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ABSTRACT
Human intelligence is able to first learn some basic skills for solving
basic problems and then assemble such basic skills into complex
skills for solving complex or new problems. For example, the basic
skills “dig hole,” “put tree,” “backfill” and “watering” compose a
complex skill “plant a tree”. Besides, some basic skills can be reused
for solving other problems. For example, the basic skill “dig hole” not
only can be used for planting a tree, but also can be used for mining
treasures, building a drain, or landfilling. The ability to learn basic
skills and reuse them for various tasks is very important for humans
because it helps to avoid learning too many skills for solving each
individual task, and makes it possible to solve a compositional
number of tasks by learning just a few number of basic skills, which
saves a considerable amount of memory and computational power
in the human brain. We believe that machine intelligence should
also capture the ability of learning basic skills and reusing them
by composing into complex skills. In computer science language,
each basic skill is a “module”, which is a reusable network that
has a concrete meaning and performs a concrete basic operation.
The modules are assembled into a bigger “model” for doing a more
complex task. The assembling procedure is adaptive to the input or
task, i.e., for a given task, the modules should be assembled into the
most suitable model for solving the given task. As a result, different
inputs/tasks could have different assembled models.

In this work, we take recommender system as an example and
proposeModularizedAdaptive Neural Architecture Search (MANAS)
to demonstrate the above idea. Neural Architecture Search (NAS)
has shown its power in discovering superior neural architectures.
However, existing NAS mostly focus on searching for a global ar-
chitecture regardless of the specific input, i.e., the architecture is
not adaptive to the input. In this work, we borrow the idea from
modularized neural logic reasoning and consider three basic logical
operation modules: AND, OR, NOT. Meanwhile, making recom-
mendations for each user is considered as a task. MANAS auto-
matically assembles the logical operation modules into a network
architecture tailored for the given user. As a result, a personal-
ized neural architecture is assembled for each user to make rec-
ommendations for the user, which means that the resulting neural
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architecture is adaptive to the model’s input (i.e., the user’s past
behaviors). Experiments on different datasets show that the adap-
tive architecture assembled by MANAS outperforms static global
architectures. Further experiments and empirical analysis provide
insights to the effectiveness of MANAS. The code is open-source at
https://github.com/TalonCB/MANAS.
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1 INTRODUCTION
Neural Architecture Search (NAS) has emerged as a popular solu-
tion for alleviating the pain of designing neural network architec-
tures. Its goal is to automatically discover the optimal deep neural
networks based on data-driven learning so that practitioners are
provided with ready-made deep neural architectures without ex-
pert knowledge, which reduces the burden on manual network
design. NAS has become a prevailing research field in various ap-
plications such as computer vision [40, 44, 74], natural language
processing [14, 40, 44] and recommender systems [38, 52, 67], which
has been shown to have the ability of generating deep neural archi-
tectures that outperform some human-designed architectures and
achieve state-of-the-art performance.

Existing NAS methods mainly focus on searching for a global
neural architecture to fit all the data of a problem, which means
that all the training data share one global neural network structure.
However, the optimal network structure could be different for dif-
ferent data samples. As a result, we hope the network generation
process can be adaptive to the input of the data sample. Under the
context of recommender systems, each user is considered as a task
(i.e., making recommendations for the user), and the input for this
task is the user’s historical behaviors (i.e., predicting the user’s
future behavior based on the histories). As a result, the generated
network structure should be “personalized” so that the generated
network is different for different users.
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In this work, we propose aModularizedAdaptiveNeuralArchite-
cture Search (MANAS) framework to demonstrate the idea of learn-
ing basic skills as neural modules and then automatically assemble
the modules into a model for solving different tasks. Most impor-
tantly, the module assembling process is adaptive to the input of
the data sample and the task at hand, since the modules should be
assembled in different ways to solve different problems. Following
the idea of neural logic reasoning [8, 9, 51], we consider three basic
logical operation skills AND, OR and NOT as the basic modules,
which are used to assemble complex neural architectures. The sim-
ple and meaningful design of the modules makes them a good fit for
architecture search and realizing architecture-level personalization.

In Neural Collaborative Reasoning (NCR) [8], these logical mod-
ules are organized into a modularized neural architecture according
to the input based on a manually defined rule. Instead, our architec-
ture search algorithm aims to automatically search for the optimal
combination of the input variables together with the basic logical
modules to generate input-adaptive architectures. Technically, we
improve from the Efficient Neural Architecture Search (ENAS) [44]
model by allowing the input of the data sample as the input for the
neural architecture generation process, so that the input of the data
sample can steer the generation process (i.e., input-adaptive). One
can treat this as a sentence generation model by taking input from
the data sample to generate an output sequence. The inputs are
from the data sample while the output is the generated neural archi-
tecture. In this case, our MANAS model can generate data-specific
architectures to provide an architecture-level personalization for
users. We apply one-shot training as well as batch training strate-
gies to speed up the training process. Such auto-architecture search
mechanism eliminates the limitation of NCR that uses a manually
designed global architecture. As a result, our framework can learn
to generate more flexible and personalized neural architectures that
are adaptive to different user inputs.

Our contributions can be summarized as follows.
• We demonstrate the idea of learning some basic skills as
neural modules and then reusing the modules by assembling
them into different models for solving different tasks.
• Wepropose amodularized adaptive neural architecture search
framework MANAS, which allows NAS model to generate
adaptive input-dependent architectures for each input.
• We design a search space based on logical modules, which
allows the neural architecture to be learned from data instead
of using a manually crafted global architecture.
• We demonstrate the effectiveness of MANAS on different
datasets compared with human-defined models. Analysis of
the models generated by MANAS provides insightful guid-
ance for model design.

In the following, Section 2 presents related work, Section 3 re-
views neural collaborative reasoning as preliminaries, Section 4
presents our model, Section 5 provides experiments, and Section 6
concludes the work with outlooks for future work.

