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Abstract

A two-dimensional CFT dual to a semiclassical theory of gravity in three dimensions

must have a large central charge c and a sparse low energy spectrum. This constrains

the OPE coefficients and density of states of the CFT via the conformal bootstrap.

We define an ensemble of CFT data by averaging over OPE coefficients subject to these

bootstrap constraints, and show that calculations in this ensemble reproduce semiclassical

3D gravity. We analyze a wide variety of gravitational solutions, both in pure Einstein

gravity and gravity coupled to massive point particles, including Euclidean wormholes

with multiple boundaries and higher topology spacetimes with a single boundary. In

all cases we find that the on-shell action of gravity agrees with the ensemble-averaged

CFT at large c. The one-loop corrections also match in the cases where they have been

computed. We also show that the bulk effective theory has random couplings induced by

wormholes, providing a controlled, semiclassical realization of the mechanism of Coleman,

Giddings, and Strominger.arX
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1 Introduction

Quantum gravity in two-dimensional anti-de Sitter spacetime is dual to random matrix the-

ory [1]. This is fundamentally different from earlier examples of the AdS/CFT correspon-

dence, because the boundary theory is not a single quantum theory — it is an ensemble

average of many quantum theories. Thus products of observables do not factorize as they

would in quantum mechanics. For example, the average Z(β1)Z(β2) 6= Z(β1)×Z(β2) where

Z is the partition function [2,3]. Connected contributions to these averages encode statistical

properties of the underlying ensemble, and are reproduced on the gravity side by geometries

with multiple boundaries. Higher topologies with a single boundary also have an ensem-

ble interpretation that beautifully explains the paradoxical behavior of late-time correlation

functions [4].

There is ample evidence that averaging must also play a role in more realistic, higher-

dimensional theories of quantum gravity. There are many examples of multi-boundary so-

lutions with no known instabilities [5, 6]. Double black hole topologies, though difficult to

study in a controlled manner, seem to correctly reproduce the universal eigenvalue repulsion

of chaotic quantum theories [2,3,7,8]. Furthermore, all higher-dimensional theories of gravity

have extremal black hole solutions with near horizon geometries that can be dimensionally

reduced to AdS2. On the other hand, we do not expect string theory (or any other UV com-

plete theory of quantum gravity) to be an ensemble average at the microscopic level, and the

reduction to AdS2 includes additional states that might derail the ensemble interpretation.

How can these viewpoints be reconciled? There are various proposals (e.g. [3, 4, 9–20]), but

so far there is no general answer to this question.

One interesting possibility is that ensemble averaging is the result of some sort of coarse

graining in the effective theory of the large-N limit. But what sort of coarse graining? We

will attempt to answer this question in AdS3/CFT2, where we will construct a detailed model

which makes this idea precise: semiclassical gravity arises by fixing a limited set of bootstrap

constraints and averaging over CFT data subject to these constraints.

This is different from the random matrix interpretation of 2D gravity, because we are not

averaging over a family of UV-complete quantum theories, but instead over an ensemble of
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observables. Quite possibly, most draws from this ensemble lie in the swampland. This is

an essential difference between averaging over Hamiltonians in a 1D quantum system, where

any spectrum is possible in principle, and averaging over CFTs in higher dimensions, which

are subject to bootstrap constraints. We will average over the matrix elements of primary

operators 〈i|O|j〉, on which we impose some — but not all — of the bootstrap conditions

which must be obeyed in a conformal field theory. Averaging over matrix elements has also

been used to explain the behavior of 2D gravity coupled to matter [4,21–23], and it has been

noted previously in the literature that such averages reproduce qualitative features of gravity

in higher dimensions [16,24,25].

Three-dimensional gravity, unlike its 2D counterpart, has a multitude of classical solutions

with higher topology. Our analysis is restricted to the semiclassical expansion around these

solutions. We will study not just smooth solutions of pure Einstein gravity, but also gravity

coupled to massive point particles that backreact on the geometry to produce conical defects.

We define an ensemble of CFTs (or, more precisely, CFT data), and conjecture that it exactly

reproduces every solution of 3D gravity, including loops. The conjecture is tested extensively.

Many of our conclusions probably also apply to bulk theories with quantum fields, but the

restriction to conical defects makes the analysis simpler because we can discuss classical

solutions instead of summing Witten diagrams, and conformal blocks instead of conformal

Mellin amplitudes.

Off-shell topologies in 3D gravity have been considered in the literature. There is a cal-

culation of the gravitational path integral on the double torus [8] which reproduces expected

features of the energy-level distribution in a chaotic CFT. This result is essentially orthogonal

to our analysis: we do not need to specify the energy-level distribution of our CFT ensemble

in order to reproduce the semiclassical expansion of 3D gravity. Apparently, the energy-level

statistics are more sensitive to assumptions about the UV and therefore require input from

the off-shell gravitational path integral, while the statistics of matrix elements are a classical

phenomenon in the bulk. Other off-shell topologies in 3D gravity with a single boundary were

considered in [10] by a reduction to two dimensions; there is tantalizing evidence that this

may resolve the longstanding puzzle of how to calculate the partition function of pure gravity

(see [26]). Again, this does not connect to our analysis directly, because the wormholes in [10]

are not semiclassical.

From a bootstrap point of view, solutions of 3D gravity with simple topologies are

explained by large-c methods in 2D CFT [27]. Examples include the BTZ black hole

[28, 29], analogous handlebody manifolds at higher genus [30], correlators of heavy opera-

tors [27,31–33], probes of black hole eigenstates [34–37], collapsing black holes [38], and light

correlators [39–41]. All of these examples satisfy factorization. One motivation and outcome

of our analysis is to extend the tools of large-c conformal field theory to account for the sta-
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tistical properties of heavy operators, and therefore wormholes and other higher topologies

in the bulk. Statistics of heavy operators have also been treated from a purely CFT point of

view recently in [42–46] and we will make contact with some of their results.

In higher dimensions, there is also a large literature on matching solutions of the conformal

bootstrap equations to effective field theory in AdS, initiated in [47]. We will not connect

directly to these results because we rely heavily on Virasoro symmetry, but this raises a very

interesting question: Where are the wormholes in the d > 2 conformal bootstrap? See [48]

for further discussion.

The role of averaging in three dimensional gravity was recently discussed in [20], who

suggested that only sufficiently heavy operators (with dimension of order c) exhibit averaging.

This is completely consistent with our results. The work of [20] focused primarily on averaging

for states above the black hole threshold, where these effects can be seen without the need

to insert operators at the boundary.1 In this paper we will consider a somewhat wider class

of observables where heavy (but sub-threshold) operators are inserted at the boundary. This

setup will make it clear that operators with dimension O(c) will exhibit averaging as well,

even if they are somewhat below the black hole threshold. It is also quite possible that

although we see averaging in the effective low energy theory, these effects are ultimately

cancelled by UV contributions, like the half-wormholes of the SYK model [14, 50–52] (see

also [53]). Even if this is the case, based on two-dimensional examples it seems likely that

they encode universal information about the statistics of the UV completion.

In the rest of this introduction, we define the CFT ensemble, and summarize the evidence

for the conjecture that this ensemble reproduces semiclassical 3D gravity.

1.1 Averaging over large-c CFTs

The high energy spectrum of any 2D CFT is constrained by the Cardy formula [54],

ρ(h, h̄) = ρ0(h)ρ0(h̄), ρ0(h) ≈ exp

[
2π

√
c

6
(h− c

24
)

]
. (1.1)

The bar indicates that this is the density of states averaged over some window of conformal

weights (h, h̄). Similarly, the bootstrap provides information about average OPE coefficients,

summarized by the universal formula [43]

|cpqr|2 = C0(hp, hq, hr)C0(h̄p, h̄q, h̄r) (1.2)

1This harmonizes with a recent discussion in [49] in the context of CFT2, where it was suggested that the
modular completion of light states could be interpreted in terms of a gravitational theory where only heavy
states are averaged.
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where p, q, r label primary operators and C0 is a known function reproduced in (2.8) below.

In any CFT, the Cardy formula holds for asymptotically high energies and the OPE formula

applies whenever at least one operator dimension is taken to infinity.

In holographic CFTs both formulas have a wider range of applicability [29,55,56]. These

are theories with a large central charge c and a sparse spectrum of low-lying operators. In

a theory of pure gravity, the only primary state below the black hole threshold h, h̄ ∼ c
24

is the vacuum, and the Cardy formula applies for all h, h̄ above the threshold. In the dual

CFT, the extended range of validity of the Cardy formula follows from modular invariance

together with the assumption of a sparse low-energy spectrum [29].2

With this in mind, we consider an ensemble of CFTs defined as follows. We assume

the Cardy formula holds above the black hole threshold, and (1.2) holds for all nontrivial

primaries. Below the threshold, we allow (but do not require) a discrete set of scalar ‘defect’

states with h/c < 1/24 held fixed in the large-c limit, plus, when appropriate, multiparticle

defects (in the sense of Virasoro mean field theory [58,59]). The defect states correspond to

massive point particles on the gravity side, which backreact to produce conical deficits. In

the bulk theory the defect particles are non-interacting, except through the effects of gravity

(which include interactions mediated by wormholes), so cpqr = 0. It is likely that many of

our results can be extended to include quantum fields in the bulk but we will not do so here.

We assume furthermore that the statistics of primary OPE coefficients are Gaussian, so

that

cabcc
∗
def = C0(ha, hb, hc)C0(h̄a, h̄b, h̄c)(δadδbeδcf ± permutations) (1.3)

up to terms suppressed by e−S , and higher moments are computed by Wick contractions.

This assumption is closely related to the eigenstate thermalization hypothesis (ETH) [60,61].

In the context of averaged holographic duality in AdS3/CFT2, the statistics (1.3) have also

been considered in the high energy limit recently in [25,44,62] and shown to have the correct

scaling in the pinching limit of the genus-2 partition function.3

The statistics in (1.3) are assumed to hold when all three weights satisfy h > c
32 , or a

combination of the weights is large enough (including a regime with ha � c
24); see section 2

2Modular invariance has only been shown to extend the Cardy regime down to h ∼ c/12, not h ∼ c/24 [29].
We will make the stronger assumption that it extends all the way down to c/24. This can be justified in chiral
CFTs or if the partition function holomorphically factorizes [57], which we do not assume.

3The evidence for a gravitational interpretation in [25] is that an ensemble of OPE coefficients with Gaus-
sian statistics leads to a genus-2 partition function with no pinching singularity. This matches the fact that
genus-2 wormholes have no pinching singularity. Note that when [25] discusses the gravitational action of
the genus-2 wormhole, the boundary CFT is considered with a hyperbolic metric. This is enough to test the
pinching singularity, but not enough for a detailed comparison between bulk and boundary. We will calculate
the full gravitational action for this and various other examples and find a quantitative match.
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for details. For our purposes, this fully defines the ensemble to leading order at large c: Black

hole states with a Cardy spectrum, defect states, and Gaussian random OPE coefficients with

mean zero and variance (1.2). Note that we have said nothing about the energy level statistics

of black hole microstates. Level statistics have played a central role in interpreting off-shell

contributions to the gravitational path integral [1–3,7,10], but they do not affect any of the

observables we consider at classical or 1-loop order.

As noted above, our version of averaging is rather different from the random matrix

ensembles dual to Jackiw-Teitelboim gravity [1]. Random matrix theory is an ensemble of

microscopic, UV-complete quantum theories. In our case, we have not defined an ensemble

of full-blown CFTs, only an ensemble of certain CFT data. It would be very interesting to

define an ensemble of 2d CFTs microscopically (cf. the free toy models in [63,64]) but, absent

a complete solution to the conformal bootstrap in two dimensions, this seems difficult. The

ensemble that we have defined above could certainly be refined by the imposition of more

bootstrap constraints, which would allow one to compare further subleading terms in the

gravitational path integral.

This discussion allows us to address the following important question: Under what cir-

cumstances, and in what approximation, does an individual CFT look like semiclassical

Einstein gravity in three dimensions? Our proposed answer is that the primary operator

spectrum must obey (1.1) for h > c
24 and OPE coefficients must obey (1.3) in the range

specified below, where the average is now interpreted in the sense of coarse-graining over an

energy window. Of course, (1.1) and (1.2) are true in any CFT for operators with h � c,

simply as a consequence of crossing and modular invariance. The requirement that these hold

for h of order c is closely related to the statement that the CFT spectrum is sparse. The

requirement that these are true upon coarse graining over energies means that the CFT must

be chaotic enough that it is self-averaging: an average over states is indistinguishable from

an average over coupling constants. This definition of chaos differs from what is typically

required in discussions of the eigenstate thermalization hypothesis, where only light-heavy-

heavy OPE coefficients (i.e. matrix elements of light operators between heavy states) are

required to behave like random matrices.

The starting point for the comparison of our ensemble with 3D gravity is a computation

showing that the universal asymptotic formula for OPE coefficients, equation (1.2), equals

the action of a 3-point wormhole:

C0(h1, h2, h3)2 = , (1.4)
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(a)

(b)

(c)

(d)

Figure 1: Example 2-boundary (quasi-Fuchsian) wormholes. (a) Spherical topology
with 4 massive particles, which contributes to the product of CFT 4-point functions
G(x, x̄)G(x′, x̄′). (b) Torus with 1 massive particle, which contributes to the product
of thermal 1-point functions 〈O〉τ 〈O〉τ ′ . (c) Genus-2 wormhole, which contributes to
the product of genus-2 partition functions Zg=2(Ω)Zg=2(Ω′). (d) A more elaborate
wormhole with higher genus and defects.

The picture on the right hand side is of a Euclidean wormhole with two boundaries, each

of which is a Riemann sphere with three operators inserted at 0, 1,∞, and includes massive

particles propagating through the bulk. Equation (1.4) holds in the semiclassical (large-c)

limit, where the operator dimensions scale linearly in c.

Calculations of more complicated observables in the ensemble of CFTs are straightforward

in principle. We simply expand in conformal blocks and apply (1.1), (1.2), and (1.3). For

example, consider the product of two CFT 4-point functions of sub-threshold operators,

G1234G
′
1234 = 〈O1(0)O2(x, x̄)O3(1)O4(∞)〉 〈O1(0)O2(x′, x̄′)O3(1)O4(∞)〉 . (1.5)

This has a double expansion in Virasoro conformal blocks,

G1234G
′
1234 =

∑
p,q

c12pc34pc12qc34q

∣∣F1234(hp, x)F1234(hq, x
′)
∣∣2 . (1.6)

Averaging sets p = q, so for the ensemble average we obtain a single correlated sum:

G1234G′1234 =
∑
p

c2
12p c

2
34p

∣∣F1234(hp, x)F1234(hp, x
′)
∣∣2 (1.7)
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This can be further simplified using (1.1) and (1.2). We will analyze this particular example

in more detail in section 3.1 (on the CFT side) and section 5.2 (on the gravity side). The

gravity calculation is rather involved for x 6= x′. The conclusion is that in the large-c limit,

(1.7) is reproduced by the 2-boundary wormhole pictured in fig. 1a, including both the

classical action and 1-loop corrections. The match involves a complicated function of the

cross ratios (x, x̄) and (x′, x̄′) on the two sides of the wormhole that cannot be evaluated in

closed form but nonetheless is shown to agree.

Other products of any number of observables in the CFT ensemble can be calculated by

similar methods. Generally, the calculation can be done in various OPE channels, and the

Gaussian average has multiple contractions among the cijk’s. The sums can also be separated

into light and heavy contributions. The picture that emerges is that once we have organized

the CFT calculation in this way — by choosing an OPE channel, doing the OPE contractions,

and separating out the light contributions — each term corresponds to a different wormhole

(with the caveat that some OPE channels are deemed equivalent). We will demonstrate this

through numerous examples; see section 1.5 for a complete list.

1.2 The Coleman-Giddings-Strominger mechanism

Coleman [65] and Giddings and Strominger [66, 67] proposed that microscopic wormholes

at the Planck or string scale would lead to a low energy effective theory with random cou-

pling constants. Integrating out the wormhole gives a bilocal operator at its endpoints, and

such a term in the effective action can then be reinterpreted by ‘integrating in’ a random

coupling constant. This intriguing idea has never found a home in AdS/CFT, where the

random coupling constants would appear in the bulk Lagrangian. (Another aspect of Cole-

man’s approach, namely alpha states, does play a prominent role in recent discussions of

AdS2/CFT1 [9,50,68–70], but with no clear connection to random bulk coupling constants.)

We will show that the low-energy theory of 3D gravity coupled to sufficiently heavy point

particles exhibits a semiclassical version of the Coleman-Giddings-Strominger mechanism:

the bulk effective theory has random couplings that can be calculated explicitly by integrating

out classical wormholes. Because the wormholes are on shell, the details are a bit different

from [65–67]. For a preview, consider the gravity calculation of the CFT correlation function

G1221 = 〈O1O2O2O1〉 , (1.8)

where O1 and O2 are two distinct sub-threshold operators. For concreteness, suppose the

bulk theory has three species of particles, 1, 2 and 3. Then the conformal block expansion
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of this 4-point function has a term

c2
123 |F1221(h3, x)|2 . (1.9)

What is its bulk interpretation? By assumption, our bulk theory has no interactions among

the particles, so we might conclude that this term does not appear. However, there is a

2-boundary wormhole that calculates c2
123, and it is nonzero, so this cannot be correct. The

explanation is that there is a single-boundary wormhole responsible for this term:

c2
123 |F1221(h3, x)|2 = 1

2 2

1

3

(1.10)

This diagram represents a wormhole with the topology obtained by taking a 3-ball, cutting

out two smaller 3-balls inside of it, and gluing together their S2 boundaries. Particle 3

(in blue) makes a closed loop through the wormhole. This wormhole is a classical solution

to the equations of motion, which can be constructed when the operator dimensions scale

linearly with c, and the three particle masses are sufficiently large. The classical action of this

wormhole precisely reproduces the left-hand side, including the OPE coefficient, to leading

order at large c.

Alternatively, we can integrate out the wormholes. In the classical limit this just means

writing an effective bulk theory with an explicit 3-point coupling that reproduces (1.9). It

must also reproduce the correct 3-point function, 〈O1O2O3〉 = 0. Therefore the effective

theory has a random coupling constant with mean zero and variance c2
123. In the effective

description, the wormhole is replaced by a Witten diagram:

=⇒ (1.11)

The dashed line indicates that the 3-point couplings in this Witten diagram are correlated

by randomness.

One should include either the wormhole or the direct interaction in the bulk theory, not

both. The wormhole encodes the average effect of the direct interaction. In a UV-complete

theory with fixed couplings, presumably the wormhole does not have a life of its own, but is
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already included somehow in the sum over microstates (see for example [14,15]).

1.3 Multi-boundary wormholes

We will now describe 3D wormholes in a bit more detail, and state our main results more

concretely. Gravity in three dimensions has a wide variety of classical wormholes. The

simplest have two asymptotic boundaries with identical topology, as in figure 1. The topology

of such wormholes is Σg,n× Interval, where Σg,n is a genus-g Riemann surface with n conical

defects at the locations of the point particles. To find classical solutions we require that

Σg,n admits a hyperbolic metric. On the sphere, this imposes n ≥ 3 and restrictions on the

particle masses; on the torus it imposes n ≥ 1, but allows any mass; on higher genus surfaces,

no point particles are required. The 4-point function discussed in section 1.1 above was one

example in this class. In the special case where the moduli are constant across the wormhole,

we refer to this as the Maldacena-Maoz (or Fuchsian) wormhole [5], and when the moduli

vary, it is called a quasi-Fuchsian wormhole.

We denote the period matrix of Σ by Ω. The moduli are allowed to vary across the

wormhole, so these saddles contribute to CFT observables of the form

GG′ = 〈O1(x1)O2(x2) · · · 〉Σ(Ω)〈O1(x′1)O2(x′2) · · · 〉Σ(Ω′) , (1.12)

where each G is a CFT correlation function of n operators on a surface Σ. We will show

that the semiclassical contribution of the Σg,n × Interval wormhole to the gravitational path

integral matches a term in the CFT average,

GG′ ⊃ e−Swormhole Zgravity
1−loop . (1.13)

The wormhole corresponds to a sum over heavy exchanges for a particular OPE channel and

contraction.

For a given OPE channel in the CFT calculation of GG′, all of the heavy exchanges are

accounted for by this class of wormholes. There are also contributions from defect exchanges,

considered in section 6; these have a natural bulk interpretation as handles added to the

Σg,n × Interval wormhole.

In the process of deriving (1.13), we show that the action of a 2-boundary wormhole with

topology Σg,n× Interval is given by a product of observables in the Liouville CFT. Let (σ, σ̄)

and (σ′, σ̄′) be collectively all of the cross ratios of operators inserted on the left and right

boundary, respectively, and denote the Liouville n-point correlation function on a surface

with period matrix Ω by GL(x, x̄; Ω, Ω̄). The wormhole contribution to the gravitational
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path integral is found to be

G(σ, σ̄; Ω, Ω̄)G(σ′, σ̄′; Ω′, Ω̄′) (1.14)

⊃ e−SWormhole ≈ GL(σ, σ′; Ω,−Ω′)GL(σ̄′; σ̄;−Ω̄′, Ω̄) .

The agreement holds at the level of the classical action; for wormholes without defects, we also

match the one-loop corrections. Note that the arguments are mixed up on the two sides of

this relation: the first Liouville factor accounts for left-movers in CFT×CFT, and the second

Liouville factor accounts for all the right-movers. This pairing can be anticipated from the

Chern-Simons/WZW relationship [71, 72] and was also seen in the (off-shell) double-torus

calculation of Cotler and Jensen [7] and in a Hamiltonian treatment of certain backgrounds

[73].

There are also wormhole saddles with k > 2 asymptotic boundaries. Solutions of 3D

gravity are hyperbolic manifolds and therefore quotients of H3 by subgroups of SL(2, C). The

2-boundary wormholes that we just described correspond to quasi-Fuchsian groups (when the

conical defects have finite order), while more generally, multi-boundary wormholes can be

constructed as quotients by Kleinian groups. We will discuss them briefly in section 7. The

CFT calculation is straightforward, and it leads to a detailed prediction for the gravitational

action on various Kleinian manifolds (and conifolds). We have not made a detailed check of

this prediction on the gravity side for k > 2 boundaries, but we will check it in one particular

limit and find a quantitative agreement.

