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Abstract

In holographic CFTs satisfying eigenstate thermalization, there is a regime where the

operator product expansion can be approximated by a random tensor network. The

geometry of the tensor network corresponds to a spatial slice in the holographic dual,

with the tensors discretizing the radial direction. In spherically symmetric states in any

dimension and more general states in 2d CFT, this leads to a holographic error-correcting

code, defined in terms of OPE data, that can be systematically corrected beyond the

random tensor approximation. The code is shown to be isometric for light operators

outside the horizon, and non-isometric inside, as expected from general arguments about

bulk reconstruction. The transition at the horizon occurs due to a subtle breakdown of

the Virasoro identity block approximation in states with a complex interior.
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1 Introduction

There is an intriguing similarity between tensor networks and emergent geometry in AdS/CFT

[1]. A quantum state constructed from a random tensor network has an entanglement struc-

ture dictated by the geometry of the network, and satisfies a discrete version of the Ryu-

Takayanagi formula [1–3]. There are arguments that a tensor network can be constructed

from the bulk theory in principle [4–8], and further connections have been developed in,

e.g, [9–20].

This is closely related to the idea that spacetime can be understood as a quantum error-

correcting code [2, 21–23]. A holographic code is a linear map W from the Hilbert space of

the bulk low-energy effective field theory to the physical Hilbert space of the dual CFT,

W : HEFT → HCFT , (1.1)
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that preserves some structure of the bulk theory. For example, W must preserve correlation

functions of simple operators, such as

〈φ(X1)φ(X2)〉EFT = 〈Φ(X1)Φ(X2)〉CFT , with Wφ|0〉EFT = Φ|0〉CFT , (1.2)

where φ is a local bulk field and Φ is the corresponding smeared CFT operator. A similar

condition applies to higher-point functions.

One way to satisfy these relations is if W †W = 1. A linear map satisfying this condition

is said to be an isometry, and this defines an isometric code. Near the AdS vacuum state,

the holographic code is isometric, because bulk operators can be pushed to the boundary

with a state-independent smearing kernel [24, 25]. However, if the φ operators are hidden

behind a horizon, then the code is expected to be non-isometric [21, 26]. This follows from

a simple counting argument: The physical Hilbert space relevant to a black hole has size

eS , with S = area
4 the Bekenstein-Hawking entropy, but the bulk EFT inside a black hole

can have a much larger Hilbert space. Thus truncating to the relevant parts of the Hilbert

spaces we have dim(HEFT) � dim(HCFT), and under this condition is is impossible for W

to be isometric, because the rank of W †W is much smaller than its dimension. Random

tensor networks exhibit similar behavior: The code is isometric outside the horizon and

non-isometric inside, if a ‘horizon’ is identified as a locally minimal surface in the tensor

network [3].

The correspondence between random tensor networks and AdS/CFT is, for the most part,

based on qubit models. In this paper we will study examples where there is a quantitative

correspondence to dynamical gravity. We construct (pseudo)random tensor networks, and

the corresponding holographic codes, directly from the dual CFT, in the context of the

AdS3/CFT2 correspondence and for spherically symmetric states in higher dimensions. These

tensor networks can be interpreted as discretizing the bulk radial direction. There are several

calculations that support this interpretation. First, the bond dimension of the tensor network

agrees with the bulk area at minimal surfaces (but not elsewhere). Second, the resulting

codes are isometric outside the horizon, with a transition to non-isometric behavior inside.

Third, the replicas built from coarse-grained tensor networks have the same structure as

multiboundary wormholes in the bulk.

We consider 3d gravity coupled to point particles, which is conjecturally dual to an

ensemble of 2d CFTs with random OPE coefficients [27]. One of our main conclusions is that

this model realizes and extends a proposal made in [28,29] for how the isometric transition is

encoded in the dual CFT (see also [21,30,31]). The starting point is that in the high-energy

regime, assuming the eigenstate thermalization hypothesis (ETH), probe operators behave

like a random map. If a probe operator O is dual to a particle outside the horizon, the

random map is approximately isometric M †M ≈ 1, where M is a finite-dimensional matrix
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built by truncating O near the semiclassical saddle (and rescaling). But if the probe is inside

the horizon, then the map is approximately co-isometric, MM † ≈ 1. The transition occurs

because particles behind the horizon have negative energy-at-infinity, and the energy controls

the effective dimensions and rank of the random map [28,29]. As we will review below, this

description applies to probes acting on spherically symmetric black holes in an arbitrary

number of dimensions.

A more elaborate construction that separates the random nature of black hole microstates

from the non-random infrared degrees of freedom is necessary to apply this idea to black

holes without spherical symmetry, as we will do here. In spherically symmetric states, it is

sufficient to treat the random tensors as acting within the physical CFT Hilbert space (due

to Birkhoff’s theorem, as discussed below). In asymmetric states, this does not work; the

random tensors must act in an auxiliary Hilbert space. Intuitively, the reason is that light

fields in the bulk can carry a leading-order fraction of the total energy, and one must treat the

light fields and microscopic degrees of freedom differently in the construction of the tensor

network — the light fields clearly cannot have random matrix elements, so the random tensor

bonds correspond only to the microscopic part. It is difficult to build the auxiliary Hilbert

space in general, but for a large-c CFT dual to 3d gravity plus massive point particles, the

only light field in the bulk is the boundary graviton. In this case the states of the auxiliary

Hilbert space are labeled by Virasoro representations. The result is a tensor network that

acts within the space of black hole microstates (i.e., heavy primaries), dressed by one final

tensor for each boundary component that incorporates the light fields.

The transition in the isometric property at the horizon agrees with general expectations

from bulk reconstruction and random tensor networks, which typically deal with small excita-

tions of a given bulk geometry. However, we can go beyond this picture because our starting

point is an exact CFT formula for the quantum state, which only reduces to a tensor network

near a semiclassical saddle. To illustrate the advantages of the exact formula, we consider the

bulk reconstruction of heavy, backreacting operators in 2d CFT. We demonstrate that heavy

operators can act isometrically even when they are hidden behind a horizon, and calculate

the effective ‘non-perturbative horizon’ defined as the locus where a heavy operator makes

the transition to a co-isometric code. This quantifies a sense in which an observer who is

allowed to act with heavy operators can easily reconstruct certain operators in a black hole

interior.

The results on the isometric transition can also be phrased in terms of identity dominance

in the conformal block expansion on the boundary. Correlation functions of point particles

in 3d gravity are calculated by Virasoro identity conformal blocks [32, 33]. That is, gravity

calculations are reproduced by terms in the OPE that come from the identity fusion rule,

O†O ≈ 〈O†O〉1 + (Virasoro descendants) . (1.3)
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This resembles the isometry condition for the holographic code, W †W ≈ 1. We will show that

in our setup they are, in fact, the same: The code is isometric if and only if probe operators

satisfy (1.3) inside arbitrary superpositions of black hole states with a given mass. When the

particle dual to O is behind the horizon, the Virasoro identity block approximation breaks

down due to a counting argument similar to the one above. (A similar breakdown bounds the

regime of validity of any bootstrap data extracted by Tauberian methods.) The transition

occurs as the dual particle in the bulk is moved across the minimal surface. When the

horizon is not spherically symmetric, this translates into a nontrivial property of hyperbolic

2-manifolds, which we prove in section 4.

Even if the operator is behind the horizon, the expectation value of (1.3) still holds in

simple states. This is a CFT realization of bulk reconstruction from non-isometric codes, as

anticipated from bulk and information-theoretic arguments in [34], and it is why the Virasoro

identity block approximation can be used to calculate correlation functions whether or not

the operators are behind a horizon. For large black holes, the approximation is only required

to breakdown for very complex states in the black hole interior. However, the breakdown

becomes especially severe near a spacetime singularity; see the discussion section for what

this means in terms of the Euclidean path integral.

The tensor networks that we construct only discretize the radial direction in the bulk,

and only into a finite set of tensor nodes. A very limited ‘spatial direction’ can be studied

in this model by constructing spatial wormholes as 2d CFT tensor networks: Each bound-

ary of the wormholes has a boundary node in the tensor network. In CFT language, this

corresponds to creating states by inserting operators on higher genus surfaces. This is not

a true discretization of the boundary, but it does allow one to consider the entanglement of

boundary subregions in terms of the CFT tensor network, so it is a step in this direction.

It is an interesting open question how to construct CFT tensor networks that resolve the

spatial directions or allow for a continuum limit of the network.

Section 2 studies probes of spherically symmetric states in any number of dimensions.

Our main new results are described in section 3 — which can be read independently as a

technical overview of the paper — with the supporting gravity calculations on the isometric

property given in sections 4 and 5. In the discussion section we comment on various open

directions, including black hole singularities, finer-grained tensor networks, and corrections

to the random tensor approximation required by crossing symmetry.
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Figure 1: The spatial geometry of a pure-state black hole in AdS3 and the cor-
responding pseudorandom tensor network. The tensors, which are defined in terms
of OPE coefficients (circles) and Virasoro OPE blocks (semicircles), discretize the
radial direction in the bulk.

1.1 An example

To illustrate the main ideas, let us consider a pure state in 2d CFT created by the insertion

of scalar primary operators inside the unit disk:

|Ψ〉 = O(x)Oim(xm)Oim−1(xm−1) · · · Oi2(x2)Oi1(x1)|0〉 (1.4)

Suppose the first m operators are dual to heavy particles, near to but below the black hole

threshold.1 The final operator, O, is special: it has weight hO with 1 � hO � c
24 so it is

dual to a light probe particle.

Under these conditions, the state created on the unit circle in radial quantization is dual

to a black hole. The t = 0 spatial geometry and the corresponding tensor network are shown

in figure 1. The tensor network is not the exact state, but a truncated version with the sum

over internal weights in the OPE limited to states near the semiclassical saddle in 〈Ψ|Ψ〉; the

tensor network state |Ψ〉∗ is dual to a fixed-area state in the bulk [4, 5]. There is a precise

formula for each node in the network (see section 3), up to an undetermined psuedorandom

tensor with zero mean and unit variance, and calculations done with the tensor network

match quantitatively to the bulk. The internal bonds are labeled by primaries, and the

red tensors are finite-dimensional, with entries proportional to the primary OPE coefficients

1Specifically, with weights hik ∈ ( c
32
, c
24

) (to avoid complications from multi-twist operators) and in posi-
tions such that at the saddlepoint, all internal weights in the comb OPE are above the black hole threshold.
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cpqr. The final tensor on the right is a Virasoro OPE block that maps Hprimaries → HCFT by

dressing the primary state with descendants.

Each extremal surface in the bulk has a corresponding internal line in the network, with

bond dimension eS(E∗i ), where S(E∗i ) is the Cardy entropy at the primary weight that appears

in the OPE at the saddlepoint (and E = 2h). For each of these bonds, S(E∗i ) = 1
4Area. Due

to the light probe there is also an extra internal line in the network whose entropy does not

correspond to any bulk area.