2 RELATED WORK
2.1 Personalized Recommendation
The idea of personalized recommendation is to tailor the recom-
mended results to a specific user or a set of users [20, 70]. To achieve

this goal, researchers designedmultiple algorithms to do representa-
tion learning on user preferences. Conventionalmatrix factorization
based approaches [31, 47, 49] decompose the user-item rating ma-
trix into two low-rankmatrices for identifying latent features. Users’
preferences are represented as low-dimensional vectors for calcu-
lating the similarity scores with candidate items. As neural network
becomes a powerful approach in recommender systems, many re-
search works explore the ways to incorporate deep neural network
to capture personalized information. Early pioneer work designed
a two-layer Restricted Boltzmann Machine (RBM) to model users’
explicit ratings on items [50]. Later, deep learning based recommen-
dation algorithms [8, 15, 66, 69] were proposed to capture non-linear
information in user-item interactions. More works have been pro-
posed to apply deep neural networks to learn personalized user rep-
resentations by capturing various information, such as sequential
information [11, 26, 29, 56, 58], image information [10, 12, 23, 41, 69],
textual information [25, 33, 34, 62, 69, 71, 72], attribute information
[61], knowledge information [18, 19, 24, 59, 60], causal informa-
tion [35, 36, 55, 63–65] and relational information [9, 17, 37, 54].
Researchers also consider reinforcement learning in recommenda-
tion tasks [21, 22, 43]. Some works also explored neural architec-
ture search for recommendation and click-through-rate prediction
[38, 52, 67]. Though the aforementioned models, including the ar-
chitecture search-based models and plenty of works that cannot be
enumerated, have different designs, their personalization is mainly
reflected on representation-level, i.e., they employ a global model
architecture for all users, and personalization is only captured by
the user’s personalized vector representation.

Recently, neural collaborative reasoning [8, 9, 51, 73] has been
proposed to model recommendation tasks as logical reasoning prob-
lems. They take logically constrained neural modules to mimic the
logical operations in a fuzzy logical space, and then these modules
can be organized together with the input variables based on manu-
ally crafted rules to formalize the recommendation problem as a
logical satisfiability task. Though these works have shown state-
of-the-art performance, the architecture design still depends on
human domain knowledge, which may require extra human efforts
when transferring to different scenarios. Besides, these works still
perform personalization on representation-level. Nevertheless, the
design of modularized logical network inspires us to explore the
possibility of implementing architecture-level personalization, so
that the model can be more adaptive and generalizable to new areas
without manually designed logical rules.

2.2 Neural Architecture Search
Neural architecture search (NAS) refers to a type of method that can
automatically search for superior neural network architectures for
different tasks. Themain components for designing NAS algorithms
include the search space, the search techniques and the performance
estimation strategy [16].

Search Space. An ideal search space should contain sufficient
distinct architectureswhile potentially encompassing superior human-
crafted structures [52, 74]. Existing work can be roughly classified
into the macro architecture search space [1, 6, 7, 28, 46] and the
micro cell search space [40, 42, 44, 45, 75]. Macro search space de-
sign is to directly discover the entire neural network while micro
search space focuses on learning cell structures and assembling
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a neural architecture by stacking many copies of the discovered
cells. The former considers more diversified structures but is quite
time-consuming for finding good architectures due to the huge
search space. The latter reduces the computation cost but may not
target good architectures due to the inflexible network structure.

Search Techniques. The dominant architecture search tech-
niques include random search [5], Bayesian optimization [4], evolu-
tionary algorithms [46], reinforcement learning [44, 74, 75], gradient-
based optimization [40]. In recent work [13], the authors shows the
effectiveness of combining different types of search techniques to
better balance exploitation and exploration.

Performance estimation strategy. When a model is searched,
we need a strategy to estimate the quality of this model. Due to
the expensive cost of fully training each sampled model, many
performance estimation strategies are proposed, such as low-fidelity
estimation [45, 75], one-shot algorithm by weight sharing [40, 44],
network morphism [46] and learning curve extrapolation [2].

3 PRELIMINARIES
Before formally introducing ourMANAS framework, we first briefly
review the concepts of neural logical modules in neural collabora-
tive reasoning (NCR) [8, 51], which is a neural-symbolic framework
that integrates learning and reasoning. Neural logical modules use
three independent multi-layer perceptron (MLP) to represent propo-
sitional logic operations AND, OR and NOT, respectively. To grant
logic meanings to these modules, they conduct self-supervised
learning by adding logical regularization over the corresponding
neural logical modules to enable these modules to behave as logic
operators. For example, the following logic regularizer is added
over the AND module to make it satisfy the idempotence law in
propositional logic, i.e., 𝑥 ∧ 𝑥 = 𝑥 :

𝑟 =
1
|X|

∑
x∈X

1 − 𝑆𝑖𝑚(AND(x, x), x) (1)

where 𝑥 is the input variable;X represents the input space; 𝑆𝑖𝑚(·, ·)
is the similarity function to measure the distance of two variables,
which is the cosine similarity function in [8]. The idea of other
logical regularizers corresponding to other logical laws are similar
and can be seen in [8, 51].

