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ABSTRACT

Deep learning-based recommender systems have become an in-
tegral part of several online platforms. However, their black-box
nature emphasizes the need for explainable artificial intelligence
(XAI) approaches to provide human-understandable reasons why a
specific item gets recommended to a given user. One such method is
counterfactual explanation (CF). While CFs can be highly beneficial
for users and system designers, malicious actors may also exploit
these explanations to undermine the system’s security.

In this work, we propose H-CARS, a novel strategy to poison rec-
ommender systems via CFs. Specifically, we first train a logical-
reasoning-based surrogate model on training data derived from
counterfactual explanations. By reversing the learning process of
the recommendation model, we thus develop a proficient greedy
algorithm to generate fabricated user profiles and their associated
interaction records for the aforementioned surrogate model. Our
experiments, which employ a well-known CF generation method
and are conducted on two distinct datasets, show that H-CARS
yields significant and successful attack performance.

CCS CONCEPTS

« Information systems — Recommender systems; - Comput-
ing methodologies — Neural networks.

KEYWORDS

Explainable recommender systems, Counterfactual explanations,
Model poisoning attacks

ACM Reference Format:

Ziheng Chen, Fabrizio Silvestri, Jia Wang, Yongfeng Zhang, and Gabriele
Tolomei. 2023. The Dark Side of Explanations: Poisoning Recommender
Systems with Counterfactual Examples. In Proceedings of the 46th Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR ’23), July 23-27, 2023, Taipei, Taiwan. ACM, New York, NY,
USA, 5 pages. https://doi.org/10.1145/3539618.3592070

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGIR °23, July 23-27, 2023, Taipei, Taiwan

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9408-6/23/07...$15.00
https://doi.org/10.1145/3539618.3592070

Fabrizio Silvestri
fsilvestri@diag.uniromal.it
Sapienza University of Rome, Italy

2426

Jia Wang
jia.wang02@xjtlu.edu.cn
The Xi’an Jiaotong-Liverpool
University, Suzhou, China

Gabriele Tolomei
tolomei@di.uniromal.it
Sapienza University of Rome, Italy

1 INTRODUCTION

The past few decades have witnessed the tremendous success of
deep learning (DL) techniques in personalized recommender sys-
tems. Indeed, DL-based recommender systems overcome the ob-
stacles of conventional models and achieve state-of-the-art perfor-
mance [15, 27]. Despite that, they suffer from a lack of transparency
and explainability. This issue may limit their deployment, especially
in some critical domains, considering the increasing demand for
explainable artificial intelligence (XAI) worldwide [4, 10, 12, 18, 19,
22, 24, 25].

Recently, counterfactual explanation (CF) has emerged as a key
tool to attach motivation behind items recommended to users. Con-
cretely, CFs generate a minimal set of meaningful interactions,
without which the recommended items will not end up in the list
of suggestions for specific users. While much prior research shows
how counterfactual explanations can enhance recommender sys-
tems’ transparency, few studies investigate their potential security
and privacy threats. Instead, several studies have shown possible
hazards of CFs for the classification task [1, 5, 14, 21, 32]. For ex-
ample, Aivodji et al. [1] demonstrate that a high-fidelity model
could be extracted by detecting the information of decision bound-
aries embedded in CFs. This finding inspired DualCF [28], which
leverages CFs and their counterfactual explanations to overcome
decision boundary shift issues. Additionally, Pawelczyk et al. [21]
conduct the membership inference attacks by using the distance
between the data instances and their corresponding CFs.

This work investigates possible risks induced by CFs for the
recommendation task. Specifically, we demonstrate how an ad-
versary can use CFs to conduct poisoning attacks on black-box
recommender systems. Technically, we first train a logical reason-
ing model as a surrogate by exploiting CFs. Then, a limited number
of controlled users with fake crafted interactions are designed by
matching the optimal representation of a target recommended item
via an optimization framework. We refer to our attack strategy as
H-CARS (Horn-Clause Attacks to Recommender Systems).

