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ABSTRACT

Achieving fairness over different user groups in recommender sys-
tems is an important problem. The majority of existing works
achieve fairness through constrained optimization that combines
the recommendation loss and the fairness constraint. To achieve
fairness, the algorithm usually needs to know each user’s group af-
filiation feature such as gender or race. However, such involved user
group feature is usually sensitive and requires protection. In this
work, we seek a federated learning solution for the fair recommen-
dation problem and identify the main challenge as an algorithmic
conflict between the global fairness objective and the localized fed-
erated optimization process. On one hand, the fairness objective
usually requires access to all users’ group information. On the other
hand, the federated learning systems restrain the personal data in
each user’s local space. As a resolution, we propose to communicate
group statistics during federated optimization and use differential
privacy techniques to avoid exposure of users’ group information
when users require privacy protection. We illustrate the theoretical
bounds of the noisy signal used in our method that aims to enforce
privacy without overwhelming the aggregated statistics. Empirical
results show that federated learning may naturally improve user
group fairness and the proposed framework can effectively control
this fairness with low communication overheads.
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1 INTRODUCTION

Ensuring that decision systems provide fair results towards different
users is a problem that has recently garnered considerable attention.
In particular, the concept of “user group fairness” focuses on mak-
ing sure that the under-represented or minority group of the users
are not receiving worse outcomes than others [11, 16, 31]. In recom-
mender systems, this is an especially important problem that has
been the subject of recent work [2, 8, 46]. This focus is motivated by
increasing awareness of the issue and ethical demands from users.
For example, a job recommendation system that provides much
more accurate results to users of one gender while neglecting or
hurting the other users would be unfair. In this case, the gender
attribute groups the users and and the group fairness is described
by how the recommender system treat users differently according
to their gender. In general, a fairness-aware recommender system
should have the ability to achieve a certain degree of fairness on
the recommendation quality among all user groups.

In reality, a complication is that user group features that require
fairness control (such as gender and age) are likely to be sensitive
at the same time. In the worst case, not many users are willing to
share this protected group information with the system or other
users, which makes centralized fairness control mechanically im-
possible. Often, the reason for a user not sharing his/her group
membership is precisely the fear of being unfairly treated after re-
vealing this information. And it is urgently needed a fairness-aware
recommendation solution that protects user sensitive data.

To achieve user data protection, a reasonable idea in machine
learning that has recently attracted considerable attention is the fed-
erated learning (FL) [26] technique. It allows each user’s personal
information to stay on its local device without being shared, and
only communicates the model parameters of the machine learning
model instead of the user’s raw data between user devices and the
central server. Though the communication of model parameters
may still partially leak user information, one can overcome these po-
tential threats with the help of encryption tools [27]. Existing works
such as FedMF have shown the effectiveness of federated learning
for recommendation models without fairness constraints 7, 25].
These algorithms usually represent each user as a participant, and
the objective function is naturally separable by users, which is
well-suited for the federated optimization process. Despite of the
effectiveness of these methods on achieving accurate recommenda-
tions, there is no existing work exploring the user group fairness
in the scope of federated learning on recommendation task.
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In this work, we consider a general fairness metric that measures
whether different user groups are treated equally by the recom-
mendation model. Then we identify that the main challenge for
this problem is the intrinsic conflict between the fairness learning
goal and the data protection mechanism of FL. More specifically,
the optimization of the fairness metric usually requires the access
of all users’ group features, so it is difficult to avoid sharing this
information between the central server and users. However, the
federated learning framework may need to protect this information
from being shared, causing an intrinsic contradiction which has also
been recognized in other machine learning tasks that involves fed-
erated fair learning [48]. As a result, we need an alternative that can
effectively control the recommendation fairness even when all user
group memberships are kept private in local spaces. Fortunately,
the fairness metric only needs the aggregated group statistics rather
than individual information of each single user. This opens for us
the option of applying differential privacy (DP) techniques, which
employs noisy signals to disguise the real information of users
while keeping the aggregated statistics accurate. We build upon the
aforementioned idea and propose a fairness-aware federated matrix
factorization (F2MF) framework, and summarize our contribution
as follows:

o We formally identify the conflict between user group fairness
and federated learning in the recommendation problem and
propose an effective solution framework (F2MF) for different
attribute sharing scenarios.

o We show that the optimization of a loss-based fairness metric
derives a simple algorithm that nicely fits into FL systems
and potentially controls other performance-based fairness
metrics.

o We further give two theoretical bounds of the added noises
of the differential privacy module such that it can effectively
disguise user information without overwhelming the aggre-
gation process.

e Our observation also suggests that federated learning may
naturally improve the fairness of recommendation between
user groups, but the fairness become harder to control.