1.4 Average interpretation of simple saddles

We have emphasized the contributions of higher topologies, but of course the ensemble must

also reproduce all of the ordinary saddlepoints of 3D gravity, including all of the examples

studied in [27, 30, 32, 34, 35, 38]. These are the ‘simple’ saddles with a single boundary,

including conical defects in global AdS3, the BTZ black hole and its higher-genus analogues

known as handlebodies, and conical defects in handlebodies.

Each of these geometries is dual to a semiclassical Virasoro identity block in some channel

[27, 30]. We will show that these identity blocks can also be interpreted as an average over

heavy states in a crossed channel. This is closely related to the fact that the large-c ensemble

is crossing invariant by construction, and certain observables are well approximated by the

identity block.

There is an important relationship between the Virasoro identity blocks that calculate

simple observables and some of the more exotic higher topology saddles. For example, con-

sider the 2-boundary wormhole supported by conical defects propagating across the worm-
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Figure 2: If the mass of a conical defect is continued above the black hole
threshold, it disappears, and results in two pieces of the boundary being
glued together. This relates wormhole amplitudes to analytically continued
Virasoro identity blocks. The figure shows how the saddlepoint changes as
each additional conical defect is taken above threshold.

hole, as in fig. 2. If we increase the mass of one of the defects until it is above the black hole

threshold, the topology of this solution changes: the defect disappears, and the two boundary

components get glued together. Thus the two boundary wormhole has become a solution

with a single boundary, which is a sphere with four (pairwise identical) operator insertions.

If we continue this process by making another pair of operators heavy the boundary becomes

a torus with two identical operator insertions. Finally, if we make these last two operators

heavy the boundary becomes a genus two surface, and the bulk a handlebody which fills in

this surface. At each step in this process, the parameters which label operator dimensions

become moduli of the Riemann surface when the operators are made heavy. This procedure

relates our wormhole amplitudes to the analytic continuation of Virasoro identity blocks, and

will be described quite explicitly. A related phenomenon was observed in [43], where it was

noted that the universal formula for OPE coefficients (1.2) applies in three different regimes

depending on whether one, two or three operators are taken to be heavy. In our discussion

here we have extended this formula into the regime where all operators are sub-threshold,

and the corresponding geometry is a wormhole. The important distinction is that in [43] the

averaging was interpreted as a coarse-graining over states, while here it is interpreted as an

ensemble averaging over CFT data.

1.5 Plan and list of examples

In section 2 we describe the CFT ensemble in more detail, and review the origins of the

Cardy density of states and the universal OPE formula. We also show that the ensemble is

crossing invariant to leading order at large c.

In section 3, we calculate averaged products of observables in two copies of the CFT. The

example of the double 4-point function, G1234G′1234 was sketched above; this CFT calculation

is done in detail in section 3.1, and extended to general 2-copy observables in section 3.2,
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with a few more examples in section 3.3, including sphere n-point functions, torus 1-point

functions, and genus-2 partition functions. For a class of 2-boundary observables (but not

for other cases) both the CFT calculation and the gravity calculation lead to an answer

expressed in terms of two copies of the Liouville CFT.

In sections 4 through 8, we construct various wormholes and other solutions on the gravity

side, and compare them to the CFT ensemble. The examples that we check quantitatively

are:

• Single-boundary, handlebody solutions with or without defects (sections 2 and 8).

These solutions have been considered previously and matched to CFT identity blocks.

We will show that they are also compatible with the large-c ensemble, and that in fact,

this interpretation has some advantages because it automatically satisfies crossing.

• All 2-boundary wormholes with the topology Σg,n × Interval, for any genus g and

collection of n defects, with different (or equal) moduli on the two boundaries. The

case of equal moduli is the Fuchsian wormhole of Maldacena and Maoz [5] (section 4);

the general case is referred to as the quasi-Fuchsian wormhole (section 5).

• Single-boundary wormholes with defects propagating through a handle. These are

reinterpreted as random couplings in the bulk effective theory, realizing the Coleman-

Giddings-Strominger mechanism (section 6).

• Zk-symmetric, k-boundary wormholes. In this case we do the CFT calculation for any

k, but only compare to gravity for k analytically continued near 2 (section 7).

In all of these cases the classical gravity action is matched to the CFT ensemble. Graviton 1-

loop corrections are also matched to CFT for the smooth quasi-Fuchsian wormholes (section

9).

2 The CFT ensemble

In this section we describe our ensemble as an average over approximate solutions to the

crossing equations in the semiclassical limit.

Before doing so, we briefly establish some notation that will be used throughout the

paper. The approximation symbols ∼ and ≈ are used with the precise meanings

X ∼ Y ⇒ lim
c→∞

X

Y
= 1 (2.1)

X ≈ Y ⇒ lim
c→∞

logX

log Y
= 1 ,
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with conformal weights scaling as h ∼ c in the large-c limit. Thus ‘≈’ means the classical

actions agree, and ‘∼’ means both the classical actions and the 1-loop corrections agree.

Chiral conformal weights are denoted by (h, h̄), with total scaling dimension ∆ = h + h̄

and spin ` = h− h̄. We will sometimes adopt the Liouville parameterization

h =
c− 1

24
+ P 2 (2.2)

that appears naturally in Virasoro representation theory. See appendix A for more details.

The semiclassical limit is c→∞ with h/c and h̄/c held fixed. In this limit we parameterize

the weights by η or γ, with

h =
c

6
η(1− η) =

c

24
(1 + γ2) , η =

1

2
(1 + iγ) . (2.3)

The black hole threshold in the large-c limit corresponds to η = 1
2 . Below the threshold, η is

real and falls in the range [0, 1
2 ] (although, for reasons we will discuss shortly, we will often

restrict η to [1
4 ,

1
2 ]). Above the threshold, γ ∈ R.

2.1 Definition of the ensemble

As described in the introduction, we fix the central charge c� 1 and average over an ensemble

of CFT data defined in terms of its leading order spectrum of primary operators and OPE

coefficients in the semiclassical limit. We will assume the theory has no symmetries beyond

conformal invariance. If there are additional symmetries then the ensemble must be modified

accordingly.

Spectrum of primaries

We assume the CFT consists of:

• A unique normalizable vacuum state.

• A finite, discrete list of ‘defect’ scalars with dimensions below the black hole threshold,

1� h < c−1
24 .

• Multi-twist operators built from these.

• A continuous spectrum of ‘black hole’ states with Cardy density of states, ρ0(h)ρ0(h̄),

for h, h̄ ≥ c−1
24 .

We will often make the further assumption that the defect states are all sufficiently heavy such

that they do not form additional discrete, infinite towers of multitwist composite primaries.

Pairs of defects with η1 + η2 < 1
2 have multitrace composites. If there are no primary

operators in the spectrum with h < c−1
32 , i.e. with η < 1

4 , then the spectrum contains
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no multitrace composites. In the bulk, operators with η = 1
4 are dual to particles that

backreact on the geometry to produce conical deficits with defect angle π, which is why they

cannot form multiparticle states without becoming a black hole [59]. Restricting to heavy

defects simplifies the CFT analysis, and in some cases, it is necessary in order for averaged

observables to receive contributions from real wormhole saddlepoints in the bulk.

Note that although the density of states above the black hole threshold in the ensemble

is assumed to be continuous, we have defined an ensemble of compact solutions to the cross-

ing equations in the sense that the vacuum state gives a normalizable contribution (with

coefficient one) to observables such as correlation functions and partition functions. This

distinguishes ensemble-averaged CFT spectra from noncompact solutions to the crossing

equations (such as the Liouville CFT or sigma models with noncompact target spaces) in

which the density of states is continuous and the identity operator and its descendants are

not exchanged in intermediate channels of CFT observables. Indeed, the Virasoro vacuum

block that encapsulates the contribution of the identity operator and its descendants to CFT

observables will play an important role in what follows.

OPE coefficients

Our ensemble is defined by treating the OPE coefficients of primary operators as Gaussian

random variables with zero mean and variance given by the universal asymptotic formula for

squared structure constants. For distinct operators, to leading order at large c,4

|cijk|2 = C0(hi, hj , hk)C0(h̄i, h̄j , h̄k) . (2.4)

In a general CFT, this equation is universal for heavy operators [43], with the average in-

terpreted in the microcanonical sense. In our ensemble, it is assumed to hold whenever one

of the operators is above the black hole threshold, and also whenever all three operators are

below the threshold provided that their dimensions are large enough. Specifically, if all three

are below threshold but heavy enough to support a 3-defect wormhole, then (2.4) applies;

this requires

ηi + ηj + ηk > 1 , (2.5)

4The absolute value on cijk is a true absolute value in this equation and throughout the paper,
|cijk|2 := cijkc

∗
ijk with ∗ the complex conjugate. In expressions involving weights, the absolute value symbol

is to be interpreted in the standard CFT convention, e.g. |C0(hi, hj , hk)|2 := C0(hi, hj , hk)C0(h̄i, h̄j , h̄k) 6=
C0(hi, hj , hk)C0(hi, hj , hk)∗ and |F(h, x)|2 = F(h, x)F̄(h̄, x̄).
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or equivalently, √
1− 24hi

c
+

√
1− 24hj

c
+

√
1− 24hk

c
< 1 . (2.6)

Following the standard conventions of 2d CFT, cijk is real (imaginary) if `i + `j + `k is even

(odd), and the OPE coefficients are conjugated under permutations, cijk = c∗ikj . Therefore

the Gaussian contraction is

cijkc
∗
lmn = C0(hi, hj , hk)C0(h̄i, h̄j , h̄k)

(
δilδjmδkn + (−1)`i+`j+`kδilδjnδkm + 4 more terms

)
,

(2.7)

where i, j, k label primary operators. We will not consider observables that involve OPE

coefficients of multitrace operators or three light operators violating (2.5), so whenever C0

appears in this paper, this condition is assumed.

The universal OPE function C0 [43] is simply related to the DOZZ [74, 75] structure

constants of Liouville CFT. It is given by

C0(h1, h2, h3) :=
ĈDOZZ(P1, P2, P3)√∏

k∈heavy ρ0(Pk)
, (2.8)

where “heavy” refers to the weights above the black hole threshold (which will appear in

what follows only as internal operators in OPE decompositions of CFT observables), ĈDOZZ

is the standard definition of the structure constants in the Liouville CFT5 up to a choice of

normalization for the operators, and ρ0 is the Cardy density of states defined more precisely

below in (2.11). A brief review of the Liouville CFT and of our conventions is contained in

appendix A.6

We pause to emphasize that this data does not define a true CFT. It does, however, define

an ensemble of CFT data that one can use to perform meaningful computations of averaged

CFT observables. The spectrum is designed to reflect the essential features of semiclassical

3D gravity — large c and a sparse spectrum of low-dimension operators — and to obey

certain bootstrap constraints. The Cardy spectrum ensures the torus partition function is

approximately modular invariant in the semiclassical limit. As we will review shortly, the

5For sufficiently light defects, with η < 1
4
, there are extra contributions from analytic continuation discussed

in appendix A.
6We are normalizing sub-threshold and above-threshold Liouville operators slightly differently, for reasons

explained in the appendix. This is why the denominator in (2.8) only has heavy-operator Cardy factors; the
Cardy factors for sub-threshold operators, which are O(1), have been absorbed into the normalization. None
of this affects the final answers but this choice of normalization makes for an easier comparison to gravity.
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OPE coefficients are designed to ensure that certain bootstrap conditions on the sphere 4-

point functions, torus 2-point functions, and genus-2 partition function are also satisfied

approximately. Other bootstrap constraints, with more insertions or higher genus, are also

satisfied to leading order. Indeed, we will shortly see that these two characterizations —

that the CFT data capture essential aspects of semiclassical 3D gravity and satisfy bootstrap

constraints approximately in the semiclassical limit — are two sides of the same coin.

Note that although Liouville CFT will appear throughout the paper, our ensemble is

certainly not Liouville,7 and semiclassical 3D gravity is emphatically not dual to Liouville

theory. Liouville quantities are to be regarded only as auxiliary tools to calculate certain

averaged observables, such as |c2
ijk|, in which cijk is the OPE coefficient in the dual CFT.

The definition of the ensemble in terms of C0 and ρ0 is only accurate to leading order in

the semiclassical expansion. This is roughly analogous to specifying the spectral curve of a

random matrix theory in terms of its genus-zero density of states. In particular, there must

be non-Gaussianities in the OPE coefficients at subleading orders due to interactions and

the crossing equations [44,79]. For the most part we consider only the leading terms, but we

will touch on these corrections briefly in section 6.5.

The way we have defined the ensemble implicitly restricts to a distinguished region in

Teichmüller space. For example, in the density of states we have included only the vacuum

and its S-transform. It would be natural to define an enhanced ensemble where the density of

states is obtained by summing the vacuum over all of its SL(2,Z) images, as in [26,80]. The

corrections obtained in this way are exponentially subleading when we restrict τ to lie within

the usual fundamental domain or its image under τ → − 1
τ , but can be dominant for other

values of the moduli.8 In this paper we will be modest, and consider only the S-invariant

ensemble, which will be sufficient to reproduce semi-classical gravity in this region of moduli

space. While we could certainly consider the fully SL(2,Z) invariant density of states, it is

rather more difficult to study the analogous ensemble of OPE coefficients defined by a sum

over images. This is technically challenging, and in any case our entire analysis is saddle-by-

saddle, so it simpler to work with the ensemble defined above with the understanding that

we are restricting to a limited range of moduli. To obtain the dominant contribution for

7To name a few obvious differences: the averaged density of states is given by the Cardy spectrum rather
than the Liouville density of states (which is flat in the Liouville momentum P ), the ensemble contains
primaries of all spins (indeed the leading semiclassical spectrum does not even see quantization of the spin
above the black hole threshold) rather than just scalars, and the identity operator defines a normalizable
vacuum state. On the other hand there is a long history of connections between Liouville and 3D gravity
starting with [76]; see e.g. [77,78] for a recent perspective.

8Similarly, we have also included only the Cardy density of states and not contributions from the S-
transform of the defect states; including such states would lead to corrections which are exponentially sup-
pressed everywhere in moduli space. These can be important when analyzing detailed features of the spectrum,
as in [81,82], but are invisible semi-classically.
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other values of the moduli, we would just need to work in the appropriate OPE channel. A

related fact is that the ensemble as we defined it has continuous, non-integer spins; this is

invisible at leading order, but important at subleading orders. Perhaps it can be cured by

adding subleading channels.

2.2 ρ0 and C0 as crossing kernels

The Cardy formula for the asymptotic density of states can be viewed as the crossing kernel

that expresses the Virasoro vacuum character in a complete basis of characters in the cross-

channel,

χ0

(
−1

τ

)
=

∫ ∞
(c−1)/24

dh ρ0(h)χh(τ) =

∫
R

dP

2
ρ0(P )χ c−1

24
+P 2(τ) , (2.9)

where χh is the non-degenerate Virasoro character, and we define

ρ0(h)dh = ρ0(P )dP . (2.10)

The exact kernel is given by

ρ0(P ) = 4
√

2 sinh(2πP/b) sinh(2πPb) , (2.11)

where c = 1 + 6(b + b−1)2. The exponential dependence in the semiclassical approximation

is the usual Cardy formula,

log ρ0(P ) ∼ πcγ

6
, (2.12)

with γ defined in (2.3). Note that the Cardy factors appearing in (2.8) are ρ0(P ), which

differs from ρ0(h) by a measure factor dh
dP .

Choosing the density of states to be ρ0(h)ρ0(h̄) ensures that our ensemble is approximately

modular invariant. It is only approximate because we have not included any corrections to

the heavy spectrum from the sub-threshold operators, and because the Cardy formula does

not impose integrality of spins, so it does not exactly obey Z(τ, τ̄) = Z(τ + 1, τ̄ + 1).

The origin of C0 is similar. The universal OPE formula quoted in the introduction holds in

any CFT in the sense of an asymptotic microcanonical average, provided at least one operator

is taken to be heavy. It is derived by solving certain bootstrap equations asymptotically in

various OPE limits. Since we are assuming that the OPE formula holds for all states, our

ensemble satisfies these bootstrap equations for all values of the moduli and cross ratios, at

leading order in the large-c limit. In other words, we can use C0 to solve crossing either in
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h

Figure 3: C0 is the crossing kernel for the identity operator. This equation
also applies to subdiagrams inside more complicated blocks.

the OPE limit or the large-c limit, and here we are choosing to do the latter. This parallels

the fact that the Cardy formula generally holds only at very high energies compared to the

central charge, but in holographic CFTs, it holds to leading order in c for all energies above

the black hole threshold [29]. It is likely that the universal formula for OPE coefficients

similarly enjoys an extended regime of validity in holographic CFTs with certain conditions

on the light spectrum, but we will not endeavor to quantify the most general set of such

conditions (nor the precise sense in which the regime of validity is extended) here. See

however [55, 56], which explore conditions needed for an extended range of applicability of

the universal OPE formula in slightly different contexts (in particular with some subset of

the operators kept light in the semiclassical limit).

The defining property of C0 is that it reproduces the identity Virasoro block in the dual

channel. That is,∫ ∞
(c−1)/24

dh ρ0(h)C0(h1, h2, h)F1221(h;x) = F1122(1; 1− x) , (2.13)

where F1234(h, x) is the chiral Virasoro conformal block on the sphere, with cross-ratio x

and points ordered as O1(0)O2(x, x̄)O3(1)O4(∞). See fig. 3. The right-hand side of (2.13) is

the 4-point identity block. The formula only holds literally for sufficiently heavy operators;

in the semiclassical limit, the restriction is η1 + η2 >
1
2 . Otherwise there are are additional

contributions from sub-threshold S-channel conformal blocks that must be included on the

left-hand side of (2.13).

The same relation applies to internal legs of more complicated conformal blocks. For
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example, for 2-point Virasoro blocks on the torus we have

∫ ∞
c−1
24

dh2dh3 ρ0(h2)ρ0(h3)C0(h1, h2, h3)
1

2

3

1
−1/τ =

1

1

1 1

τ

(2.14)

by combining a modular S-transformation with the crossing move in figure 3. For the genus-2

partition function,

∫ ∞
c−1
24

dh1dh2dh3 ρ0(h1)ρ0(h2)ρ0(h3)C0(h1, h2, h3)

1

2

3

=

1

1

1

, (2.15)

where we have combined modular transformations on each torus factor with the fusion move

in figure 3. All three of these equations are exact statements about the decompositions of

Virasoro vacuum blocks at any value of the central charge, but in this work we will only

make use of the semiclassical limits. The semiclassical limit of the OPE function C0 is given

by the following, where we take hi = c
6ηi(1− ηi):

logC0(h1, h2, h3) ≈ c

6

[ 3∑
i=1

F (2ηi)− F (η1 + η2 + η3 − 1)− (F (η1 + η2 − η3) + (2 permutations))

+ F (0) + 2 (η1 + η2 + η3 − 1) +

3∑
i=1

(1− 2ηi) log(1− 2ηi)

]
+O(c0),

(2.16)

where

F (x) :=

∫ x

1
2

dy log

(
Γ(y)

Γ(1− y)

)
. (2.17)

It is instructive to compare the crossing integrals to the spectral integrals that appear

in the calculations of observables in the Liouville CFT. For example, in terms of the DOZZ

structure constant, the left-hand side of (2.13) is proportional to∫
R
dP
√
ρ0(P )ĈDOZZ(P1, P2, P )F1221(hP ;x) . (2.18)
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The factor of
√
ρ0 is crucial. Without this factor, for real x in the semiclassical limit this

integral would have the same saddlepoint as a Liouville 4-point function (see (A.16)). The

extra factor of
√
ρ0 shifts the saddlepoint so that instead of producing a Liouville correlator,

it gives a Virasoro identity block.

2.3 Crossing in the large-c ensemble

Let us now consider observables in our ensemble. Consider the 4-point function of sub-

threshold CFT operators, identical in pairs. The conformal block expansion is

G4 := 〈O1(0)O2(x, x̄)O2(1)O1(∞)〉 =
∑
p

|c12p|2|F1221(hp;x)|2 . (2.19)

The ensemble average is therefore

G4 =
∑
p

|c2
12p||F1221(hp;x)|2 (2.20)

≈

∣∣∣∣∣
∫ ∞
c−1
24

dh ρ0(h)C0(h1, h2, h)F1221(h;x)

∣∣∣∣∣
2

(2.21)

We have used the definition of the ensemble to rewrite the sum over black hole states as an

integral,

∑
p|hp≥ c−1

24

→
∫ ∞
c−1
24

dhdh̄ ρ0(h)ρ0(h̄) , (2.22)

and to evaluate |c2
12p|. There are also contributions to (2.20) from sub-threshold states in the

sum, but they are subleading. (They will be discussed in section 6). Using the C0 crossing

relation (2.13), the averaged correlator is therefore an identity block:

G4(x, x̄) ≈ |F1122(1; 1− x)|2 . (2.23)

In the first step of this calculation (2.19) we expanded in the OPE channel 12→ p→ 12.

Instead, we can expand in the channel 11 → p → 22. In this case we immediately get

the Virasoro identity block, because c11pc22p = 0 unless p is the identity (we are assuming

O1 6= O2).

The conclusion is that the ensemble has a crossing-invariant 4-point function to leading
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order in the semiclassical limit.9

The identity block is exactly what is expected from 3D gravity. It matches the saddlepoint

with two non-interacting conical defects in AdS3 [27, 32],

G4 = =

∣∣∣∣ 1
∣∣∣∣2 . (2.24)

This fact is not new, and does not require an ensemble interpretation. We would obtain the

same approximate 4-point function if we just assumed that the structure constants |cijk|2 are

well-approximated by the universal OPE formula, with microcanonical rather than ensemble

averaging. The point is that the gravity result is also compatible with the ensemble, and when

we consider non-factorizing saddles with multiple boundaries, the ensemble interpretation

becomes important.