With these logical modules, the next step is to formalize the user-
item interactions as logic expressions, so that the recommendation
problem can be transformed into the problem of predicting the
probability that a logical expression is true. NCR uses Horn clause
to depict the recommendation scenario. Specifically, it predicts the
next user-item interaction by taking the clues from the conjunction
of a user’s historical interactions. For example, if a user𝑢 interacted
with a set of items {𝑣1, 𝑣2, 𝑣3} and we want to predict if this user
would interact with item {𝑣4} in the future, then the question can
be translated into the following expression:

e𝑢,𝑣1 ∧ e𝑢,𝑣2 ∧ e𝑢,𝑣3 → e𝑢,𝑣4 (2)

where e𝑢,𝑣𝑖 is the encoded predicate embedding which represents
the event of user 𝑢 interacted with item 𝑣𝑖 ; "→" is the material
implication operator1 in propositional logic. The expression Eq. (2)
can be equivalently converted to ¬e𝑢,𝑣1 ∨¬e𝑢,𝑣2 ∨¬e𝑢,𝑣3 ∨ e𝑢,𝑣4 by

1Material implication (→) can be represented by basic operations: 𝑥 → 𝑦 ⇔ ¬𝑥 ∨ 𝑦

Figure 1: An illustration of an architecture in the designed search
space. Red, green and yellow blocks are logical modules; white
blocks are raw input variables. The arrows show some potential con-
nections between blocks while the red lines show one possible valid
architecture ¬e1 ∧ e3 ∨ e2.

applying De Morgan’s Law2. Then the Horn clause can be identi-
cally transformed into a neural architecture using the logical neural
modules. The output is also a vector which represents the true/false
of the expression. The final scoring function is a similarity func-
tion such as cosine that can measure the similarity between this
output and the true vector T. This true vector is an anchor vector
that is fixed after initialization and will not be updated during the
training process. It is used to define the logical constant True in the
high dimensional vector space. We can then rank items based on
these scores to generate ranking lists for users. In this work, we use
similar notation e𝑖 to represent the predicate "item 𝑣𝑖 is interacted".

4 MANAS FRAMEWORK
We have briefly introduced the background of neural architecture
search, neural logical modules and the challenges of implementing
adaptive NAS. In this section, we will give details of our MANAS
framework in terms of search space design, search algorithm and
prediction/recommendation workflow.

4.1 Search Space Design
In the NAS literature [40, 75], it has been shown that determining
the entire architecture of MLP can be extremely time-consuming.
Thus, it is preferable to use a tailored but expressive search space
that exploits domain-specific knowledge. As we mentioned before,
this work can be treated as an extension of NCR, which is to apply
NAS techniques and learn to generate modularized logical archi-
tectures for each input adaptively, thus realizing architecture-level
personalization for the recommendation. In NCR, user historical
events are always combined with a conjunction form. However, this
form is not flexible and may not always fit the behavior patterns
of each user. In our work, we still use the Horn clause to predict
a user’s future behavior but replace the premise part (i.e. the left
part of material implication) from a fixed conjunction architecture
to a searched architecture that is adaptive to the user’s interac-
tion history. Different from other NAS works which search for
hyper-parameters and basic operators such as activation functions
in neural architecture, we focus on searching for a valid combina-
tion of logical modules and input variables so that a personalized
architecture can be searched and dynamically assembled according
to the user’s history to make recommendations for this user.

As shown in Fig.(1), for a given set of raw input variables e1, e2, e3
and three logical modules AND, OR and NOT, the model should find

2De Morgan’s Law: ¬(𝑥 ∨ 𝑦) ⇔ ¬𝑥 ∧ ¬𝑦;¬(𝑥 ∧ 𝑦) ⇔ ¬𝑥 ∨ ¬𝑦
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a set of valid connections to combine all the raw inputs together
with these logical modules to formulate a valid logical expression.
The AND and OR modules are binary operators which take two
inputs while NOT is a unary operator with only one input. To cover
the cases where there are more than two variables in the expression,
we allow the reuse of logical module blocks. We treat the connected
modules as a set of directed acyclic graphs (DAGs) by following [44]
and each logic module can take as input both raw variables and
the intermediate hidden variables, i.e., the variables that are output
from other blocks of higher topological order in the DAG.

One challenge is how tomake sure the final searched architecture
represents a valid logical expression. The most straightforward
approach to define the search space is to allow the reuse of both raw
input variables and the intermediate hidden variables. In this way,
the model can potentially search for any possible combinations of
the given input variables and logical modules. However, this would
result in an infinite search space which is challenging for search
algorithms. On the other hand, if we cannot guarantee to generate
a valid logical architecture, the downstream child network cannot
be built and trained. To solve the problem, we forbid the reuse of
input variables (be it raw or hidden variables). This setting allows
our design to be implemented with both correctness and efficiency.

In summary, our search space includes two types of blocks: neu-
ral logical module blocks and input variable blocks. Input variable
blocks include the raw input variables and the intermediate hidden
output variables. These variables are represented as fixed-length
vectors and the logical modules as MLPs. The hyper-parameters of
these blocks, such as the dimension of vectors, number of layers of
MLPs, the activation function to be used, etc., are not considered
to be part of the search space. We only search for the superior
combination of these blocks to build valid logical architectures
for recommendation. We allow the reuse of neural logical module
blocks but do not allow the reuse of input variable blocks. For each
searched AND or OR logical module block, the model needs to
search two-variable blocks as their inputs. Then, for each searched
input variable block, we need to determine if this variable needs to
couple with a NOT logical module. Once all the variables, except
for the final output, are consumed, the search process is done. Since
we do not allow the reuse of input variable blocks, the total length
of the searched logical expression should be 𝑛, where 𝑛 is the total
number of raw input variables. The total number of layers for the
entire architecture is 𝑛 − 1. To sample architecture for 𝑛 raw input
variables, the total number of distinct architectures in the search
space would be:

𝑛∏
𝑖=2

4
(
𝑖

2

) (
2
1

)
= 4𝑛−1𝑛!(𝑛 − 1)! (3)

which is 𝑂 (𝑛!) level. The designed search space contains plenti-
ful distinct architectures and can cover most of the valid logic
architectures, which allows the model to be adaptive to more rec-
ommendation patterns than NCR.