In the following sections, we first discuss the related work in
section 2, and then describe the fairness and federated learning in
recommendation as well as the aforementioned intrinsic conflict in
section 3. We illustrate the loss-based fairness metric and derive our
solution F2MF along with its alternatives for partially and totally
private scenarios in section 4. We describe supporting experiments
in section 5 and conclude our work in section 6.

2 RELATED WORK

2.1 Federated Learning in Recommendation

While some pioneer works have studied the privacy issue in rec-
ommendation systems [15], Federated Learning techniques are the
first to emphasize the importance of leaving protected data in users’
local spaces. There are two general scenarios of FL-based recom-
mendation in terms of how participants are connected: they either
connect to a central server forming a star-shape communication
scheme [3, 25, 28]; or they form a decentralized connected network
with no central server [12, 42, 43]. Our work belongs to the first
scenario where each user trains a recommendation model with its
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local data and the central service aggregates the uploaded model
parameters from users. We further illustrate the general paradigm
of this type of FL scheme in section 3.2. In terms of how the user
privacy is protected, existing federated recommendation systems
mostly adopt encryption methods [7, 27] or differential privacy
methods [37] upon communication of model parameters. These
approaches are complementary to our work, since we address a
FL solution to the fairness objective and assume that only the user
group membership requires protection. To our knowledge, this is
the first work that touches the fairness-aware recommendation
problem under the FL setting.

2.2 Fairness in Recommendation

There have been growing interests on studying fairness in recom-
mender systems as they are deeply and profoundly intertwined
with people’s daily lives [19, 32, 35]. Several recent works have al-
ready found various types of unfairness in recommendations, such
as gender and race [5, 8, 33], item popularity [2, 21-23] and user
feedback [16, 31, 34], etc. Primarily, fairness can be summarized
into two paradigms based on the algorithmic definition: individ-
ual fairness and group fairness. Individual fairness requires that
individuals who are similar in their features should be treated simi-
larly, while group fairness requires that the protected groups should
be treated similarly to the advantaged group or the populations
as a whole. Besides, the relevant solutions to achieve fairness in
ranking and recommendation can be roughly divided into three
categories: pre-processing, in-processing, and post-processing al-
gorithms [20, 32, 35]. The pre-processing methods usually aim to
minimize the bias in data before the model training process. This
includes fairness-aware sampling or balancing methodologies to
increase coverage to minorities, repairing methodologies to en-
sure label correctness, and removal of disparate impact [20]. The
in-processing methods aim at encoding fairness as part of the ob-
jective function, typically as a regularizer, and mitigate the bias
during training [1, 4]. Our work falls into this category. Finally,
post-processing methods tend to modify the presentations of the
results, e.g., re-ranking through linear programming [31, 41, 45] or
multi-armed bandit [6].

2.3 Federated Fair Learning

Most of the existing fair learning methods require full access to
the dataset which naturally conflicts with the privacy-preserving
nature of FL, since FL assumes that each participant maintains their
own data proportion and may be reluctant to share the raw infor-
mation [48]. Recent work [9, 14, 18] have addressed this intrinsic
conflict and proposed general solutions to classification problems
with different group fairness constraints. Our solution starts from
a class of group fairness in the recommendation problem and takes
the insights of the these methods to derive a federated learning
solution. In addition, there exists other definitions of fairness dis-
cussed specifically under federated learning setting, including the
participant performance fairness [30, 38] that pursues uniform ac-
curacy across participants, and the collaboration fairness [44] that
rewards participants based on their contribution. Both of these
types of fairness are essentially special cases of individual fairness
while our work is discussing group-wise fairness.
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3 PRELIMINARIES

In this work, we consider the in-processing solution family (as
described in section 2.2) that integrate the fairness metric into the
objective function. This section gives the general description of this
centralized formulation and formally illustrate the intrinsic conflict
when it is optimized under general FL framework.

3.1 Recommendation with Differentiable
Fairness Objective

We denote the set of N users as U and set of M items as 7 and
define user group fairness in terms of the recommendation per-
formance — a type of fairness that enforces equalized odds [17,
24], and consider optimization-based approaches that define the
(un)fairness objective as the difference of the group-average per-
formances:

P

> Fw

ueG;

1
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1
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ueGy

Note that Eq.(1) is a bi-group metric where Gy, Gy are two mutually
exclusive user groups (e.g. active/inactive), p € {1,2} determines
the smoothness (similar to L1 or L2 norm), and ¥ calculates the user-
wise recommendation performance (e.g. F1 or NDCG). Since this
metric tells how the recommendation model unfairly discriminates
the two groups, so a smaller Lg,;; indicates a better model fairness.
Similarly, one can define a more general multi-group metric with
the number of group K > 2:

P
> F@w| @
u¢G;

Then, the overall objective of the fairness-aware recommenda-
tion can be formulated as the optimization problem that minimizes
Eq.(3), which uses A to trade-off the recommendation loss L¢c (e.g.
BPR [40]) and the unfairness metric:

L= Lrec + ALgy;; (©)

When setting 4 > 0, minimizing Eq.(3) would minimize the un-
fairness along with the training process. It is worth mentioning
that there are multiple choices for # (u) including F1, NDCG, and
other reasonable learning-to-rank metrics. However, most of these
metrics are non-differentiable and one might turn to constraint
optimization [41] methods which are not well-suited for FL sys-
tems. Furthermore, it is plausible to find accurate and differen-
tiable approximations (e.g. -NDCG [10]) for some of these metrics,
but it is hard to find a single metric that is correlated with other
performance-based fairness metrics such that optimizing one is
equivalent to optimizing all.

1 1 1
Lo GF) = D e Y F )~
i (G 7) K;|Gi|u;;i Wkl

3.2 Federated Learning for Recommendation

In a horizontal federated learning environment, we have each par-
ticipant protecting a subset of the data. This setting naturally ac-
commodates most recommender systems since we can regard each
user as a participant and apply local optimization on his/her history
with local demographic features. Note that we are not assuming pri-
vate user interaction history since it is more reasonable to consider
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Algorithm 1 General Horizontal FL for Recommendation

1: procedure FEDREC

2 Input: Initial model ©(%)

3 while Not Converged, in epoch t do

4 Sample a subset of user Ugypset € U

5 for u € Ugypser do> Compute in local space in parallel

6 Download ©(*) to local space of u.
vOe) |y « local optimization of u based on Lﬁ:c).
Upload VO |y to the central server.

=

9: end for
10: Update ©(/+1) HAggregatevueﬂsubsa(V®(t) |u).
11: end while

12: end procedure

it as a joint property of both the user and the service provider. In
this work, we only assume that some of the user group features (e.g.,
age, gender, etc.) are sensitive and non-shareable. Notice that the
objective Eq.(3) without the second unfairness term has property

Lrec = 2 .Er(:c) which is already separable by users. Then, one
can adopt the general federated learning paradigm illustrated as
Algorithm 1, which is a distributed SGD with a user-separable loss
function. The sampling step in line 4 is an algorithmic simulation
of the participant dropout (e.g. connection loss) in practice. Typical
aggregation functions for line 10 include but are not limited to Fe-
dAvg [36] and FedProx [29]. For simplicity of this paper, we adopt

FedAvg (i.e. et @) 4 l(uﬁb N Du V®(t)|u), and focus on
the effect of integrating fairness objective into federated learning
for recommendation model. The coefficient f > 0 is the step size

applied to the mitigated gradient.

3.3 Natural Conflicts between Fairness and
Federated Learning

Different from Lyec, the fairness objective Lg,;, is a group-level
metric and is NOT directly separable by users. Specifically, it re-
quires the knowledge of group membership (e.g. u € Gy or u €
Gj) and the performance information 7 (u) of all users, so each
user has to communicate this information with the central server
when applying federated optimization. This mechanically contra-
dicts the federated learning setting where user information is pro-
tected in local spaces. This critical issue could be quite common
since the group features that require fairness control are likely
to be sensitive as well (e.g. gender) and thus, not all users are
willing to reveal this information. Besides, when engaging dis-
tributed local optimization across users, the calculation and back-
propagation of Lg,;, require each user to wait for all other users’
performance information in order to compute its local gradient.
This potentially induces an impractical communication cost, and
the situation is even worse when local optimization involves mul-
tiple learning steps in each epoch. In this paper, we aim to find
a solution to the intrinsic conflict and avoid excessive additional
communication.
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4 FEDERATED RECOMMENDATION WITH
FAIRNESS CONTROL

4.1 User Group Fairness under Federated
Learning

As we have discussed in section 3.1, given the global fairness-aware
objective defined as Eq.(1), we first adopt the substitution F (u) =
—Lﬁgc) instead of using approximation for any performance-based
loss function. Here we list three advantages using this loss-based

fairness objective: 1) it is empirically correlated with other performance-

based metrics in our observation (with details in section 5) and
intuitively, better recommendation performance correspond to less
error in the learning objective; 2) the local recommendation loss
is differentiable and separable by user, and thus, it nicely fits into
the federated learning process as we will discuss in section 4.1; 3) it
achieves fairness control with a simple modification of the gradient
updates which involves little communication overhead.