In this context, the holographic codeW maps the labels on the operators, {i1, x1; i2, x2; . . . },
into the Hilbert space of the dual CFT. Since this map passes through the node correspond-

ing to the probe insertion O, the code can only be isometric if each tensor, viewed as a linear

map from left to right in the figure, is isometric. In particular for W to be isometric, the

tensor dual to the probe operator O must act isometrically. Since this is a random map, it

is approximately isometric or co-isometric depending on whether the saddlepoint entropies

increase or decrease at this node. We will match this behavior to the bulk by showing that

O acts isometrically when the dual probe particle is outside the extremal surface, and co-

isometrically when it is inside. This black hole is not spherically symmetric; the extremal

surface is a geodesic in the 2d hyperbolic metric on the unit disk with conical defects at the

operator insertions, and the agreement holds everywhere along this curve.

In terms of the Virasoro identity block approximation, the statement is as follows: If the

primary weights at the saddle satisfy Em < Em−1 — implying that the code is non-isometric

— then there exist superpositions of the form |a〉 =
∑
{ik} ai1···inOin(xn) · · · Oi1(x1)|0〉, which

have the same bulk geometry as |Ψ〉 outside the outermost horizon, such that the probe

correlation function 〈a|O(x)†O(x)|a〉 differs at leading order from the identity approximation.

In fact, there must exist such states that are annihilated by O(x) to leading order, because the

operator O†O (viewed as a finite-dimensional matrix acting on states near the semiclassical

saddle) has rank less than its dimension. If we assume the CFT has a large number of

flavors, so the heavy operators are labeled by i = 1 . . . Nf with Nf > eS , then these |a〉
states can (in principle) be found by fixing the operator locations and taking a superposition

over flavors (similar to [35]). Otherwise, we can build superpositions with a large number of

heavy operators inserted far behind the horizon (i.e., near the origin in CFT language). The

exact details of the states that violate the identity approximation cannot be found without

knowing the precise OPE coefficients in the CFT, but the counting argument shows that

they must exist.

2 Spherically symmetric states

In this section we consider geodesic probes of spherically symmetric black holes in AdSd+1/CFTd,

for any d ≥ 2. This is largely a review of results described in [28,29,31], rephrased in the lan-

7



guage of random tensor networks and for pure states rather than eternal black holes (which

can be treated similarly). For concreteness we will consider pure state black holes created

by a thin shell of matter, but the discussion also applies to other types of matter, such as

end-of-the-world branes.

2.1 The probe OPE as a random tensor network

Let V be a CFT operator that creates a spherically symmetric thin shell of matter, and

|S〉 = V |0〉 the non-normalizable CFT state at the shell insertion. These states and their

holographic duals are studied in detail in [36–38]. Evolving in Euclidean time prepares a

normalizable state, e−τ0H |S〉. We assume the mass of the shell is large enough so that the

shell is behind the horizon at t = 0. Now let us act on this state with additional probe

operators,

|Ψ〉 = Oim(−τm) · · · Oi2(−τ2)Oi1(−τ1)e−τ0H |S〉 , (2.1)

with the operators ordered in Euclidean time,

τ0 > τ1 > τ2 > · · · > τm > 0 . (2.2)

The Oi are scalar primary operators, with i a flavor index, and scaling dimensions satisfying

1 � ∆i � N2. These are dual to massive probe particles in the bulk, which travel on

geodesics. For example, the Euclidean geometry dual to 〈Ψ|Ψ〉 for m = 5, with two probes

behind the horizon and three outside, is

τ0
τ1

τ2 τ3
τ4

τ5

(2.3)

where the red curve is the spherically symmetric thin shell, and the blue curves are the

geodesics of the massive probe particles. The figure shows the radial direction and Euclidean

time. Only the black hole portion is drawn; this is a pure state, so it is glued to vacuum

global AdS at the shell. For more details, including the solution to the shell EOM and the

expansion of |S〉 in CFT eigenstates, see [37].

The spatial geometry of the t = 0 slice has a spherical shell behind a minimal surface.
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Schematically, it looks like:

(2.4)

Here we show the radial direction and the transverse directions, Sd−1. We will recast the CFT

state as a random tensor network with a network geometry that resembles (2.4). The tensors

discretize the radial direction, with the rank of the tensor bonds related to the transverse

area. Locality in the transverse directions does not play any role, so to simplify the discussion

we restrict to the zero-momentum sector by integrating the probes over the spatial sphere,

choosing Oi(τi) =
∫
dd−1xOi(τi, ~xi). (In 2d CFT we will consider local operators below.)

By inserting complete sets of energy eigenstates, the exact CFT state (2.1) can be ex-

pressed diagrammatically as

|Ψ〉 =

−τ0 −τ1 −τm−1 −τm

i1 im−1 im

(2.5)

where we have defined the tensors

n−τ0 = e−τ0En〈n|S〉 (2.6)

i

τm n

= 〈n|Oi(τ)|m〉 . (2.7)

The tensors Oimn are infinite dimensional in the lower indices, indexed by energy eigenstates

|m〉, |n〉. Connected lines between tensors are contracted indices, and the free line at the

right end of (2.5) corresponds to an uncontracted index in the physical Hilbert space.

In a theory satisfying the eigenstate thermalization hypothesis (ETH), the matrix ele-
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ments of a light probe between two high-energy eigenstates can be approximated by2

〈m|Oi|n〉 = 〈Oi〉β(Em)δmn + Ci(Em, En)Rimn (2.8)

where Ri is a random matrix with zero mean and unit variance, and Ci(E,E′) is a smooth

function of energies determined by matching this ansatz to the thermal 2-point function. We

assume the thermal 1-point vanishes, so we can drop the first term in (2.8).

Applying the ETH to (2.5), the state |Ψ〉 becomes a weighted random tensor network

with weights determined by the thermal 2-point functions. The tensors are infinite dimen-

sional, but calculations are often dominated by a semiclassical saddlepoint, and then the

tensors effectively become finite dimensional. Suppose the sum over energies in the spectral

decomposition is dominated by saddlepoint energies, E∗k . Then we can truncate the sums to

a microcanonical window of eSk states around the saddle, with Sk = S(E∗k) the saddlepoint

entropy. The tensor for O(−τk) becomes a rectangular matrix of dimensions eSk−1 × eSk .

This effective dimension only makes sense in the vicinity of a given saddlepoint.

Upon doing this truncation, the resulting finite-dimensional tensor network resembles the

bulk spatial geometry (2.4), with the rank of the tensors playing the role of the transverse

area. Consider the norm,

〈Ψ|Ψ〉 =
−τ0 −τ1 −τm

i1 im im i1

τ0τ1τm

(2.9)

The saddlepoint in the sum over contracted indices, with saddlepoint energies E∗k for

k = 0, . . . ,m (corresponding to the internal legs from left to right in the diagram), is dual

to the Euclidean spacetime (2.3). The geometry of the network matches the geometry of

the bulk spatial slice, in the sense that the saddlepoint entropies increase/decrease along the

tensor network with the same pattern that the transverse area increases/decreases along the

radial direction in (2.4). At the minimal surface, the transverse area matches the tensor rank

on that leg, i.e. log dimHeff = S(E∗) = area
4 .

From this correspondence we can understand the isometric property of the holographic

code by following [28, 29, 31]. If Oi is behind the apparent horizon, then it decreases the

saddlepoint energy, and if it is outside the apparent horizon, it increases the saddlepoint

2The ETH in QFT must also account for momentum conservation. In (2.8) we implicitly assume that |m〉
and |n〉 have equal momentum, since O is averaged over the sphere.
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energy. The entropies also satisfy this hierarchy,

Oi inside ⇒ E∗i < E∗i−1, Si < Si−1 (2.10)

Oi outside ⇒ E∗i > E∗i−1, Si > Si−1

These inequalities are derived from a straightforward bulk argument reviewed in section 2.2

below.

The properties of a random map depend crucially on whether it maps a smaller space to

a larger space, or vice-versa. Truncating to a microcanonical window near the saddlepoint

and assuming ETH, each probe operator O acts like a finite-dimensional random map,

O(−τk) : H(E∗k−1)→ H(E∗k) (2.11)

where H(E) is the Hilbert space consisting of eS(E) CFT states around energy E. For an

operator outside the horizon, this is a random map from smaller space to a larger one, so it

acts invertibly, O†O ∝ 1. By contrast, for a particle behind the horizon, O maps a larger

space to a smaller one, so it cannot be invertible. That is, the rank of (O(−τk))†O(−τk)
(with both operators truncated to finite-dimensional matrices around the saddle) is bounded

above by eSk , which is less than its dimension if Sk < Sk−1.

For illustration, consider the particular state illustrated in (2.3), which has five probe

particles — two behind the horizon, and three outside the horizon. The state is

|Ψ〉 =

−τ0 −τ1 −τ2 −τ3 −τ4 −τ5

i1 i2 i3 i4 i5

0 1 2 3 4 5

(2.12)

Applying (2.10), we see that the saddlepoint entropies in 〈Ψ|Ψ〉 satisfy

S0 > S1 > S2, S2 < S3 < S4 < S5 . (2.13)

This hierarchy of entropies matches the geometry of the spatial slice drawn in (2.4), and the

minimal entropy, S2, matches the area of the minimal surface in (2.3). The other entropies,

away from the minimal one, do not satisfy S = area
4 for the corresponding bulk region, but

they increase/decrease in the same pattern as the transverse area. This is the sense in which

the spatial geometry is discretized by a random tensor network.
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The role of Birkhoff’s theorem

It was essential to this entire discussion that we assumed spherical symmetry. At a technical

level, it enters in the derivation of the energy hierarchy below. But this is more than just

a technical simplification. Birkhoff’s theorem states that the bulk geometry of a spherically

symmetric state is locally identical to an eternal black hole. In CFT language, this means

that there is no need to keep track of anything besides the energy, and consequently, we can

label internal lines in the tensor network by physical CFT states, as was done above. As

long as we assign the correct energies to each leg, they will also have the correct entropy, so

the tensor ranks along the tensor network match the areas along the bulk radial direction.

Additional spherical shell operators can be incorporated without any major differences.

For states without spherical symmetry, the story is much more subtle. General arguments

indicate that a probe operator should transition between isometric/non-isometric at the

minimal surface, but without spherical symmetry, the minimal surface is not where the

energy hierarchy inverts. As we will see in 3d gravity, the reason for the mismatch is that

generally the Hilbert space assigned to the tensor legs is not the physical CFT Hilbert space

— it is an auxiliary Hilbert space with a reduced number of states. The isometric property

must be understood in terms of counting states in the auxiliary Hilbert space. We will see

how this works explicitly in 2d CFT and find that when the state counting is done in the

auxiliary Hilbert space, the isometric property matches precisely with the location of the

minimal surface.

