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Abstract: We consider theories in which a dark sector is described by a Conformal Field

Theory (CFT) over a broad range of energy scales. A coupling of the dark sector to the

Standard Model breaks conformal invariance. While weak at high energies, the breaking grows

in the infrared, and at a certain energy scale the theory enters a confined (hadronic) phase.

One of the hadronic excitations can play the role of dark matter. We study a “Conformal

Freeze-In” cosmological scenario, in which the dark sector is populated through its interactions

with the SM at temperatures when it is conformal. In this scenario, the dark matter relic

density is determined by the CFT data, such as the dimension of the CFT operator coupled

to the Standard Model. We show that this simple and highly predictive model of dark

matter is phenomenologically viable. The observed relic density is reproduced for a variety of

SM operators (“portals”) coupled to the CFT, and the resulting models are consistent with

observational constraints. The mass of the COFI dark matter candidate is predicted to be in

the keV-MeV range.arX
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1 Introduction

The microscopic nature of dark matter (DM) is one of the most pressing issues in fundamen-

tal physics, as no known elementary particle has the right properties to make up DM. An

interesting possibility is that DM particles are part of a “dark sector”, a set of fields that are

uncharged under the Standard Model (SM) gauge group [1, 2]. A dark sector may contain

its own gauge interactions and matter fields, and may indeed have a level of complexity and

structure similar to or exceeding the SM. Such dark sectors are very natural from a theoretical

point of view, and in fact are ubiquitous in string theory constructions incorporating the SM.

As there are very few theoretical constraints on the nature of the dark sector, it is im-

portant to explore a wide range of possibilities that may lead to viable DM candidates. In

this paper, we will study the scenario where the dark sector possesses conformal symmetry.

Conformal field theories (CFT’s) are generic in the landscape of quantum field theories, aris-

ing whenever renormalization group evolution has a non-trivial attractive fixed point [3–5].

Moreover, while CFT’s are generally strongly-coupled and cannot be studied via perturbative

techniques, the conformal symmetry is often sufficient to make non-trivial physical predic-

tions in these theories. In practice, this will allow us to construct models of dark matter in

which observables such as relic density are both calculable and differ parametrically from the

prediction of any perturbative model of the dark sector. In fact, in many cases the only input

needed from the CFT side is the two-point function of the CFT operator coupled to the SM,

which is completely determined by the dimension of this operator and conformal invariance.

Suppose that a conformally-invariant dark sector exists, and some energy is injected into

this sector in the early universe. Conformal symmetry implies that in the expanding universe,

the energy density of the dark sector will scale as ρdark ∝ a−4, where a is the scale factor. This

scaling is that of radiation, not non-relativistic matter, leading to an immediate objection to

the idea of dark matter made out of a CFT. However, very generically, we can expect the

dark sector to interact, at some level, with the non-conformal sector containing SM.1 These

interactions necessarily lead to breaking of the conformal symmetry in the dark sector. While

the SM-CFT coupling may be perturbatively small in the UV, it grows with decreasing energy

if the interaction involves a relevant operator (dimension< 4) in the CFT. Eventually, the

conformal symmetry is completely broken at an IR scale Mgap. Below this scale the theory

enters a “hadronic” phase, with ordinary massive particle excitations in the spectrum. These

particles can play the role of Cold Dark Matter (CDM). While the DM today consists of

“normal” particles in this scenario, it is possible that the processes that are responsible for

1Here, we consider non-gravitational coupling of the SM to the CFT. Models with gravitational coupling

of the two sectors were studied in [6].
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populating the dark sector (thus fixing the relic density of the DM) occurred when the dark

sector was in the conformal regime.

If the SM-CFT coupling is sufficiently strong for the two sectors to come to thermody-

namic equilibrium in the early universe, a rough estimate shows that the observed relic density

of DM requires Mgap ∼ 10− 100 eV. This scenario would lead to hot dark matter, ruled out

by observations of large-scale structure. (It is possible to avoid this conclusion if the DM

can effectively annihilate to the SM in the hadronic phase, but in that case, the relic density

would be completely determined by the ordinary particle physics of the hadronic phase, not

the CFT.) We will therefore focus on the case when the CFT does not come into thermal

equilibrium with the SM due to weakness of the coupling between the two sectors. We assume

that the CFT sector is not populated by inflaton decays, since otherwise the DM relic density

becomes just an initial condition with no physical origin. (A model in which such “asym-

metric reheating” is realized naturally is discussed in Ref. [7].) The interactions with the SM

then provide the main mechanism for populating the CFT sector in the early universe. Such

a non-thermal production mechanism in the case of ordinary particles is known as “freeze-in”.

The scenario studied in this paper can then be described as “conformal freeze-in (COFI)”,

the term that was first introduced in Ref. [8], where we considered a specific realization of

this scenario. In this paper, we present a systematic study of the COFI mechanism, including

several possible SM operators, or “portals”, that can couple to the CFT dark sector, as well

as effects of operator mixing. We also include an updated analysis of astrophysical constraints

from stellar cooling and other sources. We find that the COFI scenario is very generic and

can occur for any of the portals we consider, and in many cases the resulting DM candidate

is phenomenologically viable.

The rest of the paper is organized as follows. In Section 2, we describe the model of

the dark sector and its interactions with the SM underlying our scenario. This includes the

discussion of the CFT phase, the hadronic phase that emerges at low energies after the con-

formal invariance is broken, and a possible UV completion of the CFT by a gauge theory

with a strongly-interacting Banks-Zaks fixed point. In Section 3, we describe the cosmolog-

ical evolution of the dark sector in the COFI scenario, and calculate the dark matter relic

density. The figures in this section provide a snapshot of the parameter space in various COFI

models containing a viable dark matter candidate, along with observational and theoretical

constraints on these models. The derivation of these constraints is presented in Section 4.

Finally, we summarize and conclude in Section 5. Technical details of calculations of relic

density and stellar cooling rates are contained in the appendix.

2 Theoretical Framework

We consider a theory in which a Dark Sector (i.e. a set of fields with no direct charges under

SM gauge groups) is described by a Conformal Field Theory (CFT) across a broad range of

energy scales, between the “gap scale” Mgap in the infrared (IR), and the ultraviolet (UV)

cutoff ΛUV � Mgap. We discuss the theory in the CFT window and its interactions with
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the Standard Model (SM) in Section 2.1. We describe the mechanism that generates the gap

scale and the physics at and below that scale in Section 2.2. For completeness, we outline

a possible UV completion above ΛUV in Section 2.3, although that theory is not directly

relevant for the discussion of dark matter.

2.1 Conformal Dark Sector

At energy scales between Mgap and ΛUV, the Dark Sector is described by a CFT. We assume

that the CFT contains an operator OCFT with a scaling dimension d < 4, i.e. a relevant

operator. Generically the CFT is strongly coupled, and d need not be integer. Further, we

assume that OCFT is charged under a global symmetry G (for example a discrete Z2), which

forbids a Lagrangian term of the form cOCFT . Standard Model (SM) fields are not charged

under G.

We consider a coupling between the SM and the dark CFT of the form

Lint =
λCFT

ΛD−4
CFT

OSMOCFT . (2.1)

where OSM is an operator made out of SM fields. Here λCFT is a dimensionless constant, while

ΛCFT is a mass scale. Further,

D = d+ dSM , (2.2)

where dSM is the scaling dimension of OSM . The interaction term (2.1) explicitly breaks both

conformal symmetry (since the SM is not conformal), and the global symmetry G. We consider

the regime where this interaction is small enough to consider this breaking perturbatively,

and work to leading order in the interaction strength.

Since the dark sector does not carry SM gauge charges, OSM must be gauge-invariant,

but there are a priori no other restrictions on this operator. For simplicity, we assume that

at tree level, there is a single SM operator interacting with the CFT via Eq. (2.1). (Of course,

couplings between OCFT and other SM operators will generically be induced by quantum

corrections, as discussed below.) To illustrate the range of possibilities, we consider several

possible portal operators OSM , which couple the CFT to quark, lepton, and gauge sectors

of the SM. We can classify these operators into two types: Type-I operators that acquire a

non-zero vacuum expectation value (VEV) in the IR, and Type-II operators that do not. We

consider three Standard Model operators in the class of type-I operators:

• Higgs portal, H†H,

• Quark portal, HQ†LqR, and

• Gluon portal, GµνGµν .

The Higgs portal operator gets a VEV at the weak scale, while the quark and gluon portals

get VEVs at the QCD confinement scale. Further, we consider three examples of type-II

operators:
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• Lepton portal HL†`R,

• Weak-gauge portal WµνWµν , and

• Hypercharge-gauge portal BµνBµν .

All our examples involve relevant or marginal SM operators, which are expected to be domi-

nant at low energies. Also, all operators we consider are Lorentz scalars. For an example of

a non-scalar portal, namely OSM = Bµν which results in a composite dark photon, see Ref. [?

].

In the case of quark and lepton portals, the flavor structure of the CFT coupling to the

SM needs to be specified. We will assume that the portal operators are flavor-diagonal in the

SM mass eigenbasis. The coupling to CFT can then be written in this basis as

Lint =
λCFT

ΛD−4
CFT

OCFT ·
(∑

i

κiOiYuk

)
, (2.3)

where the sum runs over the six flavors of SM quarks or three flavors of charged leptons,

and OiYuk is the SM Yukawa operator for each flavor. The constants κi encode the flavor

dependence of the CFT-SM interactions. Specifically, we will consider three cases:

• Minimal Flavor Violation (MFV), with entries proportional to SM Yukawas: κi = yi,

i = 1 . . . 6 for quarks and 1 . . . 3 for charged leptons.

• Democratic, with all entries the same: κi = 1.

• First-Generation Only: κi = 1 for the first-generation quarks or electrons, and 0 for the

second and third generations.

2.2 CFT Breaking in the Infrared

Since the Dark Sector CFT contains a relevant operator OCFT , the generic expectation is

that the conformal symmetry is broken in the infrared (IR). Specifically, if the Lagrangian

contains a term

L = cOCFT , (2.4)

where c is a constant of mass dimension 4− d > 0, the conformal symmetry is broken at the

“gap” mass scale

Mgap ∼ c1/(4−d) . (2.5)

Here and below, we make use of Naive Dimensional Analysis (NDA) to estimate various

quantities of interest up to order-one factors. In most cases, more precise analytic results are

not available due to the strongly-coupled nature of the underlying theory. NDA estimates

will be sufficient to establish the basic features of the dark matter model and establish its

viability. At energy scales below Mgap, the theory is no longer conformal. In this subsection,

we will first estimate the gap scale for each of the six SM portals, and then describe the

physics at low energies below Mgap.
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Figure 1: Contributions to conformal symmetry breaking via “radiative direct” diagrams,

in the Higgs, quark/lepton and gluon/weak boson portals respectively. Blue circles indicate

CFT operator insertions.

2.2.1 Estimates of the Gap Scale

Global symmetry G forbids the deformation (2.4) within the CFT itself, and the infrared

breaking of the CFT is entirely due to its interaction with the SM, Eq. (2.1). For each portal

operator OSM , there are several distinct contributions to Mgap, with the NDA estimates for

each of them summarized in Table 1. Below, we will discuss each of these contributions.

For type-I operators, a non-zero VEV directly leads to an effective Lagrangian of the

form (2.4), with a coefficient

c =
λCFT

ΛD−4
CFT

〈OSM〉. (2.6)

An estimate of the corresponding contribution to the gap scale Mgap for each of the three

type-I portals is listed in the first column of Table 1. We refer to this contribution as “tree-

level”. Note that since these are NDA-level estimates, all QCD condensates are simply taken

to be ΛQCD to the appropriate power.

For both type-I and type-II operators, the deformation (2.4) is induced by quantum

corrections. For example, the leading contributions of this type for Higgs, quark/lepton and

gluon/weak boson/hypercharge boson portals are illustrated in Fig. 1. We refer to these

contributions as “radiative direct”. The Feynman diagrams that contribute are generally

UV-divergent, and the NDA estimates of their contributions are proportional to powers of

the scale ΛSM which serves as the UV cutoff of the SM loops. The LHC constraints generally

imply ΛSM >∼ 1 TeV. Note that if ΛSM � 4πv, the observed weak scale requires strong fine-

tuning. A similar fine-tuning may or may not occur in the SM loop contributions to (2.4),

and the gap scale in this scenario is strongly model-dependent. For concreteness, we will use

ΛSM = 2πv ∼ 1.5 TeV in the estimates of this paper. The NDA estimates of this contribution

to Mgap for each portal are collected in the second column of Table 1.

Quantum corrections in the SM also introduce mixing among the SM operators. In ef-

fect, for each choice of the portal operator in Eq. (2.1), interactions of OCFT with all other

gauge-invariant SM operators are induced, with loop-suppressed coefficients. In particular, a
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Figure 2: Diagrams that contribute to conformal symmetry breaking via mixing with the

Higgs, in the quark/lepton portal, the gluon portal and the electroweak boson portal respec-

tively. Blue circles indicate CFT operator insertions.

h
f

f̄

V

f̄

f

+ h

Figure 3: Diagrams that contribute to conformal symmetry breaking via generation of O2
CFT

,

in the Higgs portal, quark/lepton portal, and the gluon/weak boson portal respectively. Blue

circles indicate CFT operator insertions.

coupling of the CFT to the Higgs portal operator is always generated. The leading contribu-

tions to this coupling for lepton, quark, gluon, weak and hypercharge portals are illustrated

in Fig. 2. Below the weak scale, this coupling induces the deformation (2.4). We refer to this

mechanism as “radiative mixing”. The NDA estimates of the corresponding contribution to

the gap scale for each portal are summarized in the third column of Table 1. Mixing with the

other two type-I operators is also generically present, but their effect is subdominant since

ΛQCD � v.

Another potential source of radiative breaking of conformal symmetry is the deformation

L = c′O2
CFT

, (2.7)

which can also be generated through SM loops. For example, the relevant diagrams for

each portal are shown in Fig. 3. If O2
CFT

is a relevant operator (which in the large-N limit

corresponds to OCFT having d . 2), this leads to IR breaking of the conformal symmetry and

generation of the gap scale. The NDA estimates of the resulting contribution to the gap scale

are listed in the last column of Table 1.

Depending on the parameters λCFT , ΛCFT and d, each of the conformal symmetry-breaking

contributions listed in Table 1 may be dominant. We found that in the parameter space where

the models successfully reproduce the observed dark matter relic density via freeze-in, O2
CFT
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deformations are sub-leading to OCFT deformations for all operators studied here. For the

Higgs portal, the tree-level contribution to the gap scale dominates. For quark and lepton

portals, the dominant source of conformal symmetry breaking is radiative mixing. For gauge-

boson portals (gluon, weak and hypercharge), the radiative direct contribution is dominant.

Note that for the quark and gluon portals, radiative contributions dominate over the tree-level

one; this is primarily due to the hierarchy v � ΛQCD.

2.2.2 Physics Below the Gap Scale

Below the conformal symmetry breaking scale Mgap, the dark sector is populated by particle-

like excitations which are hadronic composite states of the original CFT degrees of freedom.2

Predicting the spectrum of these excitations in a given CFT requires non-perturbative anal-

ysis, which is outside the scope of this paper. Instead, we will make a few simple, realistic

assumptions about the properties of the low-energy theory, which will be sufficient to estimate

the dark matter density and other quantities of interest up to order-one factors.

We assume that the lightest of the CFT composite states χ is stable on cosmological time

scales. This particle plays the role of dark matter. Stability may be due to a conserved global

(discrete or continuous) symmetry under which χ (and possibly some other CFT composites)

are charged, but SM states are all neutral. Further, as in [8], we posit that the DM particle is

a pseudo-Goldstone boson (PGB) of an approximate global symmetry spontaneously broken

at Mgap. In this case, mDM �Mgap is natural, with the DM mass dictated by the amount of

explicit symmetry breaking.This is necessary to satisfy self-interaction constraints [12, 13], as

will be discussed in Section 4. Notably, both the PGB property and a Z2 global symmetry are

in fact realized for pions in QCD, although in that case the would-be stabilizing symmetry is

anomalous leading to π0 → 2γ decay. (For other examples of models with dark pion playing

the role of dark matter, see e.g. [14, 15].)

Note that the ratio r = mDM/Mgap is a free parameter of the theory. Phenomenologically,

the value of r is bounded from above by the self-interaction bound and from below by the

warm dark matter constraint (since very light DM states can disrupt structure formation).

It turns out that these considerations restrict r to a parametrically narrow range, so that the

theory remains highly predictive with respect to the DM mass and other relevant quantities.

Fig. 14 illustrates this for one of the models studied in this paper, while Section 4 explains

these constraints in detail.

In addition to χ, the low-energy theory generically contains a set of bound states with

masses ∼Mgap. These states will couple to χ and mediate both DM self-interactions and its

interactions with the Standard Model. We model these couplings as

L ∼ g?ρµ
(
χ†∂µχ+ h.c.

)
, (2.8)

2While a hadronic phase seems generic, another possible IR phase suggested by certain five-dimensional

CFT duals is a “gapped continuum” [9]. For a recent example of viable dark matter models with gapped

continuum, see [10, 11].
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for a vector mediator ρµ, and

L ∼ g?
Mgap

φ (∂χ)2 , (2.9)

for a scalar mediator φ. The characteristic coupling can be estimated in the large-N limit as

g? ∼
4π√
N
. (2.10)

In a generic theory (such as QCD), both vector and scalar mesons will be present with

comparable masses.

The interactions of χ with the SM are obtained by matching the interaction Lagrangian

in the CFT phase, Eq. (2.1), to the low-energy effective theory. Dimensional analysis and

large-N arguments suggest

OCFT −→
Md−1

gap

g?
φ , (2.11)

while contributions from ρµ and χ are subdominant. This is seen by first noting that OCFT

is a scalar operator with scaling dimension d. Once the CFT confines, it is expected to

“interpolate” a scalar operator made up of canonically normalized field operators of composite

states. A single trace interpolation is given by the above equation where φ is a gauge invariant

operator for a composite scalar. The factor Md−1
gap is fixed by the dimensional analysis, while

the factor 1/g? is determined by the large-N counting. Explicitly, in the large-N limit,

〈OCFTOCFT〉 ∼ N
16π2 = 1

g2?
, suggesting that OCFT ∝ 1

g?
. For ρµ or χ, the interpolation relation

is either that of a “descendant” or multi-trace. This is simply because OCFT ∼ ∂µρ
µ by

Lorentz invariance and OCFT ∼ (∂χ)2 by the shift symmetry of χ. This amounts to raising

the effective dimension with more suppression by inverse powers of Mgap, rendering them

subdominant in the low-energy effective theory.

2.3 Ultraviolet Completion

There exists a natural UV completion of a dark-sector CFT considered above: SU(N) gauge

theories with fixed points in the infrared a la Banks-Zaks [16, 17].3 In the UV, an operator

of this gauge theory, for example, a fermion bilinear, is coupled to the SM. At some scale

ΛCFT , there is a fixed point and the UV gauge theory has a phase transition into the (gener-

ically strongly coupled) conformal phase. OCFT is the operator in the conformal phase that

corresponds to the original operator of the gauge theory. The matching for the example of a

fermion bilinear operator is,

LUV =
λBZ

M
dSM−1
BZ

OSMΨ̄Ψ
ΛCFT−−−→ λCFT

ΛD−4
CFT

OSMOCFT ⇒ λCFT ≈ λBZ

(
ΛCFT

MBZ

)dSM−1

, (2.12)

where MBZ is the UV cutoff scale of the gauge theory, λBZ is the coupling and Ψ is a fermion

in the UV. We impose λBZ ∼ O(1) as a naturalness condition in all the models we consider

3The UV theory may be any gauge theory with an interacting IR fixed point. The gauge group need not

be SU(N) and also we do not require the fixed point to be weakly interacting.
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in the paper. Since dSM > 1 and ΛCFT < MBZ , it is natural for λCFT to be very small. The

dark sector is never in equilibrium with the Standard Model, and dark sector energy density

is produced through the freeze-in mechanism. In the next section, we will show that this

mechanism can provide dark matter with the observed relic density.

3 Cosmology and Relic Density

In this section, we outline the cosmological history of the dark sector, and estimate the

resulting dark matter relic density for the six portal operators in Table 1. We find that

each portal operator can provide a phenomenologically viable dark matter candidate. The

key features of these candidates are summarized in Table 2. Further, Figures 5 - 10 and 12

below illustrate the parameter space consistent with the observed dark matter density for

each portal. Phenomenological and theoretical constraints on the model will be discussed in

detail in Section 4.

3.1 Cosmological History of the Dark Sector

We consider the regime where the coupling between the SM and the dark sector is sufficiently

small that the two sectors are not in thermal equilibrium at any time. At the end of inflation,

the Standard Model sector is reheated to temperature TR. We assume that the inflaton does

not couple to the dark sector, so that the energy in the dark sector is zero at that time.

(Without this assumption, the dark matter density receives a contribution depending on

the details of the inflaton couplings and dynamics, and the model loses predictivity.) After

reheating, SM collisions and decays can populate dark sector states via the interaction (2.1).

We consider the “Conformal Freeze-In” (COFI) scenario where

Mgap < TR < ΛCFT , (3.1)

so that the dark sector is described by a CFT in this epoch. This allows us to calculate energy

transfer rates using the “unparticle” approach of Georgi [18, 19]. The energy transferred

to CFT quickly thermalizes due to strong coupling among the CFT states, but the CFT

temperature TD always remains below the SM plasma temperature TSM . The transfer of

energy from the SM plasma to the conformal dark sector continues until either the SM

states coupled to the CFT become non-relativistic and drop out of equilibrium, or the SM

temperature drops below the gap scale Mgap. In either case, the dark sector eventually

undergoes a confining phase transition at TD ∼Mgap. The energy stored in the CFT degrees

of freedom is transferred to the particle-like bound states of the dark sector, which then

rapidly (compared to Hubble timescale) decay down to stable dark matter states. Given

the small coupling of the dark sector to the SM, such decays would typically not involve

SM states, so that essentially all of the energy stored in the CFT at the time of the phase

transition ends up in dark matter.

Quantitative predictions of dark matter relic density in the COFI scenario are obtained

as follows. Energy transfer between the SM and CFT degrees of freedom is described by a
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Boltzmann equation,

dρSM

dt
+ 3H(ρSM + PSM) = −ΓE(SM→ CFT), (3.2)

where H is the Hubble expansion rate, ρSM and PSM are the energy density and pressure of

the SM plasma, respectively, and ΓE is the energy transfer rate per unit volume given by

ΓE(SM→ CFT) =
∑
i,j

ninj〈σ(i+ j → CFT)vrelE〉+
∑
i

ni〈Γ(i→ CFT)E〉 . (3.3)

Here the sums run over all SM degrees of freedom coupled to the CFT. The cross-sections and

decay rates can be evaluated using the “unparticle” technique of Georgi [18, 19]; an explicit

example of such a calculation is given in Appendix A.1. In the COFI scenario, the dark

sector temperature TD remains well below the SM temperature, TD � TSM , throughout the

cosmological history. For this reason, we have neglected the reverse energy transfer, from the

CFT back to the SM sector, in Eq. (3.2). Conformal symmetry of the dark sector guarantees

that its energy-momentum is traceless, PCFT = 1
3ρCFT , and thus its energy density redshifts

as radiation, ρCFT ∝ a−4, as the universe expands. At the time when the CFT sector is

populated, the energy density in the SM sector is dominated by relativistic matter, so that

SM and CFT energy densities redshift in the same way. The total energy of the two sectors

can only change due to work done against the expansion of the universe:

d

dt
(ρCFT + ρSM) + 4H (ρCFT + ρSM) = 0. (3.4)

Subtracting Eq. (3.2), we find that the CFT energy density evolves according to

dρCFT

dt
+ 4HρCFT = ΓE(SM→ CFT) . (3.5)

Solving this equation, with the initial condition ρCFT = 0 at TSM = TR, yields the CFT energy

density as a function of the SM temperature T .

It is instructive to discuss an analytic solution of (3.5) for the simple case when the energy

transfer rate is given by

ΓE(SM→ CFT) ∼ λ2
CFT

Λ
2(D−4)
CFT

T 2D−3
SM

. (3.6)

This scaling occurs when the SM temperature TSM is well above all relevant SM energy

scales (such as masses) and the mass gap of the dark sector.4 This can be easily shown via

simple dimensional analysis, keeping in mind that the SM temperature is the only relevant

dimensionful scale besides (the square of) the coupling to the dark sector. Integrating (3.5),

the energy density of the dark sector grows as

ρCFT ∼
Mpl

Λ2D−8
CFT

[
T 4

(
T 2D−9
R − T 2D−9

2D − 9

)]
, (3.7)

4This regime, where the SM itself is approximately conformal, was also considered in Ref. [20].
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Figure 4: Dark sector energy density (normalized by SM energy density) vs. temperature of

the Standard Model plasma, for two different values of D. The red curve (D < 9/2) shows

IR-dominant production, while the blue curve (D > 9/2) shows UV-dominant production.

where Mpl is the Planck mass.