For simplicity of expressions, denote the group statistics as A =
@ YueG, ¥ (u) and B = ﬁ Yuec, ¥ (u). Then, we can derive
the corresponding gradient of Eq.(3) with respect to each user’s
local model parameters with ¥ (u) = —_Lr(;fc):

Ve, = %Lr(euc) + A%Lfair
O Lo =—-Cla-BPt -2 g @
E fair = — | _B| E.ﬁrec

where C = p(—1)1(A<B) (1)L (u€G0) which indicates that C > 0
when u belongs to a group with superior performance (i.e. A < BA
u ¢ GoorA > BAu € Gp),and C < 0 otherwise (i.e. A < BAu € Gy
or A > B Au ¢ Go). Then, combining the two loss terms in Eq.(4),
we get:
0
20, ©)
This means that the resulting loss-based fairness objective end up
scaling the gradient of Lr(gfc) by ascalar D = 1-AC|A—B|?~1 which
has a simple intuitive explanation: When A > 0, the scalar D would
slow down the learning of the user u when the user belongs to the
group with superior performance (C > 0 = D < 1). Otherwise, it
would speed up the learning with D > 1. In other words, the low-
performance group needs to learn faster and the high-performance
group needs to learn slower in order to produce a better group-
level fairness. In the general multi-group version with Eq.(2), the
gradient is similar to Eq.(5) but the scalar D uses the average of
|A — B|P~! for all Bs that come from other groups. Note that this
nice intuitive explanation is taking the advantage of the setting

() where D = 1 — AC |A - B|P~!

rec »

VO, =D

F(u) = —Lgc). As we have described in section 3.1, there exist
other feasible choices of # (u), but they might not have a simple
derivation as Eq.(5). Besides, ©, represents the model parameters
that are updated by user u and the derivation of Eq.(5) is model
agnostic.

As the backbone model of our solution, we consider federated
matrix factorization (FedMF) which has been proven effective under
FL. Then the user-wise local parameters ®,, consists of the user u’s
embedding and the item embeddings that are used in the training of
u’s embedding. We denote this solution as Fairness-aware Federated
MEF (F2MF). In this work, we focus on the effectiveness of fairness
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Figure 1: Example of adding user-wise and epoch-wise noises
as Eq.(6) for a given user of group Go.
Below upper bound
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Figure 2: Example of choosing different ¢ for F2MF on ML-
1M data with user activity level as group feature.

control with FedMF, and keep skeptical of how other advanced
recommendation models would behave under federated system.

4.2 Communication of Group Statistics

During federated learning, the gradient computation of the Lﬁeuc) is

already feasible for local optimization, but this is not the case for
the scalar D. Specifically, the value of A and B requires knowledge
from other users but the federated system forbids direct sharing
of this information. This is the algorithmic cause of the intrinsic
conflict and the additional communication mentioned in section
3.3. To avoid revealing the user’s group membership when it needs
protection, we use differential privacy (DP) techniques to make
each user’s true information hard to infer. Specifically, we allow
each user to collaboratively update the value of A and B and add
noise signals when uploading information that potentially reveals
group memberships. In our DP module, each user u will upload the
following information:

VAsum|u = 1(u € Go)Fu + €1,u + €At
VBsum|u = 1(u € G1)Fu + e, + €B,t

(6)

VAcount| = 1(u € Go) + €3
VBeount|t = 1(u € G1) + €4,u

so that the required statistics are A = Y}, VAsum />y VAcount and
B = 3, VBsum/ >, VBcount- The proposed method involves two
type of noise signals: the personalized noise (€1,u, €2,u, €3,u, €4u ~
N(0,62)) and the epoch-wise noise (eas-eBr ~ N(O, 62)). The
personalized noise signals are fixed once initialized in the user’s
local space and do not change across epochs. Additionally, as shown
in Figure 1, after adding personalized noise, the user performance of
the true group changes over time but the other group stays the same.
This would also expose the group membership. As a remedy, we
include epoch-wise noise signals €4 , €g s so that one cannot infer
the membership information based on the value changes over time.
The values of VAcount and VBcount never change across epochs so
they do not need to apply epoch-wise noises.
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Algorithm 2 F2MF with User Group Fairness

1: procedure F2MF_U_Group
2 Input: Initial model ©(®)
3 Initialize A(O), B(O) 1.
4: Choose o for the random noise.
5 Each user u € U initialize its own €1, €24, €1,u, €2,4 based
on o.
while Not Converge, in round ¢ do
Sample a subset of user Ugypser S U
for u € Ug,pser in parallel do
Download G)(t’l),A(t’l),B(t’l) to local space of

v »® N

10:
11:

Random sample of €4, and eg ;.
VO, VAsum, VBsum, VAcount, VBcount < local opti-
mization of u based on Eq.(4) and Eq.(6).