Overall, the main contributions of our work are as follows:

e We unveil security issues of applying counterfactual expla-
nations in recommender systems and provide the first study
of poisoning attacks for recommendation via CFs.

e We jointly model logical and counterfactual reasoning by
leveraging CFs and partial factual interactions to enhance the
surrogate model’s performance. A counterfactual loss L. is
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proposed to highlight the necessary items while mitigating
spurious correlations.

e We propose a novel poisoning attack for neural logical-based
recommender systems. Specifically, inspired by [30], we re-
verse the traditional attacking optimization procedure where,
instead of re-training the recommendation model, we start
from computing the optimal item embeddings, which we
leverage to find the fake user-item interactions.

e We conduct experiments on two real datasets to analyze the
attacking performance.

The remainder of this paper is organized as follows. We provide
background and preliminaries in Section 2. In Section 3, we present
the attack model and describe our proposed method H-CARS, in
Section 4. We validate H-CARS in Section 5. Finally, we conclude
our work in Section 6.

2 BACKGROUND AND PRELIMINARIES

We consider the standard collaborative filtering recommendation
task. Let U = {uq,...,um} be aset of musers,and 7 = {iy,...,in}
be a set of n items. We represent the factual interactions between
users and items with a binary user-item matrix Y € {0, 1}™*",
where Yy, ; = y,,; = 1 indicates that user u has interacted with item
i, or 0 otherwise. Specifically, we denote the interaction history of
auseruas Iy ={iel |yy; =1}

We assume there exists a recommendation model f that can
estimate the value 7, ; for each u € U and each i € 7, such that
i ¢ I, as Uy ;i = f(hy, h;), where hy, h; € R4 are suitable user and
item representations, respectively, and f : RYxR? > [0,1] is a
function that measures the preference score for user u on item i.!
The score computed with f is used to rank items to populate a list
juk C I\ I, of the top-k recommended items for user u, i.e., the
list of k unrated items most likely relevant to user u according to f.

Thus, given a target item ¢ recommended to a user u by f (i.e.,
te fuk), its counterfactual explanations are the minimal subset of
u’s historical item interactions 7;, whose removal results in evicting
t from the top-k list of recommendations juk , namely IuCtF c Iy

3 ATTACK MODEL

Our strategy involves poisoning attacks that aim to promote target
items to legitimate users by manipulating interactions of controlled
users. Formally, let 7 C 7 denote the set of target items, U and
U’ denote the set of legitimate users and users controlled by the at-
tacker, respectively. Accordingly, Y and Y’ denote the factual and
fake interactions. In practice, online recommender systems limit ac-
cess to the full user-item interaction data. Our attack model assumes
that the factual interaction matrix Y can only be partially observed.
Recommender systems are also typically considered "black-boxes,'
with the model’s internals being inaccessible to attackers. However,
recommender systems often have a public API that can be queried
to generate a top-k list of suggestions for a user u, which an attacker
can use. Additionally, an explanation API for the recommendation
model can be exploited to produce CFs for any user and target item
pair (u, ).

1A similar reasoning would apply if we instead considered explicit ratings, i.e., f :
R? xR > R
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Figure 1: Our proposed H-CARS poisoning attack framework.

To quantify the power of the attack [6], we define its success
rate HR(t) — the hit ratio of item ¢ € 7~ - as the probability that ¢
appears in the top-k list of recommended items for an actual user,
e, P({t € IX |u e U}).

The attacker aims to create fake interactions Y’ for U’, with
the objective of maximizing the hit ratio of the target items. To for-
malize this problem, we follow prior work [30][8][17] and present
a bi-level optimization formulation:

max Z HR(t)

teT

. o, @
subject to: 0" = arg min {-Etrain (Y. Y) + Lirain(Y', yel)},
0
where 6 denotes the model parameters, and L;r4in denotes the
training loss of the target recommendation model f. Yg and yé
are predictions from the model trained on Y U Y’

4 PROPOSED METHOD: H-CARS

This section describes H-CARS (Horn-Clause Attacks to Recom-
mender Systems), our poisoning method for recommender systems,
via counterfactual explanations, depicted in Fig. 1. The attacker
generally cannot access the target model’s internals, so it cannot
optimize (1) directly. A common practice in black-box scenarios is
first training a surrogate model f ~ f to generate fake user-item
interactions that can be used to poison the target system f.

