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Abstract

In holographic CFTs satisfying eigenstate thermalization, there is a regime where the
operator product expansion can be approximated by a random tensor network. The
geometry of the tensor network corresponds to a spatial slice in the holographic dual,
with the tensors discretizing the radial direction. In spherically symmetric states in any
dimension and more general states in 2d CFT, this leads to a holographic error-correcting
code, defined in terms of OPE data, that can be systematically corrected beyond the
random tensor approximation. The code is shown to be isometric for light operators
outside the horizon, and non-isometric inside, as expected from general arguments about
bulk reconstruction. The transition at the horizon occurs due to a subtle breakdown of

the Virasoro identity block approximation in states with a complex interior.
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1 Introduction

There is an intriguing similarity between tensor networks and emergent geometry in AdS/CFT
[1]. A quantum state constructed from a random tensor network has an entanglement struc-
ture dictated by the geometry of the network, and satisfies a discrete version of the Ryu-
Takayanagi formula [1-3]. There are arguments that a tensor network can be constructed
from the bulk theory in principle [4-8], and further connections have been developed in,
e.g, [9-20].

This is closely related to the idea that spacetime can be understood as a quantum error-
correcting code [2,21-23]. A holographic code is a linear map W from the Hilbert space of
the bulk low-energy effective field theory to the physical Hilbert space of the dual CFT,

W Hgrr — Hcrr , (1.1)



that preserves some structure of the bulk theory. For example, W must preserve correlation

functions of simple operators, such as

((X1)o(X2))ErT = (®(X1)®(X2))crT , With W¢|0)grr = ®[0)cFT , (1.2)

where ¢ is a local bulk field and ® is the corresponding smeared CFT operator. A similar
condition applies to higher-point functions.

One way to satisfy these relations is if WTW = 1. A linear map satisfying this condition
is said to be an isometry, and this defines an isometric code. Near the AdS vacuum state,
the holographic code is isometric, because bulk operators can be pushed to the boundary
with a state-independent smearing kernel [24,25]. However, if the ¢ operators are hidden
behind a horizon, then the code is expected to be non-isometric [21,26]. This follows from
a simple counting argument: The physical Hilbert space relevant to a black hole has size
eS, with S = % the Bekenstein-Hawking entropy, but the bulk EFT inside a black hole
can have a much larger Hilbert space. Thus truncating to the relevant parts of the Hilbert
spaces we have dim(Hgpr) > dim(Hcpr), and under this condition is is impossible for W
to be isometric, because the rank of WTW is much smaller than its dimension. Random
tensor networks exhibit similar behavior: The code is isometric outside the horizon and
non-isometric inside, if a ‘horizon’ is identified as a locally minimal surface in the tensor
network [3].

The correspondence between random tensor networks and AdS/CFT is, for the most part,
based on qubit models. In this paper we will study examples where there is a quantitative
correspondence to dynamical gravity. We construct (pseudo)random tensor networks, and
the corresponding holographic codes, directly from the dual CFT, in the context of the
AdS3/CFTy correspondence and for spherically symmetric states in higher dimensions. These
tensor networks can be interpreted as discretizing the bulk radial direction. There are several
calculations that support this interpretation. First, the bond dimension of the tensor network
agrees with the bulk area at minimal surfaces (but not elsewhere). Second, the resulting
codes are isometric outside the horizon, with a transition to non-isometric behavior inside.
Third, the replicas built from coarse-grained tensor networks have the same structure as
multiboundary wormholes in the bulk.

We consider 3d gravity coupled to point particles, which is conjecturally dual to an
ensemble of 2d CFTs with random OPE coefficients [27]. One of our main conclusions is that
this model realizes and extends a proposal made in [28,29] for how the isometric transition is
encoded in the dual CFT (see also [21,30,31]). The starting point is that in the high-energy
regime, assuming the eigenstate thermalization hypothesis (ETH), probe operators behave
like a random map. If a probe operator O is dual to a particle outside the horizon, the
random map is approximately isometric MM ~ 1, where M is a finite-dimensional matrix



built by truncating O near the semiclassical saddle (and rescaling). But if the probe is inside
the horizon, then the map is approximately co-isometric, MM ~ 1. The transition occurs
because particles behind the horizon have negative energy-at-infinity, and the energy controls
the effective dimensions and rank of the random map [28,29]. As we will review below, this
description applies to probes acting on spherically symmetric black holes in an arbitrary
number of dimensions.

A more elaborate construction that separates the random nature of black hole microstates
from the non-random infrared degrees of freedom is necessary to apply this idea to black
holes without spherical symmetry, as we will do here. In spherically symmetric states, it is
sufficient to treat the random tensors as acting within the physical CF'T Hilbert space (due
to Birkhoff’s theorem, as discussed below). In asymmetric states, this does not work; the
random tensors must act in an auxiliary Hilbert space. Intuitively, the reason is that light
fields in the bulk can carry a leading-order fraction of the total energy, and one must treat the
light fields and microscopic degrees of freedom differently in the construction of the tensor
network — the light fields clearly cannot have random matrix elements, so the random tensor
bonds correspond only to the microscopic part. It is difficult to build the auxiliary Hilbert
space in general, but for a large-c CFT dual to 3d gravity plus massive point particles, the
only light field in the bulk is the boundary graviton. In this case the states of the auxiliary
Hilbert space are labeled by Virasoro representations. The result is a tensor network that
acts within the space of black hole microstates (i.e., heavy primaries), dressed by one final
tensor for each boundary component that incorporates the light fields.

The transition in the isometric property at the horizon agrees with general expectations
from bulk reconstruction and random tensor networks, which typically deal with small excita-
tions of a given bulk geometry. However, we can go beyond this picture because our starting
point is an exact CFT formula for the quantum state, which only reduces to a tensor network
near a semiclassical saddle. To illustrate the advantages of the exact formula, we consider the
bulk reconstruction of heavy, backreacting operators in 2d CFT. We demonstrate that heavy
operators can act isometrically even when they are hidden behind a horizon, and calculate
the effective ‘non-perturbative horizon’ defined as the locus where a heavy operator makes
the transition to a co-isometric code. This quantifies a sense in which an observer who is
allowed to act with heavy operators can easily reconstruct certain operators in a black hole
interior.

The results on the isometric transition can also be phrased in terms of identity dominance
in the conformal block expansion on the boundary. Correlation functions of point particles
in 3d gravity are calculated by Virasoro identity conformal blocks [32,33]. That is, gravity
calculations are reproduced by terms in the OPE that come from the identity fusion rule,

O'0 ~ (0TO)1 + (Virasoro descendants) . (1.3)



This resembles the isometry condition for the holographic code, WTW ~ 1. We will show that
in our setup they are, in fact, the same: The code is isometric if and only if probe operators
satisfy (1.3) inside arbitrary superpositions of black hole states with a given mass. When the
particle dual to O is behind the horizon, the Virasoro identity block approximation breaks
down due to a counting argument similar to the one above. (A similar breakdown bounds the
regime of validity of any bootstrap data extracted by Tauberian methods.) The transition
occurs as the dual particle in the bulk is moved across the minimal surface. When the
horizon is not spherically symmetric, this translates into a nontrivial property of hyperbolic
2-manifolds, which we prove in section 4.

Even if the operator is behind the horizon, the expectation value of (1.3) still holds in
simple states. This is a CFT realization of bulk reconstruction from non-isometric codes, as
anticipated from bulk and information-theoretic arguments in [34], and it is why the Virasoro
identity block approximation can be used to calculate correlation functions whether or not
the operators are behind a horizon. For large black holes, the approximation is only required
to breakdown for very complex states in the black hole interior. However, the breakdown
becomes especially severe near a spacetime singularity; see the discussion section for what
this means in terms of the Euclidean path integral.

The tensor networks that we construct only discretize the radial direction in the bulk,
and only into a finite set of tensor nodes. A very limited ‘spatial direction’ can be studied
in this model by constructing spatial wormholes as 2d CFT tensor networks: Each bound-
ary of the wormholes has a boundary node in the tensor network. In CFT language, this
corresponds to creating states by inserting operators on higher genus surfaces. This is not
a true discretization of the boundary, but it does allow one to consider the entanglement of
boundary subregions in terms of the CFT tensor network, so it is a step in this direction.
It is an interesting open question how to construct CFT tensor networks that resolve the
spatial directions or allow for a continuum limit of the network.

Section 2 studies probes of spherically symmetric states in any number of dimensions.
Our main new results are described in section 3 — which can be read independently as a
technical overview of the paper — with the supporting gravity calculations on the isometric
property given in sections 4 and 5. In the discussion section we comment on various open
directions, including black hole singularities, finer-grained tensor networks, and corrections
to the random tensor approximation required by crossing symmetry.



Figure 1: The spatial geometry of a pure-state black hole in AdS3 and the cor-
responding pseudorandom tensor network. The tensors, which are defined in terms
of OPE coefficients (circles) and Virasoro OPE blocks (semicircles), discretize the
radial direction in the bulk.

1.1 An example

To illustrate the main ideas, let us consider a pure state in 2d CFT created by the insertion

of scalar primary operators inside the unit disk:
W) = O(@) 0, (Xm) Oi,y (Tm—1) - - - Oy (22) Osy (#1)]0) (1.4)

Suppose the first m operators are dual to heavy particles, near to but below the black hole
threshold.! The final operator, O, is special: it has weight hp with 1 < hp < 57 SO it is
dual to a light probe particle.

Under these conditions, the state created on the unit circle in radial quantization is dual
to a black hole. The ¢ = 0 spatial geometry and the corresponding tensor network are shown
in figure 1. The tensor network is not the exact state, but a truncated version with the sum
over internal weights in the OPE limited to states near the semiclassical saddle in (¥|¥); the
tensor network state |¥), is dual to a fixed-area state in the bulk [4,5]. There is a precise
formula for each node in the network (see section 3), up to an undetermined psuedorandom
tensor with zero mean and unit variance, and calculations done with the tensor network
match quantitatively to the bulk. The internal bonds are labeled by primaries, and the
red tensors are finite-dimensional, with entries proportional to the primary OPE coefficients

c c

!Specifically, with weights h;, € (33, 57) (to avoid complications from multi-twist operators) and in posi-
tions such that at the saddlepoint, all internal weights in the comb OPE are above the black hole threshold.