12: Upload all updates in line 10 to the central server.
13: end for
14: /] Aggregation on central server
15: Update ©(*) «Aggregation(VO|u, Vu € Ugypser)-
16 A(t) - Z”Eﬂsubset VAsum |u
ueUgypset VAcou"t‘u
17: B(f) — u€Ugypset Bsum‘u
ueUgpset VBcount |u
18: end while

19: end procedure

Based on the weak law of large numbers, the aggregated noises
from all users will have Pr(|limy_c € — E[€]| < §) = 1 for some
close-to-zero positive value 8, and it holds for all noise signals
€ € {€1,€2,€3,€4,€a,€B,}. In other words, even if a large noise
deviates each user’s uploaded response far from its real value, the
aggregated statistics tend to be close to the ground-truth as long
as each group has a sufficient number of users. This technique is
a simple application of the differential privacy [13] which enables
the system to learn from the entire population as a whole while
protecting the privacy of each individual. Note that only including
epoch-wise noise is not a robust choice due to the law of large
numbers. The detailed procedure of the overall framework is sum-
marized by algorithm 2. For the multi-group case, group statistics
of all groups are synchronized for line 9, line 10, and line 15-16.

4.3 Choosing Standard Deviation of Noises

In the partially private scenario, only a small number of users
deny the sharing of their group memberships, while most users
agree with sharing it. Then the framework can systematically ignore
users that deny uploads of this information, and for all other users
that share this information, there is no need to apply the noise,
so we can simply set 0 = 0 resulting in € = 0. We denote this
solution for the partially private scenario as Free-sharing Federated
Fairness Recommendation (F3MF) which is a special case of F2MF.
Without the noise signal, the resulting process is always accurate
in calculating A and B for the available users, and also accurate for
the corresponding gradient calculation in Eq.(4). Readers may also
notice that the denial of user uploads might be related to the user’s
performance or group feature, but in this work, we are assuming
“missing at random” for the missing uploads of users since there
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would not be a significant change of the group differences when
the missing cases are rare.

In the more reasonable totally private scenario where most
users require protection of the group membership, F2MF should
enforce differential privacy by including the noise terms in Eq.(6)
but with two statistical constraints:

(The lower bound): On one hand, for the purpose of privacy
protection, o must be sufficiently large such that the probability of
correct inference of the user’s group feature in the central server is
low. A typical inference rule would be guessing the user’s group by
the largest uploaded performance. We hope to lower the confidence
of this rule and make it close to random guess so that Pr(Z > 0) <
0.5 + &1 for some small positive constant d;, which derives:

o> ~Fu _ Fu
T AV20-1(05-61)  V20-1(0.5+61)

™)

where ®(x) is the normal cumulative density function (the cumula-
tive density function of the standard normal distribution N (0, 1)).
This lower bound indicates that setting a sufficiently large o will
significantly weaken the inference rule to be close to a random
guess and reduce the attacker’s confidence.

(The upper bound): On the other hand, for the purpose of
correct calculation of A and B, ¢ should also be sufficiently small so
that the aggregated noise cannot easily dominate the differences of
the aggregated sum or count. Formally, we want the chances that
the aggregated noise accounting for more than H (e.g. representing
the difference of group-wise performance) portion of the ground-
truth is less than 3, then we can find that:

[ Hp_(actuall VN52 (8)

where N is the number of involved users and |X, .| is the true
value of the average performance which can be obtained from
empirical studies. Notice that smaller values of H, §, and N indicate
a more tightened bound. To further illustrate the noise dominance,
we give a showcase in the rightmost plot in Figure 2 where o is
too large and the actual group performance becomes negligible
compared to the aggregated noise.

Finally, in order to select ¢ in a valid range, one should en-
sure that the lower bound is no larger than the upper bound (i.e.
1/(V2071(0.5 + 61)) < H|Xpetuall VNS2. And one can achieve a
larger feasible region of ¢ by relaxing the setting of H, 81, and &,
or increasing the number of users N. We give the details of the
derivations in appendix A.

4.4 Delayed Information of Statistics

In order to avoid excessive additional communication of the statis-
tics in Eq.(5) in the middle of the gradient calculation of each local
optimization step, our solution allows the central server to store
and use aggregated statistics from the previous round/epoch. At the
beginning of a user’s local round, the local space first synchronizes
this one-round-behind information as line 9 in algorithm 2, then
upload the updated information to the central server for the next
round as line 15-18. In our experiments, the delayed information
still works and effectively serves as a guide to control fairness, since
the performance converges and the two consecutive rounds tend
to have similar statistics when the training is stable.
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Dataset | |U| |I| #record sparsity user feature #group
gender 2
ML-1M | 6,022 3,043 995,154 0.9457 activity 2
age 5
Movies | 5,515 13,509 484,141 0.9935 activity 2

Table 1: Dataset Summary. “activity” of user is defined based
on number of interactions, the top 20% are “active”, others
are “inactive”.

