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Abstract
We present a lattice-QCD calculation of the light-quark connected contribution to window

observables associated with the leading-order hadronic vacuum polarization contribution to the

anomalous magnetic moment of the muon, aHVP,LO
µ . We employ the MILC Collaboration’s isospin-

symmetric QCD gauge-field ensembles, which contain four flavors of dynamical highly-improved-

staggered quarks with four lattice spacings between a ≈ 0.06–0.15 fm and close-to-physical quark

masses. We consider several effective-field-theory-based schemes for finite-volume and other lattice

corrections and combine the results via Bayesian model averaging to obtain robust estimates of

the associated systematic uncertainties. After unblinding, our final results for the intermediate

and “W2” windows are all,Wµ (conn.) = 206.6(1.0) × 10−10 and all,W2
µ (conn.) = 100.7(3.2) × 10−10,

respectively.
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I. INTRODUCTION

In April 2021, the Fermilab muon g − 2 experiment, E989, released their first result for
the muon’s anomalous magnetic moment aµ ≡ (gµ − 2)/2 based on Run-1 data collected in
2018 [1]. When combined with the previous measurement from Brookhaven National Lab
experiment E821 [2], the new result for the muon’s anomalous magnetic moment increases
the disagreement with the Standard Model (SM) theory prediction [3]1 from 3.7σ to 4.2σ.
Because the anomaly arises from loop effects, it is sensitive to the contributions of yet-
undiscovered particles that could give rise to small deviations from the theoretical prediction.
Increased precision is now essential to say conclusively if this substantial difference is from
physics beyond the SM.

The error on the experimental average of the muon’s anomalous magnetic moment is
now 0.35 parts per million (ppm), and is limited by statistics. Fