Check for
Updates

Counterfactual Collaborative Reasoning

Jianchao Ji
Rutgers University
New Brunswick, NJ, US
jianchao ji@rutgers.edu

Zelong Li
Rutgers University
New Brunswick, NJ, US
zelong li@rutgers.edu

Juntao Tan
Rutgers University
New Brunswick, NJ, US
juntao.tan@rutgers.edu

ABSTRACT

Causal reasoning and logical reasoning are two important types of
reasoning abilities for human intelligence. However, their relation-
ship has not been extensively explored under machine intelligence
context. In this paper, we explore how the two reasoning abilities
can be jointly modeled to enhance both accuracy and explainabil-
ity of machine learning models. More specifically, by integrating
two important types of reasoning ability—counterfactual reasoning
and (neural) logical reasoning—we propose Counterfactual Col-
laborative Reasoning (CCR), which conducts counterfactual logic
reasoning to improve the performance. In particular, we use rec-
ommender system as an example to show how CCR alleviate data
scarcity, improve accuracy and enhance transparency. Technically,
we leverage counterfactual reasoning to generate “difficult” counter-
factual training examples for data augmentation, which—together
with the original training examples—can enhance the model per-
formance. Since the augmented data is model irrelevant, they can
be used to enhance any model, enabling the wide applicability of
the technique. Besides, most of the existing data augmentation
methods focus on “implicit data augmentation” over users’ implicit
feedback, while our framework conducts “explicit data augmen-
tation” over users explicit feedback based on counterfactual logic
reasoning. Experiments on three real-world datasets show that CCR
achieves better performance than non-augmented models and im-
plicitly augmented models, and also improves model transparency
by generating counterfactual explanations.
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1 INTRODUCTION

Causal reasoning and logical reasoning are two important types of
reasoning abilities. In this paper, we explore how the two reason-
ing abilities can be jointly modeled to enhance both accuracy and
explainability of machine learning models. We take recommender
system, which is an important prediction task, as an example to
demonstrate the benefits of jointly modeling causal and logical rea-
soning. One important problem in recommendation model training
is data scarcity. This is because user interactions are very sparse
compared to the vast amount of items in the system, and this is
especially true for sequential recommendation models which lever-
age a few or a few tens of user history interactions to predict the
next interaction out of thousands or millions of candidates. One
state-of-the-art approach to alleviating the data scarcity problem is
counterfactual data augmentation, which conducts counterfactual
reasoning over the original training examples to produce a set of in-
formative augmented training examples [11, 18, 53, 54, 60, 63]. The
augmented training examples, together with the original training
examples, can help to improve the recommendation performance
by generating synthetic data to cover the unexplored input space
while maintaining correctness of the data as much as possible [54].

Take Figure 1(a) as an example, the original training data shows
that the user purchased a speaker, a laptop, and a data cable to con-
nect the speaker to the laptop. Current data augmentation methods
perturb one or more of the user’s purchase histories to alternative
items that can trigger the recommendation result to change. In this
example, the laptop is perturbed to a mouse or a USB flash drive,
and the recommendation result is changed to a keyboard or an SSD
drive, respectively. Thus, two counterfactual examples are created.
The key is to perturb the history item to very similar items that can
change the output, which creates difficult examples to challenge
the recommendation model and help train the model to distinguish
such difficult examples for better performance [53].

Although counterfactual data augmentation has achieved suc-
cess in improving many recommendation models, one major prob-
lem with existing counterfactual data augmentation methods is
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Figure 1: An illustration of (a) implicit counterfactual data augmentation and (b) explicit counterfactual data augmentation

that they only consider users’ implicit feedback such as click or
purchase information for generating augmented counterfactual ex-
amples, while the explicit feedback such as users’ like or dislike
preference on the items are ignored. However, explicit feedback
contains rich user preference information that helps to understand
user behaviors and make accurate predictions. Take Figure 1(b)
as an example, which still shows the speaker, laptop and cable as
the three items. If the user liked the speaker and laptop, then the
user could indeed purchase the cable as the next item to connect
the two. However, if the user disliked the speaker, then the next
item could not be the cable but instead a headset as a substitute to
the speaker. The example shows that even if the user’s interaction
history is the same, user’s counterfactual preferences on the history
items can create informative counterfactual examples to enhance
the recommendation model.

There is a reason that existing counterfactual data augmentation
methods mostly focus on implicit data augmentation while ignoring
the explicit feedback. Usually, counterfactual data augmentation
relies on an anchor sequential recommendation model to perturb
the history items and generate counterfactual examples. However,
most of the existing sequential recommendation models work with
implicit feedback and cannot handle explicit feedback in sequential
modeling [12, 28, 30, 32, 33, 35, 42, 45, 47, 50, 53, 60]. As a result, the
counterfactual reasoning procedure is only able to perturb implicit
feedback when generating counterfactual examples. Fortunately,
recent advances on neural-symbolic/neural-logic reasoning meth-
ods [5, 7, 8, 31, 46] such as neural collaborative reasoning (NCR) [8]
shed light on this problem. By learning the logical inverse (NOT)
operation, neural logical reasoning is able to model explicit feed-
back in sequential learning, thus making it possible to conduct
counterfactual reasoning over users’ explicit like/dislike feedback
to generate explicit counterfactual examples for data augmentation.