5 EXPERIMENTS
5.1 Experimental Setting

Dataset: In our experiments, we include two public real-world
datasets MovieLens-1M! (ML-1M), and Amazon-Movies? (Movies)
[39]. The properties of these datasets are summarized in Table 1.
For all datasets, we first filter n-core data, and then adopt 80%-
10%-10% split for each user history based on temporal order and
remove unseen items in the validation and test set to the training
set. For the selection of user group features, we first consider a
synthetic attribute — activity level of users for both datasets same
as existing literature [16, 31], and then we also include two given
attributes gender and age of users in ML-1M data to show the
behavior of fairness on different types of user group features. In our
experiments, we consider both partially private and totally private
scenarios for all three selected user group features to verify the
effective learning process across settings of our method. Yet, we
remind readers that in practice, one may consider activity level as
a shareable feature, user age as partially shareable, and user gender
as totally private.

Models and Baselines: We consider the FedMF [7] model (ig-
noring encryption) as the backbone recommendation model and
include MF [40] model as the centralized counterpart. We imple-
mented the F2MF model that integrates FedMF model into our
fairness-aware learning framework, and include F3MF for the par-
tially private scenario as described in section 4.3. We also include
a centralized counterpart for F2MF, denoted as FairMF, which
optimizes Eq.(3) in a centralized environment without federated
learning. For all federated environment, we set dropout rate = 0.1
(i-e. [Ugypset|/|U| = 0.9) and one local learning step per user per
epoch. Note that MF is different from all other solutions for its
stochastic mini-batch training process, while all other models apply
user-wise gradient descent. For all models, we adopt BPR [40] loss

for Lr(euc) and use 1 negative item per user-item interaction during
training, 100 negative items per user for validation, and all items
per user for the test set. We provide implementation details with
the source code 3.

Evaluation: For recommendation performance, we choose Re-
call, F1, and NDCG as the evaluation metrics for top-k recom-
mendation on the 10% test set where k € {1,5,10,50}. A higher
score for any of these metrics would be an indicator of a better
recommendation model. We train each model until its recommen-
dation performance (i.e. NDCG@50) converges on the validation

!https://grouplens.org/datasets/movielens/1m/
Zhttps://nijianmo.github.io/amazon/index.html
3https://github.com/CharlieMat/FedFairRec.git
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set and select the model with the best performances. For fairness
evaluation, we observe that p = 2 is smooth but usually contributes
trivial changes to the optimization when |A — B| is small. Thus, we
directly use Eq.(1) with p = 1 and larger value indicates greater
Unfairness. For the choices of F (u) in the unfairness metric, we
include the recommendation loss, F1, NDCG, and Recall in order
to observe how different metrics may be correlated in terms of the
accuracy-fairness trade-off. For reproducibility, we provide source
code in supplementary.

5.2 Effectiveness of Fairness Control

We first consider the user activity level as the group feature for
both datasets to showcase the effectiveness of controlling fairness
of recommendation with A € [-0.7,0.9]. We include negative A
just to further observe the continuation of the trend of model un-
fairness behavior and recommendation accuracy. Intuitively, When
applying negative A, the learning objective will no longer suppress
but encourage the unfairness. Main recommendation results are
summarized in Figure 3 and main comparison of the fairness con-
trol in Figure 4. The FairMF can achieve relatively the same level
of accuracy as MF in ML-1M and higher performance in Movies
data. When tuning A, FairMF tends to achieve the best performance
around A = 0 in the Movie dataset, around A = —0.3 in ML-1M
dataset on top-10 performances, and around A = +0.3 in ML-1M
dataset on top-50 performances. F2MF shows a similar pattern with
peak accuracy around A = 0 in ML-1M, but shows a more stable
accuracy-fairness trade-off in Movie.

A threshold for stable control: For both FairMF and F2MF, when
the absolute value |A] is larger than some certain threshold, the fair-
ness control will drastically impact the recommendation accuracy,
generating an unstable and inconsistent behavior. We point out
the thresholds (if we observed one) as red circles in Figure 4 which
shows how the estimated unfairness over epochs (the number of
epochs depends on model convergence). We observe that when A is
larger than the threshold, the estimated unfairness is suppressed to
almost zero and groups become indistinguishable in performance
(extremely small H and thus extremely tight upper bound for o).
Meanwhile, a large absolute value of A also over-amplifies the rela-
tive differences between group-wise gradients (after scaling by D).
This results in frequent swaps of D and unstable training curves,
as shown in the last row in Figure 4.