2.2 Derivation of the energy hierarchy with spherical symmetry

It remains to establish the inequalities in (2.10) for the saddlepoint energies in spheri-

cally symmetric states. Similar calculations were done in [28, 29, 31]. The smooth function

Ci(E,E′) in the matrix elements of the CFT operators are determined by matching to the

bulk, so this calculation can be done on the gravity side — the CFT is guaranteed to agree.

Consider the state (2.1) with m probe operators. Choose a bulk radial slice τ = τc in the

Euclidean spacetime, with τi+1 < τc < τi, i ≥ 1 (and define τm+1 = 0). The ADM energy

on this slice, E(τc), is equal to the saddlepoint energy in the CFT spectral expansion for the

intermediate state running between the operators Oi and Oi+1. Now we will compare this

to the energy E(τ ′c) for a slice with τi < τ ′c < τi−1.
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Oi outside

If the particle dual to Oi is outside the horizon, then the situation looks like this:

τc

τ ′c

i− 1
i

i+ 1

(2.14)

To first order in the backreaction, the ADM energy is that of the black hole plus an O(m)

term from each particle on the slice. The slice τ = τc contains an extra particle compared to

τ = τ ′c, so it has higher energy: E(τc) > E(τ ′c). Translating this into the CFT saddlepoint

energies we have shown

E∗i > E∗i−1 . (2.15)

This can also be phrased in terms of energy flux into the boundary. The boundary stress

tensor Tij satisfies the conservation law [39]

∇iT ij = −nµTµjbulk , (2.16)

where µ is a bulk index, i is a boundary index, n is the unit normal to the boundary, and

Tµνbulk is the matter stress tensor in the bulk. As we evolve from the τ ′c slice to the τc slice, a

positive-energy particle enters through the boundary, providing a positive flux in (2.16) and

thereby increasing the ADM energy.

Oi inside

If the particle dual to Oi is inside the horizon, then instead it looks like this:

τcτ ′c

i− 1
i i+ 1

(2.17)
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Now it is the slice τ = τ ′c that has an extra particle. Therefore, by the same argument,

E∗i < E∗i−1 . (2.18)

In this case the particle exits through the boundary, so the flux is negative.

3 Random tensor networks from 2d CFT

In [27] it was argued that 3d gravity coupled to massive particles is dual to an ensemble of

large-c CFTs with random OPE coefficients. In related work, we showed that multi-boundary

wormholes (in any dimension) can be interpreted as replica partition functions for coarse-

grained states, in a fixed theory [37]. Here we will show that this same model in 2d CFT also

leads to a correspondence between Virasoro OPE blocks, random tensor networks, and bulk

spatial geometries. In this section we describe the CFT construction. We will use some 3d

gravity results as input, postponing the details of the gravity calculations to section 4 below.

We assume the CFT spectrum consists of a small number of single-trace primary operators

Oi below the black hole threshold, their multi-trace composites, and a Cardy spectrum of

black hole microstates above the threshold, with h, h̄ > c
24 .

3.1 Virasoro OPE blocks

On the Euclidean cylinder with coordinates (τ, φ), consider the state

|Ψ〉 = Oim(−τm, φm) · · · Oi2(−τ2, φ2)Oi1(−τ1, φ1)|0〉 (3.1)

where the Oi are scalar primaries and τ1 > τ2 > · · · > τm. The spectrum decomposes into

Virasoro representations,

1 =
∑
n

|n〉〈n| =
∑
p

Pp , (3.2)

where n runs over all states, p runs over primaries, and Pp is the projector onto the repre-

sentation with lowest weight p.3 Inserting this into (3.1) gives an expansion in Virasoro OPE

blocks:

|Ψ〉 =
∑

p1,...,pm−1

ci1i2p1 · · · cimpm−2pm−1

∣∣∣∣∣∣∣∣B


hpm−1

him

hpm−2hp1

hi3hi2

hi1


∣∣∣∣∣∣∣∣
2

|pm−1〉 (3.3)

3I.e., Pp :=
∑
M,N LM L̄N |p〉〈p|L

†
M L̄
†
N with |p〉 the primary state and LM and L̄N the orthonormalized

chiral and anti-chiral raising operators built from Virasoro modes.
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The notation B[. . . ] represents a chiral Virasoro OPE block, which is defined by this equation;

B is the contribution to the OPE with the given primary labels, with OPE coefficients

stripped off. It is an operator that acts within a fixed representation by sums of products

of the Virasoro raising operators L−n for n ≥ 1, is completely determined by the Virasoro

algebra, and depends holomorphically on the weights {hik}, {hpk} and positions {zk}. In the

diagram, the arrow shows which leg is acting as an operator, so in this case the operator acts

within the representation with lowest weight (hpm−1 , h̄pm−1).4

The norm 〈Ψ|Ψ〉 is a 2m-point correlation function. It can be expanded in Virasoro

conformal blocks,

〈Ψ|Ψ〉 =
∑

p1,...,p2m−3

ci1i2p1 · · · c∗i2mi2m−1p2m−3

∣∣∣∣∣∣∣ i2m

i2m−1

p2m−3p1

i2

i1

∣∣∣∣∣∣∣
2

(3.4)

This comb diagram represents the usual chiral Virasoro conformal block F . It is related to

the OPE block by F = 〈p|B†B|p〉; for example for 4-point functions the relation is

i3

i4p

i2

i1
= 〈p|B


hp

hi2

hi1


†

B


hp

hi3

hi4

 |p〉 , (3.5)

and similarly for n-point functions.

3.2 The tensor network

Before we describe how to build the tensor network, let us briefly discuss what doesn’t work.

Suppose we follow the same procedure that worked with spherical symmetry: Insert a com-

plete set of energy eigenstates between each operator, and declare the resulting matrix prod-

uct state to be a tensor network. This fails — it’s a valid CFT calculation, but the tensor

ranks in this ‘eigenstate network’ do not match the bulk geometry. For example, the tensor

rank is not minimized at the link corresponding to a bulk minimal surface. The problem

is that it does not make sense to treat the eigenstate network as pseudorandom. In a CFT

with Virasoro symmetry, it is only the primary OPE coefficients that can plausibly be pseu-

dorandom, not all of the matrix elements. Since the tensors in the eigenstate network are

not pseudorandom, there is no reason to expect its entanglement structure to be simply

related to the tensor geometry. The same comments apply to more general bulk theories

4For a general discussion of OPE blocks see [40] where this terminology was first introduced. See also [41]
for Virasoro OPE blocks and their relation to 3d gravity. Our convention is to include all of the position
dependence in the OPE blocks and similarly for conformal blocks.

15



whenever matter fields are turned on: the matrix elements of light, single-trace operators

dual to weakly interacting fields in the bulk cannot be random.

To circumvent this, we need to use large c and make one further assumption: that the

conformal block expansion for 〈Ψ|Ψ〉 is dominated by a semiclassical saddlepoint with all

of the internal weights above the black hole threshold, h, h̄ > c
24 . Denote these saddlepoint

weights by h∗k for k = 1, . . . ,m− 1, labeled as follows:5

i2m

i2m−1

h∗1

im+1

h∗m−2

im

h∗m−1h∗m−2h∗1

i2

i1
(3.6)

The fact that this correlation function is a norm 〈Ψ|Ψ〉 guarantees that the saddlepoint

weights are symmetric across the diagram, as written. For fixed kinematics and external

weights, let Hk be the set of primaries within a microcanonical window near the semiclassical

saddlepoint (h∗k, h̄
∗
k). The number of such states is given by the Cardy formula,

|Hk| ≈ eS0(h∗k,h̄
∗
k) , S0(h, h̄) = 2π

√
c

6
(h− c

24
) + 2π

√
c

6
(h̄− c

24
) . (3.7)

Note that Hk is defined to include only primaries, not all states, but at large c this doesn’t

affect the Cardy formula.

Now we define a semiclassical state by truncating the sums in (3.3) to primaries near the

saddlepoint,

|Ψ〉∗ :=
∑
pk∈Hk

ci1i2p1 · · · cimpm−2pm−1

∣∣∣∣∣∣∣∣B


hpm−1

him

hpm−2hp1

hi3hi2

hi1


∣∣∣∣∣∣∣∣
2

|pm−1〉 (3.8)

The OPE block depends only on the weights, not the particular operators, so it can be

evaluated at the saddlepoint and moved outside the sum. Therefore we obtain

|Ψ〉∗ = |B|2∗
∑
pk∈Hk

ci1i2p1 · · · cimpm−2pm−1 |pm−1〉 (3.9)

5For reflection-positive correlators which are dominated by the identity block, the saddlepoint weights are
scalars, h∗k = h̄∗k. This follows from the fusion transformations described in [27, section 8]: Starting from
the identity block in the dual channel where operators fuse in conjugate pairs, the comb channel only has
contributions with (hi, h̄i) = (h2m−i, h̄2m−i); reflection positive kinematics implies (hi, h̄i) = (h̄2m−i, h2m−i);
therefore hi = h̄i.
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i3 i2

i1

im

|Ψ〉∗ =

Figure 2: The semiclassical CFT state as a tensor network, as in (3.9).
Internal lines are labeled by CFT primaries with h, h̄ > c

24 . The red tensors
are OPE coefficients and the final tensor on the left is the (mod-squared)
OPE block, which is a map from the space of primaries to the physical CFT
Hilbert space.

where

|B|2∗ =

∣∣∣∣∣∣∣∣B


h∗m−1

him

h∗m−2h∗1

hi3hi2

hi1


∣∣∣∣∣∣∣∣
2

. (3.10)

The expression (3.9) is manifestly in the form of a 1d tensor network with the architecture

of a matrix product state. Denote the tensors as

cpqr =
p

q

r

(3.11)

〈m||B|2∗|p〉 = p m (3.12)

Single lines are tensor legs that act in the space of CFT primaries, Hprim. Double lines act

in the physical Hilbert space, HCFT. The semiclassical OPE block is a linear map

|B|2∗ : Hprim → HCFT , (3.13)

so the corresponding tensor has one leg with a single line, and one leg with a double line. In

this notation, the semiclassical state (3.9) is the tensor network in fig. 2.

The sum in |Ψ〉∗ is by definition truncated to primaries near the saddlepoint, so the

internal tensor legs in fig. 2 have finite dimension. The truncation was essential in order to

write the state as a tensor network — otherwise, we cannot extract the OPE block outside

the sum in (3.9). Thus the exact CFT state is not a tensor network with the architecture

of figure 2. This clarifies the sense in which we should expect holographic geometries to
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be similar to random tensor networks. (It also suggests that more general, non-holographic

CFT states can nonetheless be similar to holographic tensor networks in a regime where the

conformal block expansion is dominated by a saddlepoint.)