Similar comments apply to torus 2-point functions and the genus-2 partition function.

For example, the averaged genus-2 partition function calculated in the sunset channel agrees

with the calculation in the dumbbell channel:

Zg=2 =
∑
p,q,r

|c2
pqr|

∣∣∣∣∣∣∣∣
p

q

r

∣∣∣∣∣∣∣∣
2

=
∑
p,q,r

cppqcrrq

∣∣∣∣∣∣∣∣∣∣∣
p

q

r

∣∣∣∣∣∣∣∣∣∣∣

2

(2.25)

and to leading order, these can be recast as a sum over identity blocks in different channels.

The ensemble average of the torus 2-point function reproduces the action of a conical defect

in the BTZ black hole, and the average genus-2 partition function matches the gravitational

contribution of a genus-2 handlebody. We will expand on this in section 8.

9 More precisely, our ensemble is crossing invariant at leading order in c as long as we restrict x to be
sufficiently close to the unit interval 0 < x < 1. Just as with our earlier discussion, the four point function will
not satisfy other bootstrap constraints which become important elsewhere in the complex x plane. Consider,
for example, a cross-ratio with Re x > 1. The conformal blocks can be calculated by analytically continuing
from x < 1 through the upper or lower complex plane, and the two answers do not agree. Thus the identity
block is not unique; it has ambiguities from branch cuts in Euclidean signature. On the gravity side, this
reflects the existence of two distinct saddlepoints that differ by braiding the two conical defects [35]. This leads
to subleading corrections to the ensemble of OPE coefficients. We will not need to consider these corrections
here, because we only consider one saddlepoint at a time. It would be interesting to consider a more refined
ensemble which is invariant under the full set of crossing symmetries; the resulting four point function would
presumably take the form of a modular sum, as in [39].
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3 Two-copy observables in the CFT ensemble

In this section we calculate averaged products of observables in two copies of the CFT.

These will match wormhole contributions on the gravity side. We start with the product of

4-point functions, which illustrates the main features. We then describe the result for general

observables, and sketch a few other examples.

3.1 4-point functions

Consider the product of two defect 4-point functions,

G1234G
′
1234 := 〈O1(0)O2(x, x̄)O3(1)O4(∞)〉〈O1(0)O2(x′, x̄′)O3(1)O4(∞)〉 (3.1)

with the four operators distinct. This is the example sketched in the introduction (section

1.1); we will now discuss the details of the CFT calculation. In a fixed CFT, obviously the

two terms factorize, but after averaging they are correlated. By expanding both correlators

in the 12→ p→ 34 OPE channel and taking the average, we find

G1234G′1234 =
∑
p,q

c12pc34pc12qc34q

∣∣F1234(hp;x)F1234(hq;x
′)
∣∣2 (3.2)

=
∑
p

|c2
12p| |c2

34p|
∣∣F1234(hp;x)F1234(hp;x

′)
∣∣2 (3.3)

≈
∣∣∣∣∫ dhρ0(h)C0(h1, h2, h)C0(h3, h4, h)F1234(h;x)F1234(h;x′)

∣∣∣∣2 , (3.4)

where we have dropped the subleading contribution from sub-threshold states in the interme-

diate channel (see section 6 for a discussion of these corrections). We also used the fact that

the external operators are scalars to remove a factor of (−1)
∑
i `i that arises when permuting

indices to write the OPE coefficients as absolute values. Now we rewrite C0 in terms of the

DOZZ formula using (2.8), and change the integration variable h → P using (2.10). This

gives

G1234G′1234 ≈
∣∣∣∣12
∫

R
dP ĈDOZZ(P1, P2, P )ĈDOZZ(P3, P4, P )F1234(hP ;x)F1234(hP ;x′)

∣∣∣∣2 (3.5)

All of the factors of ρ0 have cancelled, and the quantity inside the |·|2 is manifestly a Liouville

correlation function (see (A.16)). Note, however, that the P integral pairs x↔ x′ and the P̄

integral pairs x̄↔ x̄′. Therefore we find

G1234(x, x̄)G1234(x′, x̄′) ≈ GL1234(x, x′)GL1234(x̄′, x̄) , (3.6)
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where GL1234 is the Liouville 4-point function.10 The weights in the Liouville correlator are

identical to the weights in the averaged CFT correlator, but the cross-ratios on the two sides

are paired differently. It is an important fact – and one which will arise in a variety of settings

– that the average of the square of an observable is a product of Liouville observables, but

with cross-ratios and moduli permuted as in (3.6). We note that (3.6) is invariant under

crossing transformations that act simultaneously on (x, x̄) and (x′, x̄′).

Interestingly, even when the CFT kinematics are Euclidean, the Liouville kinematics can

be effectively Lorentzian, because the two arguments of GL(x, x′) are not complex conju-

gates. This means that the Liouville correlation function has branch cuts at kinematics

where no such branch cuts are allowed in the exact CFT. These branch cuts have a natural

interpretation as coming from the braiding of conical defects on the gravity side. From a

CFT point of view they reflect the fact that the ensemble must have subleading corrections

that become important when the branch cuts come into play, as in the discussion of footnote

9. These corrections can perhaps be included by summing over saddles, but there could also

be off-shell topologies that are important.

3.2 General 2-copy observables

This result immediately generalizes to any product of CFT observables of the form

G(σ, σ̄; Ω, Ω̄)G(σ′, σ̄′; Ω′, Ω̄′) , (3.7)

where G(σ, σ̄; Ω, Ω̄) is a CFT n-point correlation function of sub-threshold operators on a

Riemann surface with period matrix Ω. The operator insertion points are denoted collectively

by

σ = (x1, x2, x3, . . . ), σ̄ = (x̄1, x̄2, x̄3, . . . ) . (3.8)

We first expand both observables in the same OPE channel, then take the average. The

average of a product of many OPE coefficients is calculated by Wick contractions. There is

one particular contraction, call it the ‘paired’ term, that sets all of the internal weights equal

in the two copies. This term is therefore a sum of correlated conformal blocks. Schematically,

10We write all Liouville observables with the ‘hatted’ normalization of external operators; see the discussion
in appendix A.1.
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it leads to an expression like

GG′|paired =
∑

(|c2
pqr| |c2

rst| |c2
tuv| · · · )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r s

u v

t

p

q

(σ)

r s

u v

t

p

q

(σ′)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

(3.9)

where we have drawn just one internal piece of the conformal blocks appropriate to an n-

point function on a genus-g Riemann surface. Next we replace each sum by an integral over

the Cardy spectrum and plug in the OPE formula. All of the ρ0 factors cancel between the

density of states and C0, so we are left with a product of Liouville observables,

G(σ, σ̄; Ω, Ω̄)G(σ′, σ̄′; Ω′, Ω̄′)|paired = GL(σ, σ′; Ω,−Ω′)GL(σ̄′, σ̄;−Ω̄′, Ω̄) . (3.10)

Both the positions and the period matrices are mixed up on the right-hand side: the first

Liouville factor accounts for left-movers in both copies of the CFT and the second accounts

for all the right-movers.

The other contributions to GG′ that are important in the semiclassical limit come from

other Wick contractions of the OPE coefficients. For example, the product of two genus-2

partition functions Zg=2Zg=2 has a factorizing Wick contraction that produces Zg=2 Zg=2.

There can also be partially-connected Wick contractions, where some contractions occur

within a single copy and others connect the copies, and there are contributions from the

additional contractions in (2.7) when some of the intermediate operators are identical, some

of which are discussed in the examples below.

If there are identical external operators inserted in G, then an additional complication

is that there are different ways to pair the operators in G with the operators in G′. Each

such pairing leads to a product of Liouville correlators, and each of these will come from a

different bulk saddle.

We can also consider products of observables that are different on the two sides, such

as the product of a 4-point function and a 6-point function. It is straightforward to do the

ensemble CFT calculation. It is always possible to write the answer as integrals of products

of ρ0’s, ĈDOZZ’s, and conformal blocks, but generally the factors of ρ0 do not cancel so the

result cannot be rewritten as Liouville observables. We will see examples like this below.
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Similarly, for observables with a number of replicas other than two, the computation in the

CFT ensemble will generally not lead to a cancellation of the factors of ρ0 and so the result

cannot be rewritten in terms of a product of observables in the Liouville CFT. For instance,

k-copy products of correlation functions are considered in section 7, and we will see in section

8 that the ensemble-averaged one-copy observables are given by a suitable Virasoro vacuum

block to leading order in the semiclassical limit.

3.3 Explicit examples of two-copy observables

We have argued that the connected part of the average of two-copy observables in our CFT

ensemble is given by a product of corresponding observables in Liouville CFT that couple

the left- (and right-)movers on each boundary. Here we will consider a few more examples

in explicit detail.

3.3.1 Sphere n-point functions

We will start by considering the ensemble average of the product of two sphere n-point

functions of distinct defects

G1···n(xi, x̄i)G1···n(x′i, x̄
′
i) := 〈O1(x1, x̄1) · · · On(xn, x̄n)〉〈O1(x′1, x̄

′
1) · · · On(x′n, x̄

′
n)〉. (3.11)

We expand each correlator in the comb channel, for which we represent the conformal blocks

pictorially as11

Fcomb
12···n(hpi ;xi) =

. . .1

2 3 n− 2 n− 1

n
p1 p2 pn−4 pn−3

(3.12)

11Here and in what follows we use numbers to label external primaries and pi to label internal operators.
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Performing the Gaussian ensemble average leads to12,13

G1···n(xi, x̄i)G1···n(x′i, x̄
′
i)

=
∑

p1,...,pn−3

|c2
12p1
| |c2

p13p2
| · · · |c2

pn−4(n−2)pn−3
| |c2

pn−3(n−1)(n)|
∣∣∣Fcomb

12···n(hpi ;xi)Fcomb
12···n(hpi ;x

′
i)
∣∣∣2

≈

∣∣∣∣∣
∫ ∞
c−1
24

dhp1ρ0(hp1) · · · dhpn−3ρ0(hpn−3)C0(h1, h2, hp1)C0(hp1 , h3, hp2) · · ·C0(hpn−3 , hn−1, hn)

×Fcomb
12···n(hpi ;xi)Fcomb

12···n(hpi ;x
′
i)

∣∣∣∣∣
2

.

(3.13)

As before, the contributions of exchanges from intermediate defect states are suppressed in

the semiclassical limit and the ensemble average pairs the dependence on the positions xi

with their counterparts x′i (and likewise for x̄i and x̄′i). Assembling the factors of ρ0 and

C0, the average can then be re-expressed as a product of sphere n-point correlators in the

Liouville CFT

G1···n(xi, x̄i)G1···n(x′i, x̄
′
i) = GL1···n(xi, x

′
i)G

L
1···n(x̄′i, x̄i). (3.14)

3.3.2 Thermal one-point functions

The discussion extends to two-copy observables with higher-genus boundaries. As a simple

first example, consider the product of torus one-point functions of an external sub-threshold

(scalar) defect operator O1,

G1(τ, τ̄)G1(τ ′, τ̄ ′) = 〈O1〉T 2(τ,τ̄)〈O1〉T 2(τ ′,τ̄ ′). (3.15)

The averaged product is given by the following in the CFT ensemble

G1(τ, τ̄)G1(τ ′, τ̄ ′) =
∑
p

c2
1ppF

g=1
1 (hp; τ)Fg=1

1 (hp; τ
′)Fg=1

1 (h̄p; τ̄)Fg=1
1 (h̄p; τ̄

′)

≈ 2

∣∣∣∣∫ dhp ρ0(hp)C0(h1, hp, hp)Fg=1
1 (hp; τ)Fg=1

1 (hp;−τ ′)
∣∣∣∣2

= 2

∣∣∣∣∫
R

dP

2
ĈDOZZ(P1, P, P )Fg=1

1 (hp; τ)Fg=1
1 (hp;−τ ′)

∣∣∣∣2 .
(3.16)

12We have implicitly assumed that the n external operators are distinct defects. As previously discussed, in
the case that some of the defects are identical there would be additional contractions that would contribute.
In the case that the operators are pairwise identical this includes fully disconnected contributions.

13Our convention throughout the paper is to include the complete position dependence in the blocks F .
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The overall factor of 2 comes from the two Wick contractions of c1ppc1qq. (Note that the

‘paired’ term in (3.10) was defined to include only one of these contractions.) In the bulk,

each of the two contractions in (3.16) is dual to a two-boundary wormhole whose boundaries

are tori with a single operator insertion. Thus the averaged product of torus one-point

functions is given by a product of one-point functions in Liouville theory in the semiclassical

limit,

G1(τ, τ̄)G1(τ ′, τ̄ ′) ≈ 2GL1 (τ,−τ ′)GL1 (−τ̄ ′, τ̄). (3.17)

The result is covariant under modular transformations that act simultaneously on τ and τ ′

τ 7→ γτ , τ ′ 7→ (MγM)τ ′, γ ∈ PSL(2,Z), M =

(
−1 0

0 1

)
. (3.18)

The need for the factors of M , which flip the sign of τ , in the modular transformation that

acts on τ ′ is due to the orientation reversal on that boundary so that the averaged product

(3.16) assembles into a product of Liouville correlators. In order to achieve a result fully

covariant under independent modular transformations acting on τ and τ ′, one would need to

sum (3.17) over relative modular transformations.

The general structure of this result is similar to the off-shell calculation of the double-torus

amplitude in 3D gravity by Cotler and Jensen [7].14

3.3.3 Genus-two partition functions

As our final example we consider the product of genus two-partition functions in the CFT

ensemble. The computation proceeds as in the previous examples. We consider the product

of genus-two partition functions, expanded in (for instance) the sunset channel (as in (8.13)),

and average according to the rules of the CFT ensemble. A novel feature compared to the

previously considered examples is the presence of a Wick contraction corresponding to a

purely disconnected contribution, the product of means Zg=2 Zg=2. The reason for this is

that unlike the previous examples, the ensemble average of the single-boundary observable is

14Cf. Z̃(τ1, τ2) defined in their equation (3.54). The result (3.17) and the double torus amplitude have the
same modular properties and similar spectral integrals. The double torus is a contribution to the product
of partition functions, i.e. 〈1〉T2〈1〉T2 , so it is tempting to try to continue h1 → 0 and compare the two
expressions quantitatively. However, this is a singular limit of the Liouville torus one-point correlator, as
ĈDOZZ(P1, P, P ) (equivalently C0(P1, P, P )) diverges in the limit that h1 is taken to zero, while the torus
one-point blocks simply reduce to the non-degenerate Virasoro characters in this limit. One may view this
as reflecting the fact that the torus partition function of Liouville theory gives a formally divergent volume
factor due to its noncompact spectrum of local primary operators.
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non-vanishing for the genus-two partition function.15 The paired contraction in the averaged

product of genus-two partition functions is

Zg=2(Ω,Ω)Zg=2(Ω′,Ω′)
∣∣∣
paired

=
∑

p1,p2,p3

(
|c2
p1p2p3

|
)2

paired

∣∣∣Fg=2
sunset(hpi ; Ω)Fg=2

sunset(hpi ; Ω′)
∣∣∣2

≈

∣∣∣∣∣
∫ ∞
c−1
24

(
3∏

k=1

dhpkρ0(hpk)

)
C0(hp1 , hp2 , hp3)2Fg=2

sunset(hpi ; Ω)Fg=2
sunset(hpi ;−Ω′)

∣∣∣∣∣
2

. (3.19)

All the factors of ρ0 combine with the factors of C0 to produce the product of genus-two

partition functions in the Liouville CFT

Zg=2(Ω,Ω)Zg=2(Ω′,Ω′)
∣∣∣
paired

≈ ZLg=2(Ω,−Ω′)ZLg=2(−Ω
′
,Ω). (3.20)

There are additional contractions in |c2
p1p2p3

|2 that lead to similar expressions, but with an

element of Sp(4,Z) acting on Ω′.

4 The Maldacena-Maoz Wormhole

In this section we consider classical wormhole solutions with two identical boundaries, where

it is easy to write down explicit bulk saddle points which solve the equations of motion.

These are the wormholes discussed in detail by Maldacena and Maoz [5], generalized slightly

to include conical defects. We will first explain the geometry of these manifolds, then turn

to the calculation of the action. This action will match the ensemble average of the products

of identical observables; non-identical observables, and the corresponding wormholes, will be

discussed in the next section.

4.1 Bulk theory

The action of 3D gravity coupled to massive point particles is

S = − 1

16πG

∫
M

√
g(R+ 2)− 1

8πG

∫ √
h(K − 1) +

∑
i

mi

∫
dli , (4.1)

15If the external defects are pairwise identical, then the sphere n-point functions can also have a non-trivial
ensemble average. We explicitly consider the cases of the averaged sphere six-point functions and higher-genus
partition functions in section 8.
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where the last integral is over the particle wordlines. There are some subtleties near the

particles to remove divergences that are addressed in section 4.3. The parameter mi, with

0 < mi <
1

4G , is referred to as the local mass of a particle; due to backreaction, it is not equal

to the physical ADM mass. The ADM mass of a particle, or equivalently the total scaling

dimension of the dual CFT operator, is

∆i = mi(1− 2Gmi) . (4.2)

Therefore with conformal weights parameterized as h = c
6η(1− η),

mi =
ηi
2G

. (4.3)

The point particles backreact on the geometry to produce conical defects of total angle

2π(1− 2ηi). The metric of the Maldacena-Maoz wormhole is

ds2 = dρ2 + cosh2 ρdΣ2 (4.4)

where dΣ2 is the constant negative curvature metric on a surface Σ, potentially with conical

defects at the locations of the particles. The boundary consists of two disjoint copies of Σ

at ρ → ±∞. It is easy to check that (4.4) solves the equations of motion, i.e. is locally H3

away from conical defects.

The two boundaries have the same moduli up to an orientation reversal, so denoting the

moduli of the left boundary by (λ, λ̄), these wormholes contribute to the average of

|G(λ, λ̄)|2 = G(λ, λ̄)G(λ̄, λ) (4.5)

in the dual CFT.

4.2 Quotient construction

In order to understand the geometry of this wormhole, let us consider as a warmup the

example where Σ is the upper half plane, with the usual hyperbolic metric

dΣ2 =
dy2 + dx2

y2
(4.6)

and y > 0. Making the change of coordinates

ỹ = y cos θ, w = y sin θ, θ ≡ cos−1 (tanhρ) (4.7)
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the wormhole (4.4) becomes

ds2 =
dw2 + dỹ2 + dx2

w2
. (4.8)

This is the usual hyperbolic metric on H3, represented as the upper half 3-space with w > 0.

This is not a surprise, but it is instructive: ρ has become an angular coordinate θ which

rotates around the axis y = 0. The full geometry can be thought of as the surface of rotation

about the y = 0 axis, with the boundaries at ρ = ±∞ now identified as the surfaces θ = 0, π

where w = 0. The boundary at w = 0 is the full (x, ỹ) plane, with ỹ > 0 the boundary at

ρ → ∞ and ỹ < 0 the boundary at ρ → −∞. In particular, when Σ = H2 our geometry is

not a wormhole at all: the boundary is indeed two copies of H2, but they have been glued

together to form a single copy of the plane at w = 0.16

This is a general feature of the Maldacena-Maoz wormhole: when Σ itself has a boundary

the geometry (4.4) only has a single boundary, since the boundaries of the two copies of Σ

at ρ → ±∞ get glued together to form a single connected geometry. It is only when Σ is

compact that the wormhole geometry (4.4) is a genuine wormhole with two disconnected

boundaries.

To see this, let us consider (4.4) where dΣ2 is the constant negative curvature metric

on a general Riemann surface Σ, allowing for conical singularities. It is a bit simpler to

discuss conical defects of finite order with total angle 2π/N, so we will consider this case

first, and generalize to continuous defect angles below. Such a negative curvature metric can

be obtained by identifying points on the upper half plane (4.6) by some discrete subgroup

Γ of the PSL(2,R) isometry group of H2. This PSL(2,R) isometry group acts in the usual

way by fractional linear transformations:

γ : z → γz ≡ az + b

cz + d
, γ =

(
a b

c d

)
∈ PSL(2,R) (4.9)

where z = x + iy is the coordinate on the upper half plane. The discrete subgroup Γ is

known as a Fuchsian group, and the representation of Σ as the quotient Σ = H2/Γ is known

as the Fuchsian model of the hyperbolic metric on Σ. Since H2 is simply connected, Γ is

isomorphic to the fundamental group π1(Σ), and Γ can be thought of as an embedding π1(Σ)

into PSL(2,R). Of course, for a given surface Σ there are many such embeddings, which

correspond to different choices of hyperbolic metric on Σ. Alternately, by the uniformization

theorem, they can be regarded as different choices of complex structure on Σ. One way to

think about this quotient is to chose a fundamental domain for the action of Γ on H2, and to

regard Σ as this fundamental domain with its sides glued together by the action of some of

the elements of Γ. Since isometries map geodesics to geodesics, we can take the boundary of

16Of course, the boundary is actually a sphere once we add the point at infinity.
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the fundamental domain to be a collection of geodesics in H2. In other words, the boundary

of the fundamental domain will be a collection of arcs of circles which intersect the boundary

y = 0 transversely.

We can now embed this in H3 to obtain a picture of our Euclidean wormhole. The

wormhole is now interpreted as the quotient H3/Γ, where the same Fuchsian group Γ is

interpreted as a subgroup of the SL(2,C) isometry group of H3. Of course it is a very special

kind of subgroup, since it sits inside a PSL(2,R) subgroup of the full isometry group.17 We

can think of the full geometry as obtained by starting with the boundary at θ = 0 and

rotating about the y = 0 axis until we reach the other boundary at θ = π. Just as above,

our wormhole can be thought of as a fundamental domain in H3 with its sides identified by

the action of Γ. The fundamental domain is obtained by rotating the original fundamental

domain about the y = 0 axis. The action of Γ now identifies geodesic surfaces with geodesic

surfaces, i.e. it identifies hemispheres with hemispheres in H3. Our wormhole is obtained by

gluing together the sides of this fundamental domain in H3.

