IDs (called discrete prompt learning) and directly input ID vectors to a

pre-trained model (termed continuous prompt learning). In the latter case, ID vectors are randomly initialized

but themodel is trained in advance on large corpora, so they are actually in different learning stages. To bridge

the gap, we further propose two training strategies: sequential tuning and recommendation as regularization.

Extensive experiments show that our continuous prompt learning approach equipped with the training

strategies consistently outperforms strong baselines on three datasets of explainable recommendation.
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1 INTRODUCTION

Traditional recommender systems help users overcome the information overload problem by pro-
viding personalized recommendations (e.g., movies or songs) that cater to their interests. Mean-
while, explanations that justify why these recommendations are made are becoming more and
more important, as they can help users make better and faster decisions, increase the system’s
ease of use, and gain their trust in the system [52, 62]. There is a variety of explanation style,
such as pre-defined templates [25, 51, 64], highlighted image regions [10], and automatically gen-
erated sentences [6, 27, 29]. The last type has gained increasing attention recently, mainly due to
the availability of textual data on online commercial platforms, such as Amazon and Yelp, which
encourage users to express their opinions by writing reviews (see Figure 1), as well as the advance-
ment of natural language generation techniques, such as Recurrent Neural Networks (RNNs),
Transformer [55], and pre-trained language models [16, 18, 44].

In particular, recent years have witnessed the stronger and stronger language modeling capabil-
ity of large pre-trained models. Taking Generative Pre-Training (GPT) series [4, 44, 45] as an
example, the first-generation GPT [44] after fine-tuning achieves the state of the art in 9 natural
language understanding tasks out of 12. Further, GPT-2 [45] without fine-tuning is able gener-
ate news articles that resemble authentic ones. More surprisingly, GPT-3 [4] could even do sim-
ple arithmetic (e.g., two-digit multiplication) that the model was not trained or fine-tuned for. In
the meantime, the size of these models and the volume of training data are becoming prohibitively
large. Regardingmodel size, GPT has 117million parameters, while GPT-2 and GPT-3 are increased
dramatically to 1.5 billion and 175 billion, respectively. With respect to data, GPT takes as input
7,000 books (approximately 7GB if a book has the size of 1MB), while GPT-2 and GPT-3 are fed
40GB and 570GB textual data, respectively.

As a consequence, it is nearly impossible to do customized modifications on the structure of
these models. Moreover, it would also be challenging to incorporate into them user and item IDs,
which are indispensable in recommender systems but are in very different semantic space as words
that these models were trained on. No wonder most previous works [6, 14, 27, 50, 60] adopt RNN,
such as Long Short-Term Memory (LSTM) [23] and Gated Recurrent Unit (GRU) [15], or
small unpretrained Transformer [29] for explanation generation. This, however, makes the more
effective pre-trained models less explored.
Fortunately, recent progress made in prompt learning [37] points out a promising way. Instead

of modifying the structure of pre-trained models, researchers seek to adapt a given task to the
models, so that they can directly model text probability. For instance, a prompt for sentiment
classification could be constructed with the format of “I love this book. This book is,” where the
underlined text is a specific sample and the remainingwords are a hand-crafted template. This type
of conditioning textual string is referred to as a discrete prompt. After feeding it to a pre-trained
model, a word prediction can be made at the end of the string, such as “good” or “bad,” indicating
a positive or negative sentiment.
Likewise, we could also design discrete prompts for recommendation explanation generation.

As IDs are inherently different from words, one naive and straightforward way is to convert IDs
into words, such as movie titles and item features. We opt for the latter and utilize features related
to both the target user and the target item, since they represent the user’s explicit preferences
as well as the item’s fine-grained attributes. Moreover, these features could guide the model to
talk about certain topics when generating explanations, such as “room” and “location” for hotel
recommendations.
However, the conversion process from IDs into features may lose certain information, e.g., the

identification role. Specifically, it is not very likely to convert an ID back from some features.
For example, from the fact that Jerry loves cheese, we would not be able to certify that someone
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Fig. 1. A review example from Yelp. The user and the restaurant are omitted for privacy protection.

who enjoys eating cheese must be Jerry. Moreover, prompts do not have to be text strictly. They
could be vectors, either randomly initialized or produced by another model. This type of prompt
is formally termed continuous/soft prompt. In a similar way, we can also input ID vectors to a
pre-trained model for explanation generation. Specifically, they are concatenated with the word
vectors of an explanation before passing through the pre-trained model. It is unnecessary to do so
for the aforementioned discrete prompt, because the discrete prompt is composed of words (i.e.,
features) and thus is consistent with the model.
A follow-up problem of a continuous prompt is that the model is already trained, but the ID

vectors are randomly initialized, so they are actually in different learning stages. A recent study [2]
finds that such randomly initialized vectors could not be well optimized via stochastic gradient
descent, and thus may lead to sub-optimal results. To cope with this problem, we propose two
training strategies. The first strategy is called sequential tuning, where we separate the training
into two stages: fine-tune continuous prompts (i.e., ID vectors) with the model frozen and then
update the parameters of both. The first stage would enable the continuous prompts to reach
the same learning stage as the model, so that in the second stage they could be trained together.
Our second strategy, named recommendation as regularization, is inspired by recent findings [11,
30, 49] in explainable recommendation that the explanation performance could be improved by
the recommendation task. Indeed, the rating scores represent how much a user appreciates an
item, which makes them an informative signal to the learning of explanation generation. Hence,
we also leverage the rating prediction task to augment the explanation task and test two typical
recommendation models,Matrix Factorization (MF) [41] andMulti-Layer Perceptron (MLP).
We name ourmethod PEPLER,1 which stands for “PErsonalized Prompt Learning for Explainable

Recommendation,” where personalization is reflected by the IDs, either implicitly in the discrete
prompts or explicitly in the continuous prompts. Without bells and whistles, our method consis-
tently achieves the best performance against strong baselines (built on top of LSTM [23], GRU [15],
Transformer [55], or BERT [16]) in terms of both text quality and explainability on three datasets.

In summary, our key contributions are:

• We propose PEPLER, which generates natural language explanations for recommendations
by treating user and item IDs as prompts. To the best of our knowledge, we are the first to
introduce prompt learning to the community of recommender systems.
• We propose two training strategies to bridge the gap between continuous prompts and the
pre-trainedmodel, in order to enhance the explanation generation performance. In a broader
sense, this may inspire researchers on how to better tune pre-trained language models.

1Codes available at https://github.com/lileipisces/PEPLER.
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• We evaluate the generated explanations on not only text quality metrics (such as BLEU and
ROUGE) but also metrics that particularly focus on explainability from the angle of item
features. Extensive experiments show that our method consistently outperforms state-of-
the-art baselines.
• Our work may shed light on a broader scope of natural language generation fields that also
need personalization, e.g., personalized conversational systems. In addition, it may point out
away for pre-trainedmodels to deal withmulti-modal data, e.g., image and text in captioning
systems.

In what follows, we first summarize related literature in Section 2 and then present our explana-
tion generation method PEPLER in Section 3. Experimental setup and results analysis are given in
Sections 4 and 5, respectively. We make a final conclusion and discuss future works in Section 6.