For values of D below the critical dimension D = dSM + d = 4.5, most of the dark sector

energy density is produced at low temperature (“in the infrared”) and the dark matter relic

density can be predicted without knowledge of UV physics and the reheating temperature.

(See Fig. 4.) This is similar to the original freeze-in scenario of Hall et.al. [21]. For D > 4.5,

most of the dark sector energy density is produced soon after the reheating. In this case, the

predicted dark matter relic density does depend on TR. However, in practice this dependence

is weak, due to the low powers in the exponent for TR compared to the dependence on the

mass gap, as will be shown later in this section.

The Boltzmann equation (3.5), with energy transfer rates calculated within the ‘unpar-

ticle’ approach, is valid as long as TSM > Mgap (required for the validity of the collision term)

and TD > mDM (required for radiation-like Hubble term). As the universe expands and cools,

both conditions may become invalid, requiring modifications to the Boltzmann equation. For

TD < mDM, we simply replace 4H → 3H in the Hubble term, since at these temperatures the

dark sector is populated by non-relativistic dark matter particles. For Mgap > TSM > mDM,

we consider dark matter production in the “hadronic phase”. The corresponding collision

term is calculated within the low-energy effective theory discussed in Section 2.2. Note that

production in the hadronic phase only occurs if the SM particles interacting with the CFT

are light (electrons or photons); in all other cases, the relevant SM particles drop out of the

thermal bath at TSM > Mgap and all production is in the CFT regime. Moreover, we find

that for all portal interactions considered here, dark matter production in the hadronic phase
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OSM DM Mass DM Mass Dominant CFT Dominant

(Scalar Mediator) (Vector Mediator) Deformation Production Mode

H†H 0.4 - 1.2 MeV 40 - 400 keV Tree-level h→ CFT

HQ†q

1st: ��SN

All: 0.1 - 1 MeV

MFV: 0.5 - 5 MeV

1st: ��SN

All: 50 - 200 keV

MFV: 0.1 - 1 MeV

Radiative mixing qq̄ → CFT

HL†`R

1st: ����WDM

All: 3 - 10 keV

MFV: 10 - 100 keV

1st: ����WDM

All: ����WDM

MFV: ����WDM

Radiative mixing `¯̀→ CFT

GµνGµν 0.2 - 2 MeV 50 - 400 keV Radiative direct gg → CFT

BµνBµν 0.1 - 10 MeV 0.05 - 1 MeV Radiative direct γγ → CFT

Table 2: Summary table for each SM operator portal considered. In this table, ��SN stands

for models that are ruled out by supernova cooling constraints, and ����WDM stands for models

that are ruled out by warm dark matter constraints.

is subdominant to production in the CFT regime, with the exception of a small region in the

parameter space of the lepton-portal model.

We note that in the COFI scenario, it is possible that at some time in the cosmological

history TSM > Mgap > TD . In this regime, the thermal bath of the dark sector is described by

particle-like bound-state excitations. However, the energy transfer from the SM to the dark

sector can still be described within the unparticle approach, since the energy transferred in

a single collision is above Mgap. This is analogous to using the parton model to calculate

(inclusive) rates of hadron production at the LHC, even though no quark-gluon plasma is

produced.

With the low-temperature modifications outlined above, Eq. (3.5) remains valid to present

day. Integrating this equation, with energy transfer rates evaluated separately for each portal,

provides predictions for current dark matter relic density which can be compared with the

observed value, Ωh2 = 0.1. These predictions will be discussed in the rest of this section.

3.2 Higgs Portal: OSM = H†H

There are multiple mechanisms of SM→ dark sector energy transfer in the H†H portal model.

For TSM between the reheating temperature (TR) and the weak scale, the leading mechanism

is the scattering process HH → CFT. After the electroweak phase transition, one Higgs in

the interaction term can be replaced with its VEV and dark energy density will be produced

through Higgs decay. Additionally, there is production from quark and gluon fusion through
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Figure 5: Dark matter relic density contours (red) and observational/theoretical constraints,

in the Higgs portal model, with a scalar mediator (left) and a vector mediator (right). The

solid red line indicates parameters where the observed dark matter abundance is reproduced.

a Higgs portal. Quark fusion continues until the quarks fall out of the thermal bath. Other

contributing processes include heavy quark to light quark + CFT decay and pion annihilation

below ΛQCD . These are subdominant due to phase space factors and can be neglected. It

can be shown that the Higgs decay process is the dominant production mechanism, provided

that production is IR dominated with D < 4.5 (or equivalently the CFT operator dimension

d < d∗ = 2.5).

An analytic approximation for the relic density can be obtained by considering only the

dominant mode of production: Higgs decay. The collision term in the Boltzmann equation is

given by,

ΓE(SM→ CFT) = nh〈Γ(h→ CFT)E〉 =
fdλ

2
CFT

v2m
2(d−1)
H T

Λ2d−4
CFT

K2(mH/T ), (3.8)

where fd = 2−2dπ1/2−2dΓ(d + 1/2)/(Γ(d − 1)Γ(2d)), v is the Higgs VEV, mH is the Higgs

boson mass and K2(x) is the modified Bessel function of the second kind.

Using Eqs. (3.8) and (3.5), the current relic density of dark matter can be calculated.

This yields

ΩDMh
2

0.1
=
[ mDM

1 MeV

]
(
Af3

d g
−9/2
∗

)1/4

10−5



(
Mgap

mh

)(6− 3d
2

)

10−12

 . (3.9)

Here, g∗ ≡ g∗(mH) is the effective number of SM degrees of freedom when TSM = mH and A

is a model-dependent constant that represents the number of degrees of freedom of the dark
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sector as ρCFT ≡ Am4
DM

. We have used the mass gap formula from Table 1 to convert the

interaction coupling dependence to mass gap dependence as,

Mgap =

(
λCFT

Λd−2
CFT

v2

) 1
4−d

.

The ratios in each bracket are O(1) for 1 < d < 2.5 and A ∼ O(1). Thus, we expect

a mass-gap for the Higgs portal model at the MeV scale. For details of this calculation,

see Appendix A.1. This result is in good agreement with the numerical integration of the

Boltzmann equation.

The dark matter mass mDM and the dimension d of the CFT operator that produce the

correct observed relic density are shown in Fig. 5. Since the dark sector is mostly populated

through Higgs decays which occur at temperatures below the weak scale, the relic density

is independent of the reheating temperature or any other UV-scale parameters. Fig. 5 also

shows phenomenological and theoretical constraints on the model, which will be discussed in

detail in Section 4. We observe that the model produces a viable DM candidate with masses

mDM ∼ 0.1−1 MeV. In these figures, we have fixed the value of r = mDM/Mgap (see Section 2.2

for the discussion of this parameter). The ratio r is tightly constrained by the combination

of bounds from large-scale structure (warm dark matter) and dark matter self-interactions.

Given these bounds, r can only be varied by a factor of at most a few relative to the values

shown. Such variation does not have a strong effect on the predicted dark matter mass range.

3.3 Quark & Lepton Portals: OSM = HQ†q, HL†`R

Above the weak scale, energy transfer from the SM to the dark sector occurs via scattering

processes Hff̄ → CFT and Hf → f + CFT, where f refers to quarks or leptons depending

on the SM operator used. The energy transfer rate in these channels peaks at high tempera-

tures, introducing dependence on the reheat temperature TR. Below the weak scale, OSM is

matched onto a dimension-3 bilinear fermion operator. The dominant process contributing

to production of CFT energy density is fermion annihilation ff̄ → CFT. We find that for

TR <∼ few TeV, production below the weak scale is dominant and the resulting DM relic

density is independent of TR. For D < 4.5 ⇒ d < 1.5, the energy transfer through fermion

annihilation peaks at low temperatures, while for d > 1.5, temperatures of order the weak

scale dominate.

For the quark portal, conformal freeze-in continues until T = ΛQCD or T = Mgap,

whichever happens first. For the lepton portal, it continues until T = me or T = Mgap.

Again, we assume that there are dark pions that form the dark matter relic density we ob-

serve today, that are a factor r ∼ 0.01 (with scalar mediator) or r ∼ 0.001 (with vector

mediator) lighter than the mass gap induced by the Standard Model deformation. The dark

sector energy density redshifts as radiation until TD hits mDM = mχ, and redshifts as matter

afterwards, until today.

Notably, in the lepton portal, it is possible for the SM temperature at which TD hits

mDM to be higher than the stopping temperature. In the short period when the universe
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Figure 6: Dark matter relic density contours (red) and observational/theoretical constraints,

in the quark portal model with minimal flavor violation couplings, with a scalar (vector)

mediator on the left (right).
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Figure 7: Dark matter relic density contours (red) and observational/theoretical constraints,

in the quark portal model with democratic couplings, with a scalar (vector) mediator on the

left (right).

cools from the former temperature to the latter, the DM energy density is produced in the

CFT phase, but hadronizes quickly to matter and redshifts as matter. Additionally, in parts

of the parameter space of the lepton portal, production can also be dominated by hadronic
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processes, where most of the energy density is produced below T = Mgap through the processes

involving the IR composite states. This is the case for the grey shaded regions in Fig. 9. See

Appendix A.2 for details of thermally averaged hadronic cross-sections and production rates.

As discussed in Section 3, we consider three scenarios for flavor structure of the quark/lepton

portal couplings: Minimal Flavor Violation, Democratic, and First-Generation Only. The

three scenarios give different mass gap scales for which the correct relic abundance is pro-

duced.

The energy density (ρCFT) produced through the dominant process of fermionic scattering

scales as follows for each structure:

• First Generation Only: ρCFT ∼Mpl

(
m4−d

α2v2m1

)2
T 4 (v2d−3 − T 2d−3) (3.10)

• Democratic: ρCFT ∼Mpl

(
m4−d

α2v2
∑
imi

)2
T 4 (v2d−3 − T 2d−3) (3.11)

• Minimal Flavor Violation: ρCFT ∼Mpl m
2
j

(
m4−d

α2v2
∑
im

2
i

)2
T 4 (v2d−3 − T 2d−3) (3.12)

where ΛSM ≡ α v and mi stands for the relevant fermion masses. At the end of the freeze-

in process for each interacting fermion, T = Max[mi, Mgap] for the lepton portal and T =

Max[mi, ΛQCD, Mgap] for the quark portal. Each of these contributions is summed and

appropriately redshifted to obtain the relic density. See Appendix A.1 for the relic density

equations for each flavor structure and portal.

Of the three scenarios, the MFV model is the least constrained, due to suppressed cou-

plings to the first generation of fermions. In the quark portal, the First-Generation Only

scheme is ruled out by supernova cooling constraints from SN1987A data (for both scalar and

vector mediators). The other four models are viable and the plots are shown in Figs. 6 and

7.

In the lepton portal, the mass of the DM candidate with correct relic abundance tends to

be lower than in other models, and the bound on dark matter free-streaming length from the

Lyman-α forest data [22] plays a major role in constraining the models. This is illustrated

in Figs. 8 and 9. The viability of COFI dark matter in this case depends on the details

of the model: for example, MFV and democratic models with a scalar mediator predict

mDM >∼ 10 keV and are consistent with observations, while in other cases mDM ∼ 1 keV and

the models are ruled out.

In summary, we find six models with allowed parameter space that reproduces the relic

density: quark portal with MFV or democratic coupling (both scalar and vector mediators),

and the scalar mediator lepton portal with MFV or democratic couplings.

3.4 Gluon Portal: OSM = GµνGµν

The dominant mode of populating the dark sector is through gluon annihilation, gg → CFT.

Additionally, there are subdominant processes of production, through loop-induced quark
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Figure 8: Dark matter relic density contours (red) and observational/theoretical constraints,

in the lepton portal model with minimal flavor violation couplings, with a scalar (vector)

mediator on the left (right).

0.1 1 10 100
1.0

1.2

1.4

1.6

1.8

2.0
Warm DM

Self Int.

Bootstrap

Hadronic

0.01 0.1 10

ΩDMh
2—

0.1 1 10 100 1000
1.0

1.2

1.4

1.6

1.8

2.0

Warm DM

Self Int.

Bootstrap

Hadronic

0.01 0.1 10 ΩDMh
2—

Figure 9: Dark matter relic density contours (red) and observational/theoretical constraints,

in the lepton portal model with only the first generation of leptons on the left and all gener-

ations of leptons on the right, with a scalar mediator.

annihilation. The dark sector energy density produced via gluon annihilation scales as,

ρCFT ∼Mpl

(
m4−d

16π2 α4v4

)2

T 4 (T 2d−1
R − T 2d−1) (3.13)
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Figure 10: Dark matter relic density contours (red) and observational/theoretical con-

straints, in the gluon portal model, with a scalar (vector) mediator on the left (right).