Some examples will help make this picture more clear. One is the case where we take

Γ = Z to be generated by a single element of PSL(2,R), say the element

γ =

(
q1/2 0

0 q−1/2

)
(4.10)

for some positive real q. This maps z → qz, so we can take our fundamental domain to

be the region between the two arcs |z| = 1 and |z| = q. In this case Σ = H2/Z is the

annulus, obtained by identifying the two arcs. The two boundaries of the annulus are line

segments (1, q) and (−1,−q) on the y = 0 axis, each of which is a circle because of the

identification z ∼ qz. The full wormhole is now the geometry H3/Z, which is obtained by

rotating this annulus about the y = 0 axis. The fundamental domain is the region between

the two hemispheres 1 ≤
√
w2 + ỹ2 + x2 < q, whose boundaries are identified under the

action of the group Γ which takes (w, ỹ, x) → q(w, ỹ, x). In this case the “wormhole” is not

really a wormhole at all: the boundary is the torus found by identifying z ∼ zq. We can put

this in a more familiar form by letting z = e2πiẑ, so that the identifications are the usual

identifications ẑ ∼ ẑ+ 1 ∼ ẑ+ τ of a torus with modular parameter τ = 1
2πi log(q). The bulk

is topologically a solid donut (a handlebody) that fills in this boundary. This handlebody has

a single non-contractible cycle with geodesic length log q. This geometry can be interpreted

17We will consider generalizations later, where Γ does not sit inside PSL(2,R).
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as either Thermal AdS or the Euclidean BTZ black hole.18

In both of the examples above Σ had a boundary, and as a result the corresponding

“wormhole” geometry was not a wormhole, but instead had a connected boundary. When

Σ is compact, however, the resulting wormhole has the topology of Σ× I, and its boundary

has two disconnected components. For example, we can realize a smooth genus 2 surface as

a quotient of the upper half plane in which the fundamental domain is an octagon and the

action of Γ identifies the opposite sides of this octagon together. This wormhole leads to a

connected contribution to the variance of the genus 2 partition function, |Zg=2|2.

In the above example the surface Σ was smooth, and as a result all of the elements of

Γ were hyperbolic.19 If we allow our group Γ to contain an elliptic element γ, then Σ will

no longer be smooth: it will have a singularity at the fixed point of γ. In particular, the

hyperbolic metric on H2 has a conical singularity, with total angle 2φ given by the formula

cosφ =
1

2
Tr (γ) . (4.11)

When Γ has a parabolic element γ, on the other hand, the surface Σ is smooth but non-

compact and the hyperbolic metric has a cusp at the fixed point of γ.

We emphasize that, although they are singular, these examples have an important phys-

ical interpretation: they are the geometries which arise when we have operator insertions

at the boundary. To see this, note that when Σ has singularities, the corresponding bulk

wormhole (4.4) will be singular as well. It has a dimension one orbifold singularity which

traces out a path through the bulk, connecting the two boundaries. This path is a geodesic,

and is the trajectory of a particle through the bulk. Indeed, this is just the usual situation

where a massive particle in AdS3 back-reacts on the metric to produce a conical singularity.

The endpoints of the geodesic on the two boundaries are the locations of operator insertions

which source this bulk particle. If we denote by ∆ the dimension of the operator inserted at

the boundary, then20

φ = π

√
1− 12∆

c
= π(1− 2η) . (4.12)

18We have taken τ to be purely imaginary because we wish to write our geometries in the form (4.4). One
can easily consider quotients with Re τ 6= 0, which are the Euclidean continuation of rotating black holes (or
thermal AdS with non-zero angular potential); in this case the action z → qz does not preserve the upper
half plane, but the quotient still leads to a bulk solution with the topology of a solid donut.

19Elements of PSL(2,R) are elliptic, parabolic, or hyperbolic depending on whether |Tr γ| is less than, equal
to, or greater than 2. An elliptic element has a single fixed point, which is in the interior of H2. A parabolic
element has a single fixed point on the boundary of H2. A hyperbolic element has a pair of fixed points on
the boundary of H2.

20Note that we have taken spinless particles here, for the same reason that we took q to be real above. It is
straightforward to generalize to spinning particles be considering more general types of elliptic elements, but
the resulting groups Γ will not preserve the upper half plane.
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Figure 4: A Maldacena-Maoz wormhole with genus g = 0 and n = 3 conical
defects. Left: The quotient H2/Γ and its reflection in the lower half-plane.
Right: The wormhole is the quotient H3/Γ. The shaded region is a hyper-
bolic triangle, and two copies of the triangle form the fundamental domain
for Γ acting on H2. The red curves are the conical defects.

A few comments are in order. First, this is an expression for the classical back-reaction of

a massive particle on our geometry, so can be trusted only at leading order in c. Second, if

the operator is too light (∆ � c) then it will not backreact on the geometry at all and one

would instead consider a particle moving in a fixed background. Third, the existence of a

constant negative curvature metric on Σ (and therefore of a Fuchsian group Γ) requires that

2g +
∑
i

(
1−

√
1− 12∆i

c

)
> 2 (4.13)

where g is the genus of the surface and the sum is over all conical defects.

When Σ has singularities, the corresponding wormholes contribute to the variance of

partition functions with operator insertions. For example, if we wish to compute the variance

of the three point function then we simply need to consider a wormhole geometry where Σ

is a sphere with three conical defects. An example of this is depicted in Fig 4. This shows

the geometry of the wormhole with two genus-0 boundaries and three conical defects, which

we write schematically as

. (4.14)
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It is instructive to work out this example in detail. We will consider the identification under

the action of the SL(2, R) group elements

γ1 =

(
cosφ1 − sinφ1

sinφ1 cosφ1

)
, γ2 =

(
cosφ2 e−α sinφ2

−eα sinφ2 cosφ2

)
(4.15)

The two generators γ1 and γ2 have fixed points at z = i and z = ie−α, which sit at the

boundary of the fundamental domain. Computing the trace of these generators, we see that

these lead to conical defects with angles φ1 and φ2, respectively. The product γ1γ2 also has

a fixed point, with corresponding total angle 2φ3 with

cosφ3 =
1

2
Tr (γ1γ2) = cosφ1 cosφ2 + coshα sinφ1 sinφ2 . (4.16)

This is a 3-parameter family of Fuchsian groups labelled by (φ1, φ2, α), and by varying these

parameters we can vary the dimensions of the operators inserted at the conical defects.21

In this discussion we have assumed that the elliptic elements γ1 and γ2 are of finite order,

so that they generate a discrete group. However this assumption was not really necessary.

The defect geometry makes sense for any positive real parameters (φ1, φ2, α) and thus for

continuous conformal dimensions, though it can no longer be expressed as H2/Γ.

This geometry contributes to the variance of the three point function 〈O1O2O3〉 where the

operators have dimensions ∆i given in terms of the φi by equation (4.12). This is therefore

an explicit geometry which contributes to the variance of the OPE coefficients. We need only

remember that the operators here are inserted at the points i, ie−α and z on the upper half

plane, where z is the unique solution of (γ1γ2)z = z22, whereas in the literature it is standard

to put the operators at 0, 1 and ∞ in the complex plane.

This leads to the interesting question: what would happen if we were to increase one (or

more) of the ∆i until its dimension is bigger than c
12? To begin, consider the example above

in the limit where φ2 → 0 so that ∆2 → c
12 . In doing so, we would like to keep φ1 and φ3

fixed. So from (4.16) we must take α → ∞ so that the fixed point of γ2 moves to the real

axis. In particular, as φ2 → 0 the generator γ2 becomes

γ2 →

(
1 0

2 cosφ1−cosφ3

sinφ1
1

)
(4.17)

which is a parabolic rather than an elliptic element of PSL(2,R). Its fixed point is the

21The only constraint is that coshα > 1, which means that the angles must satisfy the triangle inequality
cosφ3 > cos(φ1 − φ2).

22Recall that the PSL(2,R) element γ1γ2 acts on z by fractional linear transformation as in (4.9).
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(a) (b)

Figure 5: (a) Boundary of the Maldacena-Maoz wormhole with three defects,
in the limit where one operator is taken to the black hole threshold ∆2 → c

12 .
In this limit γ2 is parabolic and the defect approaches the boundary of H2. (b)
The boundary when γ1 is elliptic and γ2 is hyperbolic has only one connected
component, and there are only two defects. Thus the 3-defect Maldacena-
Maoz wormhole is related by analytic continuation to a geometry with the
topology of a ball and two defects.

origin z = 0, so Σ is now a sphere with two conical defects and a single parabolic cusp. The

boundary geometry is then that depicted in Figure 5a.23 In this case the wormhole has a

boundary which is two copies of Σ, but we see that – with respect to the hyperbolic geometry

of the bulk – the two copies of Σ are glued together at their cusps. This nongeneric situation

arises because a cusp is sourced by an operator with ∆ = c
12 , exactly the boundary between

“light” and “heavy” states.

We are then led to an important question: what happens if we try to go further, and

consider operators of higher dimension? For example, we can consider the same Fuchsian

group, but with φ2 = i`
2 where ` is real. According to equation (4.12), this would correspond

to an operator of dimension

∆2 =
c

12

(
1 +

(
`

2π

)2
)

(4.18)

which is now in the black hole regime. In order to keep the matrix γ2 real, we will take

23This family of Fuchsian groups includes a familiar example: when φ1 = π
2

and φ3 = π
3

the group is just

Γ = PSL(2,Z). The generators are γ1 = S =
(

0 −1
1 0

)
and γ2 = STS =

(
1 0
−1 1

)
, respectively, and the three

fixed points are the usual ones that lie on the boundary of (the S-transform of) the fundamental domain.
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α = β + πi
2 with β real. The generators are now

γ1 =

(
cosφ1 − sinφ1

sinφ1 cosφ1

)
, γ2 =

(
cosh `

2 e−β sinh `
2

eβ sinh `
2 cosh `

2

)
(4.19)

which are elliptic and hyperbolic, respectively. We wish to keep φ3 fixed, meaning that

the element γ1γ2 is still required to be elliptic, so the parameter β is determined just as in

equation (4.16):

sinhβ =
cosφ3 − cosφ1 cosh `

2

sinh `
2 sinφ1

(4.20)

The hyperbolic generator γ2 now has two fixed points on the real axis, at ±e−β.

The boundary of the resulting quotient is depicted in Fig 5b. The important conclusion

is that the surface H2/Γ now has the topology of a sphere with two singularities (conical

defects parameterized by φ1, φ3) and a single boundary, which is a circle. The full wormhole

geometry now has a single connected boundary rather than two disconnected boundaries;

the boundary is a single sphere with four defects. The parameter ` has the interpretation

of a geodesic length of a circle which separates the two pairs of operators, as measured with

the hyperbolic metric on the boundary. In the CFT language, it is related to the dimension

(according to (4.18)) of a heavy operator which propagates in the channel which separates

the two pairs of operators.

In order to compare with a more standard picture, the natural question is this: since the

quotient describes a sphere with four operators at four points, what is the cross ratio of those

four points? Unfortunately, there is no simple closed form expression for the cross ratio in

terms of the parameter `, although it is possible to describe it in a series expansion.

The important implication here is that wormholes and connected geometries are related

by the analytic continuation of operator dimensions as the go from “light” to “heavy”. When

all operators are light, the boundary is the disconnected union of two three-punctured spheres.

When one operator becomes heavy, the spheres are sewn together at one of the punctures,

and the boundary is a single four-punctured sphere. As other operators are taken to be

heavy, this procedure will continue. In particular, if an additional operator is taken to be

heavy we obtain the twice-punctured torus, and if all operators are taken to be heavy the

geometry is a single smooth surface of genus 2.

4.3 Action of the n-point wormhole

We will now calculate the action of the Maldacena-Maoz wormhole with genus zero and n

conical defects. Similar results can be found in [83–87], but subtleties involving the normal-

ization of the defect operators that are necessary for comparison to the dual CFT have not
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been treated carefully in the literature.

The metric is

ds2 = dρ2 + cosh2(ρ)eΦdzdz . (4.21)

The conical defects are at fixed z = zi, for i = 1 . . . n. The Einstein equations require eΦdzdz̄

to be hyperbolic, so Φ must satisfy the Liouville equation sourced by the conical defects,

∂∂Φ =
eΦ

2
− 4πG

∑
miδ

(2)(z − zi) (4.22)

where mi = ηi/(2G) is the local mass parameter appearing as the coefficient of the worldline

action of particle i. For this to have a real solution, we require n ≥ 3 and
∑
ηi > 1.

Let us calculate the on-shell action for this geometry,

S = Sbulk + Sbdry + Sdefect (4.23)

with the terms defined as24

Sbulk = − 1

16πG

∫
Γ×R

√
g(R+ 2)

Sbdry = − 1

8πG

(∫
Γ

√
h(K − 1) +

∑
i

∫
Di

√
hK

)
Sdefect =

∑
i

(
− 1

16πG

∫
Di×R

√
gR+mi

∫
dli

) (4.25)

where we define the regions, Γ = {|z − zi| > εi; |z| < R} and Di = {|z − zi| < εi}. The

behaviour of the Liouville field as we approach the boundaries of Γ is

Φ(z, z) ∼

−4ηi log(|z − zi|) z → zi

−4 log(|z|) z →∞
(4.26)

We eventually want to relate the gravitational action to correlators in the dual CFT

calculated with respect to a flat background metric. But in the present hyperbolic slicing,

with the boundaries at ρ → ±∞, the induced metric on a constant ρ surface near the

boundary is hyperbolic. Therefore we choose a z-dependent cutoff surface such that the

induced metric on the surface is flat to leading order in the cutoff parameter ε (outside small

24Because we are in a hyperbolic slicing, there is an additional GHY term from the boundary at |z| = R,
which contributes a term

− 1

8πG

∫ √
hK =

2

4G
(log(

2

ε
) + 2 logR) (4.24)

This will eventually be cancelled by the normalization so we will not keep track of it.
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disks excised around the defects),25

ρ0(z, z, ε) =

log(2
ε )−

Φ
2 |z − zi| > εi

log(2
ε ) + 2ηi log εi − Ci

2 |z − zi| < εi
(4.27)

where Ci are the constant (O(ε0i )) terms appearing in the expansion of the Liouville field

around the defect. Away from the defects, the induced metric on the cutoff surfaces ρ = ±ρ0

is

ds2
bdry ≈ (

1

ε2
+
eΦ

2
)dzdz +

1

4
(∂Φdz + ∂Φdz)2 , (4.28)

as ε → 0. Near the defects, we chose a different cutoff in (4.27) because otherwise the

constant-ρ0 surface would not be near the AdS boundary. With the cutoff in (4.27), the

boundary metric in the region Di is not flat. Since this region is taken to zero size at the

end, we can simply absorb this into the definition of the local operator dual to the defect.

4.3.1 Defect action

The contribution to the action from the region near a defect is

Sdefecti = − 1

16πG

∫
Di×R

√
gR+mi

∫
dli (4.29)

where recall Di = {|z− zi| < εi}. The matter stress tensor obtained by varying the worldline

action of the defect is

Tµν(yα) = −m
∫
ds
δ(3)(yσ − xσ(s))√

g(yσ)

dxµ

ds

dxν

ds
. (4.30)

For defects propagating along fixed z, we can do the integral over ρ, and the Einstein equation

near the defect reads

Gµν = −8πGminµnν
δ(2)(z − zi)√

h
(4.31)

where h denotes the determinant of the induced 2-metric on the fixed ρ slice and nµ is the

unit normal to the slice. Contracting both sides with the inverse metric,

√
hR = 16πGmiδ

(2)(z − zi) . (4.32)

25We choose a hierarchy between the cutoffs, ε
2(1−ηi)
i � ε � ε2ηii . The first inequality serves to suppress

the contribution from the GHY term evaluated inside the small disk enclosing the puncture. The second
inequality ensures that cutoff surfaces asymptote to ρ→ ±∞ close to the defects.
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Therefore the worldline action from the defect cancels the delta function in the curvature,

and as εi → 0,

Sdefecti = 0 . (4.33)

4.3.2 The unnormalised gravitational action

Away from the conical defect trajectories, R = −6 on-shell, so the bulk term is proportional

to the volume of the regularised manifold. This volume is quadratically divergent,26

Sbulk =
Vε

4πG
=

1

4πG

∫
Γ
d2z(

1

ε2
+ eΦ log(

2

ε
)− Φ

2
eΦ) (4.34)

We can similarly evaluate the boundary term which is proportional to the area of the two

cutoff surfaces and can be calculated using the induced metric. The extrinsic curvature is

K = 2 + 2ε2(∂∂Φ− eΦ

2 ) +O(ε3), so when the Liouville equation is satisfied, K = 2 +O(ε3).

Thus,

Sbdry = − Aε
8πG

= − 1

8πG

∫
Γ
d2z(

2

ε2
+ eΦ + ∂Φ∂Φ) (4.35)

Adding the bulk and boundary actions, the quadratic divergences cancel, leaving behind a

logarithmic divergence and terms independent of the cutoff,

Sbulk + Sbdry =− 1

4πG

∫
Γ
d2z(

1

2
∂Φ∂Φ +

eΦ

2
(1 + Φ + 2 log(

ε

2
)))

=
1

2πG

∫
Γ
d2z(

1

4
(∂Φ∂Φ + eΦ)− 1

2
∂(Φ∂Φ)− ∂∂Φ(1 + log(

ε

2
)))

(4.36)

To arrive at the last equality, we used the Liouville equation ∂∂Φ = eΦ

2 . The terms have also

been rearranged such that the first term is the 2d bulk part of the Liouville action, the second

term can be simplified using the divergence theorem and, using the Liouville equation, the

last term is proportional to the hyperbolic area of the boundary,
∫

Γ d
2zeΦ = 4π(

∑n
i=1 ηi−1).

Following [75], define the renormalized Liouville action by

SL =
1

4π

∫
Γ
d2z(∂Φ∂Φ + eΦ) + ΦR + 2 logR−

∑
(ηiΦi + 2η2

i log εi) (4.37)

where

Φi =
i

4πηi

∮
|z−zi|=εi

dzΦ∂Φ ΦR =
i

4π

∮
|z|=R

dzΦ∂Φ (4.38)

26
∫
d2z =

∫
dxdy
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are the boundary terms. The additional cutoff dependent terms are counter terms which

make the on-shell Liouville action finite. Using the Brown-Henneaux relation c = 3/(2G),

we can therefore express the on-shell action for the wormhole geometry as

S =
c

3

(
SL − 2 logR+ 2

∑
η2
i log εi − 2(1 + log(

ε

2
))(
∑

ηi − 1))
)

(4.39)

4.3.3 Renormalized action

The action (4.39) calculates the correlation function of unnormalized defect operators. We

can normalize it by adding counterterms for the defects. The counterterms are determined in

appendix B by calculating the defect 2-point functions. The result is that the renormalized

action of the n-point defect wormhole is

Swormhole = S +

n∑
i=1

Sct(ηi)− (n− 2)
c

3
log

R

ε
, (4.40)

where Sct is given in (B.19). The counterterms cancel all the cutoff dependence in S, and

the result can be expressed in terms of the Liouville action as

Swormhole =
c

3
SL −

c

6

n∑
i=1

s(ηi)−
c

3
(1− log 2)(n− 2) (4.41)

where

s(ηi) = 2(1− 2ηi)(log(1− 2ηi) + log 2− 1) (4.42)

is related to the semiclassical limit of the Liouville reflection amplitude, analytically continued

to the defect regime,

e−
c
6
s(η) ≈ S(P ) , (4.43)

with η ∼ 1
2 + iP

√
6
c . The reflection factors define the normalized Liouville operators (see

appendix A) so we find simply27

e−Swormhole ≈ |GL(zi, z̄i)|2 (4.44)

This agreement holds at the level of the classical action; in section 9 we will extend it to

include the 1-loop graviton correction.

27To compare the wormhole amplitude with the semiclassical limit of Liouville correlators, we scale the
Liouville cosmological constant in the semiclassical limit according to µ = 1

4πb2
. With this choice, the last

term in the wormhole action (4.41) can be interpreted in terms of the constant cb entering the normalisation
of Liouville vertex operators in (A.12) with its semiclassical limit given by (A.20).
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4.4 The three-point wormhole

We now specialise to the wormhole with three defects propagating. The on-shell Liouville

action for this case becomes the semiclassical limit of the DOZZ formula. The renormalized

wormhole action, calculated from (4.40), is

Swormhole =
(
(∆1 + ∆2 −∆3) log(|z12|2) + cyclic perm

)
− logC (4.45)

where the last term is

logC =
c

3

(∑
F (2ηi)− F (

∑
ηi − 1)− (F (η1 + η2 − η3) + cyc) + F (0)

+ 2(
∑

ηi − 1) +
∑

(1− 2ηi) log(1− 2ηi)

)
(4.46)

Here F (x) =
∫ x

1
2
dy log( Γ(y)

Γ(1−y)). Note that we are working in the regime: 0 < ηi <
1
2 and

η1 + η2 + η3 > 1, where the arguments of the function F in the above expression always lie

between 0 and 1. In this range, F (x) is unambiguous, and logC is real. Comparing to the

DOZZ formula in appendix A, we see that

logC ∼ log Ĉ2
DOZZ(η1, η2, η3) . (4.47)

For defect operators, this is equal to logC0(η1, η2, η3)2. Therefore, the gravity calculation of

the average,

|〈O1(z1, z̄1)O2(z2, z̄2)O3(z3, z̄3)〉|2 ≈ e−Swormhole , (4.48)

agrees with the large-c ensemble of CFTs defined around (2.8). This is the equation stated

pictorially in the introduction in equation (1.4).