2 RELATEDWORK

2.1 Explainable Recommendation

Explainable recommendation [52, 62] has been studied from two major perspectives: human-
computer interaction andmachine learning. The former investigates how people perceive different
styles of explanation [8, 9, 20], while the latter provides explanations by designing new explain-
able recommendation algorithms, to which our work is more related. There exist various types
of explanation style, such as pre-defined templates [25, 51, 64], item features [21, 56], ranked
text [5, 12, 28], image visualizations [10], knowledge graph paths [1, 19, 58, 59], and reasoning
rules [7, 48, 67]. In this work, we focus on generating natural language explanations because
they can be easily incorporated into different application scenarios, such as food recommender
systems (e.g., Meituan2 [61]) and conversational recommender systems [13, 33, 63]. However, pre-
vious works [6, 14, 27, 60] mostly rely on RNN, e.g., LSTM [23] and GRU [15], or unpretrained
Transformer [29] for explanation generation, leaving the potentially more effective pre-trained
models under-explored, which motivates this work.

2.2 Transformer and Pre-trained Models

Transformer [55] was first brought to the domain of machine translation with the architecture
of encoder-decoder. Later works [16, 38] show that it remains effective, even when the encoder
or the decoder is removed, reducing nearly half of model parameters. Under the paradigm of
pre-training plus fine-tuning, Transformer’s effectiveness has been confirmed on a wide range
of natural language understanding tasks [16, 44], such as commonsense reasoning and question
answering. More recently, it has been shown that pre-trained Transformer is able to perform novel
tasks on which it was not targeted during training, e.g., arithmetic, after increasing both the mag-
nitude of model size and the volume of training corpus [4, 45]. However, re-training such models
may not be friendly to researchers who do not possess large amounts of computing resources.
Therefore, there emerges a new research direction: prompt learning [37], where researchers adapt
their tasks to pre-trained models, without the need of modifying or re-training them. Prompt
learning has been successfully applied to many applications, such as domain adaptation [3],
text summarization [34], and image captioning [54], because it allows pre-trained models that con-
tain rich world knowledge to perform different tasks with task-specific prompts. In this work, we
aim to provide users with high-quality recommendation explanations, so as to improve their expe-
riences. To this end, we explore recommendation-related prompts, including discrete prompt and
continuous prompt.

2https://www.meituan.com/.
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2.3 Personalized Natural Language Generation

Personalization of natural language generation plays a vital role in a large spectrum of tasks,
such as explainable recommendation [6, 27, 29], review summarization [24], and dialogue sys-
tems [63, 65]. In these tasks, user and item IDs are important identifiers for personalization. Previ-
ous approaches typically adopt MLP to encode the IDs into a context vector, from which RNN can
decode a word sequence. This strategy can be found in many applications, such as review genera-
tion [17, 53], tip generation [31, 32], and explanation generation [14, 27]. However, it does not fit
pre-trained models that were already trained on a massive amount of raw text. Probably because
a proper solution to deal with heterogeneous data (i.e., IDs and words) is yet to be invented, previ-
ous works with Transformer or pre-trained models for personalized natural language generation
replace IDs with text segments, such as persona attributes [65], movie titles [66], and item fea-
tures [42], which is somewhat similar to our discrete prompt learning. But besides this, we further
investigate how to incorporate into pre-trained models continuous prompts (i.e., ID vectors) in
order to retain as much information as possible.

3 METHODOLOGY

The goal of our explanation task is to generate a natural language sentence Êu,i for a given user-
item pair (u, i ) to justify why i is recommended to u. The item i could be predicted for the user u
by a recommendation model, e.g., matrix factorization [41], or result from his/her true behavior.
At both training and testing stages, only user u and item i are used as input for producing the
explanation. Hence, our proposed explanation generation approaches are compatible with any
recommendation model, in which user and item IDs are indispensable.
In this section, we present the details of our methodology. First, we briefly go through Trans-

former, pre-trained language models, and prompt learning. Then, we introduce our proposed two
methods for explanation generation, including discrete prompt learning and continuous prompt
learning. After that, we illustrate how an explanation is generated during the inference stage. At
last, we present two strategies for continuous prompt learning: sequential tuning and recommen-
dation as regularization.
Before introducing the technical details, we briefly explain the key terminology and notations.

A token is a general term that can refer to user ID, item ID, word, and sub-word. An item feature

(e.g., “room”) is also a word, and thus can be seen as a token. A discrete prompt is a word sequence,
e.g., several item features, while a continuous prompt is a sequence of vectors, e.g., user and item
embeddings in this work. Key notations and concepts are given in Table 1. We use italic upper-case
to denote a sequence of tokens, e.g., S , and italic lower-case to indicate its composing units, e.g., s .
Meanwhile, a matrix is represented with bold upper-case, e.g., S, and a vector is denoted as bold
lower-case, e.g., s, no matter whether they carry subscript or superscript or not.

3.1 Transformer, Pre-trained Language Models, and Prompt Learning

To better demonstrate our work of PEPLER, we briefly go through Transformer and pre-trained
language models that this work is built upon. Transformer [55] consists of n identical layers. The
lth layer encodes the previous layer’s output Sl−1 into Sl ∈ R |S |×d , where l ∈ [1,n], |S | is the length
of the input token sequence, and d denotes the dimension of token representations/embeddings.
Each layer is composed of two sub-layers:multi-head self-attention (MHSA) and position-wise
feed-forward network (FFN). The latter is a two-layer FFN with the ReLU activation function.
It performs linear transformations on the MHSA’s output Ol ∈ R |S |×d and converts Ol into Sl :

Sl = ReLU(OlWl,1 + bl,1)Wl,2 + bl,2, (1)

whereWl,1 ∈ Rd×df f , bl,1 ∈ Rdf f ,Wl,2 ∈ Rdf f ×d , bl,2 ∈ Rd are weight parameters.

ACM Transactions on Information Systems, Vol. 41, No. 4, Article 103. Publication date: March 2023.
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Table 1. Key Notations and Concepts

Symbol Description

T training set
U set of users
I set of items
V set of words
F set of features
E set of explanations

U embeddings of users
I embeddings of items
u embedding of user u
i embedding of item i
c probability distribution over the vocabulary

W weight matrix
w, b weight vector
b weight scalar
M attention masking matrix
Θ model parameters

E word sequence of an explanation
d , df f , dh dimension of representation
m number of attention heads
n number of Transformer layers
z number of MLP hidden layers

ReLU(·) ReLU activation function
σ (·) sigmoid activation function
softmax(·) softmax function

The MHSA sub-layer aggregatesm attention heads, each of which is computed identically with

the scaled dot-product attention (e.g., the hth head in the lth layer Al,h ∈ R
|S |× d

m ). Formally, the
computation of this sub-layer is defined as follows:

Ol = [Al,1, . . . ,Al,m]W
O
l

Al,h = softmax �
�
Ql,hK

�
l,h√

d
+M�

�
Vl,h

Ql,h = Sl−1W
Q

l,h
,Kl,h = Sl−1W

K
l,h ,Vl,h = Sl−1W

V
l,h

M =
⎧⎪⎨⎪⎩
0, Allow to attend

−∞, Prevent from attending,

(2)

where [·, ·] represents the concatenation of matrices/vectors, softmax(·) denotes the softmax func-

tion,WO
l
∈ Rd×d andW

Q

l,h
,WK

l,h
,WV

l,h
∈ Rd× d

m are projectionmatrices to be learned, Sl−1 ∈ R |S |×d

is the (l − 1)-th layer’s output, andM ∈ R |S |× |S | is the attention masking matrix.
Each element inM controls whether a token in the sequence can attend to another. For example,

in bidirectional language models such as BERT [16], M is a zero matrix that allows all tokens in
the sequence to attend to each other. Owing to the bidirectionality nature, this type of model is
more suitable for natural language understanding tasks. In the case of natural language genera-
tion, future tokens would be exposed to bidirectional language models, making them incapable of
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Fig. 2. A comparison between left-to-right unidirectional attention masking (left) and bidirectional attention

masking (right).