Cpqr- The final tensor on the right is a Virasoro OPE block that maps Hprimaries — HcorT by
dressing the primary state with descendants.

Each extremal surface in the bulk has a corresponding internal line in the network, with
bond dimension ¢*#7) | where S (E}) is the Cardy entropy at the primary weight that appears
in the OPE at the saddlepoint (and E = 2h). For each of these bonds, S(E}) = 1Area. Due
to the light probe there is also an extra internal line in the network whose entropy does not
correspond to any bulk area.

In this context, the holographic code W maps the labels on the operators, {i1, z1; 2, x2; ... },
into the Hilbert space of the dual CFT. Since this map passes through the node correspond-
ing to the probe insertion O, the code can only be isometric if each tensor, viewed as a linear
map from left to right in the figure, is isometric. In particular for W to be isometric, the
tensor dual to the probe operator © must act isometrically. Since this is a random map, it
is approximately isometric or co-isometric depending on whether the saddlepoint entropies
increase or decrease at this node. We will match this behavior to the bulk by showing that
O acts isometrically when the dual probe particle is outside the extremal surface, and co-
isometrically when it is inside. This black hole is not spherically symmetric; the extremal
surface is a geodesic in the 2d hyperbolic metric on the unit disk with conical defects at the
operator insertions, and the agreement holds everywhere along this curve.

In terms of the Virasoro identity block approximation, the statement is as follows: If the
primary weights at the saddle satisfy F,, < E,,—1 — implying that the code is non-isometric
— then there exist superpositions of the form |a) = 3 y; 3 @iy ...i,, O, (Tn) - - - Oy (#1)[0), which
have the same bulk geometry as |¥) outside the outermost horizon, such that the probe
correlation function (a|O(x)TO(z)|a) differs at leading order from the identity approximation.
In fact, there must exist such states that are annihilated by O(x) to leading order, because the
operator OTO (viewed as a finite-dimensional matrix acting on states near the semiclassical
saddle) has rank less than its dimension. If we assume the CFT has a large number of
flavors, so the heavy operators are labeled by i = 1... Ny with Ny > e, then these |a)
states can (in principle) be found by fixing the operator locations and taking a superposition
over flavors (similar to [35]). Otherwise, we can build superpositions with a large number of
heavy operators inserted far behind the horizon (i.e., near the origin in CFT language). The
exact details of the states that violate the identity approximation cannot be found without
knowing the precise OPE coefficients in the CFT, but the counting argument shows that

they must exist.

2 Spherically symmetric states

In this section we consider geodesic probes of spherically symmetric black holes in AdS;.1/CFT,
for any d > 2. This is largely a review of results described in [28,29,31], rephrased in the lan-



guage of random tensor networks and for pure states rather than eternal black holes (which
can be treated similarly). For concreteness we will consider pure state black holes created
by a thin shell of matter, but the discussion also applies to other types of matter, such as
end-of-the-world branes.

2.1 The probe OPE as a random tensor network

Let V be a CFT operator that creates a spherically symmetric thin shell of matter, and
|S) = V10) the non-normalizable CFT state at the shell insertion. These states and their
holographic duals are studied in detail in [36-38]. Evolving in Euclidean time prepares a
normalizable state, e"™|S). We assume the mass of the shell is large enough so that the
shell is behind the horizon at ¢ = 0. Now let us act on this state with additional probe
operators,

|B) = O (—7,) - - - O2(—15) O (=71 )e ™H|S) | (2.1)
with the operators ordered in Euclidean time,
TO>TI>T0 > - >Thm >0. (2.2)

The O° are scalar primary operators, with i a flavor index, and scaling dimensions satisfying
1 < A; € N2 These are dual to massive probe particles in the bulk, which travel on
geodesics. For example, the Euclidean geometry dual to (U|W¥) for m = 5, with two probes
behind the horizon and three outside, is

T2 T3
T1 T4
70

where the red curve is the spherically symmetric thin shell, and the blue curves are the
geodesics of the massive probe particles. The figure shows the radial direction and Euclidean
time. Only the black hole portion is drawn; this is a pure state, so it is glued to vacuum
global AdS at the shell. For more details, including the solution to the shell EOM and the
expansion of |S) in CFT eigenstates, see [37].

The spatial geometry of the ¢ = 0 slice has a spherical shell behind a minimal surface.



Schematically, it looks like:

Here we show the radial direction and the transverse directions, S%~!. We will recast the CFT
state as a random tensor network with a network geometry that resembles (2.4). The tensors
discretize the radial direction, with the rank of the tensor bonds related to the transverse
area. Locality in the transverse directions does not play any role, so to simplify the discussion
we restrict to the zero-momentum sector by integrating the probes over the spatial sphere,
choosing O¥(7;) = [ d4 1z O¥(7;,%;). (In 2d CFT we will consider local operators below.)
By inserting complete sets of energy eigenstates, the exact CFT state (2.1) can be ex-

pressed diagrammatically as

1 Z‘m—l im

) = | (25)

T " Tm1 ~Tm

where we have defined the tensors

@7 n =e ™ (n|S) (2.6)

1

| = (nO'(7)m) . (2.7)

m T n

The tensors O are infinite dimensional in the lower indices, indexed by energy eigenstates
|m), |n). Connected lines between tensors are contracted indices, and the free line at the
right end of (2.5) corresponds to an uncontracted index in the physical Hilbert space.

In a theory satisfying the eigenstate thermalization hypothesis (ETH), the matrix ele-



ments of a light probe between two high-energy eigenstates can be approximated by?
(IO} = (O") s(5,)mn + C* (B, B By, (2.8)

where R! is a random matrix with zero mean and unit variance, and C*(E, E') is a smooth
function of energies determined by matching this ansatz to the thermal 2-point function. We
assume the thermal 1-point vanishes, so we can drop the first term in (2.8).

Applying the ETH to (2.5), the state |¥) becomes a weighted random tensor network
with weights determined by the thermal 2-point functions. The tensors are infinite dimen-
sional, but calculations are often dominated by a semiclassical saddlepoint, and then the
tensors effectively become finite dimensional. Suppose the sum over energies in the spectral
decomposition is dominated by saddlepoint energies, E;. Then we can truncate the sums to
a microcanonical window of e* states around the saddle, with S, = S(E;}) the saddlepoint
entropy. The tensor for O(—7;) becomes a rectangular matrix of dimensions e%k-1 x e%*.
This effective dimension only makes sense in the vicinity of a given saddlepoint.

Upon doing this truncation, the resulting finite-dimensional tensor network resembles the
bulk spatial geometry (2.4), with the rank of the tensors playing the role of the transverse

area. Consider the norm,

il Z'm im Z.1

(v]w) =
P S e o 4@

(2.9)

The saddlepoint in the sum over contracted indices, with saddlepoint energies E; for
k =0,...,m (corresponding to the internal legs from left to right in the diagram), is dual
to the Euclidean spacetime (2.3). The geometry of the network matches the geometry of
the bulk spatial slice, in the sense that the saddlepoint entropies increase/decrease along the
tensor network with the same pattern that the transverse area increases/decreases along the
radial direction in (2.4). At the minimal surface, the transverse area matches the tensor rank
on that leg, i.e. logdim H.pp = S(E*) = 222

From this correspondence we can understand the isometric property of the holographic
code by following [28,29,31]. If O; is behind the apparent horizon, then it decreases the
saddlepoint energy, and if it is outside the apparent horizon, it increases the saddlepoint

*The ETH in QFT must also account for momentum conservation. In (2.8) we implicitly assume that |m)
and |n) have equal momentum, since O is averaged over the sphere.
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energy. The entropies also satisfy this hierarchy,

Oi inside = E: < E;—la S; < S (2.10)
O! outside = E>E",, S;i>Si_1

These inequalities are derived from a straightforward bulk argument reviewed in section 2.2
below.

The properties of a random map depend crucially on whether it maps a smaller space to
a larger space, or vice-versa. Truncating to a microcanonical window near the saddlepoint

and assuming ETH, each probe operator O acts like a finite-dimensional random map,

O(—m) . H(E;_;) = H(E}) (2.11)

where H(E) is the Hilbert space consisting of (¥

CFT states around energy E. For an
operator outside the horizon, this is a random map from smaller space to a larger one, so it
acts invertibly, OT© « 1. By contrast, for a particle behind the horizon, ©® maps a larger
space to a smaller one, so it cannot be invertible. That is, the rank of (O(—74))T O(—7%)
(with both operators truncated to finite-dimensional matrices around the saddle) is bounded
above by €%, which is less than its dimension if S, < Sj_1.

For illustration, consider the particular state illustrated in (2.3), which has five probe

particles — two behind the horizon, and three outside the horizon. The state is

i1 12 13 14 is
= (2.12)

—T0 —T1 -T2 —T3 —T4 —T5

0 1 2 3 4 5

Applying (2.10), we see that the saddlepoint entropies in (V|W¥) satisfy
So>851 >89, Se<S3<85<855. (2.13)

This hierarchy of entropies matches the geometry of the spatial slice drawn in (2.4), and the
minimal entropy, Sa, matches the area of the minimal surface in (2.3). The other entropies,
away from the minimal one, do not satisfy S = % for the corresponding bulk region, but
they increase/decrease in the same pattern as the transverse area. This is the sense in which
the spatial geometry is discretized by a random tensor network.

11



The role of Birkhoff’s theorem

It was essential to this entire discussion that we assumed spherical symmetry. At a technical
level, it enters in the derivation of the energy hierarchy below. But this is more than just
a technical simplification. Birkhoff’s theorem states that the bulk geometry of a spherically
symmetric state is locally identical to an eternal black hole. In CFT language, this means
that there is no need to keep track of anything besides the energy, and consequently, we can
label internal lines in the tensor network by physical CFT states, as was done above. As
long as we assign the correct energies to each leg, they will also have the correct entropy, so
the tensor ranks along the tensor network match the areas along the bulk radial direction.
Additional spherical shell operators can be incorporated without any major differences.