As in the quark portal, production continues until T = ΛQCD or TD = Mgap, whichever

happens first. The constraints on the model parameter space are shown in Fig. 10. For

analytic estimates of the relic density, see Appendix A.1.
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Figure 11: Dark matter mass that produces the observed relic density, as a function of the

reheating temperature, for various values of d, for the gluon (left) and hypercharge (right)

portals.
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Figure 12: Dark matter relic density contours (red) and observational/theoretical con-

straints, in the hypercharge portal model, with a scalar (vector) mediator on the left (right).

Since the operator GµνGµν is of dimension dSM = 4, and the CFT operator dimension

d ≥ 1 by unitarity, the dark sector energy density is always dominated by the production

at the highest available temperature, i.e. the reheating temperature TR (see Section 3.1).

The predictions of these models thus depend on an additional parameter, TR, making it less

predictive. However, in practice, the dependence of the predicted dark matter candidate mass

on TR is rather weak. As shown in the derivation in Appendix A.1, the relic density of dark

matter today scales as

Ωh2 ∝ (Mgap)7− 3
2
d (TR)

3
4

(2d−1) . (3.14)

For relic density fixed to the observed value, the dependence of the inferred mass gap on TR
is given by

∂ logMgap

∂ log TR
=

(
3

8

(
2d− 1

3d− 14

))
. (3.15)

The logarithmic derivative is small throughout the range of d considered here. The relation-

ship between the dark matter mass and the reheating temperature is shown in Fig. 11, for

various values of the CFT operator dimension d.

3.5 Electroweak Boson Portal: OSM = WµνWµν , B
µνBµν

Since the phenomenology of both the weak SU(2)L (OSM = WµνWµν) and the hypercharge

(OSM = BµνBµν) portals are similar, we consider only the case of OSM = BµνBµν to illustrate

the salient features of the electroweak boson portal. The dominant production process is that

of vector boson annihilation, with the initial dynamical degrees of freedom being hypercharge

gauge bosons above the electroweak phase transition (EWPT) and photons below EWPT.
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Subdominant processes include Z boson decay below the weak scale, and fermion annihilation

through the electroweak portal. Photon annihilation continues till TSM ∼Mgap, and the dark

matter redshifts as matter below TD ∼ mDM . Photon annihilation to CFT states produces

dark sector energy density that scales similarly to the gluon portal model;

ρCFT ∝Mpl (1− sin2 θw)

(
m4−d

16π2 α4v4

)2

T 4 (T 2d−1
R − T 2d−1) (3.16)

where θw is the Weinberg angle. For analytic estimates of the relic density, see Appendix A.1.

The viable parameter space and constraints on this model are shown in Fig. 12. The

value of r is 0.1 and 0.01 respectively for scalar and vector mediators. As in the gluon portal,

the interaction term dimension D is always > 5 and production is dominant at the reheating

temperature TR, making the relic density dependent on an extra parameter. Due to the

similarities with the gluon portal, where vector boson annihilation in the UV determines the

relic density, equations (3.14) and (3.15) apply in this case as well. Fig. 11 demonstrates this

scaling.

4 Dark Matter Phenomenology and Constraints
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Figure 13: Left panel: Effective energy scale of the SM-CFT interaction in the MFV lepton

portal with a scalar mediator. Right panel: Effective dimensionless strength of the SM-CFT

coupling for the same portal, for SM collision energies of order 100 GeV.

The interactions of the COFI dark matter candidate with the Standard Model particles

are extremely weak. The effective energy scale suppressing the SM-CFT interaction is well

above the weak scale

Λ = (λCFT)−
1

D−4 · ΛCFT ∼ 1010 − 1015 GeV, (4.1)

leading to tiny couplings of the DM particles to SM at energies of order the weak scale and

below. This is illustrated in Fig. 13, in the case of the lepton portal in the MFV flavor

scheme; other portals produce similar results. As a result, no relevant constraints arise from
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direct, indirect, and collider searches for DM. However, there are important phenomenological

constraints on the model from dark matter self-interaction and large-scale structure (which are

independent of the DM-SM coupling), as well as stellar cooling rates (where the small coupling

is compensated by large amount of SM particles in the stellar bodies). These constraints

will be considered in this section. We will also outline theoretical constraints on the model

parameter space related to naturalness and CFT bootstrap bound.

4.1 Dark Matter Self-Interaction Bound

Observations of galactic clusters, such as the Bullet cluster, place an upper bound on the

cross-section of elastic scattering of non-relativistic DM particles, σSI/mχ . 4500 GeV−3

[12, 13]. One generally expects that the hadronic phase of our dark sector has characteristic

coupling g? ∼ 4π√
N

. If the dark matter is a generic composite state, the elastic scattering

cross-section is of the order

σSI ∼
g4
?

8πM2
gap

. (4.2)

For the values of Mgap that produce the observed DM relic density, N ∼ 104 would be

required for consistency with the observational bound. Such large values of N are possible,

but theoretically unattractive. This leads us to consider an alternative possibility that g? ∼ 1

but the DM state is not a (or a collection of) generic composite particle(s), but rather is a

derivatively-coupled PNGB. DM elastic scattering is mediated by exchanges of a scalar or

vector resonance with mass of order Mgap. Using the effective theory (2.9), the cross-section

for the case of a scalar mediator is estimated to be

σSI ∼
r6

8πM2
gap

, r = mχ/Mgap (4.3)

while for a vector mediator (using (2.8)),

σSI ∼
r2

8πM2
gap

. (4.4)

Here r = mDM/Mgap � 1 is a model-dependent parameter. If both vector and scalar media-

tors are present with similar masses, the vector exchange will dominate. This is the case in

QCD where ρ exchange is the main contribution to pion elastic scattering. However, for com-

pleteness, we consider both scalar and vector mediator-dominated cases in our phenomeno-

logical analysis. We find that in the scalar case, r ∼ 0.01–0.1 is sufficient for consistency

with observational bounds, while in the vector case r <∼ 10−2 is required. See Fig. 14 for

an illustration of allowed values of r and its effect on the value of mDM that produces the

observed relic density, in one particular model.

4.2 Warm Dark Matter Bound

Since dark matter in COFI models is light as well as relativistic in the early universe, they

can free-stream, leading to suppression of structure/inhomogeneity below a certain length
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Figure 14: r vs. mDM dependence for the lepton portal with the MFV flavor structure,

assuming a scalar mediator.

scale λFS. Observation of the existence of a DM halo of a certain size then puts an upper

bound on λFS, and hence on the mass of DM. Typically, observations of the Lyman-α flux

spectra, which probes DM halos from redshifts of z ∼ (3− 5.5), are used to set such bounds.

Depending on the particular data set used and the systematics of the analysis, the current

bound is [22]5,

mDM & (3.5− 5.3) keV. (4.5)

This bound places a non-trivial constraint on certain COFI models with a lepton portal,

where the DM mass consistent with relic density is in the 1−10 keV range. For other portals,

COFI DM candidates are much heavier and this bound is irrelevant.

4.3 Stellar Cooling Bounds

In this section, we discuss constraints imposed on COFI dark matter models from the evo-

lution of stars. Dark matter candidates in the keV-MeV mass range can be produced in

collisions of SM states (nucleons and electrons) in stars. In spite of weak DM-SM coupling,

5As discussed above, our DM generically has self-interactions, while the analysis of [22] is based on an

assumption of collisionless DM. The bound for self-interacting dark matter is somewhat weaker [23], but the

difference is not large enough to affect the present discussion.
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the production can be significant due to large amount of matter in stars. Once a DM state

is produced, the weak coupling may allow it to escape the star without interacting, carrying

away energy. Systems supported by degenerate pressure, e.g. supernovae, have a positive heat

capacity and production of DM results in an extra cooling mechanism. Systems supported

mainly by thermal pressure, such as Main Sequence (MS) stars, have a negative heat capac-

ity. Energy carried by DM states produced in the core does not necessarily lead to extra

cooling, but still affects the dynamics of the star, changing the time scale for each stage in

its evolution. In either case, existing observations provide constraints on the rate of extra

energy loss, which can be translated into bounds on new physics.

In this work, we consider constraints from the following classes of stars: Main Sequence

(MS, e.g. Sun), Red Giant Branch (RGB), Horizontal Branch (HB), and Supernova (SN).6 For

the purpose of computing bounds, each system may be characterized by the core temperature

T , mass density ρ (which is dominated by nuclear mass density), electron number density

ne, the degree of electron (and nucleon) degeneracy EF and pF (since the Fermi energy and

momentum are higher than the temperature only when electrons/nucleons are degenerate),

and composition of nuclear matter. From these data and the form of interaction between new

physics state and SM states, one then computes energy loss rate per mass ε, and compares it

to existing bounds. In our estimates, we will adopt the following benchmark parameters for

each class of stars [24]:

• MS: T ≈ 1.3 keV, ρ ≈ 156 g cm−3, ne = 6.3× 1025 cm−3, ε . 0.2 erg g−1 s−1.

electrons not degenerate, nucleons not degenerate.

• HB: T ≈ 10 keV, ρ ≈ 104 g cm−3, ne = 3× 1027 cm−3, ε . 10 erg g−1 s−1

electrons not degenerate, nucleons not degenerate.

• RGB: T ≈ 10 keV, ρ ≈ 106 g cm−3, ne = 3× 1029 cm−3, ε . 10 erg g−1 s−1

electrons degenerate (EF ≈ 144 keV, pF ≈ 409 keV), nucleons not degenerate.

• SN: T ≈ 30 MeV, ρ ≈ 3× 1014 g cm−3, ne = 1.8× 1038 cm−3, ε . 1019 erg g−1 s−1

electrons degenerate (EF ≈ pF ≈ 344 MeV), nucleons nearly degenerate.

The production of DM in stars may occur in one of the two regimes. If energy transferred

from the SM into the dark sector in a single collision is above Mgap, the final state consists of

CFT states and the cross-section can be calculated using the unparticle approach. Following

the collision, the produced dark sector states quickly hadronize and decay, resulting in multiple

DM particles that share the transferred energy. If, on the other hand, energy transferred from

the SM into the dark sector in a single collision is between mDM and Mgap, the production

occurs in the hadronic phase and is estimated using the low-energy effective theory in the dark

6It has been pointed out in [24] that white dwarfs (WD) and neutron stars (NS) give either comparable or

weaker bounds and we do not further consider them.

– 25 –



sector, see Section 2.2. For each COFI portal and class of stars, we start by determining which

of the two regimes is appropriate, and proceed to estimate the DM production cross-section

and the resulting energy loss rate. In cases where the energy loss argument imposes a relevant

bound on the COFI scenario, we also estimated the mean-free path `MFP of the produced

DM particle in the star. If `MFP is smaller than the star radius, the DM will typically become

trapped in the star, depositing its energy back into the stellar material. In this case, the

energy-loss bounds do not apply.

4.3.1 Quark and Gluon Portals

In this case, dark sector states are produced in stars primarily through Bremsstrahlung in

nucleon collisions. For T < Mgap (MS, HB, RGB), the final state is the hadronic state of the

confined CFT, while for T > Mgap (SN), the process is energetic enough to produce CFT

state directly.

T < Mgap (MS, HB, RGB)

We first consider the case with T < Mgap. The matrix element for the quark scalar operator

in nucleons is given by (see for example [25, 26])

〈N | q̄q |N〉 ≡ fNTq
mN

mq
=: C(N)

q (4.6)

where fNTq is the mass fraction parameter of the quark q. Values of fNTq can be found in [25, 26].

The matrix element for the gluon scalar operator can be obtained from the trace anomaly in

QCD [25, 26]:

〈N |GaµνGµνa |N〉 = −8

9

π

αs
mN

(
1−

∑
q

fNTq

)
+O(αs) =: C

(N)
G . (4.7)

Together with the matching of CFT to its low-energy effective theory described in Section 2.2,

this provides the effective theories of nucleon-dark hadron interactions. For quark portal, we

have

L ∼ λCFT

Λd
CFT

HQ†qOCFT → L ∼
(
λCFT vM

d−1
gap√

2g∗ Λd
CFT

)(
fNTq

mN

mq

)
N̄Nφ+

g∗
Mgap

φ (∂χ)2 (4.8)

Below the gap scale, φ can be integrated out, yielding the nucleon-DM coupling:

L ∼ G(q)
Nχ N̄N (∂χ)2 , (4.9)

where

G
(q)
Nχ =

16π2
∑

q κqC
(N)
q(∑

q κqmq

)
Λ2

SM

. (4.10)

Here the sums run over quark flavors, and we have used the mass gap formula for the quark

portal.
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For gluon portal, the effective theory of nucleon-dark hadron interactions

L ∼ λCFT

Λd
CFT

G2
µν OCFT → L ∼

(
λCFT M

d−1
gap

g∗ Λd
CFT

)(
− π

αs

8

9
mN

(
1−

∑
q

fNTq

))
N̄Nφ+

g∗
Mgap

φ (∂χ)2 .