predicting these tokens. As a comparison, left-to-right unidirectional language models, e.g.,
GPT [44], are particularly designed for natural language generation. Specifically, in these models,
the lower triangular part of M is set to 0 and the remaining part −∞, so as to allow each token to
attend to past tokens (including itself) but prevent it from attending to future tokens. A graphical
comparison between the two types of attention masking mechanism is shown in Figure 2.
With the two types of masking mechanisms, there are also two corresponding pre-training

objectives: cloze task, which is formally termed Masked Language Model (MLM) [16], for bidi-
rectional language models, and auto-regressive generation for unidirectional language models. Be-
cause our explanation generation task is closely related to the latter, we describe it in more detail.
Specifically, given the output vectors Sn = [sn,1, . . . , sn, |S |] resulting from the last layer of Trans-
former, we pass them through a linear layer to obtain the probability distribution over all tokens in
the dataset. With the token probability distribution, we then make the next-token prediction based
on preceding tokens, which can be achieved by minimizing the following negative log-likelihood:

L =
∑

t

− logp (st |st−k , . . . , st−1;ΘLM ), (3)

where st is the next token to be predicted, k denotes the size of the sliding context window, and
ΘLM represents all parameters in Transformer.
The pre-trained language models refer to those Transformers that have a great number of pa-

rameters (e.g., 1 billion) and were trained on a large volume of textual data (e.g., 100GB). As a
consequence, unlike small unpretrained Transformer [29], it is less likely to do customized modifi-
cations on them. In themeantime, re-training a large Transformermodel would be unaffordable for
most researchers who do not possess much computing resources. Fortunately, there is a promising
solution called prompt learning [37], where different natural language processing tasks are adapted
to a pre-trained language model so as to enable direct modeling of text. In this way, the knowledge
exhibited in the model could also be made good use of.
Taking sentiment classification as an example, conventionally the prediction made by a model

for a sample “I love this book” should be close to 1 (e.g., 0.97), indicating a positive sentiment.
In prompt learning, a template such as “X The book is Y” is constructed first. Then the input
placeholder X is filled in with a sample, e.g., “I love this book. The book is Y,” which is termed
prompt. With this, the model can be instructed to make a prediction at the output placeholder Y,
e.g., “great” or “boring.” At last, the prediction is mapped onto a sentiment, i.e., 1 or 0. Clearly,

there are two major steps that cost human effort. The first one is to manually design templates for

ACM Transactions on Information Systems, Vol. 41, No. 4, Article 103. Publication date: March 2023.
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Table 2. Prompt Learning for Typical Natural Language Processing Tasks [37]

Task Input (X) Template Output (Y)

Sentiment Classification I love this book. X The book is Y
great
boring

...

Text Summarization The Omicron ... X TL;DR: Y
COVID-19 ...
Pandemic ...

...

Machine Translation French: X English: Y
She tamed ...

Elle m'a apprivoisé.3 The flower ...
...

Explanation Generation

room location ...
X (Explain the The room ...

recommendation:) Y The breakfast ...
X1: user123abc X1 X2 (Explain the The location ...
X2: item456def recommendation:) Y ...

In the Template column, X and Y denote Input and Output, respectively. In our explanation generation task, the

template words “Explain the recommendation:” are removed.

different application scenarios and to find the one that best fits a target application. The second is
the answer mapping stage, where a number of answer words need to be prepared in advance.
But it does not have to be so sophisticated for natural language generation tasks, whose input

and output are both text per se. For example, the template for text summarization could simply
be “X TL;DR: Y,”4, and that for machine translation “French: X English: Y.” In a similar way, we
could also define the template for explanation generation as “X Explain the recommendation: Y.”
Although intuitively the template words may look useful, it was found that they could not always
guide pre-trained language models to perform the specified task (e.g., “summarize the table”) [34].
Moreover, our key focus is to automatically generate explanations for recommendations rather
than manually constructing templates. Therefore, we omit these template words, which gives us
“X Y” and “X1X2 Y.” A comparison of prompt learning between the aforementioned tasks is given in
Table 2. In the following, we describe our two proposed methods for explainable recommendation:
discrete prompt learning and continuous prompt learning.

3.2 Discrete Prompt Learning

Pre-trained language models, such as BERT [16] and GPT-2 [45], were trained on a large amount
of words, which are inherently in a different semantic space as ID tokens, but IDs (e.g., user ID)
are indispensable in recommender systems. To resolve this issue, a straightforward way is to find
some domain-specific words to represent the IDs, such as movie titles and item features (e.g., “bed-
room” for hotel recommendation). In this way, a pre-trained model can be prompted to generate
recommendation-specific text. In this work, we explore item features for recommendation expla-
nation generation and denote the proposed approach as PEPLER-D, where “D” stands for “discrete
prompt learning.” A graphical illustration of PEPLER-D is shown in Figure 3.
From the training set, we can obtain all the item features Fu (or Fi ) associated with a user u (or

an item i). Suppose Fu = {gym, bathroom, breakfast}, and Fi = {gym, breakfast, subway,Wi-Fi}.
For efficiency, we set the discrete prompt to a fixed size (e.g., 4 in this toy example), which is a

3It is an excerpt from a dialogue in a famous French novella The Little Prince. The complete dialogue is “Il y a une fleur. Je

crois qu'elle m'a apprivoisé,” meaning “There is a flower. I think that she has tamed me.”
4“TL;DR” stands for “Too Long; Did/Do not Read.”
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Fig. 3. Our proposed method PEPLER-D that utilizes item features as a discrete prompt for explanation

generation.

common strategy in recommender systems. Under this setting, we need to ensure that the discrete
prompt contains as many informative item features as possible, so as to allow the pre-trained
model to generate high-quality explanations. For each user-item pair (u, i ), the features in Fu ∩
Fi = {gym, breakfast} are more informative because they are related to both user u and item i .
However, when Fu ∩ Fi is small and does not reach the size of the discrete prompt, we also take
the other features in (Fu ∪ Fi )/(Fu ∩ Fi ) = {bathroom, subway,Wi-Fi} into consideration. Though
less informative, they are at least associated with either useru or item i . Then, the discrete prompt
for the user-item pair is defined as

Fu,i = [(Fu ∩ Fi ), (Fu ∪ Fi )/(Fu ∩ Fi )]. (4)

Because the prompt size in the example is fixed to 4, we only use [gym, breakfast, bathroom,
subway] in Fu,i for explanation generation and drop the other item features.

During the training stage, the input sequence to the pre-trained model can be represented as
S = [f1, . . . , f |Fu,i | , e1, . . . , e |Eu,i |], where f1, . . . , f |Fu,i | are the discrete prompt consisting of fea-

tures, e1, . . . , e |Eu,i | are the explanation’s word sequence, and 

Fu,i 

 and 

Eu,i 

 denote the number

of features and explanation words, respectively. Because all the tokens in sequence S are of the
same type, i.e., words, we can perform embedding look-up once for them all, which gives the
sequence’s token representation [f1, . . . , f|Fu,i | , e1, . . . , e|Eu,i |]. The input representation of the se-

quence to the model is the addition of the token representation, and the positional representation
[p1, . . . , p |S |] encodes the position of each token in the sequence. We denote the input representa-
tion as S0 = [s0,1, . . . , s0, |S |], where |S | is the length of the sequence.