For states without spherical symmetry, the story is much more subtle. General arguments
indicate that a probe operator should transition between isometric/non-isometric at the
minimal surface, but without spherical symmetry, the minimal surface is not where the
energy hierarchy inverts. As we will see in 3d gravity, the reason for the mismatch is that
generally the Hilbert space assigned to the tensor legs is not the physical CFT Hilbert space
— it is an auxiliary Hilbert space with a reduced number of states. The isometric property
must be understood in terms of counting states in the auxiliary Hilbert space. We will see
how this works explicitly in 2d CFT and find that when the state counting is done in the
auxiliary Hilbert space, the isometric property matches precisely with the location of the

minimal surface.

2.2 Derivation of the energy hierarchy with spherical symmetry

It remains to establish the inequalities in (2.10) for the saddlepoint energies in spheri-
cally symmetric states. Similar calculations were done in [28,29,31]. The smooth function
C'(E, E') in the matrix elements of the CFT operators are determined by matching to the
bulk, so this calculation can be done on the gravity side — the CF'T is guaranteed to agree.

Consider the state (2.1) with m probe operators. Choose a bulk radial slice 7 = 7, in the
Euclidean spacetime, with 7,41 < 7. < 73, ¢ > 1 (and define 7,11 = 0). The ADM energy
on this slice, E(7.), is equal to the saddlepoint energy in the CFT spectral expansion for the
intermediate state running between the operators O; and O;41. Now we will compare this
to the energy E(7)) for a slice with 7, < 7/ < 7_1.

12



O; outside

If the particle dual to O; is outside the horizon, then the situation looks like this:

(2.14)

To first order in the backreaction, the ADM energy is that of the black hole plus an O(m)
term from each particle on the slice. The slice 7 = 7. contains an extra particle compared to
7 = 7/, so it has higher energy: F(7.) > E(7.). Translating this into the CFT saddlepoint

energies we have shown
E'>E’ . (2.15)

This can also be phrased in terms of energy flux into the boundary. The boundary stress
tensor T;; satisfies the conservation law [39]

VT = —n, T, (2.16)

where p is a bulk index, ¢ is a boundary index, n is the unit normal to the boundary, and
T¢" . is the matter stress tensor in the bulk. As we evolve from the 7/ slice to the 7. slice, a
positive-energy particle enters through the boundary, providing a positive flux in (2.16) and
thereby increasing the ADM energy.

O, inside

If the particle dual to O; is inside the horizon, then instead it looks like this:

1 Tc

(2.17)

1 1+ 1
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Now it is the slice 7 = 7/ that has an extra particle. Therefore, by the same argument,
E<E" ;. (2.18)

In this case the particle exits through the boundary, so the flux is negative.

3 Random tensor networks from 2d CFT

In [27] it was argued that 3d gravity coupled to massive particles is dual to an ensemble of
large-c¢ CFTs with random OPE coefficients. In related work, we showed that multi-boundary
wormholes (in any dimension) can be interpreted as replica partition functions for coarse-
grained states, in a fixed theory [37]. Here we will show that this same model in 2d CFT also
leads to a correspondence between Virasoro OPE blocks, random tensor networks, and bulk
spatial geometries. In this section we describe the CFT construction. We will use some 3d
gravity results as input, postponing the details of the gravity calculations to section 4 below.

We assume the CFT spectrum consists of a small number of single-trace primary operators
O below the black hole threshold, their multi-trace composites, and a Cardy spectrum of
black hole microstates above the threshold, with h, h > -

3.1 Virasoro OPE blocks

On the Euclidean cylinder with coordinates (7, ¢), consider the state
|B) = O (=T, Gm) -+ - O (=72, ¢2) O (=71, 61)|0) (3.1)

where the O are scalar primaries and 7 > 7 > --- > 7,,,. The spectrum decomposes into

Virasoro representations,
1= In)n| =Y P,, (3.2)
n p

where n runs over all states, p runs over primaries, and P, is the projector onto the repre-
sentation with lowest weight p.3 Inserting this into (3.1) gives an expansion in Virasoro OPE

blocks:

2

‘\I/> - Z Ci1i2p1 e cllmpm72pm71 B hi, - - |pm_1> (33)

P1--sPm—1

le, P, := D MN LaLn|p){p|Lt, LY, with |p) the primary state and Lys and Ly the orthonormalized
chiral and anti-chiral raising operators built from Virasoro modes.

14



The notation BJ. ..] represents a chiral Virasoro OPE block, which is defined by this equation;
B is the contribution to the OPE with the given primary labels, with OPE coefficients
stripped off. It is an operator that acts within a fixed representation by sums of products
of the Virasoro raising operators L_, for n > 1, is completely determined by the Virasoro
algebra, and depends holomorphically on the weights {h;, }, {h;, } and positions {z;}. In the
diagram, the arrow shows which leg is acting as an operator, so in this case the operator acts
within the representation with lowest weight (hy,, ,,hp,, ,).*

The norm (¥|¥) is a 2m-point correlation function. It can be expanded in Virasoro
conformal blocks,

12 7;2m71

<\I’|ql> = Z Ciriopy ~ " C;'kzmiszlpszg i - - i (34)

1
p1,--;P2m—3

This comb diagram represents the usual chiral Virasoro conformal block F. It is related to
the OPE block by F = (p|B'B|p); for example for 4-point functions the relation is

1.
i i3 hiy hig

SN Y 15 IR N - IV Y [ S )

p P P
and similarly for n-point functions.

3.2 The tensor network

Before we describe how to build the tensor network, let us briefly discuss what doesn’t work.
Suppose we follow the same procedure that worked with spherical symmetry: Insert a com-
plete set of energy eigenstates between each operator, and declare the resulting matrix prod-
uct state to be a tensor network. This fails — it’s a valid CFT calculation, but the tensor
ranks in this ‘eigenstate network’ do not match the bulk geometry. For example, the tensor
rank is not minimized at the link corresponding to a bulk minimal surface. The problem
is that it does not make sense to treat the eigenstate network as pseudorandom. In a CFT
with Virasoro symmetry, it is only the primary OPE coefficients that can plausibly be pseu-
dorandom, not all of the matrix elements. Since the tensors in the eigenstate network are
not pseudorandom, there is no reason to expect its entanglement structure to be simply
related to the tensor geometry. The same comments apply to more general bulk theories

“For a general discussion of OPE blocks see [40] where this terminology was first introduced. See also [41]
for Virasoro OPE blocks and their relation to 3d gravity. Our convention is to include all of the position
dependence in the OPE blocks and similarly for conformal blocks.
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whenever matter fields are turned on: the matrix elements of light, single-trace operators
dual to weakly interacting fields in the bulk cannot be random.

To circumvent this, we need to use large ¢ and make one further assumption: that the
conformal block expansion for (¥|¥) is dominated by a semiclassical saddlepoint with all
of the internal weights above the black hole threshold, h, h > 51- Denote these saddlepoint
weights by hj for K =1,...,m — 1, labeled as follows:®

i2 im i'm+] i?m—l

i -- -- iom
! hy Wy h_ hy ’

m—2 m—1 ""m—-2

(3.6)

The fact that this correlation function is a norm (W¥|¥) guarantees that the saddlepoint
weights are symmetric across the diagram, as written. For fixed kinematics and external
weights, let Hy be the set of primaries within a microcanonical window near the semiclassical
saddlepoint (hj, B};) The number of such states is given by the Cardy formula,

o So(hihE) nYy — o< Cam_ <
il 2 eSO So(h, k) = 2my [ (h = o) +2m [ S (h— o) - (3.7)

Note that Hj is defined to include only primaries, not all states, but at large ¢ this doesn’t
affect the Cardy formula.

Now we define a semiclassical state by truncating the sums in (3.3) to primaries near the
saddlepoint,

hi,  hi, R

’\I/>* = Z Ci1i2p1 e C'L‘rnpm—mefl B hi1 - | ’pm_1> (38)
prEHE hop, LY

The OPE block depends only on the weights, not the particular operators, so it can be
evaluated at the saddlepoint and moved outside the sum. Therefore we obtain

(U)s = B2 D Ciriapr *** Conpra—apms [Pm—1) (3.9)
prE€EHE

S5For reflection-positive correlators which are dominated by the identity block, the saddlepoint weights are
scalars, hj = hj. This follows from the fusion transformations described in [27, section 8]: Starting from
the identity block in the dual channel where operators fuse in conjugate pairs, the comb channel only has
contributions with (h;, Bi) = (h2m—i, Bgmﬂ‘); reflection positive kinematics implies (h;, Bi) = (fmm,i7 hom—i);
therefore h; = h;.
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Figure 2: The semiclassical CFT state as a tensor network, as in (3.9).
Internal lines are labeled by CFT primaries with A, h > 51- The red tensors
are OPE coefficients and the final tensor on the left is the (mod-squared)
OPE block, which is a map from the space of primaries to the physical CFT
Hilbert space.

where

2

BZ=|B| 4. | . | . (3.10)

* * *
hl h‘m—2 h’m—l

The expression (3.9) is manifestly in the form of a 1d tensor network with the architecture
of a matrix product state. Denote the tensors as

q
Coar = (3.11)
p r
4:

(m||BElp) = »p m (3.12)

Single lines are tensor legs that act in the space of CF'T primaries, Hprim. Double lines act
in the physical Hilbert space, Hcpr. The semiclassical OPE block is a linear map

’B‘z : Hprim — HCFT y (313)

so the corresponding tensor has one leg with a single line, and one leg with a double line. In
this notation, the semiclassical state (3.9) is the tensor network in fig. 2.