4.2 Search Strategy
NAS usually requires full model training for performance evalu-
ation which is extremely time-consuming. Motivated by the one-
shot search algorithms in NAS [6, 44], we allow parameter sharing

Figure 2: An illustration of the generation process of logits for input
variable prediction at time 𝑡 ; e𝑖 represents predicate vector; h𝑡−1 is
the hidden state from the 𝑡-1 step; “+”means element-wise addition.

among architectures so that we can apply one-shot algorithm on
MANAS. Specifically, we follow ENAS [44] by using reinforce-
ment learning as the search technique. There are two groups of
networks—controller network and child network.

4.2.1 Controller Network. Controller network is an LSTM [27]
which samples architecture modules via softmax classifiers. In
ENAS, at each step, the controller takes the hidden state for the
previous sampled module as input and makes the next prediction.
The entire search process does not involve raw input variable vec-
tors, which makes the architecture generation process independent
from the input data. Different from ENAS, as illustrated in Fig.(2),
our controller network considers both the hidden states from the
previous step and the input variable representations when making
decisions. We assign a unique vector to each raw input variable
and this is the reason why we treat each raw input variable as a
block. For example, at time 𝑡 , we have predicate vectors {e1, e2, e3}
as the input candidates. We first merge the information from the
hidden state and the input vectors by doing element-wise addition.
Then these enriched vectors are sent to a mapping function whose
output is a scalar. Each scalar can be treated as the logit of its cor-
responding input variable. We concatenate these logits to form a
logits vector logits𝑡 . This process can be represented as

𝑙𝑖 = W1 (e𝑖 + h𝑡−1) + 𝑏1
logits𝑡 = concat(𝑙1, 𝑙2, . . . , 𝑙𝑖 ) ∀𝑖 ∈ C𝑡

(4)

where 𝑙𝑖 is the logit for candidate e𝑖 ;W1 ∈ R𝑛×1 is a matrix to map
the input vector into a scalar; 𝑏1 is the bias term; C𝑡 represents
the collection of candidates at current step. Then this logits𝑡 is
sent to the Softmax function. Each dimension of the normalized
logits vector represents the probability of a specific variable to be
chosen as the input at the current time 𝑡 . The prediction process
of logical module is similar to the variable prediction process. The
only difference is that we only use the hidden state from LSTM to
create the logits vector for predicting the next module.

Once we obtain the predicted input variables, the controller
needs to decide if any of these inputs should be coupled with a NOT
module to be represented as the negation form in logic expression.
We take the logits of the selected input variables from the previous
step to create a vector for NOT module prediction. For example, if
we select e𝑖 as one of the input at step 𝑡 , then we can calculate the
logit 𝑙𝑖 by equation Eq. (4). Then the new logit vector of e𝑖 for NOT
module prediction is [−𝑙𝑖 , 𝑙𝑖 ], where the two dimensions represent
do or do not couple with a NOTmodule, respectively. This is similar
to what ENAS does for predicting skip connections. An example of
the aforementioned sampling process is illustrated in Fig.(3).
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Figure 3: An illustration of the sampling process of logical architec-
ture (¬e1 ∧ e3) ∨ e2. e𝑖 represents predicate embedding; the first "0"
means we use zero vector as the initial hidden state for LSTM; "1"
in the last generation step represents the output hidden state from
layer 1. The red background represents that the corresponding in-
put vector is sent to the NOT module to get the negation form.

4.2.2 Child Network. Child network is the searched network for
the recommendation task. Since our approach is adaptive, for each
input sequence of user interaction history, the controller network
will first generate a data-specific architecture to organize the history
sequence into a logic expression. Then we apply the Horn clause
of the logical modules and input vectors to calculate the score for
each candidate item. All the parameters of the child network are
shared among all the sampled architectures.

4.3 MANAS Training and Deriving
We have introduced the adaptive architecture search strategy and
gave a brief illustration of the child network formalization process.
To make it more clear and easy to understand, in this subsection,
we will go through the training process of MANAS.

In MANAS, the parameters of the controller network, denoted
by 𝜃 , and the shared parameters of the child network, denoted by
𝜔 , are two groups of learnable parameters. These two networks are
trained interleaved. First, we fix the controller’s policy 𝜋𝜃 and train
the child network on a whole pass of the training data, i.e. train
one epoch. After that, we fix the parameters of the child network
and train the controller’s policy network parameters. To make the
training process efficient, we apply one-shot searching algorithm
since our child network parameters 𝜔 are shared. Additionally, we
do not train child networks from scratch at each iteration. Instead,
we update 𝜔 on top of the results of the last iteration. The training
algorithm is given in Algorithm 1, and more details about MANAS
training are as follows.

4.3.1 Child Network Training. In the recommendation task, we
use a sequence of user interacted items as the input to predict future
interactions. For each item 𝑣𝑖 in the item setV , we assign a unique
vector e𝜔

𝑖
∈ E𝜔 to represent the predicate “item 𝑖 is interacted,”

where E𝜔 represents the set of all the predicate vectors in the child
network parameter space.

Under the settings of neural collaborative reasoning [8], the rec-
ommendation task is to answer the question “(?) → 𝑣𝑘 ,” where (?)
is the premise logic expression that contains the input sequence
and 𝑣𝑘 is a candidate item. Given a sequence 𝑠 = {𝑣1, 𝑣2, 𝑣3}, the
controller network will sample an architecture, e.g., ¬e𝜔1 ∧e

𝜔
3 ∨e

𝜔
2 ,

from 𝜋𝜃 to convert the input into a logic expression with an empty
embedding as the initial input. Then we replace “(?)” with this

Algorithm 1: MANAS Training Algorithm
Input :Controller parameters 𝜃 ; child logical network

shared parameters 𝜔 ; performance evaluator E;
training steps of controller network 𝐾 ; training
epochs 𝑡 ; training data D𝑡𝑟𝑎𝑖𝑛 ; validation data
D𝑣𝑎𝑙𝑖𝑑 ; optimizer OPTIM