After passing S0 through pre-trained Transformer, we obtain the sequence’s final representation
Sn = [sn,1, . . . , sn, |S |]. Then, we apply a linear layer to each token’s final representation to map it
onto a |V |-sized vector. As an example, sn,t becomes ct after passing through this layer:

ct = softmax(Wv sn,t + bv ), (5)

whereWv ∈ R |V |×d and bv ∈ R |V | are weight parameters, and softmax(·) is the softmax function.
The vector ct represents the probability distribution over the vocabulary V . For model learning,

ACM Transactions on Information Systems, Vol. 41, No. 4, Article 103. Publication date: March 2023.
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Fig. 4. Our proposed method PEPLER that treats user and item IDs as continuous prompts for explanation

generation.

we adopt negative log-likelihood (NLL) as the loss function and compute the mean of user-item
pairs in the training set:

LD =
1

|T |
∑

(u,i )∈T

1


Eu,i 



|Eu,i |∑

t=1

− log cet|Fu,i |+t , (6)

where the probability cett is offset by |Fu,i | positions because the explanation is placed at the end
of the sequence.

3.3 Continuous Prompt Learning

We have shown that it is feasible to use item features as a discrete prompt to a pre-trained model
for explanation generation. However, the conversion from IDs to words (i.e., features) may lose
some important information of IDs. Taking the identification role of IDs as an example, it is nearly
impossible to convert the features back into IDs. Meanwhile, prompts do not necessarily have to
be words or even readable. They can be vector representations, either produced by other models
or randomly initialized. This type of human-incomprehensible prompt is formally termed contin-

uous/soft prompt. Thus, ID vectors could also be directly used as continuous prompts to generate
recommendation explanations. Next, we show how to encode the two types of ID u and i into
vector representations.

Conceptually, the input sequence can be represented as S = [u, i, e1, . . . , e |Eu,i |], as shown in

Figure 4. Intuitively, one may regard the IDs as special word tokens and add them to the pre-
trained model’s vocabulary V . However, there could be millions or even billions of users and
items in recommender systems (e.g., in e-commerce). When generating explanations, predicting a
word out of the huge amount of IDs would be time-consuming. Therefore, we do not add the IDs
toV but instead treat them as two additional types of tokens. Specifically, we prepare two sets of
token embeddings: U ∈ R |U |×d and I ∈ R |I |×d , where |U | and |I | represent the number of users
and items in a dataset, respectively. Then, a user u’s vector representation can be retrieved via

u = U�g(u), (7)
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where g(u) ∈ {0, 1} |U | denotes a one-hot vector, whose non-zero element corresponds to the
position that user u’s vector locates in U. In a similar way, we can obtain i from I for item
i . Notice that the embeddings U and I are randomly initialized but will be updated by back-
propagation during the training process. Then, the sequence’s token representation can be denoted
as [u, i, e1, . . . , e|Eu,i |].
The follow-up steps are identical to discrete prompt learning in Section 3.2: perform addition for

token representation and positional representation to obtain S0 = [s0,1, . . . , s0, |S |], pass S0 through
pre-trained Transformer for producing Sn = [sn,1, . . . , sn, |S |], apply a linear layer with softmax
function to each token’s final representation sn,t for next-word prediction, and employ the NLL
loss function on the word probability distribution ct :

LC =
1

|T |
∑

(u,i )∈T

1


Eu,i 



|Eu,i |∑

t=1

− log cet2+t , (8)

where cett is offset by two positions (i.e., user ID and item ID), which are slightly different multiple
positions of features in Equation (6).

3.4 Explanation Generation

During the inference stage, our goal is to instruct the model to generate a word sequence E∗, which
has the maximum log-likelihood, as explanation:

E∗ = argmax
E∈Ê

|E |∑

t

log cet|prompt |+t , (9)

where Ê is the set of all generated word sequences, and 

prompt 

 denotes the prompt’s length, i.e.,
2 for [u, i] and |Fu,i | for Fu,i .
There are various methods to find the sequence E∗, such as greedy decoding and beam search.

Since it is not our key focus to develop searching algorithms, we adopt the simple greedy decoding,
which treats the word with the largest probability as the prediction at each step. More precisely,
along with the prompt u and i (or Fu,i ), we first feed the model a special beginning token <bos>.
From the resultingword probability distribution c<bos> , we can select the highest-probabilityword
as prediction. Then, we concatenate this predicted word at the end of the sequence to form a new
input sequence for generating another word. We do this repeatedly until the model produces a
special end-of-sequence token <eos> or the generated explanation reaches a pre-defined length.

3.5 Sequential Tuning Strategy

In the case of discrete prompt learning, the prompts are features, which are of the same type as
words that pre-trained language models were trained on. As a result, no additional model parame-
ters are introduced, so we can simply optimize Equation (6) with the following objective function:

J = min
ΘLM

LD , (10)

where ΘLM denotes all the trainable parameters in the pre-trained language model.
However, in the case of continuous prompt learning, we introduced additional prompt param-

eters, i.e., two sets of embeddings for users and items. Therefore, the model parameters Θ to be
updated include pre-trained language model parameters ΘLM and prompt parameters ΘP . Obvi-
ously, the two types of parameters are in different learning stages, since the former are already
trained from a large amount of textual data, while the latter are randomly initialized. For example,
it is easy to distinguish one word from another with the embeddings from ΘLM , e.g., “hotel” and
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Table 3. Different Strategies for Tuning Pre-trained Language Models [37]

Strategy LM Para. Prompt Para. Typical Example

Promptless Fine-tuning Tuned N/A BERT [16]
Tuning-free Prompting Frozen None GPT-3 [4]
Fixed-LM Prompt Tuning Frozen Tuned Prefix-Tuning [34]
Fixed-prompt LM Tuning Tuned None Our PEPLER-D
Prompt+LM Fine-tuning Tuned Tuned P-Tuning [39]

Sequential Tuning: Fixed-LM Prompt
Tuned Tuned Twice Our PEPLER

Tuning→ Prompt+LM Fine-tuning

“Para.” stands for parameters. “N/A” means that there is no prompt, while “None” indicates that the prompts do not

have additional parameters.

“room,” but it may not be that distinguishable for two users with random embeddings from ΘP ,
such as “Tom” and “Jerry.” Also, a previous study [2] shows that randomly initialized parameters
could only be updated in a small neighborhood with stochastic gradient descent (SGD). Hence,
how to effectively bridge the two types of parameters becomes a critical issue.
To tackle this problem, we propose a sequential tuning strategy. Specifically, we first freeze the

language model parameters ΘLM and optimize the prompt parameters ΘP with Equation (8). Once
ΘP has converged, we fine-tune all the model parameters (i.e., ΘLM and ΘP ) with Equation (8)
again. This two-step procedure can be demonstrated with the following formula:

J = min
ΘP

LC
followed by
−−−−−−−−→ J = min

Θ={ΘLM ,ΘP }
LC . (11)

In fact, our sequential tuning strategy is a combination of two typical tuning strategies [37]:
Fixed-LM Prompt Tuning and Prompt+LM Fine-tuning (see Table 3). In Section 5.2, we conduct an
effect comparison to prove that this strategy is indeedmore useful than either of them.We omit the
other three strategies, i.e., Promptless Fine-tuning, Tuning-free Prompting, and Fixed-prompt LM
Tuning. The first is usually used in the pre-training plus fine-tuning paradigm, and the second is
particularly suitable for the zero-shot learning scenario, so they are not applicable to our methods.
The last one is adopted in our PEPLER-D.