In this paper, we integrate the two important types of reason-
ing ability—counterfactual reasoning and logical reasoning, and
we propose a novel Counterfactual Collaborative Reasoning (CCR)
framework which is able to generate explicit counterfactual exam-
ples to enhance the performance of sequential recommendation
models. Technically, to create explicit counterfactual data, CCR
provides a machine learning-based method to generate minimal
changes on the users’ historical explicit feedback that can lead to
changes in the output under the NCR sampler model (Figure 1(b)).
A very desirable feature of the CCR framework is its “augment
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once, apply to all” property, i.e., for a given dataset, we only need
to conduct the data augmentation procedure for once to enrich the
dataset, and the enriched dataset can be used to enhance the perfor-
mance of multiple recommendation models. An additional benefit
of the CCR framework is that the data augmentation procedure can
naturally produce counterfactual explanations for the recommen-
dation, which not only improves the recommendation performance
but also helps to understand the reason of the recommendations.

Experiments on three real-world datasets show that our CCR
framework achieves significantly better performance than the mod-
els without data augmentation and the models with current existing
data augmentation methods for sequential recommendation. Be-
sides, quantitative evaluation results also show that our framework
generates reliable explanations for the recommendations.

The key contributions of the paper are as follows:

o To the best of our knowledge, this work is the first to consider
explicit counterfactual data augmentation for sequential rec-
ommendation. Besides, we demonstrate how logical reason-
ing and counterfactual reasoning-two of the most important
reasoning abilities of humans—can be jointly modeled for
better performance and explainability.

e Under the “augment once, apply to all” framework, the gen-
erated explicit counterfactual data can improve the perfor-
mance of multiple sequential recommendation models.

o The data augmentation process not only enhances the recom-
mendation performance but also improves the explainability.

e We conduct experiments on several real-world datasets to
analyze both the recommendation performance and the ex-
planation performance.

The following part of the paper is organized as follows: We
review related work in Section 2, provide some preliminary knowl-
edge in Section 3, present the details of our CCR framework in
Section 4, and discuss the experimental results in Section 5. We
finally conclude the work with future research visions in Section 6.

2 RELATED WORK

Sequential recommendation is one of the most important types of
recommendation models in real-world systems due to their gener-
ally good performance. The key idea is to predict the next item based
on the user’s historical interactions. For example, Markov Chain-
based models assume that each of the user’s behavior is determined
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by the user’s most recent behavior thus construct the transition ma-
trix among items based on users’ behaviors to predict users’ future
preference [28, 45]. To relax the most recent behavior assumption,
researchers have made efforts to consider longer user behavior
records for recommendation. For example, recurrent neural net-
work based models such as GRU4Rec [30], DREAM [64], NARM [35]
and other variants [15, 29, 44, 55] embed users’ historical behaviors
into a latent vector/representation to predict users’ future behav-
iors. Recently, researchers also considered convolutional networks
(Caser) [50], memory networks (MANN, KSR) [12, 32], attention
mechanism (STAMP, SASRec) [33, 42], self-supervised learning
(S3-Rec) [70], bi-directional transformers (BERT4Rec, SSE-PT, XL-
Net) [14, 47, 56], logical reasoning (NCR) [5, 8, 46], and foundation
models (P5) [24] for sequential recommendation.

Compared with non-sequential models, sequential models need
higher-quality sequential data for training since the output will
be directly influenced by the input sequence [11, 53, 60]. However,
the sparsity of real-world data may hinder the performance of the
sequential recommendation models. To alleviate this problem, re-
searchers have been exploring counterfactual thinking for data
augmentation so as to enhance both the dataset and the model. The
data augmentation process uses alternatives to exchange the past
behaviors and generate counterfactual examples [16]. Following
this idea, counterfactual data augmentation has made several im-
portant achievements in recommender systems [11, 53, 60, 63, 65].

However, existing counterfactual data augmentation methods for
recommender systems only consider users’ implicit feedback and
cannot deal with the explicit feedback for counterfactual example
generation [53, 63]. Actually, explicit information is also very useful
in recommendation, since explicit and implicit feedback exhibit user
preference from different perspectives. As a result, considering both
types of feedback can enhance sequential modeling performance [9].
For example, neural logic reasoning (NLR) [46], neural collaborative
reasoning (NCR) [8], and graph collaborative reasoning (GCR) [5]
consider users’ like and dislike feedback for sequential modeling.

Explainability is another important perspective for recommender
systems research because it improves users’ trust and satisfaction
and helps the system designers in model debugging [13, 20, 67,
68]. Researchers have explored various types of explanation styles,
such as pre-defined templates [52, 68], image visualizations [10,
22], knowledge graph paths [1, 6, 23, 58], feature comparisons [59,
62], reasoning rules [7, 8, 31, 46, 57, 66, 71] and natural language
sentences [4, 22, 24, 35-39], and recently, counterfactual reasoning
has emerged as an effective method to generate explanations [25, 49,
51, 61]. Explainable AI has also been driving research in computer
vision [26], natural language processing [17], Al for Science [41, 48]
and algorithmic fairness [19, 21, 40].

3 PRELIMINARIES

In this section, we briefly introduce the notations we used in this
work as well as some background knowledge.

3.1 Sequential Recommendation

Suppose we have a user set U = {uy, up, - - - ,u|U|} and an item set
V = {01,092, -~ >U|V|}- The user u; interacted with a sequence of
historical items H; = {vi, v;, ce. U;l} The corresponding feedback
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Figure 2: An illustration of the difference between sequential
modeling with implicit feedback and with explicit feedback.
The explicit feedback model leverages the logical NOT gate
to distinguish between positive and negative feedback.

of these interacted historical items are B; = {bi, b;, cee bil}. We let
bf = 1 if the user likes the item and bf = 0 if the user dislikes the
item. A sequential recommendation model f predicts the ranking
score r;; for user u; on item v; based on H; and B;:

rij = f(Hj, Bi,0j) (1)

By ranking the candidate items in descending order of the ranking
score r;jj, the recommendation model predicts the user’s preferences
and produces the recommendation list. Sequential recommendation
models can predict users’ near future behaviors based on their his-
tory behaviors. Sometimes, we not only have users’ interacted items
from the dataset, but also we can know whether they like each item
or not. However, most of the existing sequential recommendation
models only consider the interacted histories for recommendation,
or in other words, they only use implicit feedback information to
train the model and make prediction, which may lose part of the
useful information and may hinder the ability to make accurate
predictions. One approach to modeling explicit feedback for se-
quential recommendation is neural collaborative reasoning (NCR)
[8], which we briefly introduce in the following.

3.2 Sequential Modeling with Explicit Feedback

Neural collaborative reasoning (NCR) [8] models the explicit feed-
back for sequential recommendation by training the neural logical
NOT operator. By applying the NOT operation on history items, the
model is able to distinguish users’ positive and negative feedback
on the historical items, as shown in Figure 2. More specifically, NCR
encodes a user-item interaction into an interaction event vector:

. @)

eZ =W (W v

+b1) + by

where u,v are user and item latent embedding vectors; Wy, Wy
and by, by are weighted matrices and bias vectors that need to be
learned; e, is the encoded event vector that represents the interac-
tion of user u and item v, and ¢(-) is the activation function which
is rectified linear unit (ReLU) in this work. By introducing neural
logical modules: AND (A), OR (V) and NOT (—), NCR can transform
the sequential data into a logical expression. Suppose user u’s feed-
back on item v; is negative and the feedback on other items are
positive, then the explicit reasoning expression is:

K% 0, 0,
el AegE A Aedt — eyt

®)
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where {el}, €52, -, ey"} represents the user’s history event and

e is the next item the user interacts with. To put explicit feed-
back information into consideration, e, is used to represent that
user u interacted with item v with positive feedback and and —ej, is
used to represent that user u interacted with item v with negative
feedback. Ideally, the sequential recommendation procedure can
predict e5*! based on {e%!,e>?, - - - ,eo"}. Based on the definition

of material implication!, the expression is equivalent to:

(et V —ep? V-V —egt) Vet

©

The recommendation score of a candidate item vj,41 is calculated
based on the similarity between the logical expression and the
constant True (T) vector. Based on the score, the model will decide
whether the item should be recommend to the user (if the expression
is close to True) or not (if the expression is close to False).

4 COUNTERFACTUAL COLLABORATIVE
REASONING (CCR)

We build an counterfactual collaborative reasoning (CCR) frame-
work to generate explicit counterfactual examples for data augmen-
tation and improve the performance of sequential recommendation
models. The main idea of the proposed data augmentation frame-
work is to discover slight changes A on users’ explicit feedback
via solving a counterfactual optimization problem which will be
formulated in the following. Meanwhile, the process of generating
explicit counterfactual data can also provide explanations for items
in the top-K recommendation.

4.1 Explicit Counterfactual Data Sampler

As shown in figure 1(b), besides a sequential recommendation model
A, our CCR framework introduces a sampler S to generate explicit
counterfactual examples. Firstly, both A and &S in our model are
pre-trained based on the original dataset. Then, the explicit coun-
terfactual data generated by the sampler will be used to re-optimize
the anchor model A. After that, the re-optimized anchor model
will provide the final recommendation list for the user.

To generate explicit counterfactual data, we use NCR as the
sampler to conduct counterfactual reasoning. This is because NCR
can consider the counterfactual of explicit feedback with the help
of logical negations (—). The first step of the sampler is to decide
which explicit feedback of a user u;’s historical items should be
changed. We use a binary vector A; = {0, 1}1Bil o represent the
intervention, where the the vector size is equal to the size of the
user’s explicit feedback vector B;. Then, we apply the intervention
on Bj:

Bi=(1-B;)0A;+B; 0 (1-A)) (5)

For each 6; € Ay, if §; = 1, then the corresponding feedback
is reversed; otherwise, the feedback remains the same. For exam-
ple, if B; = [0,1,1] and A; = [1,1,0], it means that the user’s
feedback on the first and second items should be reversed, thus
B} = [1,0,1]. To decide which feedback should be changed, we
design an optimization function for A;:

A = argminy, [|Aillo + @ - S(vn+1 | Hi, B}) (6)

Material Implication (—) can be represented as: x — y < -x V y
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Figure 3: An illustration of explicit counterfactual data gen-
eration progress. In the original data, the user likes the iPad
and then they purchased an iPad case which is compatible
with the iPad. Suppose AIZ = 1 and the user’s explicit feed-
back on iPad is changed, then the sampler will generate a
new item as the next item.

where ||A;l|o is the zero-norm of the intervention vector A; that
represents the amount of changed feedback, « is a hyper-parameter,
and vp41 is the item embedding vector of the ground-truth next
item. S(vn4+1 | Hi, B’:) is the ranking score of the sampler model
for user u; on item v,4+1 under the counterfactual user feedback B’;.
In Eq.(6), the first term aims to minimize the amount of intervened
feedback between the original data and the explicit counterfactual
data. The second term tries to find the explicit feedback that can
alter the output the sequence, i.e., the ranking score of item vp41
under the counterfactual feedback is decreased so that a new item
appears as the output. However, the A; is not differentiable since it
is discrete. Thus, we will introduce a relaxed optimization method
later.

To get the new next item, we take the history items H; and the
intervened feedback B} into the sampler to derive the next item
Opn+1 that the user may interact with:

Ons1 = argmax,e; S(v | Hy, BY) (7)
where I is a set of items in the dataset, which can be the whole item
set V or another set involving prior knowledge. Finally, an explicit
counterfactual sequence is generated as (Hj, B, dn+1). Together
with the original sequence (Hj, Bj, vp+1), the anchor model A will
be optimized over the augmented training dataset.

The intuition of the explicit counterfactual data augmentation
procedure is that the sampler model creates “difficult” examples that
leads to changes in the next item even if the historical feedback is
just slightly changed. Such difficult examples, once included as aug-
ment examples to enhance the training data, will help the training
of sequential recommendation models to distinguish the influence
of minor changes in users’ historical feedback [53]. Take Figure
3 as an example, in the original sequential data, user purchased
an iPad case as the next item since it is compatible with the iPad
that the user already purchased and the user actually likes the iPad.
However, if the user dislike the iPad, then the next item would not
be an iPad case but could be a camera lens since it is compatible
with the camera that the user liked before.
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4.2 Relaxed Optimization

One difficulty in optimizing Eq.(6) is that the binary vector A; and
the first term of the optimization function ||A;||o are not differen-
tiable since they are discrete. In the implementation, we relax A;
to a real-valued vector and relax the #-norm ||A;||o to #-norm
[|A;]|1 to make the intervention vector A; learnable. This method
has been shown to be effective in prior research [2, 3] and helps to
minimize the number of changed explicit feedback in the sequence.

®

As mentioned before, the sampler § is implemented with NCR
to accommodate the explicit feedback in the sequence. More specif-
ically, for each user-item interaction event e in the history H;, sup-
pose e is the corresponding event vector for the event (which could
be negated if this event is a negative feedback in the original data),
and suppose event e’s corresponding value in the intervention
vector is J, then the intervened event vector e”* is:

A; = argming [|Aill1 + o - S(vns1 | Hi, BY)

e =-e-Sc+e-(1-205)

©

These intervened event vectors constitute the counterfactual
history {H;, B} } for the NCR sampler to calculate the ranking score
of item vp41, as shown in Eq.(8). After optimization, the values in
the learned intervention vector A; may not be exactly equal to 0
or 1. As a result, a threshold will be applied to binarize A; as the
final output. In the experiments, we set the threshold as 0.5, i.e., for
those elements in A; larger than 0.5, we set them to 1, otherwise, we
set them to 0. Finally, the binarized intervention vector A; is used
to generate the new next item 0,41 for the explicit counterfactual
example according to Eq.(7).