This analysis was restricted to defects which are sufficiently heavy, with ηi ∈ [1
4 ,

1
2 ] and∑

ηi > 1. For lighter defects, or even quantum field correlators, there is no real classical

saddle, but this does not necessarily mean there is no averaging; there may be complex

saddles, like those that appear in Liouville CFT in the same range of operator weights [88].28

28For
∑
ηi < 1, there are also single-boundary solutions studied in [89] that were argued to contribute to

〈O1O2O3〉. The bulk solution has three defects meeting at a point in the middle of AdS3, with only one
boundary and trivial topology apart from the defects. Interestingly, the action of this solution is also given
by the universal OPE coefficient, S = − log |C0| [43]. However, it comes with an unknown coupling constant,
and it is unclear how to deal with the singular intersection of the three defects. The geometry studied in [89]
does not exist for

∑
ηi > 1 (as a real solution).
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4.5 General Maldacena-Maoz wormholes

The extension to higher genus boundaries can be pieced together from results in [86, 87, 90]

plus contributions from the conformal anomaly (see also [30,91]). The easiest method to find

the answer directly is to calculate the boundary stress tensor, then integrate the holographic

Ward identity to find the on-shell action. This method, which sidesteps the issue of regulating

and renormalizing the defect operators at the expense of being less explicit, also applies to

the genus-zero n-point wormhole.

Let TF (z) be the Brown-York stress tensor on the left boundary, in the metric (4.21). A

straightforward calculation [92] gives

TF (z) =
c

6
TΦ(z) , (4.49)

where TΦ = 1
2∂

2Φ− 1
4(∂Φ)2 is the classical stress tensor of Liouville theory. We see that TF

satisfies the same Ward identities as the quantum Liouville stress tensor, c
6T

Φ. As we vary

the moduli, the total variation of the gravitational action gets conjugate contributions from

the two ends of the wormhole. Therefore the on-shell agrees with two copies of the Liouville

CFT in the semiclassical limit. That is, denoting the moduli of Σ by (λ, λ̄), we have

e−Swormhole ≈
∣∣GL(λ, λ̄)

∣∣2 . (4.50)

This wormhole contributes to the ensemble CFT observable

G(λ, λ̄)G(λ̄, λ) = |G(λ, λ̄)|2 (4.51)

so (4.50) agrees with the ensemble average calculated in section 3.

Note that in the 3D gravity literature, the Maldacena-Maoz wormhole is often considered

with a hyperbolic metric in the boundary CFT [20, 25, 93]. In this case, the gravitational

action is a topological invariant. However this is not the action that should be compared

to the usual expression for the genus-2 partition function in CFT, constructed for example

by sewing two flat tori together with a cylinder. The action in (4.50) is calculated with the

boundary metric suitable for direct comparison to CFT, and clearly it is not a topological

invariant.

5 Two-boundary wormholes with different moduli

The Maldacena-Maoz wormholes have equal moduli in the two asymptotic regions and are

described by Fuchsian quotients of AdS. They contribute to CFT averages of the form G2.
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Quasi-Fuchsian wormholes connect two asymptotic regions with the same topology, but

possibly different moduli, and they contribute to averaged products of two different CFT

observables, GG′.29

A quasi-Fuchsian group is a discrete subgroup of PSL(2,C) that can be conjugated to

a Fuchsian group by a quasiconformal map. A quotient of H3 by such a group is a quasi-

Fuchsian wormhole. The geometry of these manifolds (or more generally, conifolds) can

be quite complicated. There is no known explicit expression for the metric. The situation

is considerably simpler for the almost Fuchsian manifolds. A quasi-Fuchsian manifold is

called almost Fuchsian if it has a unique minimal surface that represents the fundamental

group and has principal curvatures in the range (−1, 1). Uhlenbeck proved that on almost

Fuchsian manifolds, the distance from the minimal surface provides a global radial coordinate,

so they admit a nice foliation and the metric can be written explicitly [94]. Almost Fuchsian

manifolds have been considered in the context of 3D gravity previously in [95–98].

The space of almost Fuchsian manifolds is an open set in the space of quasi-Fuchsian

manifolds, with the same dimension. Therefore, any small deformation of a Fuchsian manifold

is almost Fuchsian. This has the remarkable consequence that we can calculate the action of

almost Fuchsian wormholes, then analytically continue in the moduli to obtain the action for

all quasi-Fuchsian wormholes. We will follow this strategy to analyze the 4-point wormhole

with different cross ratios on the two boundaries. The results of our explicit calculation (to

third order in the deformation away from the Fuchsian slice) agree with a less direct but

quite general analysis of the action by McMullen [99] and Teo and Takhtajan [87], which

applies to a large class of quasi-Fuchsian manifolds. Both methods lead to the conclusion

that the gravitational action of a quasi-Fuchsian wormhole, with or without defects, is given

by30

exp
[
−Sgrav(λ, λ̄;λ′, λ̄′)

]
≈ GL(λ, λ′)GL(λ̄′, λ̄) , (5.1)

to leading order in the semiclassical expansion. Here (λ, λ̄) are the moduli of the surface Σg,n

on the left boundary, and (λ′, λ̄′) are the moduli on the right boundary. The right-hand side

of (5.1) is a product of Liouville observables, which agrees with the connected part (or, in

29This is a slight abuse of terminology. A (quasi-)Fuchsian group is a discrete group so by definition it
has no limit points. It follows that any elliptic elements must have finite order. As we discussed in section
4, we are allowing the masses of the particles to vary continuously and therefore do not require the elliptic
identifications to be of finite order. We will nonetheless refer to such solutions as (quasi-)Fuchsian.

30Fine print: This equation does not appear in [87,99], but follows without much difficulty from the results
therein, plus our results in section 4 above, if we assume the action is sufficiently analytic in the moduli.
The theorems in [87,99] did not consider quasi-Fuchsian groups with elliptic elements, ie conical defects, but
this does not appear to be a serious obstruction — our third-order calculation in section 5.2 does allow for
conical defects, and leads to the same formula. Our conclusion is that the formula applies quite generally to
quasi-Fuchsian wormholes.
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the case where there are multiple contractions, what we defined as the ‘paired’ part) of the

CFT average calculated in section 3.

Taking the logarithm of (5.1) gives a factorized action of the form

Sgrav = S(λ, λ′) + S(λ̄′, λ̄) , (5.2)

with S = − logGL. On the Fuchsian slice (λ, λ̄) = (λ̄′, λ′), we have already confirmed

this equation in section 4. Therefore to establish (5.1), it suffices to show that the on-shell

gravitational action satisfies

∂2Sgrav

∂λ∂λ̄
= 0 (5.3)

∂2Sgrav

∂λ∂λ̄′
= 0 . (5.4)

The holographic Ward identity relates ∂
∂λSgrav to the stress tensor. Therefore it is enough to

show

∂

∂λ̄
T (z) = 0 (5.5)

∂

∂λ̄′
T (z) = 0 , (5.6)

where T (z) is the Brown-York stress tensor on the left boundary.

5.1 Geometry of almost Fuchsian wormholes

To find the metric of an almost Fuchsian wormhole, we start with the ansatz

ds2 = dρ2 + cosh2 ρeΦ|dz + f(ρ)t(z̄)e−Φdz|2 , (5.7)

where z is a coordinate on a genus-g Riemann surface Σg,n with n defects, and t(z)dz2 is a

holomorphic quadratic differential on Σg,n. The Einstein equations require

2 sinh ρf ′(ρ) + cosh ρf ′′(ρ) = 0 . (5.8)

Two convenient solutions of this equation, which are equivalent under a change of coordinates,

are f(ρ) = tanh ρ and f(ρ) = 1
2(1 + tanh ρ). In the former case the metric is [95]

ds2 = dρ2 + cosh2 ρeΦf |dz + tanh(ρ)t(z̄)e−Φfdz̄|2 (5.9)
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and the last remaining Einstein equation is

∂∂̄Φf =
1

2
eΦf +

1

2
|t|2e−Φf − 2π

∑
i

ηiδ
(2)(z − zi) . (5.10)

In the metric (5.9), the surface ρ = 0 is minimal, so this is the foliation established by Uh-

lenbeck. The restriction that the principal curvatures of the minimal surface lie in the range

[−1, 1] ensures that the metric is non-degenerate. We will use a different radial coordinate,

with f(ρ) = 1
2(1 + tanh ρ). In this case the metric is

ds2 = dρ2 + cosh2 ρeΦ|dz +
1

2
(1 + tanh ρ)t̄(z̄)e−Φdz̄|2 , (5.11)

and Φ satisfies the ordinary Liouville equation,

∂∂̄Φ =
1

2
eΦ − 2π

∑
i

ηiδ
(2)(z − zi) . (5.12)

The defects sit at fixed coordinate positions zi, but their cross-ratios change because of the

ρ-dependent metric deformation in (5.11). In the asymptotic regions, the metric approaches

Left: ρ→ −∞, ds2 ≈ dρ2 +
1

4
e−2ρ+Φ|dz|2 (5.13)

Right: ρ→ +∞, ds2 ≈ dρ2 +
1

4
e2ρ+Φ|dz + µdz̄|2 . (5.14)

The complex structure on the right boundary is deformed by the Beltrami coefficient,

µ = t̄(z̄)e−Φ . (5.15)

Thus µ parameterizes the difference in moduli between the two ends of the wormhole.

Near the left boundary, as in the Fuchsian case (see equation (4.27)), we choose a z-

dependent cutoff on ρ to cancel the factor of eΦ. Thus the metric on the left boundary (after

rescaling by ε2) is

ds2
left = |dz|2 . (5.16)

The right boundary is more subtle due to the Beltrami coefficient. Let w(z, z̄) be a solution

of the Beltrami equation,

∂̄w

∂w
= µ , (5.17)
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so that

|dz + µdz̄|2 =

∣∣∣∣∂w∂z
∣∣∣∣−2

|dw|2 . (5.18)

The coordinate w with canonical complex structure is called ‘isothermal’, and w(z, z̄) is a

quasiconformal map. We want to compare to CFT observables defined in the metric |dz′|2,

so we choose the radial cutoff ρc = log 2
ε −

1
2Φ + log |∂w∂z |; after rescaling by ε2, the metric on

the right boundary is then

ds2
right = |dw|2 . (5.19)

There is also an orientation reversal on the right boundary with respect to the left, so the

CFT coordinate is z′ = w̄. When we compare the gravitational action to CFT, we must

account for the quasiconformal map; for example, it is the coordinate z′ that is used to

define the cross ratios on the right boundary

5.2 The almost Fuchsian 4-point wormhole

We now turn to an explicit example, the quasi-Fuchsian wormhole with four defects:

(x, x̄) (x′, x̄′) . (5.20)

The only modulus of Σ0,4 is the cross ratio of the four insertion points. Denote this cross

ratio by x on the left boundary, and x′ on the right boundary, and place the defects so that

this wormhole contributes to the averaged product of CFT 4-point functions

〈O1(0)O2(x, x̄)O3(1)O4(∞)〉〈O1(0)O2(x′, x̄′)O3(1)O4(∞)〉 . (5.21)

There is a unique holomorphic quadratic differential on Σ0,4, up to scaling. With insertions

at 0, x, 1,∞, it is Q(z, x)dz2 with

Q(z, x) :=
4x(x− 1)

z(z − 1)(z − x)
. (5.22)
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The numerator is just a convenient normalization. In the metric ansatz (5.11) we therefore

take

t(z) = αQ(z, x), t̄(z̄) = ᾱQ(z̄, x̄) , (5.23)

where α is a complex parameter. It is straightforward to check that the principal curvatures

of the minimal slice are bounded near the defects if and only if the defect weights satisfy

η > 1
4 . We therefore impose this restriction, and choose α small enough so that the wormhole

is non-degenerate. This is the almost Fuchsian 4-point wormhole.

The complex structure on the right boundary is

|dz + µdz̄|2, µ = ᾱQ(z̄, x̄)e−Φ . (5.24)

The wormhole is labeled by two complex parameters, which are coordinates on the doubled

Teichmuller space T (Σ0,4)×T (Σ0,4) ∼= Ĉ×Ĉ, with Ĉ = C\{0, 1,∞}. The natural coordinates

for comparison to CFT are the cross ratios (x, x̄) on the left boundary and (x′, x̄′) on the

right boundary, with these cross ratios defined in isothermal coordinates:

x =
(z1 − z2)(z3 − z4)

(z1 − z3)(z2 − z4)
, x′ =

(w̄1 − w̄2)(w̄3 − w̄4)

(w̄1 − w̄3)(w̄2 − w̄4)
, (5.25)

where wi = w(zi, z̄i). In the metric (5.11), the parameters are instead (x, x̄) and (α, ᾱ). We

will see momentarily that α controls the stress tensor on the left boundary. Therefore by

writing down the wormhole metric, we have established an implicit relationship between the

modulus on the right boundary and the stress tensor on the left boundary. This relation-

ship, in which moduli of a Riemann surface Σ′ are parameterized by holomorphic quadratic

differentials on a quasi-Fuchsian partner Σ, is known as the Bers embedding.

We now turn to the calculation of the action. As explained around (5.5), the important

question is how the Brown-York stress tensor on the left boundary, T (z), depends on the

moduli. A standard gravity calculation [92,96] gives

T (z) =
c

6

[
−1

4
αQ(z, x) + TΦ(z)

]
, (5.26)

where TΦ(z) = 1
2∂

2Φ−1
4(∂Φ)2 is the classical Liouville stress tensor associated to the Liouville

field that appears in the metric (5.11). The Liouville term takes the usual meromorphic form

of a CFT stress tensor in the presence of operator insertions,

TΦ(z) =
4∑
i=1

[
ηi(1− ηi)
(z − zi)2

− cFi
z − zi

]
, (5.27)
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where the accessory parameters cF2 = cFi (zi; z̄i) are independent of (z, z̄) but depend on the

moduli. Three of the accessory parameters are fixed by regularity,31 leaving just the one

associated to O2, which we denote cF2 . With insertions at 0, x, 1,∞, the full stress tensor is

6T (z)

c
=

6h1/c

z2
+

6h2/c

(z − x)2
+

6h3/c

(z − 1)2
+

6(h1 + h2 + h3 − h4)/c

z(1− z)

− 1

4
[α+ cF2 (x, x̄)]Q(z, x) .

(5.28)

Polyakov conjectured, and Zograf and Takhtajan proved [83,84,100], that the residue cF2 of the

semiclassical Liouville stress tensor is the accessory parameter for Fuchsian uniformization.

In the language of AdS/CFT, Fuchsian uniformization corresponds to the Maldacena-Maoz

wormhole so this is the statement that the holographic stress tensor of that wormhole is

proportional to TΦ. Define the accessory parameter for the almost-Fuchsian wormhole by

cAF2 := −resz∼x
6T (z)

c
. (5.29)

From (5.26) we have

cAF2 = cF2 + α . (5.30)

Note that cF2 = cF2 (x, x̄), i.e., cF2 is not holomorphic in the moduli.

So far, we have determined the stress tensor in terms of (x, x̄, α, ᾱ). To complete the

calculation, we must find the change of coordinates from

(x, x̄, α, ᾱ) to (x, x̄, x′, x̄′) . (5.31)

We claim the change of coordinates is

α = cF2 (x, x′)− cF2 (x, x̄) (5.32)

ᾱ = cF2 (x̄, x̄′)− cF2 (x̄, x) .

That is,

cAF2 (x, x̄, x′, x̄′) = cF2 (x, x′) . (5.33)

These equations describe how to choose the stress tensor on the left boundary in order to

have cross-ratio (x′, x̄′) on the right boundary. In appendix C we check this by explicitly

31T (z) ∼ 1/z4 as z →∞ before moving any operators to infinity.
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solving the Beltrami equation to 3rd order in |x′ − x̄|, and plugging into formula (5.25) to

find x′. We will see below that the general statement is implied by a theorem of Teo and

Takhtajan (modulo the subtleties in footnote 30). This establishes (5.33), from which follows

(5.5) and therefore the Liouville formula (5.1) for the almost Fuchsian 4-point wormhole.

5.3 General quasi-Fuchsian wormholes

McMullen [99] has studied the holographic stress tensor for general quasi-Fuchsian wormholes,

though not in that language. Takhtajan and Teo [87] built upon this result, and earlier work

of Zograf and Takhtajan [83,84,100,101], to write a Liouville-like expression for the on-shell

gravitational action. Their results apply to purely loxodromic groups, i.e. those without

punctures or conical defects; they were extended to allow for punctures (η = 1
2) in [102].

There does not appear to be an analogous theorem for groups with elliptic elements, which

produce conical defects in the bulk, but we consider it very likely that the final results apply

without modification because they agree with our results for the elliptic 4-point wormhole in

the previous subsection (see footnote 30).

We will now explain (without proof) the main results of [87, 99, 102]. Consider a quasi-

Fuchsian 3-manifold with boundary given by the disjoint union Σ t Σ′ of two Riemann

surfaces, each with genus g and n punctures. The gravitational action of this solution depends

on the moduli at each end, and it depends on the boundary metrics due to the conformal

anomaly (or in bulk language, due to the dependence on the cutoff). Define the canonical

hyperbolic metrics ds2
hyper(Σ) and ds2

hyper(Σ
′) on each boundary by Fuchsian uniformization.

With the cutoff chosen so that the induced metrics on the two boundary components are

1

ε2
ds2

hyper(Σ) and
1

ε2
ds2

hyper(Σ
′) , (5.34)

the gravitational on-shell action was expressed as an integral over the boundaries in [87,102].

With our conventions for the gravitational action,32

Shyperbolic
grav = − c

24π
STT . (5.35)

The expression for STT is quite complicated; it is a Liouville-like action that depends on

both Σ and Σ′. It is unclear how to directly relate it to observables in the Liouville CFT. It

would be interesting to do so — especially for the generalization to Kleinian wormholes with

k > 2 boundaries as discussed below — but we will instead rely on properties of the stress

tensor.

Consider the Brown-York stress tensor on the boundary component Σ. In the slicing with

32Our STT is equal to the action called S in [87,102] up to an additive constant.
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hyperbolic boundary metrics (5.34), denote the holomorphic component by Thyper(z); then

Thyper(z)dz
2 is a holomorphic quadratic differential on Σ (this will be justified momentarily).

Choose a basis Qi(z)dz2 for such differentials, with i = 1 to 3g− 3 +n (which is the complex

dimension of the space of quadratic differentials). Expanding in this basis,

Thyper(z) =

3g−3+n∑
i=1

chyper
i Qi(z) , (5.36)

where the coefficients chyper
i define the accessory parameters. Now let us consider the case

where the cutoff for the metric on Σ is instead flat, 1
ε2
|dz|2. The boundary stress tensor in

this slicing, denoted TQF (z), is shifted by the conformal anomaly, so

TQF (z) = Thyper(z) + TF (z) , (5.37)

where TF comes from the anomaly. The anomaly action is itself a Liouville action that is

associated only to the boundary component Σ. It has two pieces: one that is fixed by the

Ward identities, like the first line in (5.28), and a remainder given by a quadratic differential,∑
i c
F
i Q

i. The coefficients cFi of the quadratic differentials are the accessory parameters for

Fuchsian uniformization.

Equation (5.37) expresses Thyper as the difference of two projective connections on Σ.

This justifies the claim that Thyperdz
2 is a quadratic differential, because as we have noted,

the portion of a projective connection that is not a quadratic differential is fixed uniquely by

the Ward identities.

We can view STT as a function on two copies of Teichmuller space, T (Σ)×T (Σ′), whose

coordinates are the moduli on the two boundaries. For now, we will hold fixed Σ′ and vary

Σ, treating STT as a function on T (Σ). The variation defines Thyper, so using (5.37), it is

δSTT =
12π

c

∫
Σ
d2z
√
|g|(TQFµν − TFµν)δgµν . (5.38)

Take the metric variation δgµν to be an holomorphic deformation of the complex structure.

Then δgzz can be expanded in a basis of harmonic (with respect to the Liouville metric on Σ)

Beltrami differentials,
√
|g|δgzz = −2

∑
i µiδλ

i, and plugging in the expansion of TQF − TF

in quadratic differentials Qi we have

δSTT = −
∑
i,j

(cQFi − cFi )δλj
∫
d2zQiµj . (5.39)

Since the vector space of harmonic Beltrami differentials is dual to the vector space of holo-
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morphic quadratic differentials, we may choose dual bases for the two vector spaces so that∫
d2zQiµj = δij . Then

δSTT = −
∑
i

(cQFi − cFi )δλi . (5.40)

This equation is Theorem 4.1 in [87].33 Now that we have translated the notation to our

language, we appeal to their Lemma 4.2, which states that cQFi is holomorphic on the moduli

space of Σ t Σ′. This gives the two equations (5.5) and (5.6), and therefore establishes our

formula (5.1) relating the gravitational action to Liouville CFT.

6 Handles and random bulk couplings

Coleman [65] and Giddings and Strominger [67, 103] suggested that microscopic wormholes

would lead to a theory with random coupling constants. They supposed that these wormholes,

stabilized by some unknown physics at the Planck or string scale (or arising as classical

solutions supported by axions [66, 104]), could have their endpoints anywhere in spacetime.

This would induce a bilocal coupling in the low energy theory,

Z =

∫
Dφe−

∫
dxL(x)+ 1

2

∑
i

∫
dxdyOi(x)Oi(y) , (6.1)

where φ denotes all the fields, and Oi are operators produced at the wormhole endpoints

whose specific form depends on the microscopic details. The bilocal coupling can be reinter-

preted by integrating in a random coupling constant,

Z =

∫
dαiP (αi)

∫
Dφe−

∫
dx[L(x)−αiOi(x)] (6.2)

where P (αi) is a Gaussian probability distribution. Thus the effects of wormholes are in-

distinguishable from random couplings. This cannot be detected experimentally, because

once the couplings are measured, they are completely fixed; the universe decoheres into a

superselection sector.

Recently, this idea has been revived and extended to show that wormholes in JT gravity

33In [87], the holomorphic variation of the complex structure moduli is written as ∂, and ∂STT is viewed
as a holomorphic (1, 0)-form on the deformation space. They define PQF as the quasi-fuchsian projective
connection, and depending on how PQF is used, it can refer either to our TQF or to our

∑
i c
QF
i δλi. When

the projective connection is viewed as a holomorphic function on Σ, the relation to our notation is PQF (z) =
3
c
TQF (z). When it is viewed as a (1, 0) form on the deformation space, it can be evaluated on a harmonic

Beltrami differential variation, δµ = µiδλ
i and the relation to our notation is PQF (δµ) = 3

c

∫
d2zTQF (z)δµ =

− 1
2

∑
i c
QF
i δλi.
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and related toy models can be interpreted in terms of superselection sectors (or ‘α-states’)

[9,50,68]. The mechanism is similar to Coleman’s, except that in the recent discussions there

is no apparent role for random bulk coupling constants.