1 Initialize controller parameters 𝜃 and child logical network
parameters 𝜔 ;

2 for 𝑒𝑝𝑜𝑐ℎ ← 1 to 𝑡 do
3 sample architecturesM𝑡𝑟𝑎𝑖𝑛 from

𝜋 (𝑠;𝜃 ), ∀𝑠 ∈ D𝑡𝑟𝑎𝑖𝑛 ;
4 train child logical network withM𝑡𝑟𝑎𝑖𝑛 on D𝑡𝑟𝑎𝑖𝑛 ;

5 for 𝑘 ← 1 to 𝐾 do
6 prepare 𝐵𝑎𝑡𝑐ℎ from D𝑣𝑎𝑙𝑖𝑑 ;
7 for 𝑏 ∈ 𝐵𝑎𝑡𝑐ℎ do
8 sample architecturesM𝑏 from

𝜋 (𝑠 ′;𝜃 ), ∀𝑠 ′ ∈ 𝐵𝑎𝑡𝑐ℎ;
9 evaluate model with E to obtain reward R;

10 update controller parameters 𝜃 with OPTIM;
11 end
12 end
13 end

Figure 4: An illustration of a logical network for predicting the prob-
ability of item 𝑘 being interacted (represented by predicate e𝑘 ) with
a sequence of input predicates {e1, e2, e3 }

.
searched architecture and replace 𝑣𝑘 with its predicate vector e𝜔

𝑘
to get the expression ¬e𝜔1 ∧ e

𝜔
3 ∨ e

𝜔
2 → e𝜔

𝑘
. Then we follow NCR

to build and train the network by converting the expression into
¬(¬e𝜔1 ∧ e𝜔3 ∨ e𝜔2 ) ∨ e𝜔

𝑘
. The entire logical network of the given

example is presented in Fig.(4). We use the BPR-loss [47] by sam-
pling one user non-interacted item as the negative sample for each
ground-truth item to train the child network. We also use recom-
mendation metrics such as hit ratio and normalized discounted
cumulative gain (NDCG) as the performance evaluation measure.

4.3.2 Controller Network Training. In the controller network
parameter space, we also assign a unique vector e𝜃

𝑖
∈ E𝜃 for each

item 𝑣𝑖 ∈ V . Though e𝜃
𝑖
and e𝜔

𝑖
are independent, they both rep-

resent the predicate “item 𝑣𝑖 is interacted”. This can be a bridge
to connect the controller network and the child network so that
the generated architecture can be adaptive to the input sequences.
When training the controller network, we fix 𝜔 and update the pol-
icy network parameters 𝜃 . Our goal is to maximize the expectation
of reward E𝑚∼𝜋 (𝑠 ;𝜃 ) [R(𝑚,𝜔, 𝑠)], where 𝑚 represents a sampled
child network; 𝑠 is the input sequence. The reward R(𝑚,𝜔, 𝑠) is
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computed on the validation set. In our experiments, the reward
function is the summation of hit ratio and NDCG on a minibatch of
the validation set. We treat one whole pass of the validation set as
one training step for the controller network and we train 50 steps
per iteration. We employ the Adam optimizer [30], for which the
gradient is computed using REINFORCE, with a moving average
baseline to reduce variance.

4.3.3 Deriving Architecture. In ENAS, it only maintains the
learned controller network parameters and discard the child net-
work parameters when deriving new architectures. They sample
a set of new architectures for validation and select the one with
the best performance to train a new child network from scratch.
Different from ENAS, we treat both the controller network and the
child network as the components of MANAS. In testing time, when
a new sequence 𝑠 ′ is given, we directly sample a model𝑚𝑠′ from
the trained policy 𝜋 (𝑠 ′;𝜃 ). Then the child network𝑚𝑠′ is assem-
bled based on the sampled architecture by using the trained shared
logical modules and predicate vectors.

5 EXPERIMENTS
In this section, we evaluate MANAS as well as several baseline
models for the top-𝐾 ranking problem on a set of publicly avail-
able real-world recommendation datasets. We aim to answer the
following research questions:
• RQ1: Can MANAS search for architectures that outperform
state-of-the-art human-crafted models for recommendation?
• RQ2: In MANAS, the searched architecture is adaptive to
the input sequence. Is this adaptive nature important for
improving recommendation quality?
• RQ3: The architecture sampling process in MANAS involves
exploration since the modules are sampled according to log-
its probability rather than directly selecting the module of
the largest probability (i.e., exploitation). Is exploration nec-
essary for training MANAS?
• RQ4: What about the efficiency of MANAS?
• RQ5: How does the recommendation performance and the
training time cost change w.r.t the input sequence length?

5.1 Experimental Settings
5.1.1 Dataset. In the experiments, we use the publicly available
Amazon e-commerce dataset3, which includes the user, item and rat-
ing information. We take Beauty, Cell Phones and Accessories
and Grocery and Gourmet Food sub-categories for our experi-
ments to evaluate the performance of our neural architecture search
algorithm. Statistics of the datasets are shown in Table 1.

5.1.2 Evaluation Protocol. We use leave-one-out strategy to
split the dataset into train, validation and test, which is a widely
used approach in the literature [8, 51]. For each input sequence 𝑠𝑢
from a user 𝑢, we use the most recent interaction of each user for
testing, the second recent item for validation, and the remaining
items for training. As the searched neural architectures are used
for ranking tasks, for efficiency consideration, we use real-plus-N
[3, 48] to calculate the measures in the validation and testing stage.
More specifically, for each user-item pair in the validation and test
3https://jmcauley.ucsd.edu/data/amazon/

Table 1: Statistics of the datasets in our experiments.

Dataset #Users #Items #Interaction Density

Beauty 22,363 12,101 198,502 0.073%
Cellphones 27,879 10,429 194,439 0.067%
Grocery 14,681 8,713 151,254 0.118%

set, we randomly sample 99 user non-interacted items, and we rank
these 100 items for the ranking evaluation.