(4.11)

Below mφ ≈Mgap we again integrate out the φ. In addition, since fNTq ∼ 10−2, we neglect its

contribution. Using αs(ΛQCD) ≈ 4π and thereby approximating C
(N)
G ≈ −mN/4, we obtain

the nucleon-DM coupling

L ∼ G(g)
Nχ N̄N (∂χ)2 (4.12)

where

G
(g)
Nχ = C

(N)
G

(
16π2

Λ4
SM

)
. (4.13)

Using these effective couplings, energy loss rate due to DM emission can be calculated in anal-

ogy with the well-known calculation for energy loss through standard model neutrinos [27].

The energy loss rate per unit volume is given by

Quark-Portal : Q(χχ) = Q(ν̄ν)

(
T 2

2G2
F

)  G
(q)
Nχ∑

q C
(N)
q

2

Cχχ
Cν̄ν

Gluon-Portal : Q(χχ) = Q(ν̄ν)

(
T 2

2G2
F

)  G
(g)
Nχ∑

q C
(N)
q

2

Cχχ
Cν̄ν

(4.14)

Here GF is the Fermi constant. Explicit expressions for Q(ν̄ν) (the rate for neutrino-pair

production in the standard model) and the constants Cν̄ν and Cχχ are given in the Ap-

pendix B.3, along with the details of the calculation. The energy loss rate per unit mass (ε)

that we compare with the observed bounds is calculated as ε = Q/ρ.

T > Mgap (SN)

When T > Mgap such as in SN, the dark-sector states produced in nucleon collisions are

described by a CFT, and the production rate can be calculated using the unparticle approach.7

It is useful to normalize the energy loss rate using a simple benchmark model of a light scalar

particle φ coupled to nucleons through a Yukawa interaction ∼ g φ ψ̄NψN . In this case, the

energy loss per unit volume Q(φ) is well-known [27]; see Appendix B for an analytic formula.

The ratio ε(CFT)/ε(φ) can be reliably estimated by a procedure explained in Appendix B. We

obtain

ε(CFT) ∼ G2
eff(mNT )d−1

g2

1

(2π)2d−2

dofCFT

dofφ

〈ω〉CFT

〈ω〉φ
Q(φ)

ρ
, (4.15)

where d is the dimension of the CFT operator, while ρ and T are the nucleon mass density and

temperature in the SN core. Note that the dependence on the coupling g in the benchmark

7See [28] for a more heuristic approach to calculating cosmological and astrophysical bounds with unparti-

cles.
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scalar model cancels out since Q(φ) ∝ g2. Here, dofCFT
dofφ

denotes the ratio of the internal

degrees of freedom of the final state produced in the CFT and the benchmark scalar model,

while 〈ω〉CFT

〈ω〉φ is the ratio of the average energy carried by the corresponding final states.

Explicit expressions for the effective coupling Geff in quark and gluon portals are given in the

Appendix B.3 (see Eqs. (B.23) and (B.24)). The factors dofCFT
dofφ

and 〈ω〉CFT

〈ω〉φ can be determined

only if CFT is fully specified, but we expect that they will take values within the range 1 ∼ d.

We use 1 in the constraint plots of Section 3.

4.3.2 Higgs Portal

For Higgs portal, the COFI dark matter candidate has mass of order MeV, and can only be

produced in supernovae. Comparing Mgap in the Higgs portal model to TSN, we learn that

the production is in the CFT regime. Again, the dominant production mechanism for dark

states is Bremsstrahlung in nucleon collisions. The relevant part of the Lagrangian is

L ∼ λCFT v√
2Λd−2

CFT

hOCFT +
αs

12πv
hGaµνG

µνa (4.16)

where the second term is the top-loop induced coupling between the Higgs and gluon (see

for example e.g. [29, 30]). Integrating out the Higgs and using Eq. (4.7) yields the effective

coupling

L ∼ C(N)
G

(
αs

6
√

2π

)(
M4−d

gap

v2m2
h

)
N̄N OCFT . (4.17)

To get this form, we used the mass gap formula for the Higgs portal model. The energy loss

rate in the SN is calculated as in the gluon portal (see Appendix B.3) and is given by

ε(CFT) ∼ G2
eff(mNT )d

g2

1

(2π)2d−2

dofCFT

dofφ

〈ω〉CFT

〈ω〉φ
Q(φ)

ρ
(4.18)

where

Geff = C
(N)
G

(
αs

6
√

2π

)(
M4−d

gap

v2m2
h

)
. (4.19)

Numerically, emission from the SN core in the region of the model parameter space relevant

for COFI dark matter is well below the observational bound, so that the Higgs portal scenario

is unconstrained by stellar cooling considerations.

4.3.3 Lepton Portal

Dark sector states are produced through their interactions with electrons in the stellar

medium. In all star systems other than the supernova, the electron temperature is below

Mgap, so that the production is in the hadronic phase of the dark sector. The effective theory

of electron-dark hadron interactions has the form

L ∼ λCFT

Λd
CFT

(
HL†`R

)
OCFT →

λCFT vM
d−1
gap√

2g∗ Λd
CFT

(ēe)φ+
g∗

Mgap
φ (∂χ)2 . (4.20)
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Integrating out the scalar meson φ yields the electron-DM coupling:

L ∼ 16π2κe
(
∑
κ`m`) Λ2

SM

(ēe) (∂χ)2 (4.21)

where the sum runs over all charged lepton flavors.

The calculation of the energy loss rate due to DM emission is again similar to the case

of standard model neutrinos [27]. The relevant process in MS and HB stars is Compton

scattering, e−γ → e−χχ. The energy loss rate per unit mass is given by

ε =
Q

ρ
∼ 9! 2α

(
∑
κ`m`)

2 Λ4
SM

Ye
mum2

e

T 10. (4.22)

Here, α is the fine-structure constant, Ye is the electron number fraction per baryon and

mu = 1.661 × 10−24 g is the atomic mass unit. The calculation of this rate is outlined in

Appendix B.1.

In red giants, electrons are degenerate, and Compton scattering receives a strong sup-

pression by the final state Pauli-blocking effect (see Section 3.2 of [27] and footnote 8 in

Appendix B.1). Instead, production by a Bremsstrahlung process e−N → e−Nχχ is more

efficient. The energy loss rate per mass is given by

ε(χχ) ∼ π α2

189

(
Z2

Amu

)(
16π2 κe

(
∑
κ`m`) Λ2

SM

)2

T 8,

where Z is the charge of nuclei and A is the atomic mass. The calculation of this rate is

outlined in Appendix B.2.

In the core of the supernova, temperature is sufficiently high for a thermal population of

positrons to exist. In this case, e+e− annihilation becomes the dominant production channel.

Moreover, since T > Mgap, the produced dark-sector states are described by a CFT, and their

production rate is estimated using the unparticle approach.

The energy loss rate is given by

Q(CFT) ∼ ne−ne+〈σvE〉 , (4.23)

where the energy transfer rate 〈σvE〉 is given by

〈σvE〉 ∼
(

λCFT v√
2 Λd

CFT

)2(
4π4 d(d2 − 1)

(2π)2d+1

)
E2d−3
F , (4.24)

where EF ≈ 344MeV is the electron Fermi energy. This is very similar to the expression

that was used in the calculation of relic density produced during freeze-in, with the main

difference being that the typical collision energy is now of order 2EF rather than T . The

positron number density is given by

ne+ = 2

∫
d3p

(2π)3

1

e(E+µe− )/T + 1
≈ e−βµe− × nth (4.25)

– 29 –



with nth being the equilibrium number density at T = TSN with Boltzmann distribution, and

the chemical potential µe− ≈ EF .

Unsurprisingly, the MFV flavor scheme lepton portal models are not constrained by

supernovae due to the suppressed couplings to electrons and positrons. In both the first

generation and democratic flavor schemes however, the dark matter particles end up trapped

in the core of the supernova due to significant interactions with the electrons in the plasma.

Details of SN trapping calculations can be found in Appendix B.6. As a result, there is no

relevant constraint from supernovae in any of the viable lepton portal models.

4.3.4 Hypercharge Portal

In this model, the dark matter candidate has a mass of order MeV, and only the SN has a

high enough temperature to produce dark-sector states. There are three possible processes

to consider: photon annihilation, e+e− annihilation through a photon loop, and nucleon

Bremsstrahlung. Quantitatively, the photon annihilation turns out to be the most important

channel as explained in Appendix B.5. This is due to the loop- and electromagnetic coupling-

suppression for the e+e− annihilation, and phase space- and loop-suppression for the nucleon

Bremsstrahlung. The energy loss rate per volume from the photon annihilation is given by

(see Appendix B.5 for details)

Q(CFT) ∼ n2
γ 〈σvE〉 ∼ n2

γ

(
λCFT cos2 θw

Λd
CFT

)2(
16 d2(d2 − 1)(d+ 2)

(2d− 1)(2π)2d+1

)
T 2d−1

SN . (4.26)

where cos θw is the Weinberg angle.

4.4 Naturalness bound

In addition to the observational bounds discussed so far, we consider two constraints on the

model parameter space motivated by theoretical considerations, the naturalness and “CFT

bootstrap” bounds.

The effective coupling of the SM to the dark sector required to reproduce the observed

DM relic density is tiny, O(10−14 − 10−11). The naturalness bound is the requirement that

such a coupling can be obtained in the effective theory without invoking trans-Planckian mass

scales or unexplained small dimensionless parameters. As a concrete example, consider the

UV completion of the CFT in terms of a gauge theory with a BZ fixed point, see Section 2.3. In

addition to consistency requirements of the COFI scenario, TR <∼ ΛCFT
<∼ MBZ, naturalness

requires

MBz <∼ MPl, λBZ ∼ 1. (4.27)

In some of the COFI dark matter scenarios, there are parts of the parameter space where these

requirements cannot be satisfied; those regions are shaded in green in the plots of Section 3.

However, it is worth keeping in mind that these bounds are model-dependent. Any amount of

tuning, or alternative UV completions, may lead to modifications of the naturalness bound.
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4.5 Numerical CFT bootstrap bound

One of the attractive features of the COFI theories is that the small mass scale in the CFT

sector is generated dynamically. This occurs through a combination of cosmological phase

transitions in the SM sector followed by a slow RG running of the CFT sector, and finally

dimensional transmutation within the CFT sector triggered by the O(1) CFT breaking effect.

Our analysis so far has been based on an assumption that the largest breaking of the conformal

invariance is from the interaction between the SM and the CFT sector and associated operator

mixing effects. In particular, we assumed that the CFT scalar operator OCFT appearing in

the interaction does not show up on its own in the UV Lagrangian. If it did, it would make

the CFT RG run from the onset and may result in a larger value of Mgap than what we have

been taking.

As explained in Section 2.2, we may assume a Z2 discrete symmetry in the CFT sector

under which the particular OCFT is odd, hence can not be added to the UV Lagrangian.

However, the CFT may contain another Z2-even scalar operator of dimension < 4, which

may not necessarily couple to the SM but would potentially generate a large Mgap on its own.

Such an operator would generically appear in the OPE of two of OCFT operators. A useful

bound on this indeed does exist in the numerical CFT bootstrap literature [31, 32]. The idea is

that given a scalar operator with scaling dimension d, the numerical CFT bootstrap provides

an upper bound on the dimension of scalar operators that enter the OPE OCFT ×OCFT . This

latter dimension turns out to be ≤ 4 if d . 1.6. We indicate this bound by a dashed line

on the plots of the COFI parameter space in Section 3; the parameter space below the line

is potentially problematic. This bound is, however, somewhat model dependent and can be

evaded, for example, by assuming a larger global symmetry, e.g. Z4, in the CFT sector.