4.1 Extracting Logical Reasoning Models with
Counterfactual Explanations

To build a surrogate model that effectively utilizes the API of CF
reasoning, it is crucial to capture the inherent logic of the targeted
black-box recommender system. To this end, we adopt the Neural
Collaborative Reasoning (NCR) framework as the surrogate recom-
mendation model in this study. NCR encapsulates logical reasoning
into a dynamic neural architecture in Horn clause form (hence the
name of our method). More specifically, NCR encodes a user-item
interaction (u, j) into an event vector:

ey,j = Wap(Wi(u, j) + by) + b2, (2)

where j € I, and, with a slight abuse of notation, we refer to u and j
as their corresponding embedding vectors (hy, and h, respectively).
Moreover, W, Wy, by and b, are event parameters that need to be
learned, whereas ¢ is the well-known ReLU activation function.
To transform the user-item interactions into a logical expression,
basic neural logical modules, AND(A), OR(V), NOT(-), are intro-
duced. Ideally, predicting if an item x is to be recommended to user



The Dark Side of Explanations: Poisoning Recommender Systems with Counterfactual Examples

u based on the interaction history is equal to deciding whether the
following Horn clause is true or false:

®)

where i € I,, Vi € {1,2,..., j}. Based on the definition of material
implication, the above statement is equivalent to the following logic
expression vector:

ey1Ney2 N+ A eyj = eyx,

©)

The recommendation score of x is calculated based on the similarity
between the logic expression vector ¢ and the constant true
vector denoted by 1. We adopt the pair-wise learning algorithm for
the factual interaction for model training. Specifically, we construct
negative expression:

+
Cux = (—-eu,l V-oeya2V:--V —|eu,j) V ey x-

(©)

by sampling an item z € 7 \ Z,, that u did not interact with. Then,
we opt for the Bayesian Personalized Ranking (BPR) loss:

Lfa = - Z Z Z log(sim(c;;,x, 1) — sim(clzz,l)), 6)

ueUxel} zel;

C;,z = (_‘eu,l V-oeya V-V _‘eu,j) Veyz,

where 7} and 7,7 = I \ Z, represents the positive and negative
item sets for user u, respectively, and sim measures the similarity
between two vectors (e.g., cosine similarity).

Since our partial factual interaction data is limited, CFs generated
by the API can be used for data augmentation while alleviating
spurious correlations [16][20][11]. For an item x, after subtracting
Iuc’;f from 7, the remaining set 7, \ Ilff leads to a removal of item
x from the top-k list of suggestions for user u, i.e., x ¢ juk anymore.
Logically, the counterfactual expression below tends to be false:

CF _

JjeLNLZE

™

ﬂeu!j) Veyx

For the generated counterfactual interaction, its expression vec-
51;; is expected to be very distinct from c;,
spurious correlations by contrasting the difference. Hence, the coun-

terfactual loss could be written as:

.ch=— Z Z log(sim(c;!x,c,ii)).

ueUU xe I}

tor ¢ to weaken the

®

We integrate all the losses together to achieve the final objective:
L= Lfa + Al-ch + AZLreg, (9)

where Ly is a regularization term that ensures the logical module
satisfies the logical laws [2][9].

4.2 Poisoning Logical Reasoning Models

Instead of constructing Y’ and U’ directly by solving (1), we start
from the goal and backtrack the optimization process [31][30].
Consider a simple case where the attacker wants to promote the
target item ¢ to a user u with interaction history 7,. To achieve this,

we want the result of the following logic chain to be true:
C;’t = (—|eu’1 V-eyaV-V —|eu,j) Veyt. (10)

Since the attacker cannot modify observed interactions of legiti-
mate users in the training set, we focus on leveraging the controlled
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users to manipulate the embedding of ¢. Formally, we first determine
the optimal item embedding ¢ + € by maximizing:

& = argmaxgsim((—'eu,l Vooey2 Voo Voey ) Voey e, 1) (11)

Then, we transform the problem of promoting target item ¢ into
the problem of shifting embedding t to ¢ + ¢. In other words, we
need to ensure the sum of terms involving item ¢ in the training
loss decrease after the shifting.