4.3 Reduce Noisy Examples

As mentioned above, for the generated explicit counterfactual data,
the next interaction item is selected based on Eq.(7). However, since
no sampler model is perfectly accurate, it may generate inaccurate
predictions. Both of the accurate and inaccurate counterfactual
examples generated by the sampler will be used to re-optimized
the anchor model A, as a result, if we do not set some constraints
to reduce the amount of inaccurate counterfactual examples, the
performance of the re-optimized anchor model may be harmed.
Inspired by [53], we set a confidence parameter k € [0, 1) to mitigate
this issue. We accept the generated explicit counterfactual data only
when S (0,41 | Hi, B’:.‘) > k. This means that we will only accept a
counterfactual example when the sampler is sufficiently confident
of it. Otherwise, the model will discard the example.

4.4 Learning Algorithm

To make the whole process clear, we summarize the learning algo-
rithm of our framework in Algorithm 1. At first, we train both the
sampler S and the anchor model A based on the original dataset
T. Then for each training example in T, the sampler will learn the
intervention vector A; and generate counterfactual data based on
Eq.(7). If the sampler has enough confidence of the generated coun-
terfactual data, it will be added into the counterfactual dataset T,.
When the model finishes the data augmentation process, the anchor
model A will be re-optimized based on T, U T to provide the final
recommendations for each user.
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Algorithm 1 CCR Learning Algorithm

Input: the original dataset T
Input: Pre-train sampler S and anchor model A
Initialize the counterfactual dataset T, = 0
for each training example from T do
Randomly initialize the intervention vector A;
Learn A; by Eq.(8)
Generate new sequence (Hj, B;‘, On+1) based on Eq.(7)
if S(9n+1 | Hi, B}) > « then
T. T, U (Hi,B:‘, zjn+1)
end if
end for
Re-optimize A based on T U T,
Output: the final recommendations based on re-optimized A

4.5 Counterfactual Explanations

During the process of generating explicit counterfactual data, our
framework can also provide explanations to show why the model
recommends the item to the user. Previous counterfactual expla-
nation methods for recommendation [25, 49, 51] mostly focus on
implicit counterfactual explanation based on implicit behaviors.
However, one contribution of our work is that our framework can
generate explicit counterfactual explanations.

In Eq.(8), we are trying to explore an intervention vector A;.
Because of the first term in Eq.(8), only a few explicit feedback will
be changed. Meanwhile, the second term of Eq.(8) will penalize the
probability of interacting with the current item. Therefore, only
the most essential history items’ feedback will be changed. These
items can be used to generate counterfactual explanations for the
recommended item. Take Figure 4 as an example, since Al? =1,
the corresponding item is the counterfactual explanation: the iPad
is the reason for recommending the iPad case, because if the user
disliked the iPad, we would not have recommended the iPad case
but would have recommended the camera lens instead. We store
all explanations in the set E.

To evaluate if our explanation correctly explains the recom-
mended item, inspired by recent work on counterfactual explain-
able recommendation [48], we use Probability of Necessity (PN)
and Probability of Sufficiency (PS) to evaluate our explanations. In
logic and mathematics, if X happens then Y will happen, we say X
is a sufficient condition for Y. Similarly, if X does not happen then
Y will not happen, we say X is a necessary condition for Y.

4.5.1 Probability of Necessity. Suppose a set of items E;j C V
constitute the explanation for the recommended item v; to user
u;. The idea of the PN score is: if the items in E;; are reversed (for
explicit explanation) or removed (for implicit explanation), then
what is the probability that item v; would not be recommended for
user u;. We calculate the percentage of the generated explanations
that meet the above PN condition:

where R; x is the original top-K recommendation list for user u;. Let
v € Rjx be a recommended item that our model has a nonempty

2u;eU vjeRk PNjj

_ 1, if Vi ¢ R;{K
Suev Syjeryg 1B 20)° Y

PN
0, else

(10)
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explanation E;; # (0. Then for the original sequence data, we in-
tervene (reverse or remove) the item(s) in E;; and get the new rec-
ommendation list R;‘K for user u; from the recommendation model.
I(E;j # 0) is an ide’ntity function: when E;; # 0, I(E;; # 0) = 1.
Otherwise, I(E;; # 0) = 0.

4.5.2 Probability of Sufficiency. Similar to the definition of PN,
the idea of PS score is: if the items in E;; are maintained while other
items are reversed (for explicit explanation) or removed (for implicit
explanation), then what is the probability that item v; would still
be recommended for user u;. We calculate the percentage of the
generated explanations that meet the above PS condition:

ZuiEU ZVJ'ERLK PS]J _ {

= , PS;
ZujeU Zvjer (Bij # 0) !
where R; k is the new recommendation list after the intervention is
applied, and other notations have similar meanings as above.