We will show that in 3D gravity coupled to sufficiently massive point particles, an on-

shell wormhole induces random bulk 3-point couplings among the point particles. The bulk

3-point couplings obey the same statistics as the boundary OPE coefficients cijk. Throughout

this section we assume that the operators O1,O2,O3 satisfy ηi ∈ [1
4 ,

1
2 ] and

∑
ηi > 1, so they

are sufficiently heavy to produce a real on-shell 3-point wormhole.

This effect closely resembles that studied by Coleman, Giddings, and Strominger, but

there are some differences, the main one being that our analysis is entirely on-shell. The

wormholes that we integrate out are classical solutions. To argue that they can be inter-

preted as random bulk couplings, we will calculate their contribution to boundary correlation

functions and compare to a bulk EFT without wormholes, but with random couplings among

the massive point particles. Also, our wormholes have large, AdS-scale mouths. This could

lead to additional non-localities in more complicated observables.

6.1 Construction of the handle wormhole

Consider the boundary 4-point function of sub-threshold operators,

G1221 = 〈O1O2O2O1〉 . (6.3)

On the gravity side, the leading contribution comes from AdS3 with two conical defects

[27,32],

(6.4)

We will now construct an additional saddlepoint with the topology

1

2 2

1

3

(6.5)
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The blue line running around the handle is a conical defect corresponding to another sub-

threshold operator, O3. The starting point to construct this solution is the 2-boundary worm-

hole with three defects discussed in section 4.4. Let’s place the three operators O1,O2,O3

at z = 1,∞, 0 respectively on both ends of the wormhole. Now we cut open this wormhole

along two identical extremal surfaces and glue these surfaces together:

identify

(6.6)

This is obviously still a saddlepoint, and it is straightforward to see that it has the same

topology as the picture in (6.5). In gluing the two extremal surfaces together we have also

glued together the boundaries, so the geometry now has just one asymptotic region. To see

that there are really extremal surfaces like this, we refer to the Fuchsian representation in

figure 4. We are adding to the Fuchsian group an additional generator, not in PSL(2,R),

which identities a circle in the lower half-plane of this figure to its reflection in the upper

half plane.34

6.2 Gravitational action

We will now show that the action of this wormhole is

e−Swormhole ≈ c2
123|F1221(h3, x)|2 , (6.7)

to leading order, where x is the cross-ratio of the insertions O1O2O2O1 on the glued spherical

boundary. Let w be a coordinate on the full boundary; it covers two copies of the z plane,

minus the parts that were removed by the cutting and gluing procedure. To calculate the

action we will integrate the Ward identity for the boundary stress tensor T (w). By construc-

tion, this stress tensor satisfies the Ward identities of a four-point function with operators

O1O2O2O1. Therefore it takes the form

T (w) =
c

6

4∑
i=1

(
6hi/c

(w − wi)2
− ci
w − wi

)
. (6.8)

34This procedure may be possible only if the regions cut out around the O3 insertions are sufficiently small.
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Three of the accessory parameters ci are determined by regularity as w →∞. The final piece

of information that specifies T (w) can be characterized as a monodromy of the auxiliary

equation

ψ′′(w) +
6

c
T (w)ψ(w) = 0 . (6.9)

Around an operator insertion of weight h = c
6η(1−η), the monodromy M of the two solutions

to this differential equation satisfies

Tr M = −2 cos(π(1− 2η)) . (6.10)

In our case, since the classical boundary stress tensor is unaffected by cutting and gluing, we

conclude that the monodromy around points w1 and w2 is set by the h3, the weight of the

operator that is running around the handle:

Tr Mw1w2 = −2 cos(π(1− 2η3)) . (6.11)

In principle, this fixes the final accessory parameter c2.

The procedure that we have just followed — write down a semiclassical stress tensor,

and determine c2 by setting the monodromy around w1 and w2 appropriate to an operator

of weight h3 — is exactly the prescription used by Zamolodchikov [105, 106] to calculate

Virasoro blocks in the semiclassical limit.35 In this limit the blocks exponentiate,

Fijkl(h;xa) ≈ exp

[
− c

6
fijkl(

h

c
;xa)

]
, (6.12)

where xa = (x1, x2, x3, x4) and we are including all of the position dependence in the block.

The final step in Zamolodchikov’s prescription is to integrate the Ward identity

∂f

∂x2
= c2(xa) (6.13)

to find the semiclassical block f . The action of the wormhole that we just constructed is also

obtained by integrating the Ward identity, with the same c2. Therefore

∂

∂x2
Swormhole =

c

6

∂

∂x2
f1221(h3;xa) (6.14)

∂

∂x̄2
Swormhole =

c

6

∂

∂x̄2
f1221(h̄3; x̄a) . (6.15)

35This prescription is related to 3D gravity in [27], in situations without wormholes.
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To fix the integration constant, we take the OPE limit in which the two operators that

started on the left of the wormhole are very far away from the two operators that started on

the right. This is the limit where the cutouts in (6.6) are small, with only a tiny dome near

each boundary removed.36 In this limit the cutting and gluing leaves the action unchanged;

therefore Swormhole in the OPE limit is the action of the 2-boundary 3-defect wormhole that we

started with. This action, calculated in section 4.4, is − log c2
123 at leading order. Therefore

we find

Swormhole =
c

6
f1221(h3, xa) +

c

6
f1221(h̄3, x̄a)− log c2

123 + o(c) . (6.16)

Exponentiating gives (6.7).

6.3 Bulk interpretation

Combining this with the trivial bulk solution, we have found from the gravity calculation

〈O1O2O2O1〉 ≈ +
∑

defects

(6.17)

The first term is the identity block, discussed in section 2.3. The wormhole contribution is

exactly what we would obtain from a Witten diagram with a random coupling constant,

e−Swormhole ≈ c2
123|F1221(h3, x)|2 ≈ 1

2

1

2

3 . (6.18)

The operators are heavy enough to backreact, so this is not quite a regular Witten diagram. It

is a network of conical defects, which has classical action c
6(f1221(h3, xa)+barred) [27,32,107],

so it reproduces the conformal block. The 3-point vertices come with bulk coupling constants

cijk. The dashed line indicates that the couplings are treated as random variables, with

cijk = 0 and c2
ijk given by the universal OPE formula in the dual CFT.

As we described in the introduction, the handle wormhole is essential for the ensemble

interpretation of the bulk theory. In the boundary CFT, the exchange O1O2 → O3 → O1O2

36Call the left boundary of the original 2-boundary wormhole in (6.6) ML and the right boundary MR.
Denote the cutout regions inside the orange circles by CL and CR. The coordinate w covers (ML\CL) t
(MR\CR). As we shrink CL,R to zero size, we see that w covers two copies of {z ∈ C||z| > L} for some radius
L. To cover this region, we rescale L → 1, do an inversion on one copy, and glue them together along the
unit circle. As L → 0 this procedure results in a configuration where two operators O1,O2 are moved near
the origin and the other two are near infinity.
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contributes to the 4-point function, and it is the handle wormhole that accounts for this

exchange on the gravity side.

6.4 Another diagram in the EFT

For the bulk EFT interpretation to be consistent, any other diagrams that exist in the effective

theory should match with the wormhole picture. In particular, since we have argued that

the EFT has a random 3-point coupling c123φ1φ2φ3, where φi is the bulk field dual to Oi and

c123 is drawn from a Guassian distribution, the bulk effective theory also predicts corrections

to the 6-point function:

〈O1O2O3O3O2O1〉 = + + · · · (6.19)

The first term is the Witten diagram for the identity block, which already appears without

wormholes. The second term is the correction from the random bulk 3-point coupling. Note

that in this diagram, the first three particles are coupled to the other three particles not just

by the random coupling, but by gravitational backreaction.

This should match a wormhole, and indeed it does. The wormhole picture is

= (6.20)

The wormhole is constructed by a cutting and gluing procedure similar to (6.6), except that

now the identification is done in a way that avoids all three defects. Thus they all travel

through the handle. Following similar steps to the calculation above, it is straightforward to

see that this wormhole produces the correction

c2
123

∣∣∣Fcomb
123321(h3, 1, h3, xi)

∣∣∣2 . (6.21)

This is exactly the correction expected from the bulk EFT with random couplings, and from

the CFT ensemble.
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6.5 Non-Gaussianities

As we emphasized in section 2, our definition of the large-c ensemble is not exact. We have

only provided the CFT data at leading order in the semiclassical expansion. At subleading

orders, the statistics of the OPE coefficients must be non-Gaussian due to the structure of

the correlators and crossing relations [44, 79]. In the bulk, non-Gaussian statistics are also

expected to arise from multi-wormholes [108]. The contribution of the handle topology to

the four-point function provides a simple example of this effect by introducing correlations

between different OPE coefficients. In the channel O1O2 → p→ O1O2, we have interpreted

this handle as the contribution of a sub-threshold state in the OPE. In the dual channel,

〈O1O2O2O1〉 =
∑
p

c11pc22p |F1122(h, 1− x)|2 . (6.22)

In the approximation where the OPE coefficients are independent Gaussian random variables,

c11pc22p is non-vanishing only for Op = 1. Therefore to reproduce the handle we must add a

correction at subleading order,

c11pc22p = δp1 +W12p + · · · . (6.23)

The correction term W12p is determined by comparison to the other channel, where the

expansion is (6.17). Note that c2
123 is exponentially suppressed at large c, so the corrections

are non-perturbatively small. We leave a detailed analysis for the future.

6.6 Handle in a higher genus example

This story appears to generalize: handles in the bulk, supported by defects propagating

through them, are dual to defect contributions in the boundary conformal block expansion.

We will not try to address this systematically here but we will describe one more example.

Let’s start with the 2-boundary wormhole with torus boundary and one conical defect. From

this 2-boundary wormhole we can construct a 1-boundary wormhole by the same cutting-

and-gluing procedure as above:

identify

(6.24)
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The boundary is now genus-2. This is therefore a non-handlebody contribution to the genus-

2 partition function Zg=2 of the CFT, Zg=2, with a defect running around a non-contractible

loop.

Now consider the dual CFT. The conformal block expansion of the genus-2 partition

function in the dumbbell channel is

Zg=2 =
∑
p,q,r

cppqcrrq

∣∣∣∣∣∣∣∣∣∣∣
p

q

r

∣∣∣∣∣∣∣∣∣∣∣

2

(6.25)

The ensemble-averaged contributions to this sum from heavy operators can be written as a

sum of Virasoro identity blocks in various channels. This will be discussed in section 8.3

below. Here we are interested in the terms where q is sub-threshold, and p, r are above

threshold. For a given q, this contribution is

∑
p,r∈H

cppqcrrq

∣∣∣∣∣∣∣∣∣∣∣
p

q

r

∣∣∣∣∣∣∣∣∣∣∣

2

= 〈Oq〉τ1〈Oq〉τ2`hq ¯̀̄hq , (6.26)

where H denotes the set of above-threshold primaries, τ1, τ2 and ` are the moduli of the

genus-2 surface, and 〈Oq〉τ is a thermal 1-point function. The average of this quantity is

therefore determined by 〈Oq〉τ1〈Oq〉τ2 , which is computed by the 2-boundary torus wormhole

with 1 defect that we started with in (6.24). Following the same steps as in section 6.2, the

gravitational action of the non-handlebody constructed by the cutting and gluing procedure

in (6.24) reproduces the contribution in (6.26). We omit the details.

7 Many-boundary wormholes

There are solutions of 3D gravity, with or without defects, with any number of boundary

components. They arise as quotients of H3 by Kleinian groups that are not necessarily quasi-

Fuchsian. There is a Liouville-like expression for the gravitational action of a large class

of Kleinian wormholes derived by Takhtajan and Teo [87], but it is not straightforward to

evaluate it or compare to CFT. We will not attempt a general analysis of many-boundary

wormholes but we will check one example in a particular limit and show that it agrees with

the CFT ensemble.
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Figure 6: 3-boundary wormhole that contributes to a product of 4-point
functions, G1234G3456G5612.

On the gravity side, we consider wormholes with k ≥ 2 boundaries and four sub-threshold

operators inserted on each boundary. The case k = 3 is illustrated in figure 6. We can either

choose the operator species so this is the only OPE contraction, or allow some operators to

be identical but consider only this term. If there is a saddle, it contributes to the ensemble

average of a product of 4-point functions,

Gk := G1234G3456G5678 · · ·G(2k−1)(2k)12 (7.1)

where Gijkl = 〈OiOjOkOl〉 and O1,O2, . . .O2k are sub-threshold operators.

7.1 CFT calculation of Gk

The CFT calculation proceeds in the usual way. We expand all of the G’s in conformal

blocks,

G1234(x(1), x̄(1))G3456(x(2), x̄(2)) · · ·G(2k−1)(2k)12(x(k), x̄(k)) (7.2)

=
∑

p1,p2,...,pk

c12p1c34p1c34p2c56p2 · · ·

∣∣∣∣∣∣
1

2

3

4

p1
3

4

5

6

p2 · · ·

∣∣∣∣∣∣
2
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where x(i) is the cross-ratio on the ith boundary. Taking the ensemble average sets all of the

internal weights pi equal. Thus

Gk =
∑
p

|c2
12p| |c2

34p| · · · |c2
(2k−1)(2k)p|

∣∣∣∣∣∣
1

2

3

4

p
3

4

5

6

p · · ·

∣∣∣∣∣∣
2

∼
∣∣∣∣∫ dhρ0(h)1−k/2I1234(h, x(1))I3456(h, x(2)) · · · I(2k−1)(2k)12(h, x(k))

∣∣∣∣2 (7.3)

where

Iijkl(h, x) =

√
|ĈDOZZ(Pi, Pj , P )ĈDOZZ(Pk, Pl, P )|Fijkl(h, x) (7.4)

with the h’s and P ’s related by (2.2). To be more explicit about the leading term, write the

holomorphic and antiholomorphic factors in (7.3) as

Gk ≈ exp
[
− c

6
(Sk + Sk)

]
. (7.5)

Parameterize the heavy weight over which we integrate by h = c
24(1 + γ2). Then using

the Cardy formula ρ0(h) ≈ eπcγ/6, the semiclassical DOZZ formula |ĈDOZZ(P1, P2, P )| ≈
e−

c
6
w12(γ) and the semiclassical Virasoro blocks F(h, x) ≈ e−

c
6
f(γ,x), the result in the CFT

ensemble is

Sk = extγ
[(k

2
− 1

)
πγ + w12(γ) + w34(γ) + · · ·+ w(2k−1)(2k)(γ) (7.6)

+ f1234(γ, x(1)) + f3456(γ, x(2)) + · · ·+ f(2k−1)(2k)12(γ, x(k))
]

and similarly for the antiholomorphic term. For k = 2, the Cardy factors cancel, and we

recover the Liouville correlator as in section 3. For k > 2 there is no apparent way to relate

this to any standard observable in Liouville CFT, because of the first term in (7.6). We have

checked numerically for k = 3 that there is an extremum (which for real cross ratios is a

minimum with γ ∈ R), so there is a large semiclassical contribution that should correspond

to a bulk solution.

7.2 Comparison to gravity for k ≈ 2

Our prediction is that c
6(Sk+Sk) equals the gravitational action of the k-boundary wormhole.

We will do one simple consistency check of this prediction. Let us take all the operators to be

identical, and all the cross-ratios real and equal, x(1) = x(2) = · · · = x(k). Then the wormhole

has a Z/kZ cyclic symmetry, rotating the k boundaries. It is quite similar to a replica
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Γ

Figure 7: Two-boundary wormhole with four conical defects, drawn in the
hyperbolic metric. The ρ = 0 slice in the middle is a minimal surface, and
the orange curve Γ around its waist is a geodesic.

wormhole [109,110], or to related wormholes involving operator insertions considered in [23].

We can therefore follow the derivation of the Ryu-Takayanagi formula by the gravitational

replica method [111] in order to compare gravity to CFT in the vicinity of k = 2. We will

borrow the following result from [111]. Denote by I(n) the gravitational action of the solution

replicated n times by branching around a minimal surface. Then to first order in n− 1, the

action is related to the area of the minimal surface by

I(n) = nI(1) + (n− 1)
Area

4G
+O((n− 1)2) . (7.7)

For our purposes, the n = 1 solution is the 2-boundary, 4-defect Fuchsian wormhole

discussed in section 4. This solution has a minimal 2-surface at the center of the wormhole,

ρ = 0, and on this minimal 2-surface there is a minimal geodesic Γ pictured in figure 7.

Consider n copies of the 2-boundary solution, with k = 2n boundaries in total, branched

around the minimal surface (and backreacted). Applying (7.7) we have

I(n = 1 + ε) = I(1) + εI(1) + ε
c

6
length(Γ) +O(ε2) . (7.8)

Let’s compare to the CFT. For the general (non-symmetric) wormhole with k boundaries,

the action is (7.6). Assuming a Zk symmetry and identical real cross-ratios, it simplifies to

c

6
(Sk + Sk) =

ck

3

[
k − 2

2k
πγ + w11(γ) + f1111(γ, x)

]
. (7.9)

At k = 2, this is the exponent in the Liouville 4-point function, for which the saddlepoint
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weight is denoted γ∗. Expanding in k = 2(1 + ε),

c

6
(Sk + Sk) =

c

6
(S2 + S̄2)(1 + ε) + ε

c

6
2πγ∗ +O(ε2) , (7.10)

where we have used the saddlepoint equation to drop the variation of w11 + f1111.

This is to be compared with the gravity result, (7.8). To relate the geodesic length to the

saddlepoint weight we note that the bulk metric on the ρ = 0 slice is the Liouville metric,

ds2|ρ=0 = eΦ|dz|2. Therefore Γ is a geodesic in the hyperbolic metric on the sphere with four

insertions. It turns out that this geodesic length is related to the saddlepoint momentum in

the semiclassical Liouville 4-point function [112]. The relation is37

length(Γ) = 2πγ∗ . (7.11)

Therefore we find perfect agreement between the CFT (7.10) and gravity (7.8) at this order.

8 Ensemble interpretation of simple topologies

Throughout this paper we have shown in concrete and explicit terms how wormhole ampli-

tudes in semiclassical gravity admit an interpretation in terms of averaged solutions to the

bootstrap in the semiclassical limit. Here we will show that similar considerations apply to

configurations in semi-classical gravity that involve only a single boundary, without worm-

holes. This expands upon our discussion of crossing invariance in the large-c ensemble in

section 2.3.

The geometries that we discuss in this section include defects propagating in a trivial

topology as well as handlebody 3-manifolds, the higher-genus cousins of the BTZ black

hole. These geometries are saddlepoints whose on-shell action is given by the semiclassical

Virasoro identity block in some channel; this was demonstrated for partition functions, i.e.

handlebodies in the bulk, in [26, 30], and for correlation functions involving bulk defects

in [27]. We will show in various examples that the identity block can be reinterpreted as

an average over heavy states in a dual channel. This is complementary to recent results in

e.g. [42–46] where it was argued that crossing can be used to infer the statistics of heavy-

operator OPE coefficients, averaged in the microcanonical sense. It is natural to suppose that

these statistics are self-averaging, so that ensemble averages and microcanonical averages

agree.

There is a close connection between the wormholes discussed in the rest of this paper and

the single-boundary identity blocks discussed in this section: Single-boundary observables

37This is the relation mentioned in (4.18). It is equation (1.4) in [112]. Our conventions are µthere = 1,
δthere = 1

4
(1 + γ2).
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that correspond to an identity block may be viewed in terms of an analytic continuation of

the wormhole amplitudes, where the weight of an external defect state is taken above the

black hole threshold, as discussed in section 4.2.

8.1 Sphere four-point function

The simplest example of this phenomenon involves the two-boundary sphere three-point

wormhole discussed in section 4.4. There we found (with insertions at 0, 1,∞)

e−Swormhole ≈ |c123|2 = |C0(h1, h2, h3)|2, (8.1)

where the ≈ indicates that this is a classical equivalence, and the weights satisfy η1+η2+η3 >

1 with ηi ∈ (0, 1
2). The right-hand side is, of course, the universal formula for the averaged

structure constants, analytically continued to the regime where all three weights correspond

to those of defects.