Now the goal is to understand how the tensor network in fig. 2 discretizes the radial

direction in the bulk.

3.3 The random tensor approximation

There is evidence that semiclassical 3d gravity is holographically dual to an ensemble of

large-c CFTs [27, 42, 43]. In [27, 43], the ensemble is defined by treating the primary OPE

coefficients as random variables. At leading order,6 the OPE coefficients are Gaussian random

variables with [27]

cijkc
∗
lmn = C0(hi, hj , hk)C0(h̄i, h̄j , h̄k) (δilδjmδkn ± permutations) . (3.14)

The coefficient C0 is the crossing kernel for the Virasoro identity block; it is a smooth

function of the weights that is complicated, but known explicitly [45]. This choice ensures

that the CFT ensemble reproduces the identity block approximation in 3d gravity [32, 33].

Thus (3.14), by design, reproduces the correlation functions of conical defects and partition

functions of handlebodies in AdS3. Much more nontrivial is that (3.14) also matches the

contribution of a wide variety of multi-boundary wormholes [27].

The ansatz (3.14) is a version of the eigenstate thermalization hypothesis [46,47], tailored

to holographic 2d CFTs. Combined with the tensor network representation of black hole

pure states in fig. 2, the large-c ensemble is naturally interpreted as a random tensor network

model. The tensors are the primary OPE coefficients cijk, truncated to the finite set of states

near the semiclassical saddlepoint.

3.4 Sphere 4-point functions

As an example, consider the state

|Ψ2〉 = O2(−τ2, φ2)O1(−τ1, φ1)|0〉 , (3.15)

6This is conjectured to be ‘leading’ in the sense that corrections on the right-hand side of (3.14) come
with factors of e−S . This does not always mean that the terms in (3.14) give the leading contribution to
observables, though in many cases it does. We have also assumed for simplicity that all three operators
have h > c

32
to avoid complications from multi-twist operators, which have OPE coefficients determined by

Virasoro [44], and that they are heavy enough to support a 3-point wormhole. See [27,43] for more discussion.
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where O1 and O2 are scalar primaries with h ∈
(
c

32 ,
c

24

)
. With weights in this range, all of

the states in the OPE O1O2 are black holes [44]. The corresponding tensor network is

|Ψ2〉∗ =

2

1
(3.16)

The norm is the 4-point function,

〈Ψ2|Ψ2〉 ≈ ∗〈Ψ|Ψ〉∗ =
1

2

r

2

1
(3.17)

The identity (3.5) in tensor network notation is

p q = |F|2δpq (3.18)

where F is the 4-point conformal block.7 Therefore we can also write the norm as a tensor

network of OPE coefficients, weighted by conformal blocks:

〈Ψ2|Ψ2〉 ≈
∑

1

2 2

1

|F|2 . (3.19)

This is almost the usual conformal block expansion, in different notation — the diagram rep-

resents the product of OPE coefficients, see (3.11). It is not quite the usual conformal block

expansion, however, because the tensors are by definition truncated near the semiclassical

saddle, and have finite dimension.

The log-dimension of the internal leg in (3.16) is S0(h∗1, h̄
∗
1), where (h∗1, h̄

∗
1) are the con-

formal weights of the primary that dominates the conformal block sum. We call this the

primary entropy — the Cardy entropy of the lowest weight state in the representation. Gen-

erally, asymmetric excited states can have leading-order contributions to the energy from

Virasoro descendants, so it is important to remove them before applying the Cardy formula,

and (h∗1, h̄
∗
1) differ at leading order from the total conformal weights at the saddlepoint.

The geometry dual to |Ψ2〉∗ is a black hole created by two conical defects. The metric is

7Note that the primaries in |Ψ〉∗ are truncated to near the saddlepoint, but all descendants are retained,
so this formula is exact.
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given in (4.3) below. The t = 0 time-symmetric spatial slice looks schematically like this:

γ

(3.20)

The locally-minimal surface γ is a time-symmetric apparent horizon. The area of this ap-

parent horizon is interpreted as a coarse-grained entropy [37, 48]. In 3d gravity, the area is

related to the primary entropy in the OPE:

S0(h∗1, h̄
∗
1) =

Area(γ)

4
. (3.21)

(In three bulk dimensions, ‘area’ means length.) This will be derived from a gravity calcu-

lation in section 4. Note that the state |Ψ2〉 is pure, so its von Neumann entropy is zero, in

agreement with the Ryu-Takayanagi formula applies to the trivial (empty) surface.

Finally we can compare the tensor network in (3.16) to the bulk spatial slice in (3.20).

The comparison is a bit trivial in this case, because the tensor network has only one internal

line. But the two pictures agree: The red tensor corresponds to the black hole interior, the

OPE block corresponds to the near-boundary region, and the log-dimension of the internal

line is 1
4Area(γ).

3.5 Probes of the apparent horizon

The 6-point function is more interesting, because here we can study the isometric property

and the breakdown of the Virasoro identity approximation. Consider

|Ψ3〉 = O3(−τ3, φ3)O2(−τ2, φ2)O1(−τ1, φ1)|0〉 . (3.22)

The tensor network is

|Ψ3〉∗ =

3 2

1
h∗1h∗2

(3.23)

There are now two internal lines, with saddlepoint primary weights h∗1 and h∗2. The log-

dimensions of these tensor legs are equal to the primary entropies,

S1 = S0(h∗1, h̄
∗
1) and S2 = S0(h∗2, h̄

∗
2) . (3.24)
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In the random tensor approximation, the tensor corresponding to the OPE coefficient c3pq

(with p and q the internal states corresponding to h∗1 and h∗2 respectively) is a rectangular

random matrix, with log-dimensions given by (3.24). Effectively, it is a map from the primary

Hilbert space around h∗1 to the primary Hilbert space around h∗2, which we denote8

c3pq : H1 → H2 . (3.25)

Therefore, this map is approximately isometric or co-isometric, depending on the relative

size of the input and output spaces:

S1 < S2 ⇒ c3pq isometric (3.26)

S1 > S2 ⇒ c3pq co-isometric

Let us suppose h3 � c, so that O3 is a probe operator; the dual particle travels on a spacelike

geodesic in the background black hole created by O2O1. In section 4, we show that the two

cases in (3.26) correspond to whether the probe particle is outside or inside the apparent

horizon. If the probe particle sits exactly on the horizon, then the primary energies in the

saddlepoint OPE are equal, h∗1 = h∗2. This does not hold for the total energy, only the

primary energy, so it was essential that we built the network using the auxiliary Hilbert

space Hprim.

If h3/c is finite, then O3 backreacts, and there is no longer any simple relation between

the isometric property of the random map c3pq and whether or not O3 is behind the horizon.

The marginal case S1 = S2 defines a natural notion of non-perturbative horizon that is

explored in section 4.4. The relationship between the isometric property and the apparent

horizon carries over to other observables, including higher-point functions, the BTZ black

hole, and BTZ plus heavy particles. All of these cases are analyzed in sections 4-5.

3.6 Reconstruction of simple operators

We normalise the random matrix c3pq (again, truncated to states near the saddle) by

Vpq =
1

eS2/2

c3pq√
C0(h3, h∗1, h

∗
2)C0(h3, h

∗
1, h
∗
2)

(3.27)

Note that V eS2/2 is a complex Gaussian random matrix with vanishing mean and unit vari-

ance. In the semiclassical limit, V always acts isometrically on average irrespective of whether

8The exact OPE coefficient is of course infinite-dimensional. Here by c3pq we mean the associated tensor
in the tensor network, which is by definition truncated to states near the semiclassical saddle.
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the probe goes inside or outside the horizon i.e,

V †V = 1H1 (3.28)

with the average taken over the space of normalised complex Gaussian random matrices

with the usual measure. For the case where the probe is outside the horizon, the stronger

statement that V †V = 1H1 holds (at leading order). This cannot be true for the case where

the probe goes inside the horizon simply because rank(V †V ) ≤ min(eS1 , eS2). However, a

typical V still preserves the overlaps of a large number of states in H1. For instance, one can

show that for a randomly chosen V from the ensemble,

Pr

(∣∣∣∣||V |ψ〉 || − 1

∣∣∣∣ ≥ e−αS2

)
≤ 2e−

1
2
e(1−2α)S2

(3.29)

for any |ψ〉 ∈ H1 normalised so that 〈ψ |ψ〉 = 1. Here, α is a parameter which takes values

in the range (0, 1
2). This result says that the probability for the norm of any normalised

state in H1 to deviate from unity by more than an exponentially small quantity in S2 is

doubly exponentially small in S2. In other words, even when the code is non-isometric,

it is very likely to preserve the norm of any particular state. This explains how the bulk

effective field theory can still provide a good description of the black hole interior for many

purposes [34, 49]. The derivation of this result is similar to that presented in [49, section 3]

so we refer the reader to [49] for details.

3.7 Breakdown of the identity block approximation

This analysis can be re-phrased in terms of a subtle breakdown of the Virasoro identity block

approximation. Consider the 6-point function,

G6 = 〈O1†O2†O3†O3O2O1〉 (3.30)

which is the norm-squared of the state |Ψ3〉 considered in the previous subsection. In a

holographic CFT, this 6-point function is computed in the bulk by a geometry with three

conical defects,

G6 ≈ (3.31)
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As demonstrated in [32,33], the on-shell action of the semiclassical saddlepoint is reproduced

by a large-c Virasoro identity block in the channel where the operators fuse in pairs:

G6 ≈

∣∣∣∣∣∣∣∣∣∣∣

2 2

3

3

1

1

1
11

∣∣∣∣∣∣∣∣∣∣∣

2

(3.32)

By a sequence of fusion moves (see [50] and [27, section 8.2]) this is equivalent to

G6 ≈

∣∣∣∣∣∣∣∣∣∣∣∣
∫ ∞
c−1
24

dhp ρ0(hp)C0(h1, h2, hp)
1

p

p

1 2

1 2

3

3

∣∣∣∣∣∣∣∣∣∣∣∣

2

(3.33)

which corresponds to the OPE coefficients given in (3.14). In the identity approximation,

the only operators retained in the O3†O3 OPE are the identity operator and its descendants.

Therefore O3†O3 acts diagonally on the primary labels in this approximation:

〈p,N, N̄ |O3†O3|p′,M, M̄〉 ∝ δpp′ , (3.34)

where p, p′ label Virasoro representations, and N, N̄,M, M̄ label descendants.