.f ’
L ifvje Ri,K

PS
0, else

(11)

5 EXPERIMENTS

In this section, we conduct experiments on three real-world datasets
and compare the results of (1) the original sequential recommen-
dation model without data augmentation, (2) models with implicit
counterfactual data augmentation, and (3) models with our Coun-
terfactual Collaborative Reasoning (CCR) framework. Furthermore,
the counterfactual explanation results show our framework’s ability
to generate higher quality explanations.

5.1 Dataset

We use three real-world datasets in the experiments.

ML100K [27]: The MovieLens-100K (ML100K) dataset stores
users’ preference for various movies. It contains 100,000 movie
ratings from 1 to 5 stars of 943 users to 1,682 movies.

Amazon [43]: This is the Amazon e-commerce dataset. We take
Movies & TV and Electronics datasets as two examples for ex-
periments. Movies & TV contains 123,961 users, 50,053 products
and 1,697,533 product ratings. Electronics contains 192,404 users,
63,002 products and 1,689,188 product ratings.

Some basic statistic of the datasets can be found in Table 1. We
consider 1-3 ratings as negative feedback with label as 0, and 4-5
ratings as positive feedback with label as 1. We use positive Leave-
One-Out [8, 69] to create the training, validation and testing dataset.
For each user, we put the last positive interaction and its following
negative interactions into the testing set, and we put the last but
one positive interaction and its following negative interactions into
the validation set. Then, we put all of the rest interactions into the
training set. If a user has less than 5 interactions, we put all of the
interactions into the training set to avoid cold-start.

5.2 Baselines

We consider both standalone sequential recommendation models
and implicit data augmentation methods for comparison:
GRU4Rec [30]: GRU4Rec is a sequential recommendation model
based on Recurrent Neural Networks (RNN).
STAMP [42]: STAMP is a sequential recommendation model
based on attention mechanism, which can capture users’ long-term
and short-term preferences for recommendation.
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Dataset #users #items #interaction Density
ML100K 943 1,682 100,000 6.30%
Movies & TV | 123,961 50,053 1,697,533  0.027%
Electronics 192,404 63,002 1,689,188 0.014%

Table 1: Basic statistics of the datasets

______ Original Data
Like { Like 1 Like
: - E .
1 1 > ]
&A1 m.
L : —
Camera i iPad E iPad Case
Al=0 | A?=1 !
1 1
Like ! Dislike i
i =
1 1
# : ’
il :
1
Camera \____iPad | Camera Lens

Explicit Counterfactual Data

Figure 4: An example of generating counterfactual explana-
tions. Since A? = 1, the corresponding item is the counterfac-
tual explanation for the recommended item.

SASRec [33]: SASRec is a sequential recommendation model
based on self-attention mechanism

NCR [8]: NCR is a sequential recommendation model based on
neural logical reasoning, which captures the logical relationship
between user-item interactions for recommendation.

CASR [53]: CASR is a state-of-the-art implicit counterfactual
data augmentation method for sequential modeling.

Both CASR and our CCR frameworks can be applied on all of
the four recommendation models.

5.3 Implementation Details

The learning rate is searched in [0.0001,0.001,0.01,0.1] for all meth-
ods. We apply ReLU as the activation function. For all methods, the
embedding size is 64. We optimize the methods using mini-batch
[34] and the batch size is 128. The hyper-parameter « is searched in
[10_3,10_2,10_1,1,101,102,103], and finally set to 10 for the results
we report in the paper. The confidence parameter k is searched
from 0 to 1. The influence of different x on the performance will
be discussed in the following experiments. We tune each model’s
parameters to its own best performance on the validation set. For
both CASR (implicit counterfactual data augmentation) and CCR
(explicit counterfactual data augmentation), we generate one coun-
terfactual example for each sequence in the training set.

5.4 Evaluation Metrics

We use Normalized Discounted Cumulative Gain at rank K (NDCG@K)
and Hit Ratio at rank K (HR@K) to evaluate recommendation perfor-
mance. To evaluate the explanation performance, we use Probability
of Necessity (PN), Probability of Sufficiency (PS) and their harmonic

zl;iq.PSS' For each user-item pair in the validation set

mean Fyg =
and the test set, we randomly sample 100 irrelevant items and rank
all of these 101 items for recommendation.
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Dataset | ML100K ‘ Movies & TV ‘ Electronics

Metric | NDCG@s | NDCG@10 | HR@5 | HR@10 | NDCG@s | NDCG@10 | HR@S | HR@10 | NDCG@s | NDCG@10 | HR@S | HR@10

STAMP 0.342 0.402 0.503 0.665 0.406 0.427 0.521 0.657 0.301 0.341 0.412 0.542
CASR-STAMP 0.351 0.406 0.511 0.676 0.412 0.445 0.532 0.661 0.307 0.349 0.425 0.553
CCR-STAMP | 0.365* 0.418* | 0.527* | 0.693* | 0.435* 0.463* | 0.552* | 0.689* | 0.329* 0.364* | 0.453* | 0.570*