3.6 Recommendation as Regularization

To bridge the aforementioned gap between pre-trained language models and continuous prompts,
we come up with another approach: regularizing the learning of explanation generation via an ad-
ditional rating prediction task (see Figure 5). The intuition behind this idea is that each rating score
ru,i was assigned by a user u to an item i , so it to some extent captures the relation between this
user-item pair. Hence, the ratings could be used to better learn the continuous prompts. Moreover,
recent studies find out that the two tasks of recommendation and an additional task (such as fea-
ture ranking [11], explanation ranking [30], and review generation [49]) could help the learning of
each other. Inspired by this, we propose to leverage the recommendation task to help the learning
of explanation generation. Since there is a great number of off-the-shelf recommendation models
and our key focus is on explanation generation, we adopt and test two typical recommendation
models: MF [41] and MLP [32].

Specifically, for MF the rating score r̂u,i is resulted from the dot product of the target user and
item’s representations u and i:

r̂u,i = u�i. (12)

Because the two types of representations are already available, this operation does not introduce
additional model parameters. In the case of MLP with z hidden layers, the rating score is computed
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Fig. 5. Our proposed method PEPLER, which regards the rating prediction task as a type of regularization

for better learning of the explanation generation task.

as follows:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a0 = σ (W0[u, i] + b0)
a1 = σ (W1a0 + b1)
. . . . . . and r̂u,i = w�az + b,
az = σ (Wzaz−1 + bz )

(13)

where W0 ∈ Rdh×2d , b0 ∈ Rdh ,W∗ ∈ Rdh×dh , b∗ ∈ Rdh ,w ∈ Rdh ,b ∈ R are additional parameters
for the recommendation task, and σ (·) denotes the sigmoid function. For both MF and MLP, mean
square error is adopted as the loss function:

LR =
1

|T |
∑

(u,i )∈T
(ru,i − r̂u,i )2, (14)

where ru,i is the ground-truth rating that user u assigned to item i .
Then, the two tasks can be integrated into a multi-task learning framework with the following

objective function:

J = min
Θ={ΘLM ,ΘP ,ΘREC }

(LC + λLR ), (15)

where the model parametersΘ consist of pre-trained language model parametersΘLM , continuous
prompt parameters ΘP (i.e., user and item representations), and recommendation model parame-
tersΘREC (∅ forMF). Since the recommendation task is used as a regularization term, we can adjust
the regularization coefficient λ to control the learning of the explanation generation task.

4 EXPERIMENTAL SETUP

4.1 Datasets

For experimentation, we adopt three publicly available explainable recommendation datasets and
their data splits [27]. During the splitting process, each dataset is randomly divided into training,
validation, and testing sets with ratio 8:1:1 for five times, and the training set holds at least one
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Table 4. Statistics of the Three Datasets

TripAdvisor Amazon Yelp

#users 9,765 7,506 27,147
#items 6,280 7,360 20,266
#records 320,023 441,783 1,293,247
#features 5,069 5,399 7,340
#records/user 32.77 58.86 47.64
#records/item 50.96 60.02 63.81
#words/explanation 13.01 14.14 12.32

record for each user and each item. The three datasets are from TripAdvisor5 (hotel), Amazon6

(movies & TV), and Yelp7 (restaurant), respectively. Each record in the datasets is composed of
a user ID, an item ID, a rating in the scale of 1 to 5, an explanation, and an item feature. The
explanations are sentences extracted from user reviews. Each explanation contains at least one
item feature, such as “bedroom” and “breakfast,” which ensures the explanation quality. Statistics
of the datasets are shown in Table 4. We can see that Yelp is much larger than the other two in
terms of size, making it closer to the real-world situation where there are millions of users and
items.

4.2 Evaluation Metrics

To evaluate explanation performance, we measure the generated explanations from two main per-
spectives: text quality and explainability. For the former, we adopt BLEU [43] in machine transla-
tion andROUGE [36] in text summarization, and report BLEU-1 and BLEU-4, and Precision, Recall,
and F1 of ROUGE-1 and ROUGE-2. Notice that BLEU is a precision-oriented metric, while ROUGE
is a recall-oriented metric. Though being widely used, BLUE and ROUGE are not flawless. For ex-
ample, it is difficult for them to detect the problem of identical sentences; i.e., many explanations
for different user-item pairs are exactly the same for some methods, as shown in our experiments.
Treating these identical sentences as explanations is less appropriate, because they are less likely
to well explain the special property of different recommendations. To quantitatively measure this,
we adopt USR, which computes the Unique Sentence Ratio of generated explanations [27]:

USR =
|E |
N

, (16)

where E represents the set of unique sentences generated by a model, and N is the total number
of testing samples. Note that E only holds one of the exactly matched explanations.
Moreover, text quality is not equal to explainbility. In the case of explainable recommendation,

users may value more an explanation that justifies a recommendation’s advantage on certain item
features [6, 27]. To this end, we adopt the other three metrics proposed in [27]: FeatureMatching

Ratio (FMR), Feature Coverage Ratio (FCR), and Feature Diversity (DIV).
FMR measures whether a generated explanation contains the feature in the ground-truth text.

Formally, it is defined as follows:

FMR =
1

N

∑

u,i

δ ( fu,i ∈ Êu,i ), (17)

5https://www.tripadvisor.com.
6http://jmcauley.ucsd.edu/data/amazon.
7https://www.yelp.com/dataset/challenge.
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where Êu,i is the generated explanation for the user-item pair, fu,i is the feature in the ground
truth, and δ (x ) = 1 when x is true, or δ (x ) = 0 otherwise.
FCR is computed as the number of distinct features contained in all the generated explanations,

divided by the total number of features in the whole dataset:

FCR =
Nд

|F | , (18)

where F is the collection of unique features in ground-truth explanations, and Nд denotes the
amount of distinct features that appeared in the generated explanations.
DIV measures the diversity of features between all generated explanations. The intuition is that

explanations are expected to discuss different features in accordancewith the given user-item pairs.
Hence, it computes the intersection of features between any two generated explanations:

DIV =
2

N × (N − 1)
∑

u,u′,i,i′




F̂u,i ∩ F̂u′,i′



, (19)

where F̂u,i and F̂u′,i′ represent two feature sets contained in two generated explanations, and |·|
denotes the number of features in the resulting set.
For DIV, the lower, the better, while it is opposite for the rest of the metrics.

4.3 Compared Methods

We introduce four state-of-the-art baselines, which are based on representative language models,
including BERT [16], Transformer [55], GRU [15], and LSTM [23], respectively. For these baselines,
their whole model parameters are trained all together. We divide them into two groups, depending
on whether IDs are directly used or not.
We first compare our PEPLER-Dwith the followingmethod, because both of themdo not directly

make use of IDs but instead map IDs onto item features.