As for the evaluation metrics, we select a recall-based metric
Hit Ratio (Hit@𝐾) and a rank-position based metric normalized
discounted cumulative gain (NDCG@𝐾 ) for evaluating the perfor-
mance of recommendation. The reported results of all metrics are
averaged over all users.

5.1.3 Hyper-parameters Settings. For our MANAS model, the
length of the input sequence is 4, i.e., each user-item pair comes
with 4 histories. In practice, one can set this number to any value
but our experiments show that 4 history is good enough for our
recommendation tasks. We will also explore the effect of different
input lengths in Section 5.7. For the baseline models, we allow
sequence length up to 20. The embedding size is set to 64 for both
the child network and the controller LSTM hidden vectors. We
use Adam [30] to optimize model parameters. ℓ2 regularization is
adopted to prevent child network from overfitting and the weight
of ℓ2 is set to 10−5. The logic regularization weight is set to 10−5.
The learning rate for the child network is 0.001 while the controller
learning rate is 0.005.

5.2 Baselines
Since our model requires interaction sequence as input, we select
the following representative sequential recommendation baselines
to verify the effectiveness of our method.
• GRU4Rec [26]: This is a sequential/session-based recom-
mendation model, which uses Recurrent Neural Network
(RNN) to capture the sequential dependencies in users’ his-
torical interactions for recommendations.
• NARM [32]: This model utilizes GRU and the attention
mechanism to consider the importance of interactions .
• Caser [56]: This is a convolutional neural network based
sequential model, which learns sequential patterns using
vertical and horizontal convolutional filters.
• SASRec [29]: This model uses transformer to capture the
left-to-right context information from historical interactions.
• BERT4Rec [53]: This model utilizes a bi-directional self-
attention module to capture context information in user
behavior sequences from both left-to-right and right-to-left.
• NCR [8]: This is a state-of-the-art neural logic reasoning
based recommendation framework. It utilizes logic reasoning
to model recommendation tasks.
• NANAS: This is the non-adaptive version of our NAS model.
It is used to replicate regular NAS which learns a global
architecture for all inputs on a specific task.

The baseline implementations are from an open-source recom-
mendation toolkit [57]. We select the best model based on its best
performance on the validation set. We implement the models with
PyTorch v1.8 and the models are trained on a single 2080Ti GPU.
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Table 2: Results of recommendation performance on three datasets with metrics NDCG (N) and Hit Ratio (HR). We use underline (number)
to show the best result among the baselines. We use bold font to mark the best result of the whole column. We use one star (*) to indicate
that the performance is significantly better than the best non-NAS based baselines, and use two stars (**) to indicate that the performance
is significantly better than all baselines including NANAS. The significance is at 0.01 level based on paired 𝑡-test. Improvement1 shows our
model improvement over the best result (i.e., over number), while improvement2 shows our model improvement over NCR.

Beauty Cellphones Grocery

N@5 N@10 HR@5 HR@10 N@5 N@10 HR@5 HR@10 N@5 N@10 HR@5 HR@10

GRU4Rec 0.1656 0.2012 0.2534 0.3637 0.1766 0.2101 0.2575 0.3616 0.2000 0.2292 0.2914 0.3816
NARM 0.1900 0.2200 0.2656 0.3584 0.2008 0.2387 0.2923 0.4101 0.2260 0.2541 0.3129 0.3999
Caser 0.2107 0.2416 0.2912 0.3874 0.2054 0.2412 0.2937 0.4052 0.2313 0.2603 0.3191 0.4088
SASRec 0.2599 0.2861 0.3275 0.4091 0.2458 0.2767 0.3275 0.4230 0.2342 0.2658 0.3379 0.4361
BERT4Rec 0.2283 0.2584 0.3102 0.4034 0.2536 0.2908 0.3503 0.4655 0.2420 0.2727 0.3356 0.4310

NCR 0.1883 0.2163 0.2551 0.3420 0.1819 0.2140 0.2604 0.3602 0.2210 0.2490 0.3140 0.4010
NANAS 0.2519 0.2820 0.3383 0.4316 0.2534 0.2915 0.3500 0.4682 0.2462 0.2731 0.3574 0.4402
MANAS 0.2618 0.2933** 0.3532** 0.4507** 0.2785** 0.3149** 0.3846** 0.4971** 0.2609** 0.2882** 0.3598* 0.4444*

Improvment1 0.73% 2.52% 4.40% 4.43% 9.82% 8.03% 9.79% 6.17% 5.97% 5.53% 0.67% 0.95%
Improvment2 39.03% 35.60% 38.46% 31.78% 53.11% 47.15% 47.70% 38.01% 18.05% 15.74% 14.59% 10.82%

5.3 Recommendation Performance (RQ1)
We report the overall recommendation ranking performance of all
the models in Table 2. The results show that our MANAS consis-
tently outperforms all the baseline models. From these results, we
have the following observations.

(1) NCR outperforms GRU4Rec in most cases on all the datasets
and achieve a comparable performance with NARM and Caser
on Grocery dataset. However, on Beauty and Cellphones datasets,
Caser has a much better performance than NCR. This observation
indicates that the manually designed architectures are lack of adap-
tation ability especially for neural logic reasoning. According to the
findings in NCR, a correct form of the logic expression could affect
the recommendation quality. However, designing a data-specific
architecture is non-trivial and requires excessive human efforts,
which corroborates the necessity of designing an data-adaptive
neural architecture search algorithm.

(2) MANAS can consistently outperform all the baselines. By
comparing MANAS and NCR, the significant improvement on all
the metrics show that learning to generate architectures does help
neural logic reasoning to be more adaptive to various inputs.