The sum in |¥), is by definition truncated to primaries near the saddlepoint, so the
internal tensor legs in fig. 2 have finite dimension. The truncation was essential in order to
write the state as a tensor network — otherwise, we cannot extract the OPE block outside
the sum in (3.9). Thus the exact CFT state is not a tensor network with the architecture

of figure 2. This clarifies the sense in which we should expect holographic geometries to
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be similar to random tensor networks. (It also suggests that more general, non-holographic
CFT states can nonetheless be similar to holographic tensor networks in a regime where the
conformal block expansion is dominated by a saddlepoint.)

Now the goal is to understand how the tensor network in fig. 2 discretizes the radial
direction in the bulk.

3.3 The random tensor approximation

There is evidence that semiclassical 3d gravity is holographically dual to an ensemble of
large-c CFTs [27,42,43]. In [27,43], the ensemble is defined by treating the primary OPE
coefficients as random variables. At leading order,® the OPE coefficients are Gaussian random
variables with [27]

CijkChn = Co(his by, hi)Co(hs, ﬁj, ht) (0310 jmOkn  permutations) . (3.14)

The coefficient Cj is the crossing kernel for the Virasoro identity block; it is a smooth
function of the weights that is complicated, but known explicitly [45]. This choice ensures
that the CFT ensemble reproduces the identity block approximation in 3d gravity [32,33].
Thus (3.14), by design, reproduces the correlation functions of conical defects and partition
functions of handlebodies in AdS3. Much more nontrivial is that (3.14) also matches the
contribution of a wide variety of multi-boundary wormholes [27].

The ansatz (3.14) is a version of the eigenstate thermalization hypothesis [46,47], tailored
to holographic 2d CFTs. Combined with the tensor network representation of black hole
pure states in fig. 2, the large-c ensemble is naturally interpreted as a random tensor network
model. The tensors are the primary OPE coefficients c¢;j, truncated to the finite set of states
near the semiclassical saddlepoint.

3.4 Sphere 4-point functions

As an example, consider the state

[Wa) = O%(—72,¢2) 0" (=71, ¢1)]0) , (3.15)

This is conjectured to be ‘leading’ in the sense that corrections on the right-hand side of (3.14) come
with factors of e™. This does not always mean that the terms in (3.14) give the leading contribution to
observables, though in many cases it does. We have also assumed for simplicity that all three operators
have h > =5 to avoid complications from multi-twist operators, which have OPE coefficients determined by
Virasoro [44], and that they are heavy enough to support a 3-point wormhole. See [27,43] for more discussion.
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where O! and O? are scalar primaries with h € (3%, ﬁ) With weights in this range, all of

the states in the OPE O'O? are black holes [44]. The corresponding tensor network is

2

|Wo)s = ' ‘ ) (3.16)

The norm is the 4-point function,

2 2
(W[ 2) ~ (WD) = * ) * ) (3.17)

The identity (3.5) in tensor network notation is

@ =P (3.18)

where F is the 4-point conformal block.” Therefore we can also write the norm as a tensor
network of OPE coefficients, weighted by conformal blocks:

2 2
(Ua|W2) ) lFI (3.19)
1 1

This is almost the usual conformal block expansion, in different notation — the diagram rep-
resents the product of OPE coefficients, see (3.11). It is not quite the usual conformal block
expansion, however, because the tensors are by definition truncated near the semiclassical
saddle, and have finite dimension.

The log-dimension of the internal leg in (3.16) is So(h%, h}), where (h%, h}) are the con-
formal weights of the primary that dominates the conformal block sum. We call this the
primary entropy — the Cardy entropy of the lowest weight state in the representation. Gen-
erally, asymmetric excited states can have leading-order contributions to the energy from
Virasoro descendants, so it is important to remove them before applying the Cardy formula,
and (h}, h}) differ at leading order from the total conformal weights at the saddlepoint.

The geometry dual to |¥s), is a black hole created by two conical defects. The metric is

"Note that the primaries in |¥). are truncated to near the saddlepoint, but all descendants are retained,
so this formula is exact.
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given in (4.3) below. The t = 0 time-symmetric spatial slice looks schematically like this:

(3.20)
Y

The locally-minimal surface ~ is a time-symmetric apparent horizon. The area of this ap-
parent horizon is interpreted as a coarse-grained entropy [37,48]. In 3d gravity, the area is
related to the primary entropy in the OPE:

Area(7y) .

So(hi, ) = — (3.21)
(In three bulk dimensions, ‘area’ means length.) This will be derived from a gravity calcu-
lation in section 4. Note that the state |WU9) is pure, so its von Neumann entropy is zero, in
agreement with the Ryu-Takayanagi formula applies to the trivial (empty) surface.

Finally we can compare the tensor network in (3.16) to the bulk spatial slice in (3.20).
The comparison is a bit trivial in this case, because the tensor network has only one internal
line. But the two pictures agree: The red tensor corresponds to the black hole interior, the
OPE block corresponds to the near-boundary region, and the log-dimension of the internal
line is +Area(7).

3.5 Probes of the apparent horizon

The 6-point function is more interesting, because here we can study the isometric property
and the breakdown of the Virasoro identity approximation. Consider

[U3) = O3 (73, 3) O (—72, $2) O (—71, 1)|0) - (3.22)
The tensor network is
3 2
[W3). = :.# . (3.23)
hy M

There are now two internal lines, with saddlepoint primary weights hA] and hj. The log-
dimensions of these tensor legs are equal to the primary entropies,

Sl = So( T,]_f{) and SQ = So(h;, E;) . (3.24)
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In the random tensor approximation, the tensor corresponding to the OPE coefficient c3pq
(with p and ¢ the internal states corresponding to hj and hj respectively) is a rectangular
random matrix, with log-dimensions given by (3.24). Effectively, it is a map from the primary
Hilbert space around h} to the primary Hilbert space around h%, which we denote®

C3pq Hi1 — Ho . (3.25)

Therefore, this map is approximately isometric or co-isometric, depending on the relative
size of the input and output spaces:

S1<S2 = c3pg isometric (3.26)

S1> 5 = c3pq co-isometric

Let us suppose hsg < ¢, so that O3 is a probe operator; the dual particle travels on a spacelike
geodesic in the background black hole created by O?0O'. In section 4, we show that the two
cases in (3.26) correspond to whether the probe particle is outside or inside the apparent
horizon. If the probe particle sits exactly on the horizon, then the primary energies in the
saddlepoint OPE are equal, hi = h3. This does not hold for the total energy, only the
primary energy, so it was essential that we built the network using the auxiliary Hilbert
space Hprim-

If h3/c is finite, then O3 backreacts, and there is no longer any simple relation between
the isometric property of the random map c3,, and whether or not 0?3 is behind the horizon.
The marginal case S; = Sy defines a natural notion of non-perturbative horizon that is
explored in section 4.4. The relationship between the isometric property and the apparent
horizon carries over to other observables, including higher-point functions, the BTZ black
hole, and BTZ plus heavy particles. All of these cases are analyzed in sections 4-5.

3.6 Reconstruction of simple operators

We normalise the random matrix c3p, (again, truncated to states near the saddle) by

1 C3pq

Vg = S
/2 —% %
e\ [Colhs. bt h3)Co(hs, B 1))

(3.27)

Note that Ve%2/2 is a complex Gaussian random matrix with vanishing mean and unit vari-

ance. In the semiclassical limit, V always acts isometrically on average irrespective of whether

8The exact OPE coefficient is of course infinite-dimensional. Here by c3,q we mean the associated tensor
in the tensor network, which is by definition truncated to states near the semiclassical saddle.
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the probe goes inside or outside the horizon i.e,
VIV =1y, (3.28)

with the average taken over the space of normalised complex Gaussian random matrices
with the usual measure. For the case where the probe is outside the horizon, the stronger
statement that V1V = 13, holds (at leading order). This cannot be true for the case where
the probe goes inside the horizon simply because rank(VV) < min(e®, e%2). However, a
typical V still preserves the overlaps of a large number of states in 7. For instance, one can

show that for a randomly chosen V' from the ensemble,
Pr ('HV ) 1] = 1’ > e‘“52> < 2e7 2 TV (3.29)

for any |¢) € H1 normalised so that (¢ [¢)) = 1. Here, « is a parameter which takes values
2
state in H; to deviate from unity by more than an exponentially small quantity in Sy is

in the range (0,5). This result says that the probability for the norm of any normalised

doubly exponentially small in Sy. In other words, even when the code is non-isometric,
it is very likely to preserve the norm of any particular state. This explains how the bulk
effective field theory can still provide a good description of the black hole interior for many
purposes [34,49]. The derivation of this result is similar to that presented in [49, section 3]
so we refer the reader to [49] for details.

3.7 Breakdown of the identity block approximation

This analysis can be re-phrased in terms of a subtle breakdown of the Virasoro identity block
approximation. Consider the 6-point function,

Gs = (OO O 030201) (3.30)
which is the norm-squared of the state |¥3) considered in the previous subsection. In a

holographic CF'T, this 6-point function is computed in the bulk by a geometry with three
conical defects,

G6 ~ (3.31)
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As demonstrated in [32,33], the on-shell action of the semiclassical saddlepoint is reproduced
by a large-c Virasoro identity block in the channel where the operators fuse in pairs:

2

(3.32)
By a sequence of fusion moves (see [50] and [27, section 8.2]) this is equivalent to
1 2 2
o0 p 3
G ~ / dhy po(hy)Co(ha hz, ) = (3.33)
C274 p 3
1 2

which corresponds to the OPE coefficients given in (3.14). In the identity approximation,
the only operators retained in the @373 OPE are the identity operator and its descendants.
Therefore @31©3 acts diagonally on the primary labels in this approximation:

(p, N, N|O*O3|p/, M, M) 8y , (3.34)

where p, p/ label Virasoro representations, and N, N, M, M label descendants.