2.

uemathcalUUU’

< —

Z sim(ct,,1). (12)

ueUvl’

sim(cy p4e:1)

Here, we utilize the training loss of the surrogate to emulate the
optimization process of the original recommendation model. Since
the attacker can only control users in U, their goal is to generate
the optimal controlled user m* € U’ and its interaction history
Tms+ that minimize the following loss function in each iteration,

m”, I = argmax,, 1 sim(cp, 14e1). (13)

Practically, we iteratively generate the controlled users. In each
iteration, we find the optimal direction of item perturbation by
jointly considering the target items ¢ € 7. Then, according to (13),
the new m* and J,,,. are obtained and included into U’ and Y.

5 EXPERIMENTS
5.1 Experimental Setup

Datasets. In this paper, we conduct experiments following [3] and
[26] over two datasets: Yelp and MovieLens100K.? Yelp contains
binary ratings from 31, 668 users on 38, 048 items, while MovieLens
contains 943 users’ rating scores (in the range [1,5]) on 1,682
movies. According to [26], we binarize ratings in MovieLens as
follows: any score greater than 4 is mapped to 1, and 0 otherwise.
Target Recommendation Models. We experiment with the fol-
lowing target recommendation models:

o Neural Collaborative Filtering (NCF) [7] replaces the user-
item inner product with a neural architecture to capture the
complex structure of the user interaction data.

o Relational Collaborative Filtering (RCF) [29] is developed
to exploit multiple-item relations in recommender systems
via a two-level hierarchical attention mechanism.

Counterfactual Explanation Method. We consider the following
CF generation method:

e ACCENT [26] generates CFs for neural recommenders by
using influence functions to find items most relevant to a
recommendation.

Baseline Attack Methods. We compare our H-CARS attack strat-
egy against the following baselines:

e DL-Attack [8] formulates the attack as an optimization prob-
lem such that the injected data would maximize the number
of normal users to whom the target items are recommended.

e RAPU-R [30] starts from the attack goal and reverses the
optimization process to obtain the crafted interactions.

e Bandwagon Attack [30] randomly selects popular items for
crafted users who also interact with the target item.

?Hereinafter, we refer to it simply as MovieLens.



SIGIR °23, July 23-27, 2023, Taipei, Taiwan

Ziheng Chen, Fabrizio Silvestri, Jia Wang, Yongfeng Zhang, & Gabriele Tolomei

Table 1: HR@10 x 100 for different attacks with 80% training data (left) and 30% training data (right) on two datasets.

Percentage of Cotrolled Users Percentage of Cotrolled Users
Recommendation Attack Recommendation Attack
Dataset Model Method 0.5% | 1% 3% 5% Dataset Model Method 0.5% | 1% 3% 5%
DL-Attack 0.34 | 0.39 | 0.72 0.82 DL-Attack 0.12 | 0.14 | 0.21 0.23
NCF RAPU-R 0.32 | 0.38 | 0.79 0.86 NCF RAPU-R 0.10 | 0.14 | 0.23 0.29
H-CARS 0.37 | 0.42 | 0.82 0.91 H-CARS 0.13 | 0.18 | 0.29 0.35
MovieLens Bandwagon | 0.09 | 0.11 | 0.16 0.26 MovieLens Bandwagon | 0.02 | 0.03 | 0.05 0.10
DL-Attack 0.25 | 0.29 | 0.63 0.71 DL-Attack 0.06 | 0.09 | 0.17 0.22
RCF RAPU-R 0.23 | 0.28 | 0.66 0.73 RCF RAPU-R 0.04 | 0.08 | 0.17 0.21
H-CARS 0.24 | 0.29 | 0.68 0.76 H-CARS 0.06 | 0.11 | 0.20 0.26
Bandwagon | 0.06 | 0.10 | 0.13 0.14 Bandwagon | 0.03 | 0.03 | 0.05 0.08
DL-Attack 0.27 | 0.30 | 0.63 0.73 DL-Attack 0.05 | 0.06 | 0.09 0.11
NCF RAPU-R 0.25 | 0.31 | 0.65 0.74 NCF RAPU-R 0.05 | 0.05 | 0.09 0.12
H-CARS 0.26 | 0.33 | 0.66 0.76 H-CARS 0.06 | 0.08 | 0.12 0.16
Yelp Bandwagon | 0.05 | 0.08 | 0.16 0.21 Yelp Bandwagon | 0.01 | 0.02 | 0.06 0.08
DL-Attack 0.24 | 0.25 | 0.56 0.63 DL-Attack 0.06 | 0.08 | 0.13 0.15
RCF RAPU-R 0.22 | 0.24 | 0.59 0.63 RCF RAPU-R 0.06 | 0.09 | 0.13 0.16
H-CARS 0.23 | 0.26 | 0.61 0.66 H-CARS 0.07 | 0.10 | 0.15 0.20
Bandwagon | 0.03 | 0.04 | 0.12 0.18 Bandwagon | 0.02 | 0.03 | 0.05 0.10