We must distinguish between a strong version of the identity approximation, in which

O3†O3 acts diagonally on representations in the sense of an operator, and a weak version,

where (3.34) only holds element-by-element in the primary basis. According to the discussion

above, the strong version is impossible if O3 is dual to a probe particle behind the apparent

horizon. Consider the tensor operator

K =

3 3

(3.35)

which maps H1 → H1. The relation (3.34), in the strong sense, would imply K ∝ 1H1 as

an operator. However, the rank of this operator is bounded above by the dimension of the

internal line,

rankK ≤ dimH2 . (3.36)
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Therefore K cannot be proportional to the identity when S2 < S1 and the code is co-isometric

— its rank is less than its dimension. It is still possible for 〈p|K|q〉 ≈ δpq in the weak sense

that it holds for individual matrix elements in the primary basis, but it cannot hold in the

strong sense that K ∝ 1H1 as an operator.

The conclusion is that when O3 is dual to a probe inside the horizon, the identity ap-

proximation must fail at leading order in sufficiently complicated interior states. That is,

O†3 × O3 ≈ 1Vir is a good approximation in states created by a small number of primary

operators, but there must exist superpositions of the form

|a〉 =
∑
i,j,k,...

aijk...OiOjOk . . . |0〉 (3.37)

in which

〈a|O†3O3|a〉 (3.38)

is not well approximated by the identity block.

This distinction explains how the Virasoro identity block approximation in the CFT can

reproduce the bulk EFT calculation of G6 even when the operator is behind the horizon —

this is a low-energy observable that only depends on the weak identity approximation, not

the strong one. The strong identity approximation breaks down at the horizon, precisely

when the code transitions from isometric to co-isometric. This is the same behavior observed

in the qubit models in [34].

3.8 Tensor networks with higher topology

3.8.1 Thermal 2-point functions

The above discussion readily generalises to states in several copies of the CFT Hilbert space.

Consider for example the following state in two copies of the CFT Hilbert space obtained by

exciting the thermofield double by a local operator,

|Ψ〉 = O |TFD〉 =
∑
p,q

cOpq

∣∣∣∣∣∣∣∣B


hp

hO

hq


∣∣∣∣∣∣∣∣
2

|p〉 |q〉 (3.39)

where O is a scalar primary operator below the black hole threshold, and this OPE block

is defined by reorganizing the sum over all states on the left-hand side into Virasoro repre-

sentations. This is known as a partially entangled thermal state (PETS), and it has been

studied in the SYK model and 2d gravity in [30, 51]. The 3d bulk dual of the above PETS
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state in 2d CFT is constructed in section 5.2. The norm of this state computes the thermal

two-point function 〈OO〉β and can be expanded using torus two-point conformal blocks,9

〈Ψ |Ψ〉 =
∑
p,q

|cOpq|2

∣∣∣∣∣∣∣∣∣∣∣
O

p

q

O

∣∣∣∣∣∣∣∣∣∣∣

2

(3.40)

Truncating the sum in (3.39) around the semiclassical saddlepoint in the norm (3.40), we get

the corresponding tensor network,

|Ψ〉∗ = O
h∗R

h∗L
|BL|2∗

|BR|2∗

(3.41)

In the tensor network, the OPE block evaluated at the saddlepoint weights is interpreted as

a map |B|2∗ : Hprim ⊗ Hprim → HCFT ⊗ HCFT. The OPE block factorises between the two

boundaries in the semiclassical limit so that |B|2∗ = |BL|2∗|BR|2∗. This is because in the large-c

limit, the two-point function of the stress tensor evaluated on the two spatial boundaries

factorises into a product of the semiclassical Liouville stress tensors (which solve the Liou-

ville monodromy problem on the punctured cylinder with ZZ boundary conditions provided

at either end) evaluated at the corresponding points. Since the connected contribution is

subleading, this argument shows that the Virasoro excitations on the two boundaries are not

entangled in the semiclassical limit, hence the OPE block factorises. This tensor network

discretizes the t = 0 spatial slice of BTZ backreacted with a conical defect. The defect may

be inside or outside the horizon; if it is inside, then the t = 0 spatial slice is

γRγL

(3.42)

9There is implicit, nontrivial dependence on the operator location in (3.39), that enters through the
definition of the OPE block. Both operators are inserted at the same point on the spatial circle, so that this
2-point function may be viewed as a norm.
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In section 5, we will show that the two time-symmetric apparent horizons indicated by γL, γR

in the figure above have areas matching with the primary entropy at the saddlepoint weights,

S0(h∗R, h̄
∗
R) =

Area(γR)

4
, S0(h∗L, h̄

∗
L) =

Area(γL)

4
(3.43)

This matches with the bond dimensions of the corresponding internal legs in the network

(3.41), so that we can view (3.41) as a discretization of the radial direction in (3.42).

Depending on the location and weight of the operator O, the defect may also be outside

the BTZ horizon. From the CFT point of view one can distinguish these two possibilities

by adding an additional probe particle and checking for an isometric/co-isometric transition.

This is discussed in section 5 below.

3.8.2 Genus-two partition functions

Now, we give an example of a tensor network which discretizes the spatial slice of a smooth

black hole geometry. Consider the state in three copies of the CFT Hilbert space,

|Ψ〉 =
∑
p,q,r

cpqr

∣∣∣∣∣∣∣B


hp

hr

hq


∣∣∣∣∣∣∣
2

|p〉 |q〉 |r〉 (3.44)

The norm of this state is the genus-two partition function,

〈Ψ |Ψ〉 = Zg=2 =
∑
p,q,r

|cpqr|2

∣∣∣∣∣∣∣∣ r

q

p

∣∣∣∣∣∣∣∣
2

(3.45)

The OPE block in (3.44) is defined to reproduce this conformal block expansion; it acts

within the tensor product of three Virasoro reps, as indicated by the three arrows in the

diagram. The tensor network corresponding to this state obtained by truncating the sum to

a window around the saddlepoint weights is given by,

|Ψ〉∗ =

h∗3

h∗1

h∗2 |B2|2∗

|B1|2∗

|B3|2∗

(3.46)

Here, the saddlepoint OPE block |B|2∗ defines a map: Hprim ⊗ Hprim ⊗ Hprim → HCFT ⊗
HCFT ⊗HCFT. It factorises between the three boundaries into |B|2∗ = |B1|2∗|B2|2∗|B3|2∗ which
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follows from an argument similar to the one presented above for the two-boundary case. The

above tensor network discretizes the three boundary spatial wormhole discussed in [52] (see

also [53]), whose t = 0 slice is topologically a pair of pants,

(3.47)

The lengths of the three geodesics are related to the saddlepoint weights by the relation

h∗ = c
24(1 + ( `

2π )2). We can add EFT legs to the above network by adding probe matter to

this background.

4 Bulk geometries and the isometric transition

In this section, we describe the dual bulk geometries in detail, show that the bond dimensions

in the tensor network agree with the areas of extremal surfaces, and check the isometric

transition at the horizon for probe particles propagating on a large class of Euclidean black

hole geometries in 3D. We must show that probe particles behind an apparent horizon act to

decrease the primary entropy in the OPE, while probe particles outside an apparent horizon

act to increase the primary entropy.

We start by describing the construction of these black hole solutions by taking quotients

of the three-dimensional hyperbolic space H3 by SL(2,R) elements. Then, we take a short

mathematical detour where we discuss a useful parametrisation of SL(2,R) elements using

which we shall derive mathematical identities involving the traces of these elements. We

then provide a CFT interpretation for these identities which when combined with the ETH

ansatz provides a derivation of the isometry properties of probes.

4.1 Construction of black hole geometries

The action of 3D gravity coupled to massive point particles is

S = − 1

16πG

∫
M

√
g(R+ 2)− 1

8πG

∫ √
h(K − 1) +

∑
i

mi

∫
dli , (4.1)
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where the last integral is over the particle worldlines. The parameter mi, with 0 < mi <
1

4G ,

is referred to as the local mass of a particle; due to backreaction, it is not equal to the physical

ADM mass. The ADM mass of a particle, or equivalently the total scaling dimension of the

dual CFT operator, is

∆i = mi(1− 2Gmi) . (4.2)

Therefore with conformal weights parameterized as h = c
6η(1 − η), we have mi = ηi

2G . The

point particles backreact on the geometry to produce conical defects of total angle 2π(1 −
2ηi). Since there are no propagating gravitons in the bulk, the set of solutions to (4.1) can

be classified in terms of smooth hyperbolic 3-manifolds, hyperbolic orbifolds, and similar

quotients by elements of infinite order. We are interested in those solutions which can be

interpreted as Euclidean black hole geometries. We choose a hyperbolic slicing, parametrising

the metric on these geometries as

ds2 = dτ2 + cosh2(τ)dΣ2 (4.3)

where Σ is a hyperbolic Riemann surface of constant negative curvature with one or more

boundaries and/or conical defects. We assume the matter sources and boundary topology are

such that Σ admits a closed geodesic in the hyperbolic metric. These solutions are black holes

— the closed geodesic is the apparent horizon on the t = 0 spatial slice. These coordinates

can be analytically continued (τ → it) to FRW-like coordinates with the metric being,

ds2 = −dt2 + cos2 tdΣ2 (4.4)

These coordinates cover the domain of dependence of the t = 0 slice on the corresponding

Lorentzian black hole geometry.

If all of the conical defects have finite order, then the spatial slice Σ can be constructed as

a quotient of the upper half plane H2 by a subgroup Γ of SL(2,R). The resulting 3-manifold

is a quotient H3/Γ, with Γ treated as a subgroup of the isometry group SL(2,C) of H3. More

generally, with conical defects of infinite order, the universal cover of Σ is no longer H2 but

it can be constructed similarly by identifying points of H2 under the action of SL(2,R) group

elements. Precisely speaking, Σ is uniformised by a conformal map to the upper half plane

with its metric being the Liouville metric obtained by a pull-back of the Poincare metric on

the upper half plane under the uniformisation map,

dΣ2 = eΦ|dz|2 =
dy2 + dx2

y2
(4.5)

where Φ(z, z) is the Liouville field on Σ and (x, y) are the uniformising coordinates. To show
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that the metric (4.3) agrees with the Poincare metric on H3, we make the following change

of coordinates,

ỹ = y cosφ, u = y sinφ, φ ≡ cos−1 (tanhτ) (4.6)

the metric (4.3) becomes

ds2 =
du2 + dỹ2 + dx2

u2
. (4.7)

This is the usual hyperbolic metric on H3, represented as the upper half 3-space with u > 0.

The full black hole geometry can be thought of as the surface of rotation about the y = 0 axis,

with the boundaries at τ = ±∞ now identified as the surfaces φ = 0, π where u = 0. Note

that if Σ was a compact boundaryless Riemann surface, then the quotient construction would

describe the Maldacena-Maoz wormhole [54]. Since we are interested in describing black hole

geometries, we require Σ to have one or more boundaries. In this case, the Liouville field

Φ(z, z) solves the Liouville equation possibly in the presence of defects, with ZZ boundary

conditions provided on each of the boundaries. The boundary components at τ = +∞
and τ = −∞ are glued together at the boundary of Σ, so that the conformal boundary is

connected.