Controlling fairness: Taking activity-level as an example of group
features, when we increase A under the threshold, we can see that
both FairMF and F2MF can effectively and consistently reduce
the value of unfairness to almost 100%, as shown in the first and
last column of Figure 4. And decrease A to the negative region can
increase the unfairness to 50%, but as shown in Figure 3 it does
not always correspond to an increase of recommendation accuracy,
indicating a potential “sweat point” for the accuracy-fairness trade-
off. We observe similar behavior for FairMF in ML-1M when using
gender and age as the group feature for fairness control. Specially
for user age, the swapping behavior of D for FairMF is even more
frequent and chaotic, indicating a harder control when there are
more than two groups. This contracted feasible region may be
related to the fact that some user groups can still be close to the
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Figure 3: Recommendation performance when controlling fairness through A (X-axis). F2MF and F3MF performs almost
identically.
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(first three rows) and the swap of D when setting large A (last row). X-axis are
epochs. Red circles represents the threshold where larger A start causing unstable learning process. With increasing A, curves
becomes lower with stable D value until the threshold reached.

averaged performance even if the overall group difference is large,
causing frequent swaps of D as shown in the last row of Figure 4.

5.3 Effect of Federated Learning

Note that we can consider FairMF with A = 0 as a more precise
centralized counterpart for FedMF since they both adopt user-wise
training. With this notion, FedMF appears to be sub-optimal in
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recommendation accuracy compared to FairMF (A = 0) as shown
in Figure 3. On the other hand, in Figure 4, the absolute unfairness
(Y-axis) of F2MF and F3MF (regardless of the value of 1) is usually
significantly lower than FairMF and becomes almost zero across all
datasets. This indicates that the federated learning process can dras-
tically improve the fairness of the system. One reason is that the
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FedAvg method aggregates user uploads with equal weights by de-
fault in horizontal FL, and this implicitly balances the performance
of each user which eventually mitigates the group differences. In
contrast, the accuracy-fairness trade-off becomes less obvious and
harder to control because of the reduced magnitude of unfairness
by FL [47].

5.4 Partially Private vs. Totally Private

In reality, one might consider the user activity level as a non-
sensitive feature and consider gender and age features as sensitive
ones. As we have discussed in section 4.3, we can apply F3MF for
non-sensitive features which correspond to the partially private
scenario and apply F2MF (o > 0) for sensitive features under totally
private scenarios. As we have explained in section 4.2, including
a sufficiently large number of users in training will always make
the averaged noise close to zero and the F2MF model will perform
exactly like the F3MF model. Mathematically, if we consider each
user in the dataset as equivalent to 10,000 users (i.e. 6,022 dataset
users in ML-1M represents 60,220,000 users), so setting o = 1.0 for
each imaginary user is equivalent to setting o = 1/v10000 = 0.01
for each user in the dataset. And the resulting F2MF becomes in-
distinguishable with F3MF for recommendation accuracy. Their
similar fairness control can also be observed in Figure 4 except for
age feature in ML-1M where the noise in F2MF is indeed more influ-
ential on ML-1M (Age) because of the increased number of groups.
Additionally, a system that is already fair may also be disturbed by
this noise since group difference H is small and the upper bound is
harder to suffice. In this case, we can still find a feasible ¢ that will
not dominate the group difference in the cost of including more
users in the training.

5.5 Correlations Between Metrics

Though we have shown effective fairness control on ¥ (u) = —Lr(gc) ,

the definition of Eq.(1) also allows other choices of ¥ (). Here, we
show results for F1 and Recall with recommendation list size in
{1,10,50} on ML-1M as examples and plot the results for FairMF
and F2MF as Figure 5 and Figure 6. When evaluating user gender
group fairness, all selected metrics tend to improve on fairness when
increasing A (below the threshold mentioned in section 5.2) for both
FairMF and F2MF. Yet, the model behavior is no longer consistent
across metrics when using user activity level as the group feature,
where F1@1, Recall@1, and Recall@10 tend to improve while other
metrics show diverging group performances. This indicates that
negative correlations between the loss and certain metrics do exist.
For multi-group feature user age, we find that the recommendation
accuracy of F2MF and F3MF are more stable than FairMF and the
improvement of the fairness is more consistent (third row of Figure
5 and Figure 6), but it also becomes harder to control (fairness
change < 10%) for the effect of FL. In general, it is hard to find a
universal fairness metric that is consistent with all other metrics
but one can usually control them towards a certain direction by
tuning the loss-based metric.