5.4 Global vs. Adaptive (RQ2)
We claimed that it is important to design an adaptive NAS algorithm
to realize architecture-level personalization for recommendation
tasks. To verify the importance of this adaptive feature, we use a
non-adaptive NAS, called NANAS. This is to replicate a regular
NAS algorithm that learns a global architecture for all inputs on
a specific task. The difference between MANAS and NANAS lies
in the controller part. In NANAS, the predicate embeddings of the
raw input variables do not involve in the search process. Instead,
all the input variables e𝑖 are replaced with position embedding
p𝑖 , where p𝑖 is the representation of the 𝑖-th position in the logic
expression. For example, suppose we are given two input sequences
𝑠1 = {𝑣1, 𝑣2, 𝑣3} and 𝑠2 = {𝑣4, 𝑣5, 𝑣6}, MANAS search space includes
the predicate embedding of the input variables {e1, e2, e3, e4, e5, e6}
as well as logical modules AND, OR, NOT. However, in NANAS, the

search space only contains the position embedding {p1, p2, p3} and
three logical modules. Since the search space does not relate to the
input variables, the searched architecture is a global architecture
that fit all the data of the given task. Here we have two observations
from the NANAS results in Table 2:

(1) By comparing NANAS with NCR, we see that NANAS can
consistently outperform NCR on all the tasks. Such results tell us
that a searched neural logic architecture is better than a human-
designed architecture.

(2) By comparingNANASwithMANAS,we observe thatMANAS
compete NANAS on all the datasets over all the metrics. It empiri-
cally shows that an adaptive neural architecture is important for
improving personalized recommendation quality.

We illustrate the model generated architectures in Fig.(6). It
shows that our model can generate diverse architectures to adapt to
different inputs. It helps neural logic reasoning to generalize to dif-
ferent inputs and logical expressions without the pain of manually
designing suitable logical architectures.

5.5 Importance of Exploration (RQ3)
Exploration is one of the most important concepts in reinforcement
learning. Without sufficient exploration, the learning process may
not able to converge to a good solution. To verify the importance
of exploration, we test a non-sampling version of MANAS.

As mentioned in the previous section, the prediction of the next
module is based on the probabilities in the logits vector, i.e., we
treat all the probabilities as a distribution 𝜋𝜃 and the next module
is sampled according to this distribution. The probability of each
module being sampled at the current step is its corresponding
probability value in the logits vector. This allows the searcher to
explore potential cases that are not the best in the current step but
may bring large rewards in the future, so as to avoid being trapped
into a local optimal. To test the importance of exploration based on
such sampling strategy, we test a non-sampling version of MANAS
by doing the greedy selection, which always chooses the module
with the max current probability as the next predicted module.
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Table 3: Results of ranking performance in terms of average,min andmax over 20 sampled architectures for each input sequencewithMANAS.
Non-samplemodel represents the performance ofMANASwithout exploration in the searching process.WemarkMANAS𝐴𝑉𝐺 in bold to show
ourmodel consistently outperforms non-samplemodel. STD is the standard deviation of the reported results on the 20 sampled architectures.

Beauty Cellphones Grocery

N@5 N@10 HR@5 HR@10 N@5 N@10 HR@5 HR@10 N@5 N@10 HR@5 HR@10

NCR 0.1883 0.2163 0.2551 0.3420 0.1819 0.2140 0.2604 0.3602 0.2210 0.2490 0.3140 0.4010
Non-Sample 0.2528 0.2819 0.3366 0.4269 0.2627 0.2987 0.3615 0.4734 0.2373 0.2674 0.3456 0.4378

MANAS𝐴𝑉𝐺 0.2618 0.2933 0.3532 0.4507 0.2785 0.3149 0.3846 0.4971 0.2609 0.2882 0.3598 0.4444
MANAS𝑀𝐼𝑁 0.2612 0.2923 0.3523 0.4485 0.2775 0.3138 0.3830 0.4951 0.2596 0.2869 0.3584 0.4432
MANAS𝑀𝐴𝑋 0.2638 0.2954 0.3545 0.4526 0.2791 0.3155 0.3859 0.4980 0.2621 0.2893 0.3619 0.4462

STD 0.0007 0.0008 0.0010 0.0013 0.0006 0.0005 0.0010 0.0008 0.0007 0.0008 0.0011 0.0013
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Figure 5: An illustration of the ranking performance changing with the training epochs.

Figure 6: Examples of generated architectures on Beauty
dataset. MANAS searched architectures (left) for the input se-
quence {e384, e791, e619, e430 } and (middle) for the input sequence
{e1662, e2055, e2059, e2038 }; NANAS generated the global architecture
(right). The red-colored module means that its output should be
negated as the input to its successor module.

From the results in Table 3, we find that MANAS has a significant
improvement against the non-sampling model. This result shows
the importance of doing exploration in the search process.

Since the exploration brings uncertainty in the architecture
generation process, we sample 20 different architectures from the
trained model for each input sequence and evaluate their perfor-
mance. The results in Table 3 are the averaged results over the 20
samples. The small standard deviation reported in the table shows
that our model can provide relatively consistent performance.

5.6 Efficiency Analysis (RQ4)
NAS training is time consuming especially when it comes to the
adaptive neural architecture search. It is challenging to do batch
training when the network architectures are different. To tackle this
problem, we engineer the training of MANAS into two steps. Take
the child network training process as an example. We first send the
training data D𝑡𝑟𝑎𝑖𝑛 into the controller to generate architectures

for all the samples 𝑠 ∈ D𝑡𝑟𝑎𝑖𝑛 . Since we limit the length of history
to be exactly 𝑛 for each user-item interaction, we can guarantee
that each sequence contains 𝑛 raw input variables. We assign a
unique position index to each of the variables for each sequence.
During the architecture generation stage, the sampler samples the
position index for each input sequence and we can then use these
position indices to assemble logical networks. For example, if we
have two sequences 𝑠1 = {e1, e2, e3, e4} and 𝑠2 = {e5, e6, e7, e8},
we assign position index 0 to e1 and e5, 1 to e2 and e6, etc. When
the controller generates the same sequence for both 𝑠1, 𝑠2 with
{AND, 0, 1;OR, 2, 4;AND, 3, 5}, we can use the position index to lo-
cate the variable to create each layer of the logical network. Take the
first sequence 𝑠1 as an example, the corresponding logical network
is ((e1 ∧ e2) ∨ e3) ∧ e4.