For example, the Liouville field corresponding to one-sided black hole geometries formed

by the backreaction of two or more conical defects is determined by

∂∂Φ =
eΦ

2
− 2π

∑
i

ηiδ
(2)(z − zi) (4.8)

subject to the boundary conditions,

Φ(z, z) ∼

−4ηi log(|z − zi|) z → zi

−2 log(1− |z|2) |z| → 1
(4.9)

Here, z is a complex coordinate on the punctured unit disk with the defects located at {zi}.
The geometry of Σ is illustrated in figure 1 in the introduction. More generally we can also

include handles in Σ so that the black hole has nontrivial topology behind the horizon. Such

higher topology microstate geometries were discussed for instance in [55].

The Brown-York stress tensor obtained from (4.3) at τ = ±∞ is equal to the semiclassical

stress tensor of the auxiliary Liouville field,

T (z) =
1

2
∂2Φ− 1

4
(∂Φ)2 . (4.10)

This can be used to find the primaries running in the dual OPE. The well known procedure

(see [56] and for pedagogical discussions [32,57]) is to study the monodromies of the Fuchsian
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differential equation,

ψ′′(z) +
6

c
T (z)ψ(z) = 0 . (4.11)

This is equivalent to the Liouville equation, with Φ determined by the two solutions ψ1, ψ2

of this second order equation,

Φ = log
4w′(z)w̄′(z̄)

(1− w(z)w̄(z̄))2
, w(z) =

ψ1(z)

ψ2(z)
. (4.12)

The condition that Φ is single-valued implies that around a closed loop γ in the z plane, the

vector

(
ψ1

ψ2

)
has monodromy M(γ) ∈ SL(2,R). The conformal weight of the primary in the

semiclassical conformal block cut along the curve γ is related to the monodromy by

TrM(γ) = 2 cos(2πη) (4.13)

with h = h̄ = c
6η(1− η).

4.2 SL(2,R) elements and monodromies

Consider a general element of the SL(2,R) group represented using a real 2× 2 matrix with

unit determinant,

M =

[
a b

c d

]
ad− bc = 1 (4.14)

It generates an automorphism, M : H2 → H2 of the upper half plane by mapping points on

the upper half plane by fractional linear transformations,

z → az + b

cz + d
, z ∈ H2 (4.15)

Depending on the conjugacy class of SL(2,R) that the element M belongs to, its action on

H2 has fixed points either in the interior of H2 or on its boundary, i.e, on the real line. Let

us denote the fixed point(s) of this map to be at z = w1,2 which are roots of the quadratic

equation,

cw2 + (d− a)w − b = 0 (4.16)

Given the fixed points, there is a 1-parameter family of SL(2,R) elements labelled by the

entry c below the diagonal without loss of generality. We can express the other entries of M
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as

b = −cw1w2

a =
c

2
(w1 + w2)± 1

2

√
4 + c2(w1 − w2)2

d = − c
2

(w1 + w2)± 1

2

√
4 + c2(w1 − w2)2

(4.17)

Using (4.17), we see that

Tr(M) = a+ d = ±
√

4 + c2(w1 − w2)2 (4.18)

Depending on the conjugacy class that M belongs to, we have

Elliptic (|Tr(Me)| < 2) : w1 = w∗2 ∈ H2

Parabolic (|Tr(Mp)| = 2) : w1 = w2 ∈ R for c 6= 0

Hyperbolic (|Tr(Mh)| > 2) : w1 6= w2 ∈ R

(4.19)

Therefore, each elliptic element has a single fixed point in the interior of H2, each parabolic

element has a single fixed point on the real line whereas each hyperbolic element has two

fixed points on the real line.

Consider a hyperbolic 2-orbifold Σ, as in (4.5), constructed by identifying H2 under the

action of one or more SL(2,R) elements. Each homology class γ of simple closed curves on

Σ (with elliptic fixed points removed) corresponds to a conjugacy class in SL(2,R), and is

assigned a conformal weight by (4.13). For example, if Σ is a disk with n defects and no

handles, then the geometry (4.3) is dual to a 2n-point function, and the saddlepoint weights

appearing in (3.6) are determined by (4.13) with the weight hk corresponding to a curve γk

encircling the defects i1, i2, . . . , ik, and Tr(M(γk)) = −2 cos
(
π
√

1− 24hk/c
)

.

A curve that can be deformed to a small circle around a defect operator with η ∈ (0, 1
2)

corresponds to an elliptic element of SL(2,R). The overall sign in (4.13) is a convention,

because it is really PSL(2,R) that acts on the upper half plane. With this sign convention,

the defect operators above the multi-twist threshold of η = 1
4 have Tr(Me) ∈ (−2, 0) with

the defect operator just below the black hole threshold (η = 1
2

−
) having Tr(Me) = −2+. For

the elliptic element Me to correspond to the monodromy matrix of a sub-threshold operator,

we require

±
√

1− c2r2 sin2(θ) = cos(2πη) ≡ |c|r sin(θ) = sin(2πη) (4.20)

where the fixed points have been parameterized as w1 = reiθ, w2 = re−iθ with r > 0 and

θ ∈ (0, π). This shows that we need to choose the positive branch for defects below the

multi-twist threshold and the negative branch for defects above the multi-twist threshold.
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With this parametrisation, the family of elliptic elements in matrix form read

Me =

[
sin(2πη) cot θ + cos(2πη) − sin(2πη)r csc θ

sin(2πη) csc θ
r − sin(2πη) cot θ + cos(2πη)

]
(4.21)

If the above monodromy matrix corresponds to a probe operator (0 < η � 1), we may

express Me as a perturbation away from the identity,

Me = I + 2πη

[
cot θ −r csc θ
csc θ
r − cot θ

]
+O(η2) (4.22)

Analytically continuing (4.13) to above the BH threshold using η = 1
2(1 + iλ) with λ ∈ R+

corresponding to an operator with h = c
24(1 + λ2), we have,

Tr(Mh) = −2 cosh(πλ) (4.23)

so Tr(Mh) < −2. We also observe that heavier operators have monodromy matrices with

smaller trace, i.e,

h′ > h =⇒ Tr(M ′) < Tr(M) (4.24)

Note that the length of the primitive geodesic ` associated with the hyperbolic element Mh

which satisfies Tr(Mh) = −2 cosh( `2) can now be expressed in terms of the chiral dimension

h of the primary operator running in an intermediate channel in a Virasoro OPE block as

` = 2πλ =⇒ h =
c

24

(
1 +

(
`

2π

)2
)

(4.25)

This equation confirms a claim made in section 3: The bond dimensions in the tensor network

agree with the areas of extremal surfaces in the bulk, since ` is the length of the extremal

surface, and (4.25) is identical to the formula for the Cardy entropy with S = `/4G.

We can reparametrise the family of hyperbolic elements with fixed points at w1, w2 ∈ R

and w1 < w2 in terms of the length of the primitive geodesic using c =
2 sinh( `

2
)

w1−w2
, which yields

Mh =

[
sinh( `2)w1+w2

w1−w2
− cosh( `2) −2 sinh( `2) w1w2

w1−w2
2 sinh( `

2
)

w1−w2
− sinh( `2)w1+w2

w1−w2
− cosh( `2)

]
. (4.26)

4.3 Probes in pure state black holes

We now turn to understanding the isometric property of probes for pure state black holes

formed by backreaction of scalar defects and handles in the interior. The t = 0 spatial slice

for these black holes has a bulge in the interior, separated by one or more locally minimal

32



surfaces from the asymptotic region. The outermost minimal surface is the apparent horizon.

These geometries are examples of one-sided pythons [58], with the ‘lunch’ consisting of the

region inside the apparent horizon. The product of operators creating the black hole will be

called Ψ = O1O2O3 · · · , and the probe operator will be called O, having weight η � 1.

Denote the simple closed curve around the background operators alone by γΨ, and the

simple closed curve around all operators including the probe by γΨO. The monodromies

Mi = M(γi) around these curves are related to the saddlepoint primary weights weights in

the OPE, denoted hΨ and hΨO respectively and both above the black hole threshold, by

(4.13), i.e.,

TrMΨ = 2 cos 2πηΨ (4.27)

TrMΨO = 2 cos 2πηΨO (4.28)

with hi = c
6ηi(1 − ηi). Our goal is to compare hΨ to hΨO. As explained in the previous

section, if we assume eigenstate thermalization, then the code is isometric for hΨ < hΨO,

and coisometric for hΨ > hΨO.

Although the analysis does not depend on the details of the black hole, an example to

have in mind is a pure-state black hole created by two heavy defects, Ψ = O1(x1)O2(x2),

where η1, η2 ∈ (1
4 ,

1
2). The background geometry is pictured in (3.20). The spatial geometry

Σ is found by solving the Liouville equation inside the unit disk with three defects, as

shown in figure 3. In this example there is a single minimal surface, which is a geodesic in

the hyperbolic metric on Σ. The defect, O, may be inside or outside this geodesic. The

saddlepoint weights in the tensor network studied in section 3.5 were denoted there h∗1 = hΨ

and h∗2 = hΨO.

For the discussion of the isometric property we are interested in a probe that is outside, or

just slightly inside, the apparent horizon. We can therefore focus on the part of the geometry

that extends from the conformal boundary to slightly inside the horizon. After uniformizing

to the w-plane, this part of the geometry is a quotient of H2. The case where the probe is

outside the horizon is shown in figure 4. The identifications are generated by one elliptic

element, corresponding to the probe, and one hyperbolic element, corresponding to the loop

γΨ around the background operators. It is convenient to conjugate the hyperbolic element

(4.26) into the form

MΨ =

[
− cosh( `2) − sinh( `2)

− sinh( `2) − cosh( `2)

]
(4.29)

MΨ has fixed points at w = ±1 and an associated primitive geodesic which is a portion of

hyperbolic length ` of the semicircle centered at the origin with unit coordinate radius. We

can choose a fundamental domain such that MΨ identifies points on two semicircles related
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γBH

O1

O2

O3

γΨ

γe

z

|z| = 1

z

γBH

O1

O2

O3

|z| = 1

γΨ

γe

Figure 3: Spatial slice Σ for a black hole created by Ψ = O1(x1)O2(x2),
probed by a third operator O3(x3). Monodromies are calculated around the
blue curves, γΨ and γΨO = γΨ ◦ γe, and the red curve γBH is the apparent
horizon. On the left, the probe is outside the horizon which is homologous
to γΨ, while on the right, the defect is inside so the horizon is homologous
to γΨO.

by reflection about x = 0 on H2. This requirement uniquely determines the two semicircles

to be centred at (±x0, 0) each with radius R,

x0 =
1

tanh( `2)
, R =

1

sinh( `2)
(4.30)

The two fixed points are on the real line, inside the semicircles, and with the choice (4.29)

the point w1 = −1 is repelling and w2 = +1 is attractive.