• Aspect Conditional Masked Language Model (ACMLM) [42] is a fine-tuned BERT [16],
where an attention layer is introduced to encode the features for both the user and the item.
By predicting masked tokens, this model can produce diverse sentences.

Then, we make a comparison with the following three methods for our PEPLER, since they all
leverage only user and item IDs to generate explanations.

• Neural Rating and Tips generation (NRT) [32] can predict a rating and generate a tip
simultaneously based on user and item IDs. The generation component is a GRU [15]. We
take the explanations in the datasets as tips. Moreover, we find that the model’s problem of
generating identical sentences (as reported in [27]) is caused by the L2 regularization in its
original design. For fair comparison, we removed it.
• Attribute-to-Sequence (Att2Seq) [17] is a review generation approach with a two-layer
LSTM [23]. We take the explanations as reviews. This model has an attention module, but
we find that it makes the generated content unreadable. To be fair, we removed it as well.
• PErsonalized Transformer for Explainable Recommendation (PETER) [29] is a small
unpretrained Transformer [55] particularly designed for explanation generation. To bridge
the gap between IDs and words, an additional task named “context prediction” is introduced.
This model can also make recommendations.

We conducted a user survey in NETE [26, 27] and showed that the explanations generated by
NETE were perceived useful by participants. Moreover, the explanation quality of PETER [29] is
much better than that of NETE on the same automatic evaluation metrics. Hence, as long as the
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explanations produced by our new approach in this work are of even better quality than PETER
on the same evaluation metrics, they shall be useful to real users as well. This is evidenced by [57]
users’ perception toward machine-generated explanations being highly correlated with the factors
of relevance, repetition, and feature appearance, which correspond to BLEU/ROUGE, USR, and
FMR in this work.

4.4 Implementation Details

We train each model on the training set, tune the hyper-parameters on the validation set, and
report the performance on the testing set. The results are averaged on the five data splits. We
adopt the code of ACMLM and implement the other baselines (i.e., NRT, Att2Seq, and PETER) by
ourselves. For our models PEPLER and PEPLER-D, we implement them in Python8 with PyTorch9

and load pre-trained GPT-2 [45] from huggingface10 as their backbone. GPT-2 uses Byte Pair

Encoding (BPE) [46] for vocabulary construction. This technique could effectively mitigate the
Out-of-Vocabulary (OOV) problem by encoding rare words into multiple sub-word units. For
example, the word “restaurant” is encoded into three sub-words “rest,” “aur,” and “ant,” while the
word “room” is still “room.” In total, there are 50,257 BPE tokens in GPT-2. For fair comparison,
we apply BPE to all the models and set the length of explanations to 20 BPE tokens. For our model
PEPLER-D, the number of input features is also set to 20 BPE tokens. We reuse the other default
settings of the baselines.
The size of embeddings/representations d in GPT-2 is 768. We optimize our models PEPLER

and PEPLER-D with AdamW [40] and set batch size to 128. The learning rate is set to 0.001 for
PEPLER and 0.0001 for PEPLER-D. At each epoch, we save the model if it achieves the lowest loss
on the validation set. When the loss does not decrease for five times, we stop training and load
the saved model for prediction. In the case of recommendation as regularization in PEPLER, the
number of hidden layers z in MLP is set to 2, and the dimension of hidden layers dh 400. We search
the regularization coefficient λ from [10−5, 10−4, . . . , 103].

5 RESULTS AND ANALYSIS

In this section, we first quantitatively compare the performance of different explanation methods
with automatic metrics. We then further study the effect of our proposed two training strategies.
Next, we qualitatively examine two explanation samples as generated by all the methods. After
that, we visualize our method’s attention weights to demonstrate that IDs can indeed be fused
into the pre-trained model. At last, we study the effect of model size on explanation generation
performance.

5.1 Quantitative Analysis on Explanations

The performance comparison between different explanation generation methods is shown in
Table 5. These methods are divided into two groups. We first examine those that map IDs onto
item features, i.e., ACMLM and PEPLER-D. Our PEPLER-D consistently and significantly outper-
forms ACMLM on the three datasets in terms of text quality measured by BLEU and ROUGE. This
demonstrates its effectiveness in generating high-quality sentences that are semantically close
to the ground-truth text. Also, we notice that the performance gap between our PEPLER-D and
ACMLM (a fine-tuned BERT) is extremely large, because the latter’s generation is achieved by pre-
dicting masked tokens, which is quite different from conventional autoregressive generation. This

8https://www.python.org.
9https://pytorch.org.
10https://huggingface.co/gpt2.
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Table 5. Performance Comparison of Explanation Generation Methods in Terms of Explainability and

Text Quality on Three Datasets

Explainability Text Quality

FMR↑ FCR↑ DIV↓ USR↑ B1↑ B4↑ R1-P↑ R1-R↑ R1-F↑ R2-P↑ R2-R↑ R2-F↑
Yelp

ACMLM 0.05 0.31 0.95 0.95 7.01 0.24 7.89 7.54 6.82 0.44 0.48 0.39
PEPLER-D 0.05 0.24 1.53 0.13 9.17** 0.40** 15.67** 10.47** 11.73** 1.09** 0.78** 0.83**

NRT 0.06 0.12 1.67 0.20 10.92 0.60 16.73 11.91 12.89 1.63 1.21 1.26
Att2Seq 0.05 0.05 2.25 0.05 10.25 0.54 17.13 11.44 12.72 1.49 1.13 1.16
PETER 0.08 0.15 1.62 0.15 10.74 0.63 16.18 11.90 12.63 1.60 1.32 1.28
PEPLER 0.08 0.30** 1.52 0.35** 11.23 0.73 17.51 12.55 13.53 1.86* 1.42 1.46
PEPLER (MLP) 0.08 0.24 1.58 0.25 10.95 0.68 17.52 12.31 13.36 1.83 1.34 1.40
PEPLER (MF) 0.08 0.27 1.66 0.30 11.70 0.75** 17.52 12.85** 13.72** 1.86* 1.45* 1.48**

Amazon

ACMLM 0.10 0.31 2.07 0.96 9.52 0.22 11.65 10.39 9.69 0.71 0.81 0.64
PEPLER-D 0.08 0.19 1.85* 0.15 10.94** 0.49** 16.31** 11.80** 12.80** 1.43** 1.13** 1.16**

NRT 0.10 0.04 2.71 0.09 12.06 0.69 17.17 13.15 13.83 1.94 1.68 1.64
Att2Seq 0.09 0.04 2.64 0.05 12.07 0.73 18.35 12.86 14.14 2.01 1.56 1.61
PETER 0.09 0.09 2.16 0.20 11.75 0.89 16.51 13.10 13.55 1.96 1.76 1.68
PEPLER 0.11 0.27 2.06 0.38 13.19 1.05 18.51 14.16 14.87 2.36* 1.88 1.91
PEPLER (MLP) 0.11 0.34** 2.10 0.48** 13.59** 1.08** 17.94 14.50* 14.82 2.29 1.96* 1.93**
PEPLER (MF) 0.12* 0.24 2.18 0.35 13.46 1.02 18.30 14.37 14.92* 2.29 1.92 1.90

TripAdvisor

ACMLM 0.07 0.41 0.78 0.94 3.45 0.02 4.86 3.82 3.72 0.18 0.20 0.16
PEPLER-D 0.05 0.22 2.69 0.08 14.61** 0.87** 18.07** 14.83** 15.32** 1.76** 1.66** 1.58**