We must distinguish between a strong version of the identity approximation, in which
03103 acts diagonally on representations in the sense of an operator, and a weak version,
where (3.34) only holds element-by-element in the primary basis. According to the discussion
above, the strong version is impossible if O3 is dual to a probe particle behind the apparent
horizon. Consider the tensor operator

K = ‘ ‘ ' ‘ (3.35)

which maps H1 — H1. The relation (3.34), in the strong sense, would imply K o 1y, as
an operator. However, the rank of this operator is bounded above by the dimension of the

internal line,

rank K < dim Hs . (3.36)
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Therefore K cannot be proportional to the identity when So < .S7 and the code is co-isometric
— its rank is less than its dimension. It is still possible for (p|K|q) = d,q in the weak sense
that it holds for individual matrix elements in the primary basis, but it cannot hold in the
strong sense that K oc 17, as an operator.

The conclusion is that when O3 is dual to a probe inside the horizon, the identity ap-
proximation must fail at leading order in sufficiently complicated interior states. That is,
(’);r)) X O3 = lyji is a good approximation in states created by a small number of primary

operators, but there must exist superpositions of the form

o) = > aijr.. 0:0;0 ... |0) (3.37)

in which
(a|0}Os]a) (3.38)

is not well approximated by the identity block.

This distinction explains how the Virasoro identity block approximation in the CFT can
reproduce the bulk EFT calculation of Gg even when the operator is behind the horizon —
this is a low-energy observable that only depends on the weak identity approximation, not
the strong one. The strong identity approximation breaks down at the horizon, precisely
when the code transitions from isometric to co-isometric. This is the same behavior observed
in the qubit models in [34].

3.8 Tensor networks with higher topology
3.8.1 Thermal 2-point functions

The above discussion readily generalises to states in several copies of the CFT Hilbert space.
Consider for example the following state in two copies of the CFT Hilbert space obtained by
exciting the thermofield double by a local operator,

2
ho

) =0[TED) =3 o |8 | L, || )10 (3:39

p,q a P

where O is a scalar primary operator below the black hole threshold, and this OPE block
is defined by reorganizing the sum over all states on the left-hand side into Virasoro repre-
sentations. This is known as a partially entangled thermal state (PETS), and it has been
studied in the SYK model and 2d gravity in [30,51]. The 3d bulk dual of the above PETS
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state in 2d CFT is constructed in section 5.2. The norm of this state computes the thermal
two-point function (OO0)g and can be expanded using torus two-point conformal blocks,”

2
p

(T W) = |eop* | O O (3.40)

p.q

Truncating the sum in (3.39) around the semiclassical saddlepoint in the norm (3.40), we get

the corresponding tensor network,

hi
W), = 0 I (3.41)
R

In the tensor network, the OPE block evaluated at the saddlepoint weights is interpreted as
a map |B|? 1 Hprim ® Hprim — Horr @ Hepr. The OPE block factorises between the two
boundaries in the semiclassical limit so that |B|? = |Br|2|Bg|?. This is because in the large-c
limit, the two-point function of the stress tensor evaluated on the two spatial boundaries
factorises into a product of the semiclassical Liouville stress tensors (which solve the Liou-
ville monodromy problem on the punctured cylinder with ZZ boundary conditions provided
at either end) evaluated at the corresponding points. Since the connected contribution is
subleading, this argument shows that the Virasoro excitations on the two boundaries are not
entangled in the semiclassical limit, hence the OPE block factorises. This tensor network
discretizes the ¢ = 0 spatial slice of BTZ backreacted with a conical defect. The defect may
be inside or outside the horizon; if it is inside, then the ¢ = 0 spatial slice is

(3.42)

TR

L

9There is implicit, nontrivial dependence on the operator location in (3.39), that enters through the
definition of the OPE block. Both operators are inserted at the same point on the spatial circle, so that this
2-point function may be viewed as a norm.
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In section 5, we will show that the two time-symmetric apparent horizons indicated by v, vr
in the figure above have areas matching with the primary entropy at the saddlepoint weights,
- Area - Area
ot ) = 22208 gy = AeCn) (3.43)
This matches with the bond dimensions of the corresponding internal legs in the network
(3.41), so that we can view (3.41) as a discretization of the radial direction in (3.42).
Depending on the location and weight of the operator O, the defect may also be outside
the BTZ horizon. From the CFT point of view one can distinguish these two possibilities
by adding an additional probe particle and checking for an isometric/co-isometric transition.
This is discussed in section 5 below.

3.8.2 Genus-two partition functions

Now, we give an example of a tensor network which discretizes the spatial slice of a smooth
black hole geometry. Consider the state in three copies of the CF'T Hilbert space,

2

hy
U) =" cper |B <—A|—> p) lq) ) (3.44)

hg by
p,q,r

The norm of this state is the genus-two partition function,

q

W10 = Zyr = S lepar | [ (3.45)
\r_/

p’q7’r

The OPE block in (3.44) is defined to reproduce this conformal block expansion; it acts
within the tensor product of three Virasoro reps, as indicated by the three arrows in the
diagram. The tensor network corresponding to this state obtained by truncating the sum to
a window around the saddlepoint weights is given by,

h*
v, = @12 (3.46)
h*

Here, the saddlepoint OPE block |B|? defines a map: Hprim ®@ Hprim @ Hprim — HorT @
Herr ® Hopr. It factorises between the three boundaries into |B|? = |B|2|Bs|?|Bs|? which
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follows from an argument similar to the one presented above for the two-boundary case. The
above tensor network discretizes the three boundary spatial wormhole discussed in [52] (see
also [53]), whose ¢ = 0 slice is topologically a pair of pants,

(3.47)

The lengths of the three geodesics are related to the saddlepoint weights by the relation
hy = 53(1+ (%)2) We can add EFT legs to the above network by adding probe matter to
this background.

4 Bulk geometries and the isometric transition

In this section, we describe the dual bulk geometries in detail, show that the bond dimensions
in the tensor network agree with the areas of extremal surfaces, and check the isometric
transition at the horizon for probe particles propagating on a large class of Euclidean black
hole geometries in 3D. We must show that probe particles behind an apparent horizon act to
decrease the primary entropy in the OPE, while probe particles outside an apparent horizon
act to increase the primary entropy.

We start by describing the construction of these black hole solutions by taking quotients
of the three-dimensional hyperbolic space Hs by SL(2,R) elements. Then, we take a short
mathematical detour where we discuss a useful parametrisation of SL(2,R) elements using
which we shall derive mathematical identities involving the traces of these elements. We
then provide a CFT interpretation for these identities which when combined with the ETH
ansatz provides a derivation of the isometry properties of probes.

4.1 Construction of black hole geometries

The action of 3D gravity coupled to massive point particles is

s:—miG/M\/é(Rw)—%lG/ﬁ<K—1)+Zi:mi/dlz‘a (4.1)
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where the last integral is over the particle worldlines. The parameter m;, with 0 < m; < i,
is referred to as the local mass of a particle; due to backreaction, it is not equal to the physical
ADM mass. The ADM mass of a particle, or equivalently the total scaling dimension of the
dual CFT operator, is

Az‘ = mi(l - 2sz) . (4.2)

Therefore with conformal weights parameterized as h = gn(1 —n), we have m; = 3. The
point particles backreact on the geometry to produce conical defects of total angle 2w (1 —
2m;). Since there are no propagating gravitons in the bulk, the set of solutions to (4.1) can
be classified in terms of smooth hyperbolic 3-manifolds, hyperbolic orbifolds, and similar
quotients by elements of infinite order. We are interested in those solutions which can be
interpreted as Euclidean black hole geometries. We choose a hyperbolic slicing, parametrising
the metric on these geometries as

ds* = dr? + cosh?(7)d%? (4.3)

where X is a hyperbolic Riemann surface of constant negative curvature with one or more
boundaries and/or conical defects. We assume the matter sources and boundary topology are
such that 3 admits a closed geodesic in the hyperbolic metric. These solutions are black holes
— the closed geodesic is the apparent horizon on the ¢ = 0 spatial slice. These coordinates
can be analytically continued (7 — it) to FRW-like coordinates with the metric being,

ds? = —dt* + cos® td%? (4.4)

These coordinates cover the domain of dependence of the t = 0 slice on the corresponding
Lorentzian black hole geometry.

If all of the conical defects have finite order, then the spatial slice ¥ can be constructed as
a quotient of the upper half plane Hy by a subgroup I' of SL(2,R). The resulting 3-manifold
is a quotient Hg/T", with I" treated as a subgroup of the isometry group SL(2,C) of Hs. More
generally, with conical defects of infinite order, the universal cover of ¥ is no longer Hy but
it can be constructed similarly by identifying points of Hy under the action of SL(2,R) group
elements. Precisely speaking, ¥ is uniformised by a conformal map to the upper half plane
with its metric being the Liouville metric obtained by a pull-back of the Poincare metric on
the upper half plane under the uniformisation map,
dy? + dz*

2

dx? = e®|dz|? = (4.5)

where ®(z, %) is the Liouville field on ¥ and (x,y) are the uniformising coordinates. To show
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that the metric (4.3) agrees with the Poincare metric on Hs, we make the following change
of coordinates,
J=ycosp, u=ysing, ¢ = cos™! (tanhr) (4.6)

the metric (4.3) becomes
B du? + djj® + dx?

ds?
u2

(4.7)

This is the usual hyperbolic metric on Hs, represented as the upper half 3-space with u > 0.
The full black hole geometry can be thought of as the surface of rotation about the y = 0 axis,
with the boundaries at 7 = oo now identified as the surfaces ¢ = 0, 7 where © = 0. Note
that if ¥ was a compact boundaryless Riemann surface, then the quotient construction would
describe the Maldacena-Maoz wormhole [54]. Since we are interested in describing black hole
geometries, we require 3 to have one or more boundaries. In this case, the Liouville field
®(z,Z) solves the Liouville equation possibly in the presence of defects, with ZZ boundary
conditions provided on each of the boundaries. The boundary components at 7 = 400
and 7 = —oo are glued together at the boundary of ¥, so that the conformal boundary is
connected.