Consider what happens to this geometry, and its CFT interpretation, if we take one

or more of the external operators above the black hole threshold. As illustrated in fig. 5,

taking one operator above threshold merges the two boundary components, and eliminates

the propagating defect. The result is a four-point function on the sphere, calculated by two

defects propagating in trivial topology:

=⇒ . (8.2)

We find therefore

≈ |C0(h1, h2, h3)|2 , (8.3)

where the left-hand side of this equation represents e−Sgrav for this solution, and now one

of the operators, say O3, is above threshold, h3 >
c

24 . Note, however, that the boundary

metric on the sphere in (8.3) is inherited from the analytic continuation in (8.2), and it is not

the usual flat metric. The dependence of e−Sgrav on h3 enters through the nontrivial metric.
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Transforming to the flat metric on the boundary S2 gives an additional anomaly factor, so

that in the flat metric, with the four points at 0, x, 1,∞, the answer must be

≈ |ρ0(h3(x))C0(h1, h2, h3(x))|2 |F1221(h3(x), x)|2 . (8.4)

This equation was derived in [27, 32] by calculating the bulk action with a flat boundary

metric. It should also be possible to derive it directly from (8.3) by adding the contribution

of the conformal anomaly, but we will not attempt to do so. In this expression, x and h3 are

not independent parameters. (The relation between them is explained in detail and worked

out numerically in [32].) The original 3-point wormhole was parameterized by h3, but it is

more natural to parameterize the 4-point function by the cross ratio, so we have written h3

as a function of x (it also depends implicitly on h1 and h2). The right-hand side of (8.4) is

now interpreted as the semiclassical four-point function, calculated by a saddlepoint in the

conformal block expansion,

G4 ≈ |ρ0(h3(x))C0(h1, h2, h3(x))|2 |F1221(h3(x), x)|2 (8.5)

≈
∑
p

|c12p|2 |F1221(hp, x)|2

≈
∣∣∣∣ 1

∣∣∣∣2
In the last line we have related this to the identity block in the dual channel (see (2.24)). The

saddlepoint in the sum over p defines the function h3(x) implicitly. The conclusion is that

in the CFT, when h3 is below threshold it labels an external operator in 〈O1O2O3〉2, but

when it is taken above threshold, it labels the saddlepoint weight in the sum over conformal

blocks appearing in 〈O1O2O1O2〉.
If a second defect in the 3-point wormhole is taken above the black hole threshold, it

disappears and is replaced by a handle on the boundary sphere, so we now have a geometry

with a single defect propagating inside the solid torus. This contributes to the torus 2-point

function with a single boundary. Finally, if the last defect is taken heavy, this adds another

handle, so the boundary is now a single component with genus two, with no defects. This

leads to an averaged interpretation of the genus-2 identity block that we will explain in section

8.3. The process of analytically continuing defect masses above the black hole threshold is

depicted in figure 2.
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8.2 Sphere six-point function

We now consider the sphere six-point function of pairwise identical operators expanded in

“comb-channel” conformal blocks

G123321(xi, x̄i) =
∑
a,4,b

c12ac34ac43bcb21|Fcomb
123321(ha, h4, hb;xi)|2, (8.6)

where we have suggestively named one of the internal primaries O4 in anticipation of the

connection with the sphere four-point wormhole. The averaged six-point function in our

large-c ensemble is then given by38

G123321(xi, x̄i)
∣∣∣
heavy

=
∑
a,4,c

c12ac34ac43bcb21|Fcomb
123321(ha, h4, hb;xi)|2

=
∑
a,4

|c12a|2 |c34a|2|Fcomb
123321(ha, h4, ha;xi)|2

≈

∣∣∣∣∣
∫ ∞
c−1
24

dhadh4 ρ0(ha)ρ0(h4)C0(h1, h2, ha)C0(h3, h4, ha)Fcomb
123321(ha, h4, ha;xi)

∣∣∣∣∣
2

,

(8.7)

where we have again suppressed the averaged contributions of internal sub-threshold states

relative to the collective contributions of the states in the black hole regime. So we see that

the averaged six-point function is given by a linear combination of comb-channel Virasoro

blocks with two of the internal weights correlated.

In fact, the semiclassical approximation of the averaged six-point function (8.7) can also

be realized as a vacuum block. To see this, consider the vacuum Virasoro block in the “star

channel” F star
112233(1, 1, 1; qi). By a series of crossing moves, it can be related to the right-hand

side of (8.7) as follows:

2 2

3

3

1

1

1
11 =

1

1

3

3

2 2

2

1 1 (8.8)

38It will sometimes be convenient to neglect the contribution of exchanges of the identity in studying the
conformal block expansions of averaged observables. We will denote this by (· · · )heavy. Obviously, this is a
channel-dependent definition. In particular, below we are neglecting the contribution of the exchange a = 3,
4 = 1, which we saw in section 6.4 has a holographic interpretation in terms of the addition of a bulk handle.
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=

∫ ∞
c−1
24

dha ρ0(ha)C0(h1, h2, ha)
1

1 2

a

2

2

1

3

3

=

∫ ∞
c−1
24

dha ρ0(ha)C0(h1, h2, ha)
1

a

a

1 2

1 2

3

3

=

∫ ∞
c−1
24

dh4dha ρ0(ha)ρ0(h4)C0(h1, h2, ha)C0(h3, h4, ha)

4

a

32

1

3

a

2

1

The first and the third crossing moves were trivial. Note the presence of the correlated

exchanges of the primaries Oa. This is exactly the averaged six-point function in the semi-

classical limit given in (8.7):39

G123321(xi, x̄i)
∣∣∣
heavy

≈
∣∣F star

112233(1,1,1; qi)
∣∣2 . (8.9)

Similarly to the case of the averaged four-point function, one could have arrived at this

conclusion by starting directly in the star channel; the only term in the OPE sum that

survives the averaging in the semiclassical limit is that for which all internal operators are

the identity.

The result for the averaged six-point function can also be understood by analytic contin-

uation of the amplitude for the sphere four-point wormhole (or equivalently of the connected

part of the averaged product of sphere four-point functions) to the regime where one of the

four external operators is taken above the black hole threshold. That is, we start with the

wormhole that contributes to

|〈O1O2O3O4〉|2 (8.10)

when all four operators are sub-threshold, then increase the weight of O4 above the threshold.

As in the case of the three-point wormholes, when one of the external operators is taken to the

black hole regime, the formerly disconnected boundaries are glued, leading to a configuration

39The map between the cross-ratios xi in the comb channel and the plumbing parameters qi that are natural
in the star channel is nontrivial but unimportant for our present purposes.

68



with three defects propagating through the bulk of a hyperbolic ball:

⇒ (8.11)

In the CFT, the gluing of the two boundaries corresponds to a sum over O4, which is now

a black hole state propagating in the intermediate channel. The saddlepoint weight in the

sum over black holes now takes the place of h4 in the original wormhole.

8.3 Genus-two partition function

This procedure is slightly more elaborate when the observable has many intermediate chan-

nels in which the identity operator can propagate. To illustrate the point, consider the aver-

aged genus-two partition function. It can be computed by applying the OPE for instance in

the sunset channel

Zg=2 =
∑
p,q,r

cpqrc
∗
pqr

∣∣∣∣∣∣∣∣
p

q

r

∣∣∣∣∣∣∣∣
2

. (8.12)

Sub-threshold operators are subleading, so we will ignore their contributions to averaged

quantities in the following discussion. When computing the average, one must take care to

account for the contributions of the identity:

Zg=2 =
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1
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(8.13)

In fact, all of these terms can be realized as various identity blocks. For example, the second

term above is well-approximated in our ensemble by

∑
p 6=1

∣∣∣∣∣∣∣∣
p

p

1

∣∣∣∣∣∣∣∣
2

≈

∣∣∣∣∣∣∣∣∣∣∣
∫
dhp ρ0(hp)

p

1

1

∣∣∣∣∣∣∣∣∣∣∣

2

=

∣∣∣∣∣∣∣∣∣∣∣
1

1

1

′

∣∣∣∣∣∣∣∣∣∣∣

2

, (8.14)
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where the prime denotes a modular S-transformation on the corresponding torus factor.

Similarly, the fourth term can be expressed as an identity block by first exchanging the

bottom line and middle line, then following the same procedure. This mixes up the two

sub-tori, so to distinguish this channel from the others we will draw this block horizontally,

as

∑
p 6=1

∣∣∣∣∣∣∣∣
p

1

p

∣∣∣∣∣∣∣∣
2

≈

∣∣∣∣∣∣ 1 1
1

∣∣∣∣∣∣
2

(8.15)

Finally, the last term is computed in terms of a dumbbell channel vacuum block using the

crossing relation (2.15) as

∑
p,q,r 6=1

|cpqr|2
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q
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q
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2
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1

1

1
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′
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2

(8.16)

We have dropped the extra contractions that appear when some of p, q, r are identical because

they have fewer ρ0 factors and are therefore subleading. Assembling the pieces, this gives

the following for the averaged genus-two partition function in the semiclassical limit

Zg=2 =

∣∣∣∣∣∣∣∣∣∣∣
1

1

1
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(8.17)

It is straightforward to check that one gets the same answer by instead performing the
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ensemble average in the dumbbell channel. Separating out the identity,

Zg=2 =

∣∣∣∣∣∣∣∣∣∣∣
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(8.18)

The first four terms are the dumbbell channel vacuum block summed over the action of

modular S-transformations on the sub-tori. These are also the first four terms in (8.17). For

the last term, the ensemble average gives

∑
p,q,r 6=1
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(8.19)

=
∑
p 6=1
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p

1

p
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2

(8.20)

This exactly reproduces the last term of (8.17). Thus we see that the averaged genus-two

partition function is approximately crossing invariant in the semiclassical limit, in the sense

that the average acts the same way in either the sunset or the dumbbell channel.

Similarly to the case of the other single-boundary observables we’ve considered, the con-

tribution (8.19) to the averaged genus-two partition function can be understood via analytic

continuation of a two-boundary wormhole amplitude. Note in particular the pairing between

internal operators propagating along the sub-tori induced by the average in (8.19). In par-

ticular, consider the averaged product of torus one-point functions, dual to a two-boundary

wormhole whose boundaries are tori with a single operator insertion, studied in section 3.3.2.

When the dimension of the external operator is continued above the black hole threshold the

disparate boundaries are glued, leading to a genus-two handlebody.

Each genus-2 identity block dominates in a different region of moduli space, and each

corresponds to a different handlebody geometry in the bulk. It was already known that the

genus-2 partition function of 3D gravity is approximated by a sum over identity blocks; what

we have shown is that this sum has a natural interpretation as an ensemble average.
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8.4 Higher-genus partition function

The statement that the averaged genus-g partition function is given by a suitable vacuum

block to leading order in the semiclassical limit holds for all genera g. To see this, consider the

genus-g partition function, computed for example in the “cascade channel” (which generalizes

the genus-two sunset channel):40

Zgenus-g =
∑

1,2,...,g+1
p1,p2,...,pg−2
q1,q2,...,qg−2

c12p1c
∗
12q1cp13p2c

∗
q13q2 · · · cpg−3(g−1)pg−2

c∗qg−3(g−1)qg−2
cpg−2(g)(g+1)c

∗
qg−2(g)(g+1)

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. . .

1

p1

p2

2

3 q1

q2

g − 1

g

g + 1

pg−3

pg−2

qg−3

qg−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

.

(8.21)

In the semiclassical limit, the Gaussian contribution to the ensemble average of the genus-g

partition function is given by the Wick contraction41

Zgenus-g

∣∣
heavy

(8.22)

≈
∑

1,2,...,g+1
p1,p2,...,pg−2

|c12p1 |2 |cp13p2 |2 · · · |cpg−3(g−1)pg−2
|2 |cpg−2(g)(g+1)|2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. . .

1

p1

p2

2

3 p1

p2

g − 1

g

g + 1

pg−3

pg−2

pg−3

pg−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

≈

∣∣∣∣∣
∫ ∞
c−1
24

dh1ρ0(h1) · · · dhg+1ρ0(hg+1)dhp1ρ0(hp1) · · · dhpg−2ρ0(hpg−2)C0(h1, h2, hp1)

40Below we are suppressing all dependence on the moduli of the Riemann surface, which is left implicit in
the blocks.

41As the previous example demonstrated, already at genus-two it is becoming unwieldy to keep track of all
of the distinct exchanges of the identity operator. For this reason, in what follows we will focus on the terms

in the average for which all exchanged internal primaries are nontrivial, which we denote by (· · · )
∣∣∣
heavy

as

before.
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× C0(hp1 , h3, hp2) · · ·C0(hpg−3 , hg−1, hpg−2)C0(hpg−2 , hg, hg+1) . . .

1

p1

p2

2

3 p1

p2

g − 1

g

g + 1

pg−3

pg−2

pg−3

pg−2

∣∣∣∣∣
2

All other Wick contractions lead to fewer factors of ρ0 and thus are suppressed relative to

the above contribution in the semiclassical limit. This in turn is equivalent to a genus-g

Virasoro vacuum block in the “bead channel” (which generalizes the genus-two dumbbell

channel). To see this, we start with the bead channel vacuum block and apply g modular S

transformations on the g sub-tori42

. . .

1 1

1

1

1

1

1 1 1 1

′ ′ ′ ′

=

∫ ∞
c−1
24

dh1ρ0(h1)dhp1ρ0(hp1) · · · dhpg−2ρ0(hpg−2)dhg+1ρ0(hg+1)

× . . .

1 p1

p1

pg−2

pg−2

g + 1

1 1 1 1

(8.23)

One then applies fusion transformations to the remaining g − 1 internal legs involving the

exchange of the identity, which introduces integrals over the internal weights h2 through

hg, to arrive at the right-hand side of (8.22). So we can express heavy contributions to

the averaged genus-g partition function as a Virasoro vacuum block in the bead channel to

leading order in the semiclassical limit

Zgenus-g

∣∣
heavy

≈

∣∣∣∣∣∣∣∣∣∣∣
. . .

1 1

1

1

1

1

1 1 1 1

′ ′ ′ ′

∣∣∣∣∣∣∣∣∣∣∣

2

. (8.24)

42As before, we have added primes to the dumbbell-channel vacuum block on the left-hand side to denote
the relative modular S-transformations compared to the block on the right-hand side.
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The averaged genus-g partition function is what one gets starting from the two-boundary

sphere (g + 1)-point wormhole and analytically continuing all g + 1 external operators to

the black hole regime. The two sphere boundaries are glued at their g + 1 pairs of insertion

points, leading to the genus-g handlebody.

9 One Loop Corrections

We now describe the computation of one-loop corrections to the partition function of 3D

gravity, and show that, at least in the examples we check, these one-loop contributions match

the result of our CFT ensemble computations. We will restrict to two-boundary wormholes

without conical defects, where the computations are reasonably straightforward. On the

other hand, as we have seen in section 8, all of the wormholes with conical defects that we

have studied can be related to smooth saddles, with higher genus but a smaller number of

boundary components, by analytic continuation in the defect mass. We therefore expect the

one-loop results to carry over to these cases. Spectral analysis on orbifolds has additional

complications, and working this out explicitly would require carefully regulating the defects

at one loop (see [113] for mathematical results in this direction).

In section 3 we studied the ensemble average of products of two similar observables, and

showed that it is related to the product of Liouville correlators at the level of the classical

action. We will now show that the formula extends to one-loop order, i.e.,

G(λ, λ̄)G(λ′, λ̄′)
∣∣∣
paired

∼ GL(λ, λ′)GL(λ̄′, λ̄) , (9.1)

where recall that x ∼ y means that limc→∞
x
y = 1. Each Liouville correlation function in

this expression has a large central charge expansion

GL(λ, λ′) ∼ e−
c
6
SLZL1−loop (9.2)

which includes both a classical action as well as a one-loop prefactor. We will now show that

this one-loop correction matches the corresponding one-loop term in Einstein gravity.

We will consider wormholes with two boundaries, each of which is a smooth surface Σ of

genus g. Since we are assuming there are no conical defects, (λ, λ̄) and (λ′, λ̄′) are the period

matrices of the two boundaries, with orientation conventions such that the Maldacena-Maoz

wormhole has λ′ = λ̄. Writing the bulk geometry as a quotient M = H3/Γ, with Γ a discrete

subgroup of PSL(2,C) acting on hyperbolic space H3, the one-loop determinant of three
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dimensional gravity was computed in [114].43 The result is

Zgravity
1−loop =

∏
γ∈P

( ∞∏
n=2

1

|1− qnγ |2

)
(9.3)

where qγ = e2πiτγ with Tr (γ) = 2 cosπτγ . Here P is the set of primitive conjugacy classes of

Γ; an element γ ∈ Γ is primitive if it cannot be written as the power of any other element

of Γ. Each primitive element generates a Z subgroup of Γ.44 We also exclude from P the

identity element, which would lead to a divergence which can be absorbed by a local bulk

counterterm (i.e. the cosmological constant).

9.1 The Maldacena-Maoz Wormhole

We begin by considering the Maldacena-Maoz wormhole, with metric dρ2+cosh2 ρdΣ2, where

dΣ2 is the constant negative curvature metric on Σ. The boundary is a pair of Riemann

surfaces with conjugate moduli. In terms of the moduli space coordinates described above,

we have λ′ = λ̄. The gravitational one-loop determinant is

Zgravity
1−loop =

∏
γ∈P

( ∞∏
n=2

1

|1− e−n`(γ)|2

)
= Z(2)−1 (9.4)

where `(γ) = 2 cosh−1(1
2Tr γ) is the length of the geodesic associated with the element γ,

and

Z(s) ≡
∏
γ∈P

∞∏
n=0

|1− e−(n+s)`(γ)|2 (9.5)

is the Selberg zeta function. Although we have not indicated it explicitly, Z(s) is a com-

plicated function of the moduli coordinates (λ, λ̄). Famously (and most importantly for our

purposes), Z(s) is a meromorphic function of s with zeros when 1
4s(1−s) is a zero of the scalar

Laplacian on Σ.45 So the Selberg zeta function also has the interpretation as a (regularized)

one-loop determinant [115,116]

det(∆0 −
1

4
s(1− s)) = cgZ(s) (9.6)

43It is important to remember that even though three dimensional general relativity has no local degrees of
freedom, the loop expansion is still non-trivial due to non-local degrees of freedom, such as those which arise
in the presence of boundaries or non-trivial bulk topology.

44In our definition of P we are not counting both γ and γ−1 separately; in the literature these elements are
often counted separately.

45With conventions such that ∆0 = − 1
4
y2(∂2

x + ∂2
y) on H2.
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The result is that, up to an overall constant, the gravity one-loop determinant for the

Maldacena-Maoz wormhole is

Zgravity
1−loop =

1

det(∆0 + 1
2)

(9.7)

where ∆0 is proportional to the scalar Laplacian on Σ. In the metric eΦ|dz|2,

∆0 = −e−Φ∂∂̄ . (9.8)

We now wish to compare this to the result one obtains for Liouville theory on the surface

Σ. A classical solution Φo of the Liouville equation

∂∂̄Φo =
1

2
eΦo (9.9)

gives a constant negative curvature metric ds2 = eΦ0dzdz̄ on Σ. Expanding the Liouville

action to quadratic order around Φo gives:

SL[Φ] =
1

4π

∫
d2z

(
∂Φ∂̄Φ + eΦ

)
= SL[Φo] +

1

4π

∫
d2zeΦoχ

(
∆0 +

1

2

)
χ+ . . . (9.10)

where χ = Φ−Φo is a small perturbation of the Liouville field, . . . denotes boundary terms

as well as terms which are higher order in χ, and ∆0 is the scalar Laplacian associated to

the background Liouville field. Thus at quadratic order the action is just that of a massive

scalar field in a negatively curved background, and the one loop contribution to the Liouville

partition function is the functional determinant

ZL1−loop =
1√

det
(
∆0 + 1

2

) (9.11)

Putting this together, we conclude that for the Maldacena-Maoz wormhole

Zgravity
1−loop(λ, λ̄) = ZL1−loop(λ, λ̄)ZL1−loop(λ̄, λ) . (9.12)

Here we have indicated explicitly the dependence on moduli. We find a match between the

average CFT partition function and the gravitational one-loop determinant.
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9.2 Quasi-Fuchsian Case

We now turn to the general quasi-Fuchsian case, where the boundary is Σ t Σ′ for a pair

Riemann surfaces Σ and Σ′ with moduli (λ, λ̄) and (λ′, λ̄′). To match with the CFT ensemble,

one must show that the gravity one loop determinant obeys

Zgravity
1−loop(λ, λ̄;λ′, λ̄′) = ZL1−loop(λ, λ′)ZL1−loop(λ̄′, λ̄) . (9.13)

We have already shown this in the case of the Maldacena-Maoz wormhole, for which λ′ = λ̄.

So, just as in section 5, the general case follows if

∂2

∂λ∂λ̄
logZgravity

1−loop =
∂2

∂λ∂λ̄′
logZgravity

1−loop = 0 . (9.14)

Remarkably, this exact result was proven by McIntyre and Teo [117], albeit in a somewhat

different language.

In the remainder of the section, we will explain briefly the results of [117]. The essential

result of [117] is that for any quasi-Fuchsian group Γ, the general expression (9.3) for the

gravitational one-loop determinant can be written as a product of functional determinants:46

∏
γ∈P

( ∞∏
n=2

|1− qnγ |2
)

= e
13

12π
STT

det ∆2(Σ) det ∆2(Σ′)

detN2(Σ) detN2(Σ′)
. (9.15)

Here ∆2(Σ) is a Laplacian acting on quadratic differentials on the Riemann surface Σ, and

STT is the Liouville action defined by Takhtajan and Teo [87]. In the denominator, N2(Σ) is

the matrix of inner products for a basis of quadratic differentials on Σ. The bases for Σ and

Σ′ must be chosen to be dual to each other in a certain sense in the expression (9.15), which

introduces additional moduli dependence; see [117] for details. On the Fuchsian slice, the

denominator is equal to one, and the spectrum of ∆2 is related to that of ∆0 (see e.g. [116]),

so this reduces to the expression in terms of det(∆0 + 1
2) in (9.7).

Now let us consider the dependence on moduli. It is proved in [117, Section 3] that this

combination satisfies

∂2

∂Z∂Z̄
log

(
det ∆2(Σ) det ∆2(Σ′)

detN2(Σ) detN2(Σ′)

)
= − ∂2

∂Z∂Z̄

13

12π
STT , (9.16)

where (Z, Z̄) are complex coordinates on the moduli space for the union ΣtΣ′. The holomor-

phic coordinates on this moduli space are Z = (λ, λ′), and the anti-holomorphic coordinates

46In fact, [117] does not consider the gravitational determinant directly, but instead proves a more general
result involving Laplacians acting on tensors of general rank.
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are Z̄ = (λ̄, λ̄′). Therefore this implies both equations in (9.14) and establishes the equiva-

lence between gravity and the CFT ensemble at one-loop in the quasi-Fuchsian case.
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A Liouville review and subtleties in C0

A.1 Liouville basics

We will often find it convenient to adopt the Liouville parameterizations of various CFT

quantities. For example, we will write the conformal weights in terms of the “Liouville

momentum” P as

h =
c− 1

24
+ P 2 , (A.1)

and the central charge c in terms of the “Liouville background charge” Q or b as

Q =

√
c− 1

6
= b+ b−1 (A.2)

so that the semiclassical limit corresponds to the b→ 0 limit.