5 Conclusions

In this paper, we have considered a dark sector that is invariant under conformal symmetry,

broken only by a weak coupling to the Standard Model. This coupling leads to breaking of

the conformal invariance in the infrared, at a scale Mgap. Below this scale, the dark sector

is described by a hadronic phase, with the lightest meson (dark pion) playing the role of

dark matter. Within a broad range of model and cosmological parameters, the dark matter

relic density is dominated by the energy transfer from the SM plasma to the dark sector

in the conformal regime. We have labeled this scenario “Conformal Freeze-In” (COFI). We

showed that the COFI scenario provides a viable dark matter candidate, consistent with

all phenomenological constraints, for several choices of the SM portal operator primarily

interacting with the dark sector. We conclude that a conformal dark sector minimally coupled

to the SM can naturally produce the observed dark matter.
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A Details of Calculations in Cosmology

A.1 Analytical Estimates of Relic Densities

Higgs Portal:

In this section, we show a brief derivation of Eq. (3.9), that relates observed dark matter

relic density to parameters in the theory in the Higgs portal. In addition, the computation

for Eq. (3.8) is shown in more detail. Using the same procedure, analytical results for relic

density can be computed for all portals considered in this paper, and the results for other

portals are summarised at the end without going into technical details.

In the Higgs portal case, as mentioned before, below the critical dimension d∗ = 5/2,

dark matter production is dominated by the Higgs decay process. At temperatures below the

electroweak phase transition, the effective interaction between the dark sector and the SM

becomes,

Lint =
λCFT

ΛD
CFT

v√
2
h OCFT . (A.1)

The energy transfer rate through this process is given by Eq. (3.8) and can be computed as

follows:

nh〈 Γ(h→ CFT) E〉 =

∫∫
dΠh dΠCFT fh (2π)4 δ4(ph − P )Eh |M|2. (A.2)

Here and below, P = pCFT is the momentum carried by the dark sector. The phase space

for the CFT sector is chosen to be identical to that of “unparticles” as prescribed by Georgi

in [18]. Using Georgi’s notation, we have,

nh〈 Γ(h→ CFT) E〉

=

∫∫
d3~ph

(2π)32Eh

d4P

(2π)4
e−βEh(2π)4 δ4(ph − P ) Ad (P 2)d−2 Eh

v2

4

λ2
CFT

Λ2d−4
CFT

=
Ad v

2 λ2
CFT

4Λ2d−4
CFT

(m2
h)d−2

∫
d3~ph

2(2π)3
exp(−β

√
|~ph|2 +m2

h), (A.3)
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where,

Ad =
16π5/2

(2π)2d

Γ(d+ 1/2)

Γ(d− 1)Γ(2d)
. (A.4)

Setting p ≡ |~ph| and simplifying gives

nh〈 Γ(h→ CFT) E〉 =
Ad v

2 λ2
CFT

(m2
h)d−2

4Λ2d−4
CFT

∫
4πp2 dp

2(2π)3
exp(−β

√
p2 +m2

h)

=
Ad v

2 λ2
CFT

(m2
h)d−2

32π2Λ2d−4
CFT

∫
p2 dp exp(−β

√
p2 +m2

h). (A.5)

This integral represents a Bessel function of the second kind. Additionally, in our notation,

fd = Ad/16π2. Thus, on simplifying, we get,

nh〈Γ(h→ CFT)E〉 =
fd λ

2
CFT

v2m
2(d−1)
h T

Λ2d−4
CFT

K2(mh/T ). (A.6)

The CFT energy density at any point in time (as a function of the Standard Model bath tem-

perature) can be obtained by integrating the Boltzmann equation given in Eq. (3.5). To get

a simple estimate, it suffices to do this calculation in the relativistic approximation where the

Higgs is assumed to be massless and is described by a Maxwell-Boltzmann distribution. The

process roughly starts around the electroweak scale ∼ v and continues till the SM temperature

reaches the Higgs mass.

In the relativistic approximation (i.e., taking the limit mh → 0 in the thermal average

calculation), the energy transfer rate in this process is given by,

nh〈Γ(h→ CFT)E〉 = 2fd λ
2
CFT

v2 m
2d−4
h

Λ2d−4
CFT

T 3. (A.7)

We integrate the Boltzmann equation with this collision term, ignoring the temperature

dependence of g∗ for now, and enforcing the condition that decays are inactive above the

electroweak scale. Thus, we have,

ρCFT(T ) =
2M∗fdλ

2
CFT

3
√
g∗(T )v

(
mh

ΛCFT

)2d−4

T 4

(
v3

T 3
− 1

)
, (A.8)

where M∗ = 3
√

5/(2π3/2)Mpl, comes from the definition of Hubble as H =
√
g∗ T

2/M∗.

At T ∼ mh, as the Higgs falls out of the thermal bath, this process becomes exponentially

suppressed, and further production of dark sector energy can be neglected for this analysis.

The energy density present in the dark sector then redshifts like radiation (ρ ∝ a−4) until its

temperature TD becomes comparable to the mass of the dark matter candidate. After this

point, it redshifts like matter (ρ ∝ a−3) as required.

Thus,

ρCFT(mh) =
2M∗fdλ

2
CFT

3
√
g∗(mh)v

m2d
h

Λ2d−4
CFT

(
v3

m3
h

− 1

)
, (A.9)
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and

ρCFT(Tm) =
2M∗fdλ

2
CFT

g∗(Tm)

3(g∗(mh))3/2v

(
mh

ΛCFT

)2d−4( v3

m3
h

− 1

)
T 4
m, (A.10)

where Tm is the SM temperature at which the dark sector temperature (TD) drops to the mass

of the dark matter candidate. We also define the CFT energy density at this temperature as

ρCFT ≡ Am4
DM

, where A represents a model-dependent measure of the number of degrees of

freedom of the CFT (times a constant = π2/30). Thus, the relic density is given by

ρDM(T0) = Am4
DM

g∗(T0)T 3
0

g∗(Tm)T 3
m

, (A.11)

where T0 is the current CMB temperature. Additionally, from Eq. (A.10), Tm is given by,

T 4
m = Am4

DM

[
2M∗fdλ

2
CFT

g∗(Tm)

3(g∗(mh))3/2v

(
mh

ΛCFT

)2d−4( v3

m3
h

− 1

)]−1

(A.12)

Using Eq. (A.12) in Eq. (A.11) gives the relic density of dark matter from the Higgs portal

in terms of other parameters in the theory.

Note that we use g∗(T0) ∼ g∗(Tm) ∼ O(1). This is a reasonable approximation, as both

temperatures are below the QCD scale. g∗(mh), denoted as just g∗ below, is approximately

O(100). We also replace
(
v3

m3
h
− 1
)
→ O(1) for this order-of-magnitude estimate. Addi-

tionally, we substitute Mgap in the equation instead of λCFT and ΛCFT using the mass gap

equations. Taking the ratio of ρDM(T0) and the present critical energy density gives Eq. (3.9):

ΩDMh
2

0.1
=
[ mDM

1 MeV

]
(
Af3

d g
−9/2
∗

)1/4

10−5



(
Mgap

mh

)(6− 3d
2

)

10−12

 . (A.13)

This simple estimate is in good agreement with the results of numerical integration of Eq. (3.5).

Following the same procedure, the relic density can be calculated for each of the other

three portals. These equations are given below, neglecting derivatives of g∗, but keeping all

scales intact.

For the quark and lepton portals, the primary production process is that of fermion

annihilation below the weak scale, where the Higgs is replaced by its VEV. The thermal

averaging process can be repeated for 2→ CFT processes as,

n1n2〈σ(f1f2 → CFT)vrelE〉 = g2
f

λ2
CFT

Λ2d
CFT

4d(d2 − 1)

(2π)2d+1
v2 T 2d+3 (A.14)

where gf is the number of degrees of freedom of the fermion (considered massless in this

limit).

– 34 –



Integrating the Boltzmann equation, we get,

ρCFT(T ) = g2
f

λ2
CFT

Λ2d
CFT

4d(d2 − 1)

(2d− 3)(2π)2d+1
T 4(T 2d−3

w − T 2d−3) (A.15)

where Tw is the weak scale temperature.

For the gluon and electroweak portals, the results are similar, since the dominant process

is that of vector boson scattering. However, the SM operator is dimension 4, and Tw is

replaced by TR since production starts right away after reheating, and these portals depend

on the UV scale of reheating. Thus, in the gluon and electroweak portals, we have,

ρCFT(T ) = g2
V

λ2
CFT

Λ2d
CFT

d2(d2 − 1)(d+ 2)

(2d− 1)(2π)2d+1
T 4(T 2d−1

R − T 2d−1) (A.16)

Following the same procedure as described by Eqs. (A.9)-(A.13), we get the following

equations for relic densities in other portals.

Quark Portal:

1. First Generation Only:

ρDM(T0) = mDMM
6−3d/2
gap A1/4T 3

0

[
M∗

α4v4(mu +md)2

16 d(d2 − 1)

(2d− 3)(2π)2d+1
(v2d−3 − Λ2d−3

QCD)

]3/4

2. Democratic:

ρDM(T0) = mDMM
6−3d/2
gap A1/4T 3

0

[
M∗

α4v4m2
top

16 d(d2 − 1)

(2d− 3)(2π)2d+1
(v2d−3 − Λ2d−3

QCD)

]3/4

3. Minimal Flavor Violation:

ρDM(T0) = mDMM
6−3d/2
gap A1/4T 3

0

[
M∗m

2
b

α4v4m4
top

16 d(d2 − 1)

(2d− 3)(2π)2d+1
(v2d−3 −m2d−3

b )

]3/4

Note that in the MFV flavor structure, due to the dependence of the coupling on the

fermion mass, the heaviest fermion in the thermal bath below the weak scale contributes

more to production than the other flavors. This would be the bottom quark in the quark

portal.

Lepton Portal:

1. First Generation Only:

ρDM(T0) = mDMM
6−3d/2
gap A1/4T 3

0

[
M∗

α4v4m2
e

16 d(d2 − 1)

(2d− 3)(2π)2d+1
(v2d−3 −m2d−3

e )

]3/4
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2. Democratic:

ρDM(T0) = mDMM
6−3d/2
gap A1/4T 3

0

[
M∗

α4v4m2
τ

16 d(d2 − 1)

(2d− 3)(2π)2d+1
(v2d−3 −m2d−3

e )

]3/4

3. Minimal Flavor Violation:

ρDM(T0) = mDMM
6−3d/2
gap A1/4T 3

0

[
M∗

α4v4m2
τ

16 d(d2 − 1)

(2d− 3)(2π)2d+1
(v2d−3 −m2d−3

τ )

]3/4

Just as in the quark portal, in the lepton MFV case, the τ -lepton contributes most to

the dark matter energy density.

Gluon Portal:

ρDM(T0) = mDMM
6−3d/2
gap A1/4T 3

0

[
M∗

256π4α8v8

36 d2(d2 − 1)(d+ 2)

(2d− 1)(2π)2d+1
T 2d−1
R

]3/4

Hypercharge Portal:

ρDM(T0) = mDMM
6−3d/2
gap A1/4T 3

0

[
M∗ cos4 θw
256π4α8v8

16 d2(d2 − 1)(d+ 2)

(2d− 1)(2π)2d+1
T 2d−1
R

]3/4

As in the Higgs portal case examined previously in this appendix, these analytical es-

timates are in good agreement (with DM mass within an order of magnitude) with the nu-

merically integrated results shown in Figs. 5, 6, 7, 8, 9, 10, and 12. Further, the DM mass

dependence on reheating temperature as shown in Figs. 11 and Eq. (3.14) can be shown using

these relic density estimates.

A.2 Estimates for Hadronic Production

While the exact nature of IR physics in COFI models depends on the details of confinement

and the hadronic spectrum, we can still calculate the thermally averaged cross-sections in

this regime up to O(1) factors, assuming a simple model as described in Section 2.2.2. In

this section, we show an example calculation for the lepton portal in the democratic flavor

scheme, since hadronic production dominates in parts of the parameter space that produces

the observed DM relic density in this model. This is one of very few COFI models with this

property, and adding the hadronic contribution is important in this case.

As explained earlier, we model the confined/hadronic regime as containing a cosmolog-

ically stable pseudo-Nambu-Goldstone Boson, χ, which acts as dark matter and a mediator

with mass ∼Mgap. Note that OCFT is a scalar, and operator matching ensures that the scalar

mediator has the dominant coupling to the SM sector. Thus we ignore any contributions from

the vector mediator (if it exists). Using Eqns. (2.9) and (2.11) the SM-DM interaction can

be written as,

L ∼ λCFT

Λ
d+dSM−4
CFT

Md−1
gap

g?
OSM φ+

g?
Mgap

φ (∂χ)2 , (A.17)
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where φ is the scalar mediator, χ is the DM, and g? is the coupling (= 4π/
√
N in large-N

theories).