For example, the Liouville field corresponding to one-sided black hole geometries formed
by the backreaction of two or more conical defects is determined by

900 = < —on Zmé@) (z — zi) (4.8)

subject to the boundary conditions,

—4n; log(|z — ) Z = 2
D(2,2) ~ (4.9)
—2log(1 — |2]?) lz| = 1

Here, z is a complex coordinate on the punctured unit disk with the defects located at {z;}.
The geometry of 3 is illustrated in figure 1 in the introduction. More generally we can also
include handles in ¥ so that the black hole has nontrivial topology behind the horizon. Such
higher topology microstate geometries were discussed for instance in [55].

The Brown-York stress tensor obtained from (4.3) at 7 = 00 is equal to the semiclassical
stress tensor of the auxiliary Liouville field,

T(z) = %a%p _ i(a@)Q . (4.10)

This can be used to find the primaries running in the dual OPE. The well known procedure
(see [56] and for pedagogical discussions [32,57]) is to study the monodromies of the Fuchsian
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differential equation,

Y(2) + OT(Ep(z) = 0. (4.11)

This is equivalent to the Liouville equation, with & determined by the two solutions 11, 12
of this second order equation,

4w’ (2)w'(2) w(z) = 1(2)
(1 —w(z)w(z))*’ Pa(2)

The condition that ® is single-valued implies that around a closed loop « in the z plane, the

® = log (4.12)

vector ¢1> has monodromy M () € SL(2,R). The conformal weight of the primary in the
2

semiclassical conformal block cut along the curve « is related to the monodromy by
Tr M(y) = 2 cos(2mn) (4.13)
with h = h = En(l—mn).

4.2 SL(2,R) elements and monodromies

Consider a general element of the SL(2,R) group represented using a real 2 x 2 matrix with

unit determinant,

M= [“ b] ad —be =1 (4.14)
c d

It generates an automorphism, M : Ho — Hs of the upper half plane by mapping points on
the upper half plane by fractional linear transformations,

az+b
_>
cz+d

, 2Z€H; (4.15)

Depending on the conjugacy class of SL(2,R) that the element M belongs to, its action on
Hs has fixed points either in the interior of Hs or on its boundary, i.e, on the real line. Let
us denote the fixed point(s) of this map to be at z = wj 2 which are roots of the quadratic
equation,

cw? +(d—a)w—b=0 (4.16)

Given the fixed points, there is a 1-parameter family of SL(2,R) elements labelled by the
entry ¢ below the diagonal without loss of generality. We can express the other entries of M
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as

b = —cwiwy

c 1
a:§(w1+w2)i§\/4+02(w1—w2)2 (4.17)

1
d= —g(wl +wq) £ 5\/4—1- 2 (wy — wy)?

Using (4.17), we see that

Te(M) = a+d =44+ 2(w; — wy)? (4.18)
Depending on the conjugacy class that M belongs to, we have

Elliptic (|Tr(M,)| < 2) : w; = w3 € Hy
Parabolic (|Tr(M,)| =2): wi =w2 €R for c¢#0 (4.19)
Hyperbolic (|Tr(Mp)| > 2) : w1 #wa €R

Therefore, each elliptic element has a single fixed point in the interior of Hy, each parabolic
element has a single fixed point on the real line whereas each hyperbolic element has two
fixed points on the real line.

Consider a hyperbolic 2-orbifold ¥, as in (4.5), constructed by identifying Ho under the
action of one or more SL(2,R) elements. Each homology class ~ of simple closed curves on
Y. (with elliptic fixed points removed) corresponds to a conjugacy class in SL(2,R), and is
assigned a conformal weight by (4.13). For example, if ¥ is a disk with n defects and no
handles, then the geometry (4.3) is dual to a 2n-point function, and the saddlepoint weights
appearing in (3.6) are determined by (4.13) with the weight hj corresponding to a curve
encircling the defects i1, 19, ..., ik, and Tr(M(v;)) = —2cos (wm)

A curve that can be deformed to a small circle around a defect operator with n € (0, %)
corresponds to an elliptic element of SL(2,R). The overall sign in (4.13) is a convention,
because it is really PSL(2,R) that acts on the upper half plane. With this sign convention,
the defect operators above the multi-twist threshold of n = ; have Tr(M.) € (—2,0) with
the defect operator just below the black hole threshold (n = 3 ) having Tr(M,) = —2F. For
the elliptic element M, to correspond to the monodromy matrix of a sub-threshold operator,

we require

+ \/1 — c2r2sin?(A) = cos(2mn) = |c|rsin(f) = sin(27n) (4.20)

O wy = re= with r > 0 and

where the fixed points have been parameterized as w; = re’
6 € (0,7). This shows that we need to choose the positive branch for defects below the

multi-twist threshold and the negative branch for defects above the multi-twist threshold.
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With this parametrisation, the family of elliptic elements in matrix form read

(4.21)

cscf
T

M. = [Sin(27r77) cot 0 + cos(2mn) — sin(27n)r csc 6 ]

sin(27n) — sin(27n) cot 6 + cos(27n)

If the above monodromy matrix corresponds to a probe operator (0 < n < 1), we may
express M, as a perturbation away from the identity,

cotd —rcsch

cscl
“e= —cotf

M, =1+ 2mn +0(n?) (4.22)

Analytically continuing (4.13) to above the BH threshold using n = 3(1 + \) with A € RT
corresponding to an operator with h = £ (1 + A?), we have,

Tr(Mjy) = —2cosh(mA) (4.23)

so Tr(Mp) < —2. We also observe that heavier operators have monodromy matrices with
smaller trace, i.e,
W' >h = Tr(M') < Tr(M) (4.24)

Note that the length of the primitive geodesic ¢ associated with the hyperbolic element M,
which satisfies Tr(Mj) = —2cosh(%) can now be expressed in terms of the chiral dimension
h of the primary operator running in an intermediate channel in a Virasoro OPE block as

c 0\?
:2 = — 1 _ .
(=21\ = h 24( + <277> > (4.25)

This equation confirms a claim made in section 3: The bond dimensions in the tensor network
agree with the areas of extremal surfaces in the bulk, since ¢ is the length of the extremal
surface, and (4.25) is identical to the formula for the Cardy entropy with S = ¢/4G.

We can reparametrise the family of hyperbolic elements with fixed points at w1, w2 € R

inh( &
and wy < ws in terms of the length of the primitive geodesic using ¢ = %, which yields
sinh(g)% — cosh(%) -2 sinh(g)%
h = ZSinh(g) . £\ w1 4w ¢ : (426)
ST — smh(i)iwl_w2 — cosh(i)

4.3 Probes in pure state black holes

We now turn to understanding the isometric property of probes for pure state black holes
formed by backreaction of scalar defects and handles in the interior. The t = 0 spatial slice

for these black holes has a bulge in the interior, separated by one or more locally minimal
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surfaces from the asymptotic region. The outermost minimal surface is the apparent horizon.
These geometries are examples of one-sided pythons [58], with the ‘lunch’ consisting of the
region inside the apparent horizon. The product of operators creating the black hole will be
called ¥ = 010203 - - -, and the probe operator will be called O, having weight n < 1.

Denote the simple closed curve around the background operators alone by vy, and the
simple closed curve around all operators including the probe by yg». The monodromies
M; = M(~;) around these curves are related to the saddlepoint primary weights weights in
the OPE, denoted hg and hyo respectively and both above the black hole threshold, by
(4.13), i.e.,

Tr My = 2 cos 2mny (4.27)
Tr Mg = 2 cos 2mngo (4.28)

with h; = &n;(1 —n;). Our goal is to compare hy to hyo. As explained in the previous
section, if we assume eigenstate thermalization, then the code is isometric for hy < hyo,
and coisometric for hy > hyo.

Although the analysis does not depend on the details of the black hole, an example to

have in mind is a pure-state black hole created by two heavy defects, ¥ = O;(x1)Oz(x2),
11
4> 2
Y is found by solving the Liouville equation inside the unit disk with three defects, as

where 11,12 € (7, 5). The background geometry is pictured in (3.20). The spatial geometry
shown in figure 3. In this example there is a single minimal surface, which is a geodesic in
the hyperbolic metric on 3. The defect, O, may be inside or outside this geodesic. The
saddlepoint weights in the tensor network studied in section 3.5 were denoted there h] = hy
and h3 = hyo.

For the discussion of the isometric property we are interested in a probe that is outside, or
just slightly inside, the apparent horizon. We can therefore focus on the part of the geometry
that extends from the conformal boundary to slightly inside the horizon. After uniformizing
to the w-plane, this part of the geometry is a quotient of Hy. The case where the probe is
outside the horizon is shown in figure 4. The identifications are generated by one elliptic
element, corresponding to the probe, and one hyperbolic element, corresponding to the loop
vy around the background operators. It is convenient to conjugate the hyperbolic element
(4.26) into the form

)
)

My has fixed points at w = £1 and an associated primitive geodesic which is a portion of

My =

—cosh(%) —sinh(
z (4.29)
2

—sinh(5) — cosh(

INIENIVIES

hyperbolic length ¢ of the semicircle centered at the origin with unit coordinate radius. We
can choose a fundamental domain such that My identifies points on two semicircles related
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Figure 3: Spatial slice ¥ for a black hole created by ¥ = O;(x1)O2(x2),
probed by a third operator O3(x3). Monodromies are calculated around the
blue curves, v¢ and Yy = Yw © Ve, and the red curve ypg is the apparent
horizon. On the left, the probe is outside the horizon which is homologous
to vy, while on the right, the defect is inside so the horizon is homologous
to ywo.-

by reflection about © = 0 on Hs. This requirement uniquely determines the two semicircles
to be centred at (£xo,0) each with radius R,
1 1

" tanh(%)’ = sinh(%) (4.30)

Zo

The two fixed points are on the real line, inside the semicircles, and with the choice (4.29)
the point wy = —1 is repelling and we = +1 is attractive.
The monodromy around the curve 7, circling the defect is elliptic, so it has one fixed

point in the upper half plane at w = re®

. This fixed point is the location of the probe
particle in the uniformizing coordinate, and the monodromy matrix to leading order in the
defect weight is given in (4.22).