After obtaining all the architectures, we can group the sequences
based on their sampled architectures. We can do batch training on
those data that have the same architecture. We set the batch size to
256 for child network training. This number is an upper bound for
the batch size. It is possible to have some architecture pattern groups
whose number of sequences is less than the batch size. In that case,
the minimum size of batches depends on the smallest group size
of architecture patterns. For the controller training process, we
apply the same approach to enable batch training. By setting the
architecture generation batch to 1024 and the child network training
batch to 256, we can achieve at least 5 times speed boost than non-
batch training. To show the effectiveness of our batch training
design, we report the change of recommendation performance in
terms of training epochs in Fig.(5). The results are reported based
on the validation set and the sequence length is set to 4. We see
that our model converges to a relatively optimal solution in around
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30 epochs on all three datasets. To speed up the training process,
we allow batch training for both controller and the searched child
network. For each training epoch, we train the child network using
only onewhole pass of the training data and then train the controller
network for 50 steps. Under these settings, one training epoch costs
about 1.2 hours.

During the inference stage, our model can generate the rec-
ommendation results efficiently. Specifically, the average inference
time is 0.995±0.054millisecond(ms), with 0.43±0.14ms for sampling
the architecture and 0.57 ± 0.06ms for generating the prediction.
For reference, the inference time of SASRec is 0.67 ± 0.04ms and
BERT4Rec is 0.70± 0.02ms. All the reported inference running time
are based on a single record prediction.

5.7 Influence of Sequence Length (RQ5)
The length of input sequence could affect not only the recommenda-
tion performance but also the training time. In this subsection, we
discuss how the recommendation performance and training time
change with respect to the sequence length. We conduct 5 experi-
ments by choosing the input sequence length from {2, 4, 6, 8, 10}.
For example, we limit each training sample to have exactly 4 his-
torical interactions when we refer to the sequence length as 4. One
problem is that we cannot guarantee the five length settings will
give us the same set of users. For example, a user with exactly 4
histories will not appear in the 6-history setting. In that case, we
may have different training data for different sequence length ex-
periments. To guarantee that all the comparisons are reasonable
by training and evaluating models on the same data, we first filter
the original dataset by only keeping those interactions that have
at least 10 histories. Then we cut off the history sequence of each
interaction for different sequence length experiments. In this case,
we can guarantee that the performance as well as the training time
differences only in the sequence length. Since the dataset used in
this experiment is a filtered one, the training time and the perfor-
mance reported in this subsection may be slightly different from
previous results. The results are reported in Fig.(7).

From Fig.(7a), we have two observations. First, we find that the
model can get recommendation performance gain by reasonably
increasing the sequence length. This is because a longer sequence
can potentially bring more information to help model capture user
preferences. However, our second observation is that we cannot
continue to get benefits from increasing the history length. Con-
trarily, the performance could be harmed when the sequence is too
long. One reason is that a longer sequence could introduce noisy
information to the model because some very early user histories
may have very limited contribution or even be irrelevant to the
current recommendation. In this case, a longer sequence does not
help to improve the recommendation quality. On the other hand,
the noise in the sequence could even result in the performance loss.

In Fig.(7b), we plot the training time per epoch with respect to
different sequence lengths. It shows that the training time is closely
related with the sequence length. This is because a longer sequence
represents a larger search space. By observing Fig.(7a) and (7b)
together, we can see that we need to carefully set the history length
for MANAS. The limited information from the short sequence may
prevent the model from capturing user preferences, thus resulting
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Figure 7: (a) Recommendation performance change w.r.t the se-
quence length; (b) The histograms represent the architecture search
time costs w.r.t different input sequence lengths. The time is given
in minutes per epoch.

in low quality recommendations. However, longer sequence does
not always help to improve the model performance. After reaching
a certain threshold, longer sequences may have very limited or
even no contribution to improve the performance but can greatly
increase the training time.

6 CONCLUSIONS AND FUTUREWORK
In this work, we propose to learn basic skills as neural modules
and automatically assemble them into different models for solv-
ing a compositional number of different problems. Technically, we
use intelligent recommender system as an example to demonstrate
the idea and propose a Modularized Adaptive Neural Architecture
Search (MANAS) framework, which automatically assembles log-
ical operation modules into a reasoning network that is adaptive
to the user’s input sequence, and thus advances personalized rec-
ommendation from the learning of personalized representations
to the learning of personalized architectures for users. We enable
neural-symbolic reasoning to generate flexible logical architectures,
which make logical models adaptive to the diverse inputs without
using human-crafted logical structure. The experimental results
show that our design can provide significantly better prediction
accuracy. Besides, we also conduct experiments to show the im-
portance of exploration in the architecture search process and the
importance of learning adaptive architectures for the prediction
and recommendation tasks.

In this work, we considered three neural modules to demonstrate
the idea of modularized adaptive neural architecture search. How-
ever, the proposed framework is general and can incorporate more
neural modules such as neural predicates or other basic vision, lan-
guage or recommendation modules, which we will explore in the
future. Furthermore, in addition to the performance improvement,
the problem-adaptive architecture generated by our framework
may improve the model transparency, provide model explainability
[39, 70, 72], and enable automatic learning to define problems [68],
which are important and promising to explore in the future.
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