Since the hadronic processes are only relevant below the confinement scale, the mediator

with mass ∼Mgap can be integrated out and we get,

L ∼ λCFT

Λ
d+dSM−4
CFT

Md−4
gap OSM (∂χ)2 . (A.18)

In the lepton portal with democratic flavor scheme, using the relation between the coupling

and gap-scale, this simplifies to8,

L ∼ 1

α2v2mtot
ēe (∂χ)2 , (A.19)

where mtot = me + mµ + mτ is the sum of masses of all the leptons running in the loop

that generates the deformation of the CFT. Since these hadronic processes occur at very low

energies (T < Mgap), we only need to consider electrons as the other leptons are no longer in

the bath. The Higgs is also replaced by its VEV below the weak scale.

The energy transfer rate is then given by,

n2
e 〈 σ(e+(p1) e−(p2)→ χ(p3)χ(p4)) E 〉

=

∫∫∫∫
dΠe1 dΠe2 dΠχ1 dΠχ2 fe1 fe2 (2π)4 δ4(Σp) (E1 + E2) |M|2

=
∏
i

∫
d3pi

(2π)3Ei
e−βE1 e−βE2 (2π)4δ4(Σp)

(
1

α2v2mtot

)2

(E1 + E2) (p3.p4)2 (p1.p2)

=

(
1

α2v2mtot

)2∏
i

∫
d3pi

(2π)3Ei
e−β(E1+E2) (2π)4δ4(Σp) (E1 + E2) (p1.p2)3, (A.20)

where Σp = p1 + p2− p3− p4, and in the last line, the particles involved are approximated to

be relativistic/massless.

Computing the phase space integrals and using the delta function as usual, one gets,

n2
e 〈σ(e+(p1) e−(p2)→ χ(p3)χ(p4)) E 〉 =

(
1

α2 v2mtot

)2 3240

π8
T 13. (A.21)

This ‘collision term’ can be plugged into the Boltzmann equation and integrated to get

the energy density of dark matter states (χ) produced in the hadronic phase:

ρDM(T ) =
M∗√
g(T )

(
1

α2 v2mtot

)2 3240

π8

T 4

5
(M5

gap − T 5), (A.22)

where dark matter is assumed to redshift as radiation, and M∗ is as defined in the previous

subsection. The interaction term in the Lagrangian is very irrelevant, and the power of

8Recall that the dominant deformation that leads to confinement and generation of a mass gap in the lepton

portal is from radiative mixing with the Higgs operator.
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temperature in this expression is high, as one might expect. Thus, this process is dominant

at the temperature it starts, and we can use (M5
gap − T 5) → M5

gap for calculating the final

contribution of the hadronic production process. Additionally, we dropped terms of O(me),

since me < Mgap.

For most COFI models, hadronic production is very negligible. It is only relevant in lepton

portal models with significant couplings to electrons since only electrons are light enough to

persist in the thermal bath at such low temperatures (unlike QCD states and Higgs bosons).

The same argument could be used in the case of the hypercharge portal, since photons are

always present in the SM plasma; however, the CFT-phase energy density production in this

case is proportional to positive powers of the reheating temperature which easily overwhelms

the hadronic production that is proportional to powers of Mgap. Thus, regions of parameter

space with non-negligible hadronic production exist only in IR-dominated regime (d < 1.5)

in the first-generation and democratic flavor schemes in the lepton portal model.

B Derivation of Energy Loss Rates

B.1 Compton scattering in MS and HB

γ

e e

φ

χ

χ

Figure 15: Feynman diagram for Compton scattering in the lepton portal.

In [27], the production of a neutrino (ν̄ν) pair from the Compton scattering of non-

relativistic and non-degenerate electrons is studied and the rate is9

σ(ν̄ν) ∼ α

8π2
G2
Fm

4
e

(
ω

me

)4

, (B.1)

where ω is the energy carried by the ν̄ν pair, which is roughly ω ∼ T (up to O(1)). Using

this result and the effective theory Eq. (4.21), the cross-section for the production of χχ-pair

is estimated to be

σ(χχ) ∼ 2π2α

(
∑
κ`m`)

2 Λ4
SM

m4
e

(
ω

me

)6

. (B.2)

9If electrons are degenerate, the rate is suppressed by a factor

Fdeg ∼
3EFT

p2F
.

However, Compton scattering is important only in MS and HB starts in which electrons are not degenerate.

Also, throughout the calculation, we use the criterion that if the photon plasma mass ωp is less than 3T then

we can neglect the plasma mass effects. For more details, see [27]
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For non-relativistic and non-degenerate electrons, they are almost at rest, and the energy loss

rate per unit volume Q can be approximated as

Q ∼ ne
∫

2
d3kγ
(2π)3

ω σ(χχ)

eω/T − 1
, (B.3)

where kγ is the photon momentum and the factor 2 is for the two photon polarization degrees

of freedom. The computation proceeds by writing

σ(χχ) = σ∗

(
ω

me

)p
, σ∗ ≡

2π2α

(
∑
κ`m`)

2 Λ4
SM

m4
e (B.4)

and p = 6 for our case. Explicit computation given in [27] shows that

Q ∼ (p+ 3)!ζ(p+ 4)

π2

σ∗neT
p+4

mp
e

(B.5)

where ζ(n) is the Riemann zeta function. We can further use ne = Ye
ρ
mu

(where Ye is the

electron number fraction per baryon and mu = 1.661 × 10−24 g is the atomic mass unit) to

finally get the energy loss rate per mass ε:

ε =
Q

ρ
∼ 9!2α

(
∑
κ`m`)

2 Λ4
SM

Ye
mum2

e

T 10. (B.6)

Here, we used the expression for σ∗ and p = 6.

B.2 Bremsstrahlung from an electron in RGB

e e

N N

φ

χ

χ

e e

e e
NN

N

φ

χ

χ

N

φ

χ

χ

π γ
γ

Figure 16: Feynman diagrams for relevant Bremsstrahlung processes.

The expression for ε for the production of a ν̄ν pair from a degenerate electron line is

given in [27] and is (with CV ≈ CA = 1 and F+ = 1, F− = 0 and assuming a single species of

nuclei of charge Z and atomic mass A)

ε(ν̄ν) ≈ 2πα2

189

(
Z2

Amu

)
G2
FT

6. (B.7)

One reasonable estimation of the rate for the case of χχ production can be made by comparing

the effective coupling between the two cases. The matching condition is

GF√
2
→ 16π2ω

(
∑
κ`m`) Λ2

SM

(B.8)
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where we have included one factor of ω to make up the right dimension. That ω, rather than

EF , is the right factor even in the degenerate situation, is understood as follows. Unlike in

e−e+ annihilation where the final state energy is of the order EF , in Bremsstrahlung, the

final states carry only ω ∼ T because of final state Pauli-blocking for the electron: essentially,

while the electron has energy ∼ EF , the amount of energy change by the momentum transfer,

i.e. displacement in the Fermi surface with radius EF , is limited to ∼ T . In the end, we get

ε(χχ) ∼ πα2

189

(
Z2

Amu

)(
16π2

(
∑
κ`m`) Λ2

SM

)2

T 8. (B.9)

We emphasize that our estimation is at the level of O(1) or even an order of magnitude, due to

non-trivial combinatoric factors and precise values for ω/T and so on, that our computation

does not take into account.

B.3 Bremsstrahlung from a nucleon

This process is most relevant for quark-, gluon-, and Higgs-portal. For the part of parameter

space relevant for the relic density, the production is in the form of hadrons of confined CFT

in MS, HB, and RGB, while in SN, the final state is CFT state.

Hadronic final state: MS, HB, RGB

We first derive rates for the case when the final states are hadrons of confined CFT. The

strategy is the same as before. We take the expressions obtained for ν̄ν production and

estimate for the χχ production by making necessary modifications. In Section 4 of [27],

Q(ν̄ν) is shown to be

Q(ν̄ν) =

(∑
q C

(N)
q GF√
2

)2

nB
20π4

∫ ∞
0

dω ω6 Sσ(−ω) (B.10)

where in the non-degenerate (for nucleons) limit

Sσ(ω) =
Γσ
ω2
s(ω/T )×

{
1 for ω > 0

eω/T for ω < 0

Γσ = 4
√
πα2

πnBT
1/2m

−5/2
N (B.11)

s(x) ≈
√

1 + |x|π/4

απ =
m2
N

πm2
π

≈ 15.

The convention is that ω < 0 corresponds to the energy taken away from the medium and

nB = np +nn is the nucleon number density. It may be worth clarifying that the factor C
(N)
q

comes from the matching of quark-neutrino four fermion interaction to nucleon-neutrino four
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Fermi interaction. Hence, C
(N)
q appearing here is literally the same as the one in the effective

theory Eq. (4.9). Performing the integration, Raffelt showed that

Q(ν̄ν) ≈ 2048

385π7/2

(∑
q

C(N)
q

)2

G2
F α

2
π

n2
B

m
5/2
N

T 11/2. (B.12)

The rate for χχ production can be obtained from this by (i) matching the effective coupling

and (ii) taking into account difference in the integration. For quark- and gluon-portal, the

matching of coupling becomes

Quark-Portal :

(∑
q C

(N)
q GF√
2

)2

↔

 16π2
∑

q κqC
(N)
q(∑

q κqmq

)
Λ2

SM

2 (ω
2

)2
(B.13)

Gluon-Portal :

(∑
q C

(N)
q GF√
2

)2

↔
(
C

(N)
G

16π2

Λ4
SM

)2 (ω
2

)2
(B.14)

where ω ∼ T and the form factors C
(N)
q and C

(N)
G are defined in Eq. (4.6) and (4.7), respec-

tively.

Next, in the case of ν̄ν production, the integration in the expression of Q(ν̄ν) is∫ ∞
0

dω e−ω/T ω4 s(−ω/T ) ≡ Cν̄νT 5 (B.15)

In the case of χχ production, on the other hand, it is given by (other than the ω-independent

part of effective coupling factors for which we have already shown the matching)

1

4

∫ ∞
0

dω e−ω/T ω6 s(−ω/T ) ≡ CχχT 5

(
T

2

)2

. (B.16)

Identifying (T/2)2 = (ω/2)2 in the matching of the coupling, we see that a slightly more

accurate ratio of the ε’s requires a factor of Cχχ/Cν̄ν . More explicitly, we get

Quark-Portal : Q(χχ) = Q(ν̄ν)

(
16π2

∑
q κqC

(N)
q

(
∑
q κqmq)Λ2

SM

)2 (
T
2

)2
(∑

q C
(N)
q GF√
2

)2

Cχχ
Cν̄ν

(B.17)

Gluon-Portal : Q(χχ) = Q(ν̄ν)

(
C

(N)
G

16π2

Λ4
SM

)2 (
T
2

)2(∑
q C

(N)
q GF√
2

)2

Cχχ
Cν̄ν

(B.18)

where Q(ν̄ν) is given in Eq. (B.12). We make two comments. First, since both ν̄ν and χχ

productions involve two particles, the phase space factor for the two cases are the same. The

internal degrees of freedom, however, can differ. In addition, while the neutrino production
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is predominantly via axial coupling [27], the production of χχ pair is likely to be from a

vector coupling. We do not think the latter two factors will generate more than an order of

magnitude effect. It would be interesting to carry out improved stellar cooling computations

for COFI, which we leave for future investigations.

CFT final state: SN

Our strategy is based on the fact that the ratio ε(CFT)/ε(φ), the energy loss rate for COFI to

that of real scalars, can be estimated to a reasonable accuracy. To this end, (i) we need to

compare the effective couplings, (ii) use powers of (mNT ) to make up the correct dimensions,

and (iii) powers of (2π) to take into account difference in phase space. In addition, one can

improve the estimation by including (iv) ratio of internal degrees of freedom of the energy

carrying final states and (v) ratio of thermal averaged energy 〈ω〉 of the new physics states.