5.2 Attack Setting

Adapting [23], we sample 5 target items as 7~ and limit controlled
user selections to 100 and 15 for MovieLens and Yelp respectively,
with a learning rate of 0.001. Model extraction parameters are set:
A1 = 0.76, A3 = 0.0001 for MovieLens; and A1 = 0.68, A3 = 0.00001
for Yelp. In the extraction stage, 60% interactions generate CFs
per [26], also used as negative samples for DL-Attack, RAPU-R, and
Bandwagon attack. Attackers’ performance is assessed using Hit
Ratio at 10 (HR@10), measuring the proportion of users with at
least one 7~ item in their top-10 recommendations [13].

5.3 Analysis of Results

Our H-CARS attack consistently outperforms or performs similarly
to other methods in all target recommendation model and dataset
combinations, as shown in Table 1. For instance, using the Movie-
Lens dataset, our method improves over RAPU-R and DL-Attack by
5% and 8%, respectively. Notably, our method performs well with
limited training data, outperforming RAPU-R by 0.6% with only
30% of the MovieLens training data. We observe that our method
achieves good performance in the scenario with a limited number of
training data. In particular, with only 30% MovieLens training data,
our method outperforms RAPU-R by 0.6%. Similar conclusions can
be drawn for other combinations with limited data. Moreover, as the
number of controlled user increases, the performance gap between
RAPU-R get enlarged. For instance, compared with RAPU-R, our
H-CARS attack achieves 0.1% and 0.6% performance increases on
the H-CARS dataset when the percentage of controlled users rises
from 0.5% to 5%. Overall, our method achieves the best performance
compared to other baselines.

5.4 Ablation Study

In our study, we evaluate the performance of our model extrac-
tion method using the MovieLens dataset and NCF as the original
recommender. We apply the P@10 precision metric and compare
three surrogate models: H-CARS-CF, H-CARS-wo-CF, and WRMF.
Results in Figure 2 indicate that H-CARS-CF surpasses the others,
validating the effectiveness of L, p-based CFs. Additionally, the

performance gap between H-CARS-CF and H-CARS-wo-CF widens
with increased training data, highlighting the synergy of CFs and
factual data in data augmentation.

e H-CARS-CF = WRMF
rrrrrrr H-CARS-wo-CF
"
0.8
0.6 T
o
«
-
9 o4 .
-
0.2
o
o
0.2 03 04 05 0.6 07 08 09

Percentage of training data

Figure 2: The impact of CFs on surrogate models.

6 CONCLUSION AND FUTURE WORK

We presented a novel approach, H-CARS, that exploits the vulner-
abilities induced by counterfactual explanations to launch a poi-
soning attack on recommender systems. To the best of our knowl-
edge, this is the first such attack proposed in the literature. Our
experiments demonstrate that H-CARS is effective, highlighting
the importance of considering the security implications of using
explainability methods in recommender systems. Future research
should explore the potential impact of such attacks on the integrity
of the recommender system, as well as develop stronger defenses
to mitigate risks in explainable recommender systems.
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