5.6 Complexity

As we have discussed in section 4.4, the F2MF framework uses
the same FedAvg communication protocol as FedMF, and the only
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extra information to communicate between central service and
user devices is the statistics of user groups (line 9 and line 11 in
Algorithm 2). In each local optimization, there is no extra loss term
to calculate and the method only scales the gradient by the scalar
D that can be calculated in O(#group). In the view of each user,
this corresponds to a time and space complexity that only depends
on the number of user groups, which is asymptotically negligible
compared to the transfer of model parameters. In the view of the
central server, the overall communication and computational cost
of each epoch induced by the fairness term is O(NK), where N is
the number users and K is the number of groups. Note that K is
usually a small constant integer in practice, so this extra complexity
is much smaller than that of the number of model parameters.

6 CONCLUSION

The fairness objective in recommender systems intrinsically con-
flicts with the federated learning paradigm. In this work, we have
shown that one can integrate the learning goal of recommendation
with a loss-based fairness metric and derive a simple and effective
federated solution for fairness-aware recommendation. The solu-
tion induces little communication and computation overhead on
the backbone FL of the recommendation model. We theoretically
show the feasible parameter region of the DP module, and empir-
ically show that it can effectively control the user group fairness
in terms of the loss-based metric, which indirectly control other
performance-based fairness metrics. While our method shed light
on how one can solve federated fairness-aware recommendation
during optimization phase, we believe it is worth further exploring
the alternatives in the pre-processing and post-processing phases
as well.

A APPENDIX: DERIVATION OF BOUNDS

A.1 The Lower Bound of o: In the most extreme scenario, where
the number of iteration approaches infinity and the performance
converges, then one can statistically eliminate the epoch-wise noise:
(lim7 0 Xre[1,7] €4¢/T = 0 and im7 00 Yire[1,7] €B2/T = 0)
and figure out that VAgym = 1(u € Go)Fu + €1,u, VBsum = L(u €
G1)Futezu, VAcount = 1(u € Go)+€3y, VBeount = 1(u € G1)+e€gy.
Without loss of generality, assume that u € Gg and the rule of
inference attack is (VAsum|u > VBsum|u) = u € Gy. Then the
confidence of a correct outsider inference (happens when observing
VAsum|t > VBsum|u) is given by:

Pr(Z > 0), where Z ~ N (%, 20°) 9)

where Z is the value of random variables Agym — Bsum and it always
have positive mean ¥, since we assume Ag,m as the correct group
Gy. For privacy protection, we aim for Pr(Z > 0) < 0.5+ §; for
some small positive d1, which derives:

Pr(Z <0) > 0.5- 5

Z - Fu —‘Fu)
Pr <—]2>205-6
( V2o '

-l

)20.5—51 S
20

(10)

Fu

¥ > 7 05-68)
o

~Fu Fu
=P =
V20-1(05-681)  V20-1(0.5+61)
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Figure 5: Group-wise performances of FairMF on ML-1M dataset. Each row correspond to a selected group feature. X-axis are
values of 1 and shared among rows, Y-axis are values of the corresponding metric. Performance metrics of different groups
may contract or diverge when increasing A, and becomes unstable after reaching the threshold.
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Figure 6: Group-wise performances of F2MF (and F3MF) on ML-1M dataset. Each row correspond to a selected group feature.
X-axis are values of 1 and shared among rows.

where ®(x) is the cumulative density function of the standard nor- noises) is not close to zero. Formally, we denote H € (0,0.1) as the

mal distribution N(0, 1). Similarly, for count information, we as-
sume ¥, € (0, 1] that is no larger than a count signal 1. Thus, we de-

rive alarger lower bound o > 1/(V2071(0.5+81)) = %,/ (V20~1(0.5+

81)).

A.2 The Upper Bound of o: Denote X as the average of one
of the four values in Eq.(6) without epoch-aware noises (€4 ; and
€gsr), then X ~ N (X, ctuals ‘Tﬁz) which is an aggregation of Gaussian
variables. Here we use the average value instead of the summation
to better illustrate the relative influence of o and the number of users
N. Assume that the average performance/loss value or the count is
within (0, 1], and the average ground-truth value X, a1 (Without
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ratio between the difference and the absolute value of group-wise
performances, so form some small constant &2, we want Pr(|X —
Xactuall = H|Xactuall) < 82. Note that the Chebyshev’s Inequality
gives a more strict upper bound for Pr(|X — X,ctuall = H|Xactuall)s
so we can set:

0_2

NEZ X2 < &2 © 0 < HXaetual[VNS2
actua

(11)

where |X,cual| can be obtained by empirical results.
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