NRT 0.05 0.02 6.07 0.00 13.76 0.80 19.01 14.57 15.58 2.10 1.59 1.68
Att2Seq 0.06 0.05 4.74 0.02 15.20 0.96 18.74 16.42 16.38 2.42 2.32 2.19
PETER 0.07 0.09 3.62 0.05 15.13 1.00 18.30 16.15 16.00 2.24 2.23 2.06
PEPLER 0.07 0.21** 2.71** 0.24** 15.49 1.09 19.48 15.67 16.24 2.48 2.21 2.16
PEPLER (MLP) 0.07 0.10 3.33 0.08 15.70 1.04 18.87 16.21 16.24 2.35 2.26 2.12
PEPLER (MF) 0.07 0.21** 2.89 0.21 16.02 1.15* 19.82 16.31 16.69 2.53 2.32 2.22

The methods are divided into two groups according to whether IDs are directly used or not. PEPLER employs the

default sequential tuning strategy, while the other two variants use recommendation as regularization with MLP and

MF, respectively. B1 and B4 stand for BLEU-1 and BLEU-4. R1-P, R1-R, R1-F, R2-P, R2-R, and R2-F denote Precision,

Recall, and F1 of ROUGE-1 and ROUGE-2. BLEU and ROUGE are percentage values (% symbol omitted for table

clarity), while the others are absolute values. The best-performing values are boldfaced, and ** and * indicate the

statistical significance over the best baseline for p < 0.01 and p < 0.05 via Student’s t-test, respectively.

may explain why ACMLM produces diverse sentences (high USR) and features (low DIV). How-
ever, they could be less useful to real users and might even hurt user experience, since their text
quality cannot be guaranteed (see the generated examples in Table 6).
Next, we analyze the results of models that directly leverage user and item IDs for explanation

generation, i.e., NRT, Att2Seq, PETER, and PEPLER. Aswe can see, the text quality of thesemethods
is largely improved compared with those that convert IDs into item features (i.e., ACMLM and
PEPLER-D), because the conversion processmay lose certain information of IDs, e.g., identification.
Among the four ID-based methods, NRT and Att2Seq generally achieve the same performance
on all metrics, but neither of them are as comparable as PETER and PEPLER. Because NRT and
Att2Seq are based on recurrent neural networks (i.e., GRU or LSTM), they may suffer from the
notorious long-term dependency problem, and thus their sequence modeling capability could be
impaired. As a comparison, PETER and PEPLER do not have such an issue, since in Transformer
future tokens at any time step are given access to all the past tokens. Moreover, given the fact that
PETER is a small unpretrained Transformer, it does not outperform PEPLER that is pre-trained on
large textual corpora and hence possesses rich linguistic knowledge. In the meantime, it proves
the rationale of our continuous prompt learning approach that could effectively make use of such
knowledge for generating better explanations.
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We then make a comparison for our two proposed training strategies. The default PEPLER
employs sequential tuning, while the other two variants utilize recommendation as regularization
with MLP and MF, respectively, and therefore are denoted as PEPLER (MLP) and PEPLER (MF).
Compared with PEPLER, PEPLER (MF) greatly improves the text quality most of the time. In the
meantime, PEPLER (MLP) maintains comparable text quality to PEPLER but often cannot keep up
explainability, e.g., the decrease on FCR and USR. This can be explained by the difference between
MF andMLP in terms of additional parameters for the recommendation task. ForMF, the prediction
is simply made by the dot product between user and item embeddings, in which case no additional
parameters are involved. In contrast, MLP must go through a stack of hidden layers that consist
of many parameters, which might help to predict ratings but adversely affect the learning of the
explanation task. Since the recommendation task requires extra rating data for training, which
may not always be available in other natural language generation tasks (e.g., dialogue systems),
we set sequential tuning as the default training strategy for PEPLER. Depending on the specific
application, one may consider PEPLER (MF).
From the experimental results, we also observe two special cases on the TripAdvisor dataset,

where Att2Seq obtains the largest ROUGE scores. The reasons are as follows. First, we fixed its
generation issue (see the discussion in Section 4.3), which makes it a competitive baseline. Second,
the dataset is quite small and thus the training samples are limited, so our largemodel may underfit.
This is not a problem in real-world applications where there are abundant training samples (e.g.,
in e-commerce), since our model already outperformed state-of-the-art baselines on the largest
dataset Yelp, which contains approximately 1.3 million samples.

5.2 Effect of Sequential Tuning

To validate the superiority of our proposed Sequential Tuning strategy, we compare it with its two
composite training strategies: Fixed-LM Prompt Tuning and Prompt+LM Fine-tuning [37]. The
results of Sequential Tuning (utilized in the default PEPLER) on the three datasets are presented
in Table 5. Given the consistent performance across different metrics, in Figure 6 we only show
BLEU-4 with varied learning rates on three datasets.
As can be seen, the highest BLEU-4 score is achieved by our Sequential Tuning strategy (purple),

when the learning rate is set to 10−3. This manifests its advantage in bridging the gap between
the randomly initialized continuous prompts and the pre-trained language model. In particular,
the pattern of our Sequential Tuning and that of Prompt+LM Fine-tuning (green) is quite similar,
because they both tune all the model parameters, including both prompts and the pre-trained
model. Obviously, the curve of our Sequential Tuning is on top of that of Prompt+LM Fine-tuning.
The difference is that the former’s prompts are already trained, which could help to reduce the
gap between prompts and the pre-trained model. This supports the rationale of our two-staged
Sequential Tuning strategy. Moreover, when the learning rate is large (i.e., 10−2), the performance
of both strategies goes down dramatically, nearly reaching 0, because large learning rates lead to
significant changes of parameters in the pre-trained model. Hence, smaller learning rates are more
appreciated to fine-tuning. In contrast, the performance of Fixed-LM Prompt Tuning (brown) is
relatively stable, regardless of the changing learning rates. However, it does not outperform the
other two strategies, because the model is frozen and only prompts can be tuned, and therefore it
could not be well adjusted to the target explanation task.

5.3 Effect of Recommendation as Regularization

In this work, we propose two training strategies to bridge continuous prompts and the pre-trained
model, including sequential tuning and recommendation as regularization. We analyze the latter
in more detail, because the former is already presented in the previous subsection.
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Fig. 6. A comparison of three tuning strategies for continuous prompt learning in terms of BLEU-4 with

varying learning rates on three datasets.