GRU4Rec 0.340 0.403 0.502 0.672 0.411 0.431 0.538 0.661 0.312 0.354 0.432 0.554
CASR-GRU4Rec 0.349 0.411 0.509 0.680 0.414 0.453 0.542 0.671 0.326 0.369 0.447 0.560
CCR-GRU4Rec | 0.370* 0.429* | 0.522* | 0.689* | 0.428* 0.466* | 0.557* | 0.695* | 0.344* 0.386* | 0.476* | 0.581%

SASRec 0.348 0.411 0.508 0.678 0.412 0.456 0.543 0.667 0.322 0.357 0.439 0.558
CASR-SASRec 0.357 0.415 0.518 0.685 0.420 0.461 0.549 0.673 0.335 0.365 0.450 0.575
CCR-SASRec | 0.376* 0.427* | 0.531* | 0.701* | 0.438* 0.479* 0.562* | 0.699* | 0.358* 0.390* 0.471* | 0.592*

NCR 0.359 0.412 0.514 0.680 0.415 0.457 0.551 0.673 0.332 0.366 0.441 0.557
CASR-NCR 0.362 0.419 0.518 0.689 0.417 0.458 0.555 0.682 0.339 0.374 0.451 0.569
CCR-NCR | 0.376* 0.434* | 0.535* | 0.705* | 0.433* 0.472* | 0.568* | 0.702* | 0.354* 0.395* | 0.469* | 0.588*

Table 2: Experimental results on Normalize Discounted Cumulative Gain (NDCG) and Hit Ratio (HR). For each model, we
present the performance of the original model, the results of applying implicit counterfactual data augmentation method
CASR on the model, and the results of applying our CCR method on the model. Bold numbers represent best performance. We
use * to indicate that the performance is significant better than other baselines. The significance is at 0.05 level on paired t-test.

Dataset | ML100K \ Movies & TV \ Electronics

Top N | N=1 | N=5 | N=1 | N=5 | N=1 | N=5
Metric | PN | PS% | Fns% | PN% | PS% | Fns% | PN% | PS% | s | PNw | PSw | Fns% | PN% | Psn | Eas% | PNu | PS% | Fns%
CASR-STAMP 25.6 771 11.8| 22.1 | 126 | 11.8| 29.2 | 17.8 | 22.2 | 184 | 17.1 | 17.7 | 30.9 87| 13.6 | 249 | 121 | 16.3
CASR-GRU4Rec 21.7 8.2 11.9| 184 | 13.1 | 153 | 239 3.5 6.1 | 19.8 84| 11.8 | 224 99| 13.8 | 20.6 | 14.0 | 16.7
CASR-SASRec 239 93| 134 | 19.3| 13.5| 158 | 25.7 | 18.2 | 21.3 | 174 | 189 | 18.1| 253 | 10.2 | 145 | 194 | 145 | 16.6
CASR-NCR 17.2 | 325| 225 | 147 | 36.8 | 21.0 | 194 | 386 | 25.8 | 10.8 | 443 | 174 | 199 | 39.0 | 26.3 | 16.3 | 40.3 | 23.2

CountER-STAMP 53.2| 17.0| 258 | 38.3 | 26.4 | 31.2 | 58.6 | 36.8 | 45.2 | 47.9 | 43.8 | 45.8 | 59.6 | 18.6 | 28.3 | 48.1 | 27.5 | 34.9
CountER-GRU4Rec | 40.8 | 19.1 | 26.0 | 34.5| 29.5| 31.8 | 46.1 | 6.9 | 12.0 | 41.3 | 149 | 21.9 | 43.5| 19.2 | 26.6 | 39.7 | 29.6 | 33.9
CountER-SASRec 453 | 21.9| 29.5| 36.0 | 30.1 | 32.7 | 48.3| 39.7 | 43.5| 40.5| 455 | 42.8 | 50.7 | 23.9 | 32.4 | 41.2 | 36.6 | 38.7
CountER-NCR 34.7 | 52.4 | 41.7 | 28.1 | 54.5| 37.1 | 42.7 | 53.7 | 47.5| 349 | 59.0 | 43.8 | 36.7 | 52.3 | 43.2 | 32.2 | 57.8 | 41.3

CCR 42.1]60.3 | 49.6 | 36.1 | 66.7 | 46.8 | 50.1 | 64.7 | 56.5 | 41.9 | 73.2 | 53.3 | 45.8 | 74.8 | 56.8 | 41.0 | 79.6 | 54.1

Table 3: Results on PN, PS and Fys. Bold numbers are best performance. All numbers are percentage numbers with % omitted.
When CCR achieves the best result, its improvements against the best baseline are significant at p < 0.01.
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Figure 5: Performance on HR@10 (Blue Line) and NDCG@10 (Red Line) on different x with different datasets.
5.5 Compatible with the Baselines select the one that achieves the highest Fys score as the CASR expla-

nation. Second, to get stronger explanations for each model, we use
our framework as a guideline to tell the baseline methods how many
items they should use to generate explanations. Then, we apply the
counterfactual explainable recommendation (CountER) framework
[49] to each of the recommendation model (STAMP, GRU4Rec, SAS-
Rec, NCR) to generate explanations for them: based on the number
of items, we search all of the combinations of users’ history items

One issue in comparison with baselines is that our framework can
generate explanations in the counterfactual generation progress
while the baseline methods can not. We use two approaches to
make the baselines compatible for explanation evaluation.