The monodromy around the curve γe circling the defect is elliptic, so it has one fixed

point in the upper half plane at w = reiθ. This fixed point is the location of the probe

particle in the uniformizing coordinate, and the monodromy matrix to leading order in the

defect weight is given in (4.22).

Using (4.29) and (4.22), observe the trace relation

TrMΨO = TrMΨMe = TrMΨ − 2πη sinh(
`

2
)
(1− r2)

r sin θ
+O(η2) (4.31)
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Figure 4: Probe particle outside the apparent horizon of a black hole. The
bold semicircles are identified by the action of the hyperbolic element MΨ

in (4.29). The primitive geodesic associated with (4.29) is represented by
the dashed arc and is interpreted as the outermost horizon on the spatial
slice of the pure state black hole geometry. The defect produces a small
conical deficit by identifying the two dotted segments. There are assumed
to be additional identifications behind the horizon, not shown, so that the
boundary is S1.

where η corresponds to the probe weight. In terms of the saddlepoint weights, this implies

hΨO − hΨ =
m`

8π

(1− r2)

r sin θ
(4.32)

in the probe limit. Therefore there is a transition from an isometric to a co-isometric code

as the defect crosses the horizon at r = 1. For r < 1, the defect is outside the horizon,

hΨO > hΨ, and the code is isometric; for r > 1, the defect is inside the horizon, the sign

changes so that hΨO < hΨ, and the code is co-isometric.

The primary weight hBH corresponding to the black hole horizon equals either hΨ or

hΨO, depending on whether the probe is outside or inside the horizon. If the probe is outside

the horizon, then the curve γΨ is homologous to the horizon, so hBH = hΨ. If the probe is

inside, then the curve γΨO is homologous to the horizon, so hBH = hΨO. See figure 3. The

black hole weight is related to the horizon length by (4.25).

The trace identity (4.31) can easily be generalized to n probes,

Tr(MΨ

n∏
i=1

Mei) = Tr(MΨ)− 2π sinh(
`

2
)

n∑
i=1

ηi
(1− r2

i )

ri sin θi
+O(ηiηj) (4.33)

Thus each probe inside (outside) the horizon acts to decrease (increase) the primary energy

in the OPE. The ordering of the probe operators is not important at linear order.

So far, we have restricted discussion to the outermost geodesic on the spatial slice of pure

state black hole geometries. However, when the black hole is formed due to backreaction

by n > 2 conical defects (taken to be above the multi-twist threshold), there are multiple
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geodesics on Σ. On the CFT side, we expand the OPE of the conical defect operators in a

channel where we fix the monodromies around curves homologous to a nested set of n − 1

such geodesics, each circling one additional defect. The scaling dimensions of the internal

scalars in this channel are given by

∆i = 2hi =
c

12
(1 + (

`i
2π

)2) (4.34)

where `i are the lengths of the geodesics in the hyperbolic metric induced on the spatial slice.

We observe from (4.34) that we can assign a coarse grained entropy that satisfies the Cardy

formula for each of these geodesics,

S0(hi, hi) = 4π

√
c

6
(hi −

c

24
) =

c`i
6

(4.35)

The additional geodesics can be detected in the dual CFT by adding a probe operator, which

satisfies analogous trace identities near each geodesic. In the comb OPE channel, the probe

transitions from isometric to co-isometric as it crosses the geodesic.

4.4 Isometric transition of heavy operators

So far, in this section, we have studied the isometry properties of probe operators in a black

hole background created by heavy defects. Now, we would like to understand the isometric

properties of the heavy defect operators that form the background. Consider a black hole

geometry with its outermost horizon of length ` described by the primitive geodesic of the

hyperbolic element Mh in (4.29) on the uniformizing upper half plane. Let one of the defects

constituting this background be described by the elliptic element in (4.21) (which we shall

denote as Md in this section) of strength η whose fixed point is at w = reiθ chosen to be

above the primitive geodesic (i.e, r > 1) on the uniformising upper half plane. Note the trace

identity,

Tr(Mh)− Tr(MhM
−1
d ) = 2 cosh(

`

2
)(cos(2πη)− 1) + sinh(

`

2
) sin(2πη)(r − 1

r
) csc(θ) (4.36)

In the above expression, the first term is always negative and since we are assuming that the

defect is behind the horizon, the second term is always positive. So, there is a locus (r0(θ))

behind the horizon corresponding to Tr(Mh) = Tr(MhM
−1
d ),

r0(θ) = α(θ) +
√

1 + α2(θ), α(θ) = coth(
`

2
) tan(πη) sin(θ) (4.37)

If the heavy defect lies on this locus, then (assuming ETH) the dual CFT operator Od acts

unitarily on the auxiliary Hilbert space spanned by Virasoro primaries in a microcanonical
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window around the scalar primary of scaling dimension ∆ = c
12(1 + ( `

2π )2). If the defect is

behind this locus, we have Tr(Mh) > Tr(MhM
−1
d ) so the defect operator acts co-isometrically

on the relevant portions of the CFT Hilbert space whereas if the defect is outside this locus

but still behind the horizon, the defect operator acts isometrically. Therefore from the

point of view of the reconstructibility of operator Od, the unitary locus behaves like a ‘non-

perturbative horizon’. This notion of horizon is operator-dependent due to backreaction.

Geometrically, the unitary locus corresponds to a spatial slice where the outermost and next-

to-outermost geodesic have the same length; the action of Od is isometric if the outermost

geodesic is longer.

5 Probes in multi-boundary black holes

It is straightforward to extend all of the results above, including the semiclassical tensor

network, to multi-boundary black holes. We will focus on checking the isometric property

for probes in a deformed two-boundary black hole. For spherically symmetric states, the

isometric property at finite temperature was shown in [28,29,31].

The Euclidean BTZ geometry can be constructed from a quotient of H3 by a discrete

Abelian group (isomorphic to Z) generated by

Mh =

−e 2π2

β 0

0 −e−
2π2

β

 (5.1)

where β is the inverse temperature of the BTZ black hole which is related to its ADM mass

by MBTZ = cπ2

3β2 . Such a quotient construction defines a natural slicing of the solid torus by

hyperbolic cylinders. The BTZ metric in these coordinates is

ds2 = dτ2 + cosh2 τdΣ2 (5.2)

where dΣ2 is the hyperbolic metric on the cylinder. Solving the Liouville equation on the

cylinder with ZZ boundary conditions at either end (Im(z) = 0, β2 ), one can check that [59]

dΣ2 = eΦ(z,z)|dz|2 =
(2π
β )2

sin2(2π
β Im(z))

|dz|2 (5.3)

with z ∼ z + 2π and Im(z) ∈ (0, β2 ).

The t = 0 spatial slice of the BTZ geometry has a minimal geodesic at the centre, whose

length in the hyperbolic metric (`(γ) = 4π2

β ) gives the area of the horizon. Notice that this

length can be read off from the SL(2,R) generator using Tr(Mh) = −2 cosh( `(γ)
2 ). The spatial
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slice can be conformally mapped to H2 with its image being a half-annulus between |w| = 1

and |w| = e
4π2

β in H2 bounded by the real line and the circular boundaries identified under

the action of Mh in (5.1).

5.1 Probe in BTZ

Consider a probe particle propagating in the BTZ background described by (5.1). There is no

nontrivial check of the isometric property in this case, but it is a useful warmup calculation.

The corresponding tensor network was described in section 3.8.1. Using the form of the

SL(2,R) element with fixed point at w = reiθ (r ∈ (1, e
4π2

β ), θ ∈ (0, π)) corresponding to a

probe particle, we observe the following trace identity,

Tr(MhMe) = Tr(Mh)− 4πη cot θ sinh(
2π2

β
) +O(η2) (5.4)

In contrast to the black hole geometries described in the previous subsection, the BTZ ge-

ometry is spherically symmetric. So, for the unperturbed BTZ black hole, it is easy to verify

that the primary energy agrees with the ADM mass, i.e, Ep = c
12( `

2π )2 = MBTZ . However,

with the addition of the probe particle, the geometry is no longer spherically symmetric so

we expect there is a non-zero contribution from the boundary gravitons in the calculation of

the total energy hence the primary energy is not expected to be match with the total energy

in the presence of the probe particle. Just like in the discussion with pure state black holes,

the difference in monodromies (5.4) can be translated to a difference in saddlepoint primary

energies,10

∆Ep =
2πm

β
cot(θ) (5.6)

where m is the mass of the probe.

The BTZ geometry with a probe inserted calculates a thermal 2-point function. Let us

10In Schwarzschild-like coordinates where the BTZ metric takes the form ds2 = (r2−r2h)dτ̃2+ dr2

r2−r2
h

+r2dφ2,

the energy difference in (5.6) reads ∆Ep = m
√
r2 − r2h where rh = 2π

β
. To derive this relation, it is useful to

note the relation between Schwarzschild-like coordinates and wormhole-like coordinates,

y =
rh
r
erhφ

√
1 + (

r2

r2h
− 1) sin(rhτ̃)

x =

√
1−

r2h
r2

cos(rhτ̃)erhφ

sinh(τ) =
r

rh

√
1−

r2h
r2

sin(rhτ̃)

(5.5)
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expand this 2-point function in Virasoro conformal blocks,

〈O(z1, z̄1)O(z2, z̄2)〉τ,τ̄ =
∑
p,q

|cOpq|2

∣∣∣∣∣∣∣∣∣∣∣
O

p

q

O

∣∣∣∣∣∣∣∣∣∣∣

2

(5.7)

The loop represents the thermal circle, z ∼ z + τ . The two hyperbolic identifications in

the BTZ+probe geometry calculate the saddlepoint primary weights in this conformal block

expansion,

TrMh = −2 cos
(
π
√

1− 24h∗p/c
)
, TrMhMe = −2 cos

(
π
√

1− 24h∗q/c
)
. (5.8)

Thus ∆Ep in (5.6) is the difference in primary energies between the two internal lines in the

conformal block at the saddlepoint. The larger weight appears on whichever arc has less

Euclidean time evolution. In the bulk, the probe particle can be inserted in either the left

or right side of the Penrose diagram. The relation (5.6) simply says that the side with the

particle has a higher primary energy.

Even when the probe particle in the above setup is replaced by a heavy defect, it is clear

that the saddlepoint weights h∗p and h∗q in (5.7) match if the particle propagates through the

middle of the backreacted geometry (i.e, when the Euclidean time difference between the

endpoints of the trajectory is half the size of the thermal circle). In this case, as explained

in some more detail in the next subsection, the two apparent horizons created on either

side of the particle’s trajectory have equal area ensuring that the saddlepoint weights in the

conformal block expansion match. When the defect propagates asymmetrically, it increases

the saddlepoint primary energy on the side with the defect. Thus, the middle of the punctured

cylinder constitutes a unitary locus for a defect of any strength and hence behaves like a non-

perturbative horizon in the sense of section 4.4. As explained in footnote 11, due to the chosen

parametrisation of the SL(2,R) elements in the definition of the background geometry, the

locus for the non-perturbative ‘horizon’ matches with (4.37).