Using (4.29) and (4.22), observe the trace relation

0 (1—r?
Tr Myo = Tr My M, = Tr My — 2y sinh(2)(rsi;9) +0(n?) (4.31)
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Figure 4: Probe particle outside the apparent horizon of a black hole. The
bold semicircles are identified by the action of the hyperbolic element My
n (4.29). The primitive geodesic associated with (4.29) is represented by
the dashed arc and is interpreted as the outermost horizon on the spatial
slice of the pure state black hole geometry. The defect produces a small
conical deficit by identifying the two dotted segments. There are assumed
to be additional identifications behind the horizon, not shown, so that the
boundary is S?.

where 7 corresponds to the probe weight. In terms of the saddlepoint weights, this implies

ml (1 —1r?)
—hy = — 4.32
hwo = hw 8r rsinf (432)

in the probe limit. Therefore there is a transition from an isometric to a co-isometric code
as the defect crosses the horizon at r = 1. For r < 1, the defect is outside the horizon,
hyo > hy, and the code is isometric; for » > 1, the defect is inside the horizon, the sign
changes so that hyp < hy, and the code is co-isometric.

The primary weight hpy corresponding to the black hole horizon equals either hg or
hyo, depending on whether the probe is outside or inside the horizon. If the probe is outside
the horizon, then the curve ~g is homologous to the horizon, so hpy = hy. If the probe is
inside, then the curve yyo is homologous to the horizon, so hpy = hgo. See figure 3. The
black hole weight is related to the horizon length by (4.25).

The trace identity (4.31) can easily be generalized to n probes,

n

n 1 _
Tr(My H Me,,) = Tr(My) — 2w sinh(- Z ni———o" i + O(nin;) (4.33)

, 7r; sin 9
=1

Thus each probe inside (outside) the horizon acts to decrease (increase) the primary energy
in the OPE. The ordering of the probe operators is not important at linear order.

So far, we have restricted discussion to the outermost geodesic on the spatial slice of pure
state black hole geometries. However, when the black hole is formed due to backreaction
by n > 2 conical defects (taken to be above the multi-twist threshold), there are multiple
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geodesics on Y. On the CFT side, we expand the OPE of the conical defect operators in a
channel where we fix the monodromies around curves homologous to a nested set of n — 1
such geodesics, each circling one additional defect. The scaling dimensions of the internal
scalars in this channel are given by

& &

1 )?) (4.34)

where £; are the lengths of the geodesics in the hyperbolic metric induced on the spatial slice.
We observe from (4.34) that we can assign a coarse grained entropy that satisfies the Cardy

formula for each of these geodesics,

c c cl;
So(hi, hi) = 4m | é(hi - ﬂ) =5 (4.35)

The additional geodesics can be detected in the dual CF'T by adding a probe operator, which
satisfies analogous trace identities near each geodesic. In the comb OPE channel, the probe

transitions from isometric to co-isometric as it crosses the geodesic.

4.4 Isometric transition of heavy operators

So far, in this section, we have studied the isometry properties of probe operators in a black
hole background created by heavy defects. Now, we would like to understand the isometric
properties of the heavy defect operators that form the background. Consider a black hole
geometry with its outermost horizon of length ¢ described by the primitive geodesic of the
hyperbolic element M}, in (4.29) on the uniformizing upper half plane. Let one of the defects
constituting this background be described by the elliptic element in (4.21) (which we shall
denote as My in this section) of strength 1 whose fixed point is at w = re? chosen to be
above the primitive geodesic (i.e, r > 1) on the uniformising upper half plane. Note the trace

identity,

l L 1
Tr(My) — Te(MpM; ") = 2cosh(§)(cos(27rn) -1)+ sinh(g) sin(27n)(r — —) csc(f) (4.36)
T
In the above expression, the first term is always negative and since we are assuming that the

defect is behind the horizon, the second term is always positive. So, there is a locus (7 (6))
behind the horizon corresponding to Tr(Mj,) = Tr(M,M; ),

ro(0) = a(0) + 1+ o2(0), a(f) = coth(g) tan(7mn) sin(6) (4.37)

If the heavy defect lies on this locus, then (assuming ETH) the dual CFT operator Oy acts
unitarily on the auxiliary Hilbert space spanned by Virasoro primaries in a microcanonical
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window around the scalar primary of scaling dimension A = 15 (1 + (%)2) If the defect is
behind this locus, we have Tr(Mj) > Tr(M, th_l) so the defect operator acts co-isometrically
on the relevant portions of the CFT Hilbert space whereas if the defect is outside this locus
but still behind the horizon, the defect operator acts isometrically. Therefore from the
point of view of the reconstructibility of operator Oy, the unitary locus behaves like a ‘non-
perturbative horizon’. This notion of horizon is operator-dependent due to backreaction.
Geometrically, the unitary locus corresponds to a spatial slice where the outermost and next-
to-outermost geodesic have the same length; the action of Oy is isometric if the outermost

geodesic is longer.

5 Probes in multi-boundary black holes

It is straightforward to extend all of the results above, including the semiclassical tensor
network, to multi-boundary black holes. We will focus on checking the isometric property
for probes in a deformed two-boundary black hole. For spherically symmetric states, the
isometric property at finite temperature was shown in [28,29, 31].
The Euclidean BTZ geometry can be constructed from a quotient of H3 by a discrete
Abelian group (isomorphic to Z) generated by
27r2
—e B 0
Mh = 2 (51)
0 —e B

where [ is the inverse temperature of the BTZ black hole which is related to its ADM mass
by Mptz = % Such a quotient construction defines a natural slicing of the solid torus by
hyperbolic cylinders. The BTZ metric in these coordinates is

ds* = dr* + cosh? Td%? (5.2)

where d¥? is the hyperbolic metric on the cylinder. Solving the Liouville equation on the
cylinder with ZZ boundary conditions at either end (Im(z) = 0, g), one can check that [59]

2m\2
a2 — 6@(2,2)‘d2|2 = — ( B )

Wlm(z))dd? (5.3)

with z ~ 2z 4+ 27 and Im(z) € (0, g)
The t = 0 spatial slice of the BTZ geometry has a minimal geodesic at the centre, whose
_ 4rx?

length in the hyperbolic metric (€(7) = =3-) gives the area of the horizon. Notice that this

length can be read off from the SL(2, R) generator using Tr(M}) = —2 cosh(egi)). The spatial
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slice can be conformally mapped to Hy with its image being a half-annulus between |w| = 1

2
and |w| = ¢'F in Hs bounded by the real line and the circular boundaries identified under
the action of M}, in (5.1).

5.1 Probe in BTZ

Consider a probe particle propagating in the BTZ background described by (5.1). There is no
nontrivial check of the isometric property in this case, but it is a useful warmup calculation.
The corresponding tensor network was described in sect120n 3.8.1. Using the form of the
SL(2,R) element with fixed point at w = re?? (r € (1,6%), 6 € (0,7)) corresponding to a
probe particle, we observe the following trace identity,
. 272 9

Tr(MpM,.) = Tr(My) — 47n cot Hsmh(?) +O0(n?) (5.4)
In contrast to the black hole geometries described in the previous subsection, the BTZ ge-
ometry is spherically symmetric. So, for the unperturbed BTZ black hole, it is easy to verify
that the primary energy agrees with the ADM mass, i.e, E, = 15( %
with the addition of the probe particle, the geometry is no longer spherically symmetric so

< )2 = Mpryz. However,

we expect there is a non-zero contribution from the boundary gravitons in the calculation of
the total energy hence the primary energy is not expected to be match with the total energy
in the presence of the probe particle. Just like in the discussion with pure state black holes,

the difference in monodromies (5.4) can be translated to a difference in saddlepoint primary

energies,!?
2
AE, = 7;” cot(0) (5.6)

where m is the mass of the probe.
The BTZ geometry with a probe inserted calculates a thermal 2-point function. Let us

%Tn Schwarzschild-like coordinates where the BTZ metric takes the form ds® = (r? —r})d7>+ 2‘”22 +r2dg?,
T 77",'
the energy difference in (5.6) reads AE, = m+/r2 — r where r, = 2F. To derive this relation, it is useful to
note the relation between Schwarzschild-like coordinates and wormhole-like coordinates,

2
y= The”“b\/l + (T— — 1) sin(rp7)
-

2
Th

2
z=1/1— :—Z cos(rp7)e™? (5.5)
. 7 rE o -
sinh(1) = . 1- ) sin(rn7)
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expand this 2-point function in Virasoro conformal blocks,

(0(21,21)0(22, %2)) 2 = D Icopg®| O @ (5.7)

p.q

q

The loop represents the thermal circle, z ~ z + 7. The two hyperbolic identifications in
the BTZ+probe geometry calculate the saddlepoint primary weights in this conformal block

expansion,

Te My, = —2cos (m/1— 243 /c) . T MyM, = ~2cos (my/1 - 24hz/c) . (58)

Thus AE, in (5.6) is the difference in primary energies between the two internal lines in the
conformal block at the saddlepoint. The larger weight appears on whichever arc has less
Euclidean time evolution. In the bulk, the probe particle can be inserted in either the left
or right side of the Penrose diagram. The relation (5.6) simply says that the side with the
particle has a higher primary energy.

Even when the probe particle in the above setup is replaced by a heavy defect, it is clear
that the saddlepoint weights h; and hj in (5.7) match if the particle propagates through the
middle of the backreacted geometry (i.e, when the Euclidean time difference between the
endpoints of the trajectory is half the size of the thermal circle). In this case, as explained
in some more detail in the next subsection, the two apparent horizons created on either
side of the particle’s trajectory have equal area ensuring that the saddlepoint weights in the
conformal block expansion match. When the defect propagates asymmetrically, it increases
the saddlepoint primary energy on the side with the defect. Thus, the middle of the punctured
cylinder constitutes a unitary locus for a defect of any strength and hence behaves like a non-
perturbative horizon in the sense of section 4.4. As explained in footnote 11, due to the chosen
parametrisation of the SL(2,R) elements in the definition of the background geometry, the
locus for the non-perturbative ‘horizon’ matches with (4.37).