Regarding point (ii), we recall that nucleons are non-relativistic, implying p2 ≈ 2mNT , and

this in turn means that the characteristic size of the energy transfer is ω ∼ √mNT . Next, the

correct factors of (2π) for the phase space: for each extra particle we have 1
(2π)3

×(2π) = 1
(2π)2

where the first factor is the naive one from the phase space integral measure and the second

factor of (2π) is the result of extra angular integration. This seemingly naive argument works

even for the case of CFT final state. In this case, we recall that the phase space associated with

a dimension d CFT operator can be thought of as d massless particles, and so we can estimate

the phase space factor as ∼ 1
(2π)3d

× (2π)d−1 = 1
(2π)2d+1 , again the first factor for d number of

naive phase space factor and the second factor for (d−1) extra angular integration. The final

answer indeed agrees with explicit computations once we adopt the Georgi’s choice for the

unparticle phase space density. To summarize, below we will estimate the ratio ε(CFT)/ε(φ)

using
ε(CFT)

ε(φ)
=
Q(CFT)

Q(φ)
∼ G2

eff(mNT )r

g2

1

(2π)2d−2

dofCFT

dofφ

〈ω〉CFT

〈ω〉φ
(B.19)

where the exponent r depends on the model and g is the Yukawa coupling, ∼ gφψ̄NψN . Before

we show our results, it is instructive to present the known cases, confirming the validity of

our analysis scheme. To this end, let us compute the ratio ε(ν̄ν)/εa, i.e. the ratio of rate of

neutrino-pair production to that of axions. Without including the ratio of 〈ω〉’s it is given by

ε(ν̄ν)

εa
=

(∑
q C

(N)
q GF

)2
(mNT )2

g2
a

1

(2π)2

(
3× 2× 2

1

)
=

3

π2

(∑
q C

(N)
q GF

)2
(mNT )2

g2
a

(B.20)

where 3, 2, 2 are respectively family, spin, and SU(2)L-doublet degrees of freedom of neutrino.

The same ratio can also be computed using explicit expressions for ε(ν̄ν) and εa (Eqns. (4.8),

(4.10), (4.23), and (4.24) in [27]) and the outcome is about twice larger than our estimation.

This factor of two, however, can also be explained since 〈ων̄ν〉/〈ωa〉 is numerically about 2.

We now present our results. First of all, Q(φ) for a degenerate nucleon medium is given

by (Eq. (4.13) in [27])

Q(φ) =
g2α2

π

4π

44

153

(
T

mN

)4

p5
F Gφ(mπ/pF ) (B.21)
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where απ is defined in Eq. (B.11) and numerically Gφ(mπ/pf ) ≈ 0.8. Also, since nucleons are

borderline degenerate in SN, we can use pF ≈ mNT (which in a sense we have been using so

far already). We can now use Eq. (B.19) with the effective couplings

Higgs-Portal : Geff = C
(N)
G

(
αs

6
√

2π

)(
M4−d

gap

v2m2
h

)
(B.22)

Quark-Portal : Geff =
∑
q

κqC
(N)
q

16π2M4−d
gap(∑

q κqmq

)
Λ2

SM

(B.23)

Gluon-Portal : Geff = C
(N)
G

16π2M4−d
gap

Λ4
SM

(B.24)

and r = d − 1 for all cases since the mass dimension of Geff is 1 − d for all three cases. The

factors dofCFT
dofφ

and 〈ω〉CFT

〈ω〉φ depend on the details of the CFT and on a general grounds they

are expected to be within 1 ∼ d.

B.4 Electron-positron annihilation

e

e

CFT stuf

γ

γ

CFT stuf

γ

γ

CFT stuf

e

e

Figure 17: Feynman diagrams for relevant annihilation processes in the lepton and hyper-

charge portals, in the CFT phase (T > Mgap) .

The process of interest is the annihilation of e−e+ to a CFT final state and this is relevant

for the lepton-portal and hypercharge-portal models in the SN. In lepton-portal it is via tree-

level coupling, and for the hypercharge-portal it is a one-loop generated coupling.

Lepton-portal

From the Lagrangian

L ∼ λCFTv√
2Λd

CFT

ēeOCFT (B.25)

we can estimate the energy transfer rate in the exactly the same way we do for the freeze-in

calculation

〈σvE〉 ∼
(

λCFTv√
2Λd

CFT

)2(
4π4d(d2 − 1)

(2π)2d+1

)
E2d−3
F , (B.26)
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where EF ≈ 344MeV is the electron Fermi energy. From this we get the energy loss rate per

volume

Q(CFT) ∼ ne−ne+〈σvE〉 (B.27)

and hence ε by ε = Q/ρ. For the number density of electrons in SN, we use ne− ≈
1.8 × 1038 cm−3, while for the positrons, we note that the process e−e+ ↔ γγ imposes

the relationship among chemical potentials, µe+ = −µe− and we know µe− ≈ 344 MeV.

Using this, the number density for the positron can be shown to be

ne+ = 2

∫
d3p

(2π)3

1

e(E+µe− )/T + 1
≈ e−βµe− × nth (B.28)

with nth being the equilibrium number density at T = TSN (= 1/β) with Boltzmann distribu-

tion. We see that the positron number density is suppressed compared to the thermal density

by the factor e−βµe− .

Hypercharge-portal

The computation goes through the exact same steps as in the lepton-portal. To this end, we

first derive an effective action by computing the loop-diagram shown in Fig. 17. The result

is estimated to be

L ∼
(
λCFT

Λd
CFT

)(
2e2me

π2
log

(
ΛSM

EF

))
ēeOCFT (B.29)

The appearance of the log is due to the massless particle (i.e. photon) running in the loop,

and we used the external momentum to be EF appropriate for the degenerate electrons in the

SN core. To get the energy loss rate per mass, we now simply need to replace the effective

coupling in the lepton-portal computation:

λCFTv√
2Λd

CFT

→
(
λCFT

Λd
CFT

)(
2e2me

π2
log

(
ΛSM

EF

))
. (B.30)

B.5 Photon annihilation

This process is relevant for the hypercharge portal at the core of SN. The photon number

density is that of a thermal Boltzmann distribution,

nγ ≈
2 ζ(3)

π2
T 3

SN (B.31)

and since the plasma frequency ωp ∼ 19 MeV is less than 3TSN ∼ (60 – 80) MeV, we ignore

plasma mass effects. The energy loss rate per volume is estimated to be

Q(CFT) ∼ n2
γ〈σvE〉 ∼ n2

γ

(
λCFT cos2 θw

Λd
CFT

)2(
16 d2(d2 − 1)(d+ 2)

(2d− 1)(2π)2d+1

)
T 2d−1

SN . (B.32)
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This process is the dominant process for supernova cooling in hypercharge-portal. To illustrate

this, we compute the ratio

Q(e−e+ → CFT)

Q(γγ → CFT)
∼ e−EF /TSN

(
EF
TSN

)2d( me

TSN

)2
8α log

(
ΛSM
EF

)
cos2 θw

� 1. (B.33)

Numerically, for ΛSM = 1 TeV, the above ratio is . 10−2 for 1 ≤ d ≤ 3.

B.6 Trapping in Supernovae

In this section, we describe how to estimate the cross-section required to evaluate the trapping

of hadronic states of the confined CFT at the core of SN. For concreteness sake, we focus

on the lepton-portal case, where trapping is important. (See [33] for discussion of supernova

constraints on dark sectors.)

CF T

e

e

Hadronization

χ

χ

X

Figure 18: Production of CFT state via e−e+-annihilation in SN followed by a hadronization

into composite dark matter (χ) plus Z2-even final states (denoted as X) in lepton portal

model.

Let us first discuss production of a pair of dark matter states χ near the core of the

supernova. We assume that the CFT is described by a large-N gauge theory. When such a

theory confines in the IR, we can use large-N analysis which we follow. Schematically, when

Mgap < TSN, an annihilation of e−e+ produces directly the state associated with OCFT which

can be thought of as the “partonic” state of a confining CFT. Once these “partonic” CFT

states are produced, they will go through the hadronization process, somewhat similar to the

QCD jets. The situation is shown schematically in Fig. 18. Some of the hadronic states then

can travel out of the supernova, resulting in an extra mechanism for its cooling. Assuming

O(1) fraction of energy is transferred to the dark matter state χ (which is consistent with

our freeze-in calculations), we can make a rough estimation as follows. Here, we assume that

the dark matter χ is a goldstone boson created by a current operator Jµ of a broken global

symmetry. We are interested in the rate for OCFT to result in a pair of Jµ’s which in turn

“hadronizes” into the dark matter χ and other hadronic states. This information will be used
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below to estimate the cross-section responsible for trapping in SN. The rate for OCFT to turn

into a pair of Jµ’s is encoded in the OPE (Operator Product Expansion) coefficient

JµJµ ∼ cOCFT + · · · . (B.34)

where c is the OPE coefficient which carries a scaling dimension of 6 − d (recall that the

conserved current has dimension 3 and acquires no anomalous dimensions). In addition, the

probability for a current Jµ to produce a single χ can be summarized in an interpolation

relation of the form (in large-N limit)

Jµ ∼
1

g?
Mgap∂µχ (B.35)

where the factor of g? ∼ 4π√
N

is inserted to be consistent with large-N behavior

〈JJ〉 ∼ N

16π2
∼ 1

g2
?

. (B.36)

The other factors are fixed by dimensional analysis and the fact that χ is a goldstone boson

associated with a broken current Jµ.

The matrix element for the pair production diagram in Fig. 18 is then estimated to be

M∼
( v
λd

)
· 1

c
·
(
Mgappµ
g?

)2

· (ūu) (B.37)

We wish to determine g?-dependence of the OPE coefficient c which is needed to figure out

correct g?-counting for the rates. While there is no fully rigorous and systematic means to

answer this question, “matching” between the above estimation and the fully-hadronic picture

may be used to get a reasonable assessment. To this end, we first note that at leading order

in 1/N -expansion the hadronic cubic interaction vertex is Γ3 ∼ g?. This is understood by

noting that

〈OCFTJJ〉 ∼
N

16π2
∼ 1

g2
?

, OCFT ∼
Md−1

gap

g?
φ (B.38)

where φ is a scalar meson interpolated by OCFT with mass of the order Mgap. Using these

together with Eq. (B.35), we get,

〈OCFTJJ〉 ∼
1

g2
?

∼
(
Md−1

gap

g?

)(
Mgap

g?

)2

· Γ3 → Γ3 ∼ g?. (B.39)

With this information at hand, the matching to the fully-hadronic picture gives

M∼
( v

Λd

)
·
(
Md−1

gap

g?

)
· 1

M2
gap

(
Mgappµ
g?

)2

· Γ3 · (ūu) . (B.40)

Comparing this to Eq. (B.37) finally shows that

c ∼Md−6
gap g0

?. (B.41)
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e e

χ χ

×

OSM

OCFT

e e

χ χ

≈ λCFT
ΛdCFT

×Lint

Figure 19: Diagram relevant for trapping in SN, and the assumption of factorization.

With these preparations, we now discuss trapping. Again, with a simplifying assumption

that most of the CFT energy is processed to the DM state χ, the relevant picture is: we

have DM particles produced in the core of SN and we are interested in the cross-section of

χ+e− → χ+e−+X, where X denotes any other collectively Z2-even states in the final state.

To the extent that the leading contribution comes from χ + e− → χ + e−,10 a reasonable

estimate is possible assuming the factorization shown in Fig. 19. From the discussions given

above about the OPE, the lower part of the diagram is given by

〈χ2|OCFT |χ1〉 ∼
1

c
〈χ2|JµJµ|χ1〉 ∼

Md−4
gap

ĉ g2
?

pχ1 · pχ2 (B.42)

where we have introduced a dimensionless quantity ĉ defined by c = ĉM6−d
gap . The full matrix

element is then computed to be

M∼
(

λv

Λd
√

2

)(
Md−4

gap

ĉ g2
?

pχ1 · pχ2

)
ū(k1)u(k2) (B.43)

with k1,2 being the four-momentum of the incoming and outgoing electrons, respectively. The

cross-section can finally be estimated and one gets,

σ ∼ 1

8πγ ĉ g4
?

E4
F

(
∑

` κ`m` α2v2)2 (B.44)

where EF is the electron Fermi energy and γ, defined by Eχ = γ EF , encodes the fraction

of energy carried by the DM χ upon CFT-hadronization. v is the VEV of the Higgs and α

10A simple argument based on phase space suppression seems to support this assumption, although mul-

tiplicity of the diagrams and any unknown non-perturbative physics could in principle invalidate the claim.

Here, we simply assume, which is certainly enough for the stellar cooling bound, that at least O(1) contribution

comes from the simple 2→ 2 process.
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is defined by ΛSM = α 4πv. Also, we used the formula for the Mgap given in Section 2. The

mean free path is obtained from

λχ =
1

neσ
(B.45)

and we use the optical depth criterion∫ Rc

r0

dr

λχ
&

2

3
⇒ 3

2

0.1Rc
λχ

& 1 (trapped) (B.46)

to assess the possibility of the trapping. To get the final expression, we used r0 ≈ 0.9Rc and

Rc ≈ 13 km is the radius of the core [33].

In the lepton portal, models of both first generation and democratic flavor schemes have

trapping cross-sections many orders of magnitude above the optical depth criterion, and the

dark matter particles produced are completely trapped. Thus, there is no relevant supernova

constraint.
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