5.2 Probe in the BTZ+Defect background

In the previous subsection, the distinction between the primary and total energies for the

background geometry were unimportant because the BTZ geometry is spherically symmetric.

However, we can deform the BTZ background by a heavy particle which manifestly breaks

the spherical symmetry. In this case, the spatial slice is a once-punctured hyperbolic cylinder

shown in (3.42). This is an example of a two-sided python’s lunch [58]. For discussion of

such geometries in JT gravity, see [30, 60–62]. Spherically symmetric two-sided pythons in
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Mh

Mb Mb

Figure 5: Quotient construction of the spatial slice of the BTZ+Defect black
hole geometry. The dotted lines are the two apparent horizons which are
primitive geodesics of hyperbolic elements Mh and Mb.

higher dimensional Einstein gravity were constructed in [63].

This BTZ+Defect geometry is constructed as follows. Let the elliptic element correspond-

ing to the heavy particle be denoted Md. Given the strength η and the location of the fixed

point w = iy0 on H2, we can write down a matrix form for Md,

Md =

[
cos(2πη) y0 sin(2πη)

−y−1
0 sin(2πη) cos(2πη)

]
(5.9)

There are two apparent horizons, one separating the lunch from each asymptotic region. Let

one of them have length `. We can choose a canonical form of the hyperbolic element whose

primitive geodesic has length `,

Mh =

[
− cosh( `2) − sinh( `2)

− sinh( `2) − cosh( `2)

]
(5.10)

The other apparent horizon corresponds to the primitive geodesic associated with the hyper-

bolic element Mb = MdMh. In matrix form,

Mb =

[
− cos(2πη) cosh( `2)− y0 sin(2πη) sinh( `2) − cos(2πη) sinh( `2)− y0 sin(2πη) cosh( `2)

y−1
0 sin(2πη) cosh( `2)− cos(2πη) sinh( `2) y−1

0 sin(2πη) sinh( `2)− cos(2πη) cosh( `2)

]
(5.11)

The parameters need to satisfy the constraint coming from the requirement that Mb is hy-
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perbolic, i.e, Tr(Mb) < −2,

2

(
1− cosh(

`

2
) cos(2πη)

)
< sin(2πη) sinh(

`

2
)(y0 − y−1

0 ) (5.12)

If the heavy particle is placed in the middle of the space, then the lengths of the two apparent

horizons are equal. For that case, we can relate the defect strength to the location of the

fixed point on H2 using11

Tr(Mb) = −2 cosh(
`

2
) =⇒ cot(πη) =

2 coth( `2)

y0 − y−1
0

(5.13)

The discussion of the isometry property around the apparent horizon corresponding to Mh

follows trivially from the discussion of the isometry property for pure state black holes due

to the form of the chosen hyperbolic element, as the geometry is locally identical to figure 4.

To verify the isometric property of probes around the other apparent horizon, note that,

Tr(MbMe)− Tr(Mb) = −2πηp

[
(y0 + y−1

0 ) cot(θ) sin(2πη) sinh(
`

2
)

+ csc(θ) sin(2πη) cosh(
`

2
)(
y0

r
+

r

y0
)− csc(θ) cos(2πη) sinh(

`

2
)(r − 1

r
)

]
(5.14)

where Me is the elliptic element corresponding to the probe of strength ηp having a fixed

point at w = reiθ. The reader can verify that the locus Tr(MbMe) = Tr(Mb) corresponds to

the other apparent horizon by matching the matrix form of Mb in (5.11) with the form of

the hyperbolic element given by (4.26) to determine the fixed points of Mb and then use the

fact that the primitive geodesic is a portion of a semicircle which when extrapolated meets

the real axis at the fixed points of the hyperbolic element.

In the dual CFT these results are interpreted in terms of the conformal block expansion

for the finite-temperature 4-point function,

〈OdOdO1O1〉τ,τ̄ =
∑
p,q,r,s

csdpc
∗
sdrcp1qc

∗
r1q

∣∣∣∣∣∣∣∣∣∣∣∣∣
Od

s

q

rp
Od

O1O1

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

(5.15)

11We can use the general form of the defect elliptic element given in (4.21) with fixed point at w = reiθ on
H2 to determine the locus of fixed points corresponding to the middle of the space. Due to the form of the
chosen elliptic and hyperbolic elements, this locus is given by (4.37).
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where Od is the heavy particle corresponding to the elliptic element Md, and O1 is the probe,

which are assumed to be inserted in a reflection-positive configuration. The points τ = 0, β2
that join onto the Lorentzian spacetime are on legs labeled s and q, so the saddlepoint weights

h∗s and h∗q are the (chiral) energies observed at infinity on the left and right sides of the black

hole. The probe operator O1 is effectively a map

O1 : H∗p → H∗q , (5.16)

with the direction corresponding to increasing Euclidean time. The question of whether the

probe operator O1 acts isometrically is therefore answered by comparing the saddlepoint

primary weights h∗q and h∗p. The hyperbolic elements appearing in (5.14) are related to the

saddlepoint primary weights by

TrMb = −2 cos
(
π
√

1− 24h∗p/c
)
, TrMbM

−1
e = −2 cos

(
π
√

1− 24h∗q/c
)
. (5.17)

(Note h∗p = h∗r). Therefore, when the probe is outside the horizon, h∗q > h∗p, so the probe

operator O1 acts isometrically, and when it is inside the horizon, it acts co-isometrically.

6 Discussion

We have described two simple models where the CFT operator algebra can be recast as

a pseudorandom tensor network: high-energy spherically symmetric states in arbitrary di-

mensions, and more general black hole states in a 2d CFT dual to pure gravity plus point

particles. In both cases, the tensor network discretizes the radial direction in the bulk, in

the sense that (1) bond dimensions agree with the areas of extremal surfaces, and (2) probes

undergo an isometric transition at the horizon.

In the rest of this discussion we comment on several open directions.

Singularities

The usual black hole singularity requires time evolution in Lorentzian signature. However,

we can produce a very similar effect by moving the heavy operator insertions Oi toward the

origin (in radial quantization) or large negative Euclidean time (on the cylinder). This results

in a black hole at t = 0 with a very narrow throat at the extremal surface, and therefore

small entropy. By tuning the operator weights and Euclidean positions, we can send the

horizon area toward zero. This is a Euclidean version of a black hole singularity. In this

limit, the counting argument implies that the rank of O†O, with O dual to a probe particle

behind the horizon, goes to zero. Therefore, in the singular limit, it becomes impossible to

reconstruct behind-the-horizon operators from the boundary.
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What happens to our black hole solutions in this limit? The black hole geometry cor-

responds to the identity block approximation. The mass of the black hole is set by the

saddlepoint weight h∗ in the dual OPE channel, and as we tune toward a singularity, this

weight approaches the black hole threshold, h∗ → c
24 . However, assuming there is any light

matter in the theory, eventually the identity block approximation breaks down. In 3d gravity

coupled to massive point particles, this breakdown can be studied quantitatively. There is an

exchange of dominance between the black hole and the handle wormholes found in [27, sec-

tion 6]. If the black hole mass is very small, then instead of a black hole, the norm 〈Ψ|Ψ〉 is

dominated by the handle wormhole. The t = 0 slice, instead of being a smooth black hole,

has two disconnected components — the black hole interior is replaced by a closed universe

with an additional heavy defect having h∗ < c
24 . That is, the outermost throat shown in

figure 1 pinches off and breaks the diagram in two, with two new defect operators appearing

at the singularities. It would be interesting to understand this regime better in terms of the

holographic code.

Discretizing the transverse directions

In the original formulation of holographic tensor networks using MERA [1], as well as the

HaPPY code [23] and random tensor networks [3], the spatial directions along the boundary

are also discretized. In our model, each boundary component has only a single tensor. This

allows for some simple tests of bulk reconstruction — for example, it is easy to see from the

isometric property that an operator inside a 2-sided black hole can be reconstructed from one

boundary but that this does not hold in a 3-boundary black hole — but it does not allow for

spatial resolution on a single boundary. Can the CFT construction be generalized to write a

more complete tensor network in terms of OPE data?

Crossing symmetry

To construct the tensor network, we first chose an OPE channel. What if we choose a

different channel? For example, in a case like figure 1 in the introduction, we could construct

the comb channel OPE in a different order. This will give a different tensor network, but the

two quantum states must agree.

This means that the OPE coefficients cannot be truly (psuedo)random: crossing symme-

try requires corrections to the ETH ansatz [64]. Throughout the paper we have assumed these

corrections can be neglected. It would be interesting to explore how the isometric property

is realized in other channels and when these corrections must be taken into account.
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Higher dimensions: beyond spherical symmetry

Can holographic tensor networks be constructed quantitatively in higher dimensions? As we

have emphasized, this is a difficult problem without spherical symmetry, because dynamical

light fields come into play (the same is true for 2d or 3d gravity with light matter). We can

gain some rough intuition from the example of 2d CFT coupled to point particles. The theory

must first be separated into ‘fast’ and ‘slow’ degrees of freedom: the black hole microstates

and the low energy fields. Only the microstates can be approximated by random tensors,

so the tensor network should consist of random tensors dressed by light fields. In some

cases the distinction between the two is blurred by quantum scars [65]. One proposal to

build more realistic holographic tensor networks is to use random tensors with nontrivial

links [17]. However, in our model, upgrading the tensor network (figure 2) to the exact CFT

state (3.3) does not appear to be as simple as weighting the tensors.

Coarse graining tensor networks and wormholes

In [37] we showed that Euclidean wormholes calculate the replica partition functions of coarse

grained states. The coarse graining operation involves projecting onto diagonal states in the

bra and ket of a pure state ρ = |Ψ〉〈Ψ|. The same procedure can be applied to tensor

networks. Consider, for example, the tensor network in (3.23), for which the density matrix

is

ρ = (6.1)

Define the coarse-grained state by

C(ρ) = (6.2)

where the black dot represents the diagonal 3-index tensor, δpqδqr. That is, we project onto

identical Virasoro representations in the bra and ket. In the random tensor approximation,

the coarse-grained entropy

Scoarse(ρ) := −Tr C(ρ) log C(ρ) (6.3)

is equal to one quarter the area of the outermost apparent horizon. Furthermore, replicas

such as Tr C(ρ)2 have tensor networks that discretize multiboundary Euclidean wormholes in

AdS3. We hope to explore this in future work.
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