5.2 Probe in the BTZ+Defect background

In the previous subsection, the distinction between the primary and total energies for the
background geometry were unimportant because the BTZ geometry is spherically symmetric.
However, we can deform the BTZ background by a heavy particle which manifestly breaks
the spherical symmetry. In this case, the spatial slice is a once-punctured hyperbolic cylinder
shown in (3.42). This is an example of a two-sided python’s lunch [58]. For discussion of
such geometries in JT gravity, see [30,60-62]. Spherically symmetric two-sided pythons in
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Figure 5: Quotient construction of the spatial slice of the BTZ+Defect black
hole geometry. The dotted lines are the two apparent horizons which are
primitive geodesics of hyperbolic elements M}, and M.

higher dimensional Einstein gravity were constructed in [63].

This BTZ+Defect geometry is constructed as follows. Let the elliptic element correspond-
ing to the heavy particle be denoted M,. Given the strength n and the location of the fixed
point w = iyy on Hs, we can write down a matrix form for My,

My =

COS(27”7) Yo Sin(27r77)
[—yo—l sin(27n)  cos(2mn) ] (5.9)

There are two apparent horizons, one separating the lunch from each asymptotic region. Let
one of them have length £. We can choose a canonical form of the hyperbolic element whose

primitive geodesic has length £,

- cosh(%) — sinh(
- sinh(g) — cosh(

)
)

[SIRNIGIIEN

My, = [ ] (5.10)

The other apparent horizon corresponds to the primitive geodesic associated with the hyper-
bolic element My = MyMp,. In matrix form,

— cos(27mn) cosh(%) — yo sin(27n) sinh(%) — cos(27n) sinh(%) — yo sin(27n) cosh(%)
yo ! sin(27n) cosh(%) — cos(27n) sinh(g) yy ! sin(27n) sinh(%) — cos(27n) cosh(%)
(5.11)

The parameters need to satisfy the constraint coming from the requirement that M, is hy-

M, =
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perbolic, i.e, Tr(M) < —2,

2 (1 — cosh(g) cos(27r77)> < sin(27n) sinh(g)(yo ) (5.12)

If the heavy particle is placed in the middle of the space, then the lengths of the two apparent
horizons are equal. For that case, we can relate the defect strength to the location of the
fixed point on Hy using!!

2 coth(%)

4
Tr(Mp) = —2cosh(§) = cot(mn) = ——
~ Y

(5.13)
The discussion of the isometry property around the apparent horizon corresponding to My,
follows trivially from the discussion of the isometry property for pure state black holes due
to the form of the chosen hyperbolic element, as the geometry is locally identical to figure 4.

To verify the isometric property of probes around the other apparent horizon, note that,

Tr(M,M.) — Tr(My) = =27, | (yo + yy ) cot(8) sin(27n) Sinh(g)

+ csc(f) sin(27n) cosh(g)(@ + L) — csc(0) cos(27n) sinh(g)(r - 1) (5.14)
2°°r Yo 2 r
where M, is the elliptic element corresponding to the probe of strength 7, having a fixed
point at w = re®. The reader can verify that the locus Tr(M,M,) = Tr(M,) corresponds to
the other apparent horizon by matching the matrix form of M} in (5.11) with the form of
the hyperbolic element given by (4.26) to determine the fixed points of M and then use the
fact that the primitive geodesic is a portion of a semicircle which when extrapolated meets
the real axis at the fixed points of the hyperbolic element.
In the dual CF'T these results are interpreted in terms of the conformal block expansion
for the finite-temperature 4-point function,

<Od0d0101>7,7‘— = Z csdpc:chplqcﬁlq D r (5.15)
p7q7,rl7s q

O O

"'We can use the general form of the defect elliptic element given in (4.21) with fixed point at w = re'? on

H2 to determine the locus of fixed points corresponding to the middle of the space. Due to the form of the
chosen elliptic and hyperbolic elements, this locus is given by (4.37).
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where Oy is the heavy particle corresponding to the elliptic element My, and O; is the probe,
which are assumed to be inserted in a reflection-positive configuration. The points 7 = 0, g
that join onto the Lorentzian spacetime are on legs labeled s and ¢, so the saddlepoint weights
h; and h; are the (chiral) energies observed at infinity on the left and right sides of the black
hole. The probe operator O; is effectively a map

O1: M, — H (5.16)

with the direction corresponding to increasing Euclidean time. The question of whether the
probe operator O; acts isometrically is therefore answered by comparing the saddlepoint
primary weights hy and hy. The hyperbolic elements appearing in (5.14) are related to the
saddlepoint primary weights by

Tr My = —2 cos (m /1- 24h;;/c) . Tr MyM:!= —2cos (m /1- 24h;;/c) . (517)

(Note hy, = h}). Therefore, when the probe is outside the horizon, hy > hy, so the probe
operator O; acts isometrically, and when it is inside the horizon, it acts co-isometrically.

6 Discussion

We have described two simple models where the CFT operator algebra can be recast as
a pseudorandom tensor network: high-energy spherically symmetric states in arbitrary di-
mensions, and more general black hole states in a 2d CFT dual to pure gravity plus point
particles. In both cases, the tensor network discretizes the radial direction in the bulk, in
the sense that (1) bond dimensions agree with the areas of extremal surfaces, and (2) probes

undergo an isometric transition at the horizon.

In the rest of this discussion we comment on several open directions.

Singularities

The usual black hole singularity requires time evolution in Lorentzian signature. However,
we can produce a very similar effect by moving the heavy operator insertions O; toward the
origin (in radial quantization) or large negative Euclidean time (on the cylinder). This results
in a black hole at ¢ = 0 with a very narrow throat at the extremal surface, and therefore
small entropy. By tuning the operator weights and Euclidean positions, we can send the
horizon area toward zero. This is a Euclidean version of a black hole singularity. In this
limit, the counting argument implies that the rank of OTO, with O dual to a probe particle
behind the horizon, goes to zero. Therefore, in the singular limit, it becomes impossible to
reconstruct behind-the-horizon operators from the boundary.
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What happens to our black hole solutions in this limit? The black hole geometry cor-
responds to the identity block approximation. The mass of the black hole is set by the
saddlepoint weight A* in the dual OPE channel, and as we tune toward a singularity, this
weight approaches the black hole threshold, h* — ;. However, assuming there is any light
matter in the theory, eventually the identity block approximation breaks down. In 3d gravity
coupled to massive point particles, this breakdown can be studied quantitatively. There is an
exchange of dominance between the black hole and the handle wormholes found in [27, sec-
tion 6]. If the black hole mass is very small, then instead of a black hole, the norm (¥|V) is
dominated by the handle wormhole. The ¢ = 0 slice, instead of being a smooth black hole,
has two disconnected components — the black hole interior is replaced by a closed universe
with an additional heavy defect having h* < 57. That is, the outermost throat shown in
figure 1 pinches off and breaks the diagram in two, with two new defect operators appearing
at the singularities. It would be interesting to understand this regime better in terms of the

holographic code.

Discretizing the transverse directions

In the original formulation of holographic tensor networks using MERA [1], as well as the
HaPPY code [23] and random tensor networks [3], the spatial directions along the boundary
are also discretized. In our model, each boundary component has only a single tensor. This
allows for some simple tests of bulk reconstruction — for example, it is easy to see from the
isometric property that an operator inside a 2-sided black hole can be reconstructed from one
boundary but that this does not hold in a 3-boundary black hole — but it does not allow for
spatial resolution on a single boundary. Can the CF'T construction be generalized to write a
more complete tensor network in terms of OPE data?

Crossing symmetry

To construct the tensor network, we first chose an OPE channel. What if we choose a
different channel? For example, in a case like figure 1 in the introduction, we could construct
the comb channel OPE in a different order. This will give a different tensor network, but the
two quantum states must agree.

This means that the OPE coefficients cannot be truly (psuedo)random: crossing symme-
try requires corrections to the ETH ansatz [64]. Throughout the paper we have assumed these
corrections can be neglected. It would be interesting to explore how the isometric property

is realized in other channels and when these corrections must be taken into account.
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Higher dimensions: beyond spherical symmetry

Can holographic tensor networks be constructed quantitatively in higher dimensions? As we
have emphasized, this is a difficult problem without spherical symmetry, because dynamical
light fields come into play (the same is true for 2d or 3d gravity with light matter). We can
gain some rough intuition from the example of 2d CFT coupled to point particles. The theory
must first be separated into ‘fast’ and ‘slow’ degrees of freedom: the black hole microstates
and the low energy fields. Only the microstates can be approximated by random tensors,
so the tensor network should consist of random tensors dressed by light fields. In some
cases the distinction between the two is blurred by quantum scars [65]. One proposal to
build more realistic holographic tensor networks is to use random tensors with nontrivial
links [17]. However, in our model, upgrading the tensor network (figure 2) to the exact CFT

state (3.3) does not appear to be as simple as weighting the tensors.

Coarse graining tensor networks and wormbholes

In [37] we showed that Euclidean wormholes calculate the replica partition functions of coarse
grained states. The coarse graining operation involves projecting onto diagonal states in the
bra and ket of a pure state p = |¥)(¥|. The same procedure can be applied to tensor
networks. Consider, for example, the tensor network in (3.23), for which the density matrix

is

-—P)—oo o—e0—¢— (6.1)

Define the coarse-grained state by

crn-—P+0-0 @& 0-¢— (6.2)

where the black dot represents the diagonal 3-index tensor, d,404-. That is, we project onto

identical Virasoro representations in the bra and ket. In the random tensor approximation,
the coarse-grained entropy

Seoarse(p) := —TrC(p)log C(p) (6.3)

is equal to one quarter the area of the outermost apparent horizon. Furthermore, replicas
such as Tr C(p)? have tensor networks that discretize multiboundary Euclidean wormholes in
AdS3. We hope to explore this in future work.
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