First, we apply CASR on each of the four recommendation mod-
els to generate explanations. Since CASR manually selects one item
to intervene, we intervene each item in each example’s history and
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Figure 6: Performance on HR@10 (Blue Line) and NDCG@10 (Red Line) with different iterations.

as candidate explanations and take the one that gives highest Fyg
score as the explanation of the model under CountER framework.
Finally, since the CCR framework works in the “augment once,
apply to all” paradigm and directly produces explicit explanation
with NCR sampler during data augmentation, we directly take its
output explanation for evaluation.

5.6 Performance on Recommendation

The experimental results on NDCG and Hit Ratio (HR) are shown
in Table 2. Based on the results, we have following observations.
First and most importantly, compared with the original model
and the model under implicit counterfactual data augmentation, our
CCR framework achieves significantly better performance than the
baseline methods on all of these three datasets. Compared with the
original model, CCR can get better results based on the the gener-
ated explicit counterfactual data, which alleviates the data scarcity
and encodes informative examples into the training dataset. Com-
pared with the implicit counterfactual data augmentation method
CASR, the explicit counterfactual data generated by CCR are more
effective since CCR takes advantages of the explicit feedback.

5.7 Performance on Explanation

The experimental results on explanation are shown in Table 3. Based
on the experiment results, we have following observations.

In terms of the overall explanation performance (Fys), CountER-
based explanations are better than CASR-based explanations. This
is understandable since CountER uses the optimal number of items
from CCR to generate explanations while CASR selects one and
only one item as explanation. Furthermore, by considering explicit
feedback, CCR generates even better explanations than CountER-
based methods.

Besides, by considering explicit feedback, the CCR explanations
are better than CASR explanations on both PN and PS and thus
better overall explanation quality Fns. This means that the CCR aug-
mented examples have higher quality since they are more sufficient
and necessary, and when these better examples are used to aug-
ment the dataset, it helps CCR to achieve better recommendation
performance than CASR.

5.8 Impact of Hyper-Parameters

5.8.1 Impact of k. In the generation process of the explicit coun-
terfactual data, we have a confidence parameter k. We accept the
generated counterfactual data only when the ranking score of the
data is larger than k. The results on the influence of k is shown
in Figure 5. From the figure, we can see that our framework will
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have the best performance when « is set around 0.7. When « is
very small, it does not change the performance of the framework
because all of the generated data can pass the constraint of x. When
k is too big, the performance will decrease because only a few coun-
terfactual data can pass through the constraint and thus we cannot
get enough counterfactual data to re-optimize the anchor model.

5.9 Impact of Iterative Re-optimization

Since the re-optimized anchor model A’ achieves better perfor-
mance than the original anchor model A, a natural idea is that
if we use the re-optimized anchor model to generate a set of new
augmented data and optimize A" again to A’’ in a boosting way,
whether the performance can be even better. We use NCR as an
example anchor model to test the idea. Unfortunately, as we can
see in Figure 6, the performance on HR and NDCG decreases with
the number of rounds of iterative re-optimization. This observa-
tion is consistent with previous research [53]. The reason is that
since the sampler is not perfectly accurate, the generated counter-
factual examples can contain noise and such noise is learned into
the anchor model. As a result, multiple rounds of augmentation
and re-optimization may propagate such noise and thus decrease
the performance. This means that even though data augmentation
can improve the model performance, it cannot boost the model
performance infinitely.

6 CONCLUSION

In this paper, we propose a Counterfactual Collaborative Reasoning
(CCR) framework, which integrates the power of logical reasoning
and counterfactual reasoning and generates explicit counterfactual
data to enhance the performance of sequential recommendation
models. Experiments on three real-world datasets verified the effec-
tiveness of the framework. Furthermore, a unique advantage of the
CCR framework is that it can also generate explicit counterfactual
explanations to better understand the user behavior sequence. In
this work, we take recommender system as an example to explore
the joint ability of logical and counterfactual reasoning, which are
two important types of reasoning abilities for machine learning.
On the other hand, they can also be considered to improve other
intelligent tasks beyond recommendation, such as vision and lan-
guage processing tasks, which we will explore in the future.
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