The Liouville CFT is a solution to the crossing equations in which the only Virasoro

primary operators are scalars. It is noncompact, meaning that the spectrum of local primary

operators is continuous and the vacuum is not a normalizable state in the Hilbert space of

the theory on a circle. In particular, the identity operator never appears as an intermediate

state in the OPE decomposition of any CFT observable. The spectrum of primaries in the

Liouville CFT is a continuum of scalars with P ∈ R, and total scaling dimension ∆ = 2h.
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The vertex operators of Liouille theory are normalized so that

〈V1(0)V2(1)〉L = 2π [δ(P1 + P2) + S(P1)δ(P1 − P2)] (A.3)

where S(P ) is a quantity referred to as the reflection coefficient given by

S(P ) =
1

b2
(πµγ(b2))

(Q−2α)
b γ

(
2α

b
− 1− 1

b2

)
γ(2bα− b2) (A.4)

where α = Q
2 + iP and γ(x) = Γ(x)

Γ(1−x) . The structure constants are given by the DOZZ

formula [74,75]

〈V1(0)V2(1)V3(∞)〉L = CDOZZ(P1, P2, P3). (A.5)

They are symmetric under permutations of the operators, but they are not invariant under

the reflection P → −P that leaves the conformal weights invariant:

CDOZZ(P1, P2, P3) = S(P1)CDOZZ(−P1, P2, P3) . (A.6)

With this normalization, the structure constants reproduce the two-point function upon

analytic continuation of one of the weights to that of the identity

CDOZZ(P1, P2, 1) = 2π [δ(P1 + P2) + S(P1)δ(P1 − P2)] . (A.7)

The 4-point function is given by integrating the DOZZ structure constants against the sphere

four-point Virasoro conformal blocks

〈V1(0)V2(z, z̄)V3(1)V4(∞)〉L

=
1

2

∫
R

dP

2π
CDOZZ(P1, P2, P )CDOZZ(−P, P3, P4) |F1234(hP ; z)|2 .

(A.8)

There is a simple relation between the DOZZ structure constants of Liouville theory CDOZZ

and the universal averaged structure constants C0 that defines our ensemble. The exact,

finite-c relation is given by [43]

C0(P1, P2, P3) =

(
πµγ(b2)b2−2b2

) Q
2b

2
3
4π

Γb(2Q)

Γb(Q)

CDOZZ(P1, P2, P3)√∏3
k=1 S(Pk)ρ0(Pk)

≡ cb
CDOZZ(P1, P2, P3)√∏3

k=1 S(Pk)ρ0(Pk)

(A.9)
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The constant cb is independent of the conformal weights and cancels the dependence of

CDOZZ on the Liouville cosmological constant µ. The universal OPE function C0 admits the

following explicit expression [43]

C0(P1, P2, P3) =
Γb(2Q)√
2Γb(Q)3

∏
±1,2,3

Γb

(
Q
2 ±1 iP1 ±2 iP2 ±3 iP3

)
∏3
k=1 Γb(Q+ 2iPk)Γb(Q− 2iPk)

(A.10)

where Γb(x) is a special function with simple poles at x = −mb − nb−1 for m,n ∈ Z≥0.

Note that this expression is manifestly invariant under reflections Pi → −Pi. See (2.16) for

the expansion of C0 in the semiclassical limit, in which the external weights scale linearly

with the central charge. The limit of C0 in which one of the operator weights is analytically

continued to that of the identity operator is given by

C0(P1, P2, 1) =
1

ρ0(P1)
[δ(P1 − P2) + δ(P1 + P2)] . (A.11)

Operator normalization is inherently ambiguous in noncompact CFT. We find it conve-

nient to use a different normalization that we refer to as V̂ , with

〈V̂1(0)V̂2(1)V̂3(∞)〉 = ĈDOZZ(P1, P2, P3) (A.12)

defined such that

ĈDOZZ(P1, P2, P3) =
cbCDOZZ(P1, P2, P3)√∏

j∈light ρ0(Pj)S(Pj)
∏
k∈heavy S(Pk)

. (A.13)

Here, the distinction “heavy” refers to states with weights h > c−1
24 while “light” refers to sub-

threshold states. We are normalizing the light vs heavy operators slightly differently; this is

natural because in our ensemble, light states appear individually without a density-of-states

factor, whereas heavy states are weighted against the Cardy density of states, ρ0. Note that

for light states, ρ0(P ) = O(1) in the semiclassical limit, so the difference in normalization

only affects the 1-loop prefactors.

With this normalization, the Liouville OPE coefficients ĈDOZZ are invariant under re-

flections. To see this, we write the following explicit expression for the normalized structure
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constants

ĈDOZZ(P1, P2, P3)

=
2

1
4 Γb(2Q)

Γb(Q)3

∏
±1,2,3

Γb

(
Q
2 ±1 iP1 ±2 iP2 ±3 iP3

)
(∏

j∈light Γb(Q+ 2iPj)Γb(Q− 2iPj)
)(∏

k∈heavy |Γb(2iPk)Γb(Q+ 2iPk)|
) .

(A.14)

For heavy operator weights P1, P2, the limit in which the third operator weight is taken to

zero gives the following canonically normalized two-point function

ĈDOZZ(P1, P2,1) = δ(P1 + P2) + δ(P1 − P2). (A.15)

The Liouville 4-point function of sub-threshold operators with this normalization then takes

the following form

〈V̂1(0)V̂2(z, z̄)V̂3(1)V̂4(∞)〉L

=
1

2

∫
R
dP ĈDOZZ(P1, P2, P )ĈDOZZ(P3, P4, P ) |F1234(hP ; z)|2 .

(A.16)

All of the comparisons to Liouville in the body of the paper use the hatted normalization

for the external operators. Thus for the n-point function on a genus-g Riemann surface with

period matrix Ω, we define

GL(xi, x̄i; Ω, Ω̄) = 〈V̂1(x1, x̄1) · · · V̂n(xn, x̄n)〉Σ(Ω,Ω̄)
L . (A.17)

In terms of the semiclassical parameterization (2.3), normalizable states in Liouville have

γ ∈ R and Re η = 1
2 . In the semiclassical limit, the Virasoro conformal blocks and structure

constants exponentiate,

F1234(h) ≈ exp
[
− c

6
f1234(η)

]
(A.18)

ĈDOZZ(P1, P2, P ) ≈ exp
[
− c

6
w12(η)

]
. (A.19)

It is also useful to note the semiclassical limit of the proportionality constant cb defined in

(A.9),

cb ≈ exp

[
c

6

(
1 +

1

2
log(πµb2)

)]
(A.20)

and the semiclassical limit of the reflection coefficient given in (A.4) for α = η
b with η fixed
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to lie in the range 0 < η < 1
2 ,

S(P ) ≈ exp

[
− c

3

(
(1− 2η)

(
log(1− 2η)− 1

2
log(πµb2)− 1

))]
csc

(
π(1− 2η)

b2

)
(A.21)

The semiclassical 4-point function is given by a saddlepoint in the integral over P , so in

this limit, crossing invariance reduces to an equality between two saddlepoint expressions.

Finally, the semiclassical limit of the universal formula with external operators in the defect

regime as in (2.3), with 0 < ηi <
1
2 , is given by

logC0(η1, η2, η3) ≈ c

6

[
(F (2η1)− F (η2 + η3 − η1) + (1− 2η1) log(1− 2η1) + 2 cyclic permutations)

− F (η1 + η2 + η3)− 2 (1− η1 − η2 − η3) log (1− η1 − η2 − η3) + F (0)

+ πi (η1 + η2 + η3 − 1)

]
,

(A.22)

where F (x) =
∫ x

1
2
dy log

(
Γ(y)

Γ(1−y)

)
.

A.2 On the analytic continuation of the Liouville four-point function and

of C0

Although the spectrum of primary operators in Liouville theory is spanned by scalars with

dimensions ∆ = c−1
12 + P 2 for real P , one may consider the analytic continuation of the

Liouville four-point function (A.16) to the regime where the external operators correspond

to scalar defects with conformal weights below the black hole threshold, 0 < hi <
c−1
24 . To

proceed, it will be convenient to define

αi =
Q

2
+ iPi. (A.23)

The conformal weights are given in terms of αi as

hi = αi(Q− αi). (A.24)

The defect regime corresponds to real αi ∈ [0, Q2 ].

We start by noting that the structure constants (A.13) appearing in (A.16) have simple
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poles in the complex P plane at the following values of P 47

Q

2
+ iP =

(
Q

2
+ iP1

)
+

(
Q

2
+ iP2

)
+mb+ nb−1, m, n ∈ Z≥0

Q

2
+ iP =

(
Q

2
+ iP3

)
+

(
Q

2
+ iP4

)
+mb+ nb−1, m, n ∈ Z≥0

(A.25)

and those corresponding to all possible combinations of reflections of the three Liouville

momenta involved in each expression. If all of the Pi are real, then these poles are well-

separated from the contour of integration in the Liouville four-point function (A.16) and the

analytic continuation is straightforward. In the defect regime, provided

Re(α1 + α2) >
Q

2
, Re(α3 + α4) >

Q

2
(A.26)

then none of the poles of the DOZZ structure constants cross the contour of integration in the

Liouville four-point function and the expression (A.16) is still a valid solution to the crossing

equation. On the other hand, if (A.26) is violated, then some of the poles in (A.25) cross

the contour of integration in (A.16) which then must be deformed, corresponding to a finite

number of additional discrete contributions to the four-point function. These are needed in

order to preserve crossing symmetry. Note that this can happen for observables involving

external operators with αi <
Q
4 , corresponding to weight hi <

c−1
32 . In particular, we have

〈V̂1(0)V̂2(z, z̄)V̂3(1)V̂4(∞)〉L (A.27)

= −2πi
∑
m,n

Res
P=Pm,n

(
ĈDOZZ(P1, P2, P )ĈDOZZ(P3, P4, P )|F1234(hP ; z)|2

)
+

1

2

∫
R
dP ĈDOZZ(P1, P2, P )ĈDOZZ(P3, P4, P ) |F1234(hP ; z)|2 ,

where Pm,n collectively denotes the set of poles in (A.25) such that

Q

2
+ iPm,n <

Q

2
. (A.28)

Note that in the case of pairwise identical operators P3 = P2, P4 = P1, these are enhanced to

double poles and the additional contributions to the four-point function involve derivatives

of the conformal blocks with respect to the internal weight.

Similar considerations extend to the universal structure constant C0. The defining feature

of C0 is that it branches the sphere four-point Virasoro vacuum block into a complete basis

47Here we assume that b2 is not rational so that none of the poles are overlapping.
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of Virasoro blocks in the dual channel

F1122(1; 1− z) =
1

2

∫
R
dP ρ0(P )C0(P1, P2, P )F1221(hP ; z). (A.29)

Viewed as a function of the internal Liouville momentum P , C0(P1, P2, P ) has the same

set of poles as the DOZZ OPE coefficient listed in (A.25). Thus C0 may straightforwardly

be continued to the defect regime where αi ∈ [0, Q2 ] provided Re(α1 + α2) > Q
2 . If on the

other hand Re(α1 + α2) < Q
2 , then (A.29) receives a finite number of additional discrete

contributions from the poles of C0 that have crossed the contour in the decomposition of the

vacuum block in the dual channel

F1122(1; 1− z) = − 2πi
∑
m,n

(
Res

P=Pm,n
C0(P1, P2, P )

)
ρ0(Pm,n)F1221(hPm,n ; z)

+
1

2

∫
R
dP ρ0(P )C0(P1, P2, P )F1221(hP ; z),

(A.30)

where again the sum over m,n is over the poles of C0 such that Q
2 + iPm,n <

Q
2 . In [58, 59],

the presence of the additional contributions to the cross-channel decomposition of the T-

channel vacuum block was interpreted as signaling accumulation points in the spectrum of

twists in the large-spin spectrum of c > 1 CFTs with no continuous symmetries beyond

Virasoro. These infinite towers of states with asymptotic twist below threshold were referred

to as multi-twist trajectories, in analogy to the composite states that are known to appear

in higher-dimensional CFT [118,119].

As described in section 2, throughout the paper we make use of a large-c ensemble whose

spectrum includes a discrete set of scalar defect states in addition to a continuum of black

hole states. In some cases, we assume that the scalars have

h ≥ c− 1

32
(A.31)

in order to avoid the multi-twist trajectories. For these defects, the universal OPE coefficient

C0 does not acquire any additional delta-function distributional support away from the black

hole spectrum.

B Renormalization of the defect action

In order to compare gravity calculations with conical defects to CFT correlation functions

with unit-normalized operators, we need to renormalize the gravitational action by sub-

tracting local terms associated to each defect. In this appendix we find the appropriate
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counterterm.

To this end, we will evaluate the two point functions of the defect operators holograph-

ically. Since the n-point wormhole saddle does not exist when the Gauss Bonnet constraint∑
ηi > 1 is violated, we cannot calculate the two point functions by taking an η → 0 limit

of the action for the n-point wormhole. Instead, we must use the spherical slicing of AdS,

ds2 = dr2 + sinh2(r)eΦdzdz . (B.1)

We place the defects at z = ±1. The Einstein equations reduce to the positive-curvature

Liouville equation,

∂∂Φ = −e
Φ

2
− 2πηδ(2)(z + 1)− 2πηδ(2)(z − 1) (B.2)

with

Φ(z, z) ∼

−4η log(|z ± 1|) z → ±1

−4 log(|z|) z →∞
(B.3)

The solution is 48

eΦ = 16(1− 2η)2 |z2 − 1|−4η

(|z − 1|2(1−2η) + |z + 1|2(1−2η))2
(B.4)

Let us again introduce a wiggly cutoff,

r0 = log(
2

ε
)− Φ

2
(B.5)

giving the induced metric on the cutoff surface,

ds2
bdry =

1

4
(∂Φdz + ∂Φdz)2 + (

1

ε2
− eΦ

2
)dzdz (B.6)

Now we will calculcate the on-shell action. We define the regularised twice-punctured sphere

to be the region Γ = {εi < |z ± 1|; |z| < R}. We can evaluate the EH+cc term away from

the conical defect trajectory,

Sbulk =
Vε

4πG
=

1

4πG

∫
Γ
d2z(

1

2ε2
− eΦ

2
log(

2

ε
) +

Φ

4
eΦ) (B.7)

48The easiest way to arrive at this is to first put the punctures at z = 0,∞, use the map w = z1−2η to

obtain eΦ = 4(1− 2η)2 |z|−4η

(1+|z|2(1−2η))2
and then do a conformal transformation z → z+1

z−1
to place the punctures

at z = ±1.
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Next, we evaluate the GHY+ct away from the defect on the cutoff boundary, where we have

K = 2 + 2ε2(∂∂Φ + eΦ

2 ) +O(ε3),

Sbdry = − Aε
8πG

= − 1

8πG

∫
Γ
d2z(

1

ε2
− eΦ

2
+

1

2
∂Φ∂Φ) (B.8)

The sum is

Sbulk + Sbdry =
1

4πG

∫
Γ
d2z(

1

4
(∂Φ∂Φ− eΦ)− 1

2
∂(Φ∂Φ)− ∂∂Φ(1 + log(

ε

2
))) (B.9)

To evaluate this, we use a trick similar to the one used in [75] to evaluate the Liouville action

for the thrice punctured sphere. Expand the Liouville field about the defects,

Φ→ −4η log(|z ± 1|) + 4η log 2 + 2 log(1− 2η) z → ±1 (B.10)

We define the renormalised Liouville action with positive cosmological constant, whose solu-

tions have positive curvature, as

S̃L =
1

4π

∫
Γ
d2z(∂Φ∂Φ− eΦ) + Φ̃R + 2 logR−

∑
(ηiΦ̃i + 2η2

i log εi) (B.11)

where

Φ̃i =
i

4πηi

∮
|z−zi|=εi

dzΦ∂Φ Φ̃R =
i

4π

∮
|z|=R

dzΦ∂Φ (B.12)

are the boundary terms. Treating the on-shell action as a function of defect strengths, it

satisfies the differential equation,

dS̃L
dηi

= −Φ̃i − 4ηi log εi (B.13)

On-shell, the RHS has contributions only from the boundary and counter terms. Thus,

evaluating the RHS in the limit εi → 0, we see that only the constant term in the expansion

of the solution around the puncture survives,

dS̃L
dη

= −4η log 2− 2 log(1− 2η) (B.14)

In the present case, there are two defects of equal strengths, so integrating the above equation,

S̃L = −4η2 log 2 + 2(1− 2η) log(1− 2η)− 2(1− 2η) + k (B.15)

where k is the integration constant. Now, adding to this, the term proportional to the area
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which is independent of the positions of the defects which we evaluated to be 2(1− 2η)(1 +

log( ε2)) gives the on-shell action,

S2 =
c

6

(
4η(1−η) log 2+2(1−2η) log(1−2η)+2(1−2η) log ε+k−2 log 2−2 logR+4η2 log ε0

)
(B.16)

For η = 0, there is no defect, so the action must agree with the action on the sphere calculated

from the conformal anomaly,

Sanom(S2) = − c
3

log
R

ε
. (B.17)

This sets the constant to k = 2 log 2. We now have the gravity calculation of the unnormalized

2-point function,

〈O(−1)O(1)〉 = e−S2 . (B.18)

The nomalized 2-point function is |z1 − z2|−2∆ = 2−2∆. Therefore to normalize the defects,

we must add to the action a term

Sct(ηi) = 2∆ log 2− S

=
c

6

(
− 2(1− 2ηi) log(1− 2ηi)− 2(1− 2ηi) log ε+ 2 logR− 4η2

i log εi

)
, (B.19)

for each defect. The final term in (4.40) comes from normalizing by the vacuum partition

function.

C Series solution of the Beltrami equation

In this appendix, we derive equation (5.32). This equation describes what parameters (α, ᾱ)

to choose in the almost Fuchsian metric (5.11) such that the cross-ratio on the right boundary,

in isothermal coordinates, is x′. Let

x′ = x̄+ ā . (C.1)

The bar is due to the orientation reversal in going from the left to right boundary (i.e., the

Fuchsian wormhole has x′ = x̄). Copying the essential equations from section 5.2, we choose

α = cF2 (x, x̄+ ā)− cF2 (x, x̄) , (C.2)
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and we need to solve the Beltrami equation

∂w̄

∂̄w
= µ̄, µ̄ = αQ(z, x)e−Φ , (C.3)

normalizing the solution to fix 0, 1, and ∞. The cross ratio on the right boundary is

x′ = w̄(x, x̄) . (C.4)

Therefore our goal is to solve the Beltrami equation, with this α, and check that

w̄(x, x̄) = x̄+ ā . (C.5)

Expand in ā,

µ̄ = Q(z, x)e−Φ(āc′2 +
ā2

2
c′′2 + · · · ) (C.6)

w̄(z, z̄) = z̄ + āw̄(1) + ā2w̄(2) + · · · (C.7)

where we use the shorthand c′2 = ∂
∂x̄c

F
2 , and similarly for higher derivatives. Before proceeding

to solve the Beltrami equation, it is useful to note the following two identities obeyed by the

Liouville stress tensor,

∂xT
Φ(z) = −c

′
2Q(z;x)

4
− πc2δ(z − x)

− 2e−Φ∂xT
Φ(z) = ∂z(−e−Φ∂x∂zΦ)

(C.8)

Define F (z, z) ≡ −2e−Φ∂x∂zΦ. The Beltrami equation at O(a) reads,

∂w̄(1) = Q(z;x)c′2e
−Φ (C.9)

Using the two identities presented in (C.8), we see that the Beltrami equation can be written

as ∂w̄(1) = ∂F . (The delta function doesn’t contribute since e−Φ → 0 as z → x). Integrating

the equation, we get

w̄(1) = F (z, z̄) . (C.10)

Using the Liouville equation, we can check that F (x, x) = 1. Thus, we see that the relation

between the moduli on the two boundaries at O(a) is x′ = x+ a.
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The Beltrami equation at O(a2) takes the form,

∂w(2) = Qe−Φ(c′2∂F +
c′′2
2

) (C.11)

Just like at O(a), we show that the RHS is a total ∂ derivative. To this end, it is convenient

to express the RHS in terms of the Liouville field Φ alone. The first term on the RHS can be

written as Qe−Φc′2∂F = ∂F∂F . To express this in terms of the Liouville field, observe that,

∂F = 2e−Φ(∂Φ∂x∂Φ− ∂x∂2Φ)

∂F = 2e−Φ∂Φ∂x∂Φ− ∂xΦ
(C.12)

To arrive at the second expression, we used the Liouville equation (Again, note that the delta

function drops out). Now, we evaluate ∂F∂F and observe after a few lines of algebra that it

can be expressed as a total ∂ derivative,

∂F∂F =
1

2
∂
(
e−Φ∂(∂xΦ)2

)
− 2∂

(
e−2Φ∂Φ(∂xΦ)2

)
+ ∂

(
∂xF −

c′′2
2c′2

F

)
(C.13)

Since the second term on the RHS of (C.11) is also a total derivative, c′′2Qe
−Φ =

c′′2
c′2
∂F , we

can integrate (C.11) trivially to get,

w(2) = ∂xF +
1

2
e−Φ∂(∂xΦ)2 − 2e−2Φ∂Φ(∂xΦ)2 (C.14)

Using the Liouville equation and noting that the delta function terms drop out everywhere

since they are always accompanied by a e−Φ prefactor, we see that w(2)(x, x) = 0. So, the

relation between moduli on the two boundaries calculated upto O(a2) reads,

x′ = x+ a (C.15)

To proceed to O(ā3) we use Mathematica. We construct a general ansatz with the correct

scaling and up to three powers of e−Φ, plug it into the 3rd order Beltrami equation, and

simplify using the Liouville equation and same tricks described at lower orders. This fixes

the coefficients in the ansatz and leads to

w(3) =
4

3
e−3ΦΦ3

zx(−2Φ2
z + Φzz) + 2e−2ΦΦzx(2ΦxΦzxΦz − ΦzxxΦz − ΦzxΦzx)

+ e−Φ(−Φ2
xΦzx + ΦxxΦzx + ΦxΦzxx −

1

3
Φzxxx) (C.16)

where the subscripts are partial derivatives. Using the Liouville equation to evaluate this
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solution at (z, z̄) = (x, x̄), we find w(3)(x, x) = 0. Thus, we have verified that

x′ = x+ a+O(ā4) . (C.17)

As discussed in section 5.3, the equality is extended to all orders by [87, Lemma 4.2].
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