In Figure 7, we investigate how PEPLER (MF) and PEPLER (MLP) react to varying λ, the regular-
ization coefficient on the recommendation task. For better comparison, PETER is included since it
is the previous state of the art and can also perform recommendation. The accuracy of this task is
measured by root mean square error (RMSE), and a lower score indicates a better performance.
By comparing the first two sub-figures, we can clearly see that there is a tradeoff between expla-
nation text quality (evaluated by BLEU-4) and recommendation accuracy (measured by RMSE) for
PEPLER (MF). For example, when λ = 10−2, its explanation performance reaches an optimal, but
its recommendation performance is greatly deteriorated. It actually supports our design of this
training strategy that leverages the recommendation task to help the learning of explanation gen-
eration. As a comparison, PEPLER (MLP) is not so sensitive to varying λ. We also notice that there
is a huge gap between PEPLER (MF) and PEPLER (MLP) in terms of recommendation accuracy.
Owing to the linearity of MF, its representation ability could be largely limited [22] and thus could
not accurately estimate the ratings. But because of the simple dot product operation, the relation
between users and items encoded in ratings could in turn be easily propagated to better learn the
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Fig. 7. The effect of regularization coefficient λ on the recommendation task with MF or MLP for PEPLER

on the TripAdvisor dataset. For better comparison, the results of PETER are shown.

explanation task, i.e., higher BLEU-4 for PEPLER (MF). Since the purpose of PEPLER (MF) is not to
make recommendations, when deploying it for real-world applications, one can use the predictions
from another effective recommendation model, e.g., neural matrix factorization [22].
The last two sub-figures show a decline of explainability as measured by the Unique Sentence

Ratio (USR) and Feature Coverage Ratio (FCR) for both PEPLER (MF) and PEPLER (MLP),
with the increase of λ. It suggests that a smaller λ could lead to larger USR and FCR. However, this
pattern does not match that of text quality as measured by BLEU-4. When text quality cannot be
guaranteed, the explanations could be unreadable to users and thus may affect their experience.
In such cases, large explainability scores would be pointless. Therefore, we give priority to text
quality when tuning λ for both PEPLER (MF) and PEPLER (MLP).

5.4 Qualitative Case Study on Explanations

In Table 6, we present two examples generated by all the methods for hotel recommendations on
the TripAdvisor dataset. In the first case, the ground-truth explanation gives a positive comment
about the hotel’s swimming “pool.” Only two methods, i.e., ACMLM and our PEPLER, successfully
capture this key feature. However, ACMLM’s explanation is not even readable, because it is just
a bunch of unordered random words. These meaningless explanations are not very likely to be
useful to real users. As a comparison, the explanations generated by the other approaches are
all readable and fluent. This actually echoes their performances on BLEU and ROUGE, which
emphasize more text quality and readability. But BLEU and ROUGE are not perfect, because they
fail to detect the problem of identical explanations (see the same sentences generated by NRT or
Att2Seq for two different cases). This is why we also adopt some explainability metrics [27] that
particularly care about item features and sentence diversity. Moreover, Att2Seq tends to generate
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Table 6. Explanations on Two Different Cases as Generated by Different Methods on the

TripAdvisor Dataset

Ground truth the swimming pool is fantastic

ACMLM swimming pool swimming pools pool strip beach area
NRT the hotel is located in a great location

Att2Seq
the hotel is located in the heart of the city and the main shopping area is also
within walking distance

PETER the hotel is located in the heart of the city and the harbor
PEPLER-D the room was very nice and the bed was very comfortable
PEPLER the pool is amazing and the pool is very relaxing

Ground truth this is one of the finest hotels in all of Europe

ACMLM
swimming pool area pool ja ##cu ##zzi pool city area gym building pool area
spa gym pool area

NRT the hotel is located in a great location

Att2Seq
the hotel is located in the heart of the city and the main shopping area is also
within walking distance

PETER the hotel is in a great location
PEPLER-D the hotel is a short walk from the old town
PEPLER the hotel is located in the heart of the city and is very well maintained

Special tokens used to perform generation (i.e., <bos> and <eos>) are removed for the ease of readability. The boldfaced

words in the ground truth are the key features. Matched features in the generated explanations are also boldfaced.

long explanations, which may explain why it obtains good performance regarding ROUGE on
the TripAdvisor dataset (see Table 5), because ROUGE is a recall-oriented metric and favors long
sentences. The explanations generated by the other three approaches, i.e., PETER, PEPLER-D,
and PEPLER, are quite good, because they all adopt the Transformer model, which has strong
language modeling capability. Despite that, the explanations from our PEPLER are semantically
closer to the ground truth. Taking the second case as an example, the ground-truth explanation
evaluates the overall quality of the hotel (“one of the finest hotels”), but PETER and PEPLER-D
respectively talk about location (“great location”) and distance (“short walk”), while our PEPLER
comments about not only the hotel’s location (“located in the heart of city”) but also its quality
(“well maintained”). We attribute this to the effectiveness of our proposed continuous prompt
learning and the sequential tuning strategy. Moreover, we see that the expression of PEPLER’s
explanations is quite rich, which could be brought by the linguistic knowledge contained in the
pre-trained model, as it is already trained on large text corpora.

5.5 Attention Visualization

In our continuous prompt learning approach, we directly incorporate user and item IDs into
the pre-trained model for natural language explanation generation for recommendations. To see
whether the IDs are really fused into the model, we visualize its last attention layer before and
after training in Figure 8. In both sub-figures, the larger an attention weight, the lighter the cor-
responding cell. Before training, the ID representations are randomly initialized, but the model
is already trained on large textual corpora. This semantic gap makes the pre-trained model diffi-
cult to perform natural language generation based on IDs. From Figure 8(a), we can see that the
model cannot utilize both user and item IDs before training, resulting in an unreadable sequence
of multiple <bos>. But after training, the model is able to make use of the IDs and thus can gener-
ate a fluent and readable explanation, e.g., “the hotel is very well located and the rooms are very
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Fig. 8. Visualization of our PEPLER model’s last attention layer, before and after training. The larger the

attention weights, the lighter the cells.

Fig. 9. The effect of model size on text quality in terms of BLEU-4 on three datasets.

comfortable.” It confirms that the IDs can indeed be well fused into the model. We attribute this to
the effectiveness of our proposed sequential tuning approach.

5.6 Effect of Model Size

The pre-trained GPT-2 model [45] has four varying sizes, including Small, Medium, Large, and
XL. This work is based on the default 12-layered small model, while the others have 24, 36, and
48 layers, respectively. Here, we investigate whether larger models with more attention layers
could lead to better explanation generation performance. In Figure 9, we present their text quality
as measured by BLEU-4 on the three datasets, where the XL model is omitted because it is too
large and ran out of memory in every experimental trial. From the three sub-figures, we do not
observe an increasing trend with the increase of model size, and therefore cannot certify that a
larger model always leads to a better performance. We conjecture that large models might suffer
from the data-hungry problem and therefore may need more data to perform well. Nevertheless,
the small model consistently reaches a reasonably good performance on three datasets, while it
has fewer model parameters and thus takes less time to fine-tune. It actually supports our choice
of the default model.

6 CONCLUSION

In this work, we propose two prompt learning approaches to exploit the rich knowledge contained
in pre-trained language models for recommendation explanation generation. To bridge the gap
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between continuous prompts and pre-trained models, we come up with two effective learning
strategies. Extensive experiments demonstrate the effectiveness of our approaches in generating
high-quality explanations as measured by text quality and explainability metrics.
As future works, we are immensely interested in whether the generated explanations possess

bias or stereotype against certain groups of users and how to mitigate them. As reported in re-
cent studies [35, 47], pre-trained models may exhibit societal bias toward different demographics.
Moreover, since the biased generation was triggered by discrete prompts [47], we wonder whether
it is possible to design some other discrete prompts that can help us diagnose the behavior of pre-
trained models, which would certainly increase their interpretability. Besides explanation gener-
ation for recommender systems, we also plan to adopt our approaches to other applications of
personalized natural language generation, such as personalized question-answering systems and
personalized conversational agents. Moreover, it would also be interesting to incorporate item im-
ages into pre-trainedmodels to generate visual explanations for recommendations, since “a picture
is worth a thousand words.” Another meaningful extension is to adapt pre-trained models to cross-
lingual explanation generation, since international platforms, e.g., Amazon, may serve users who
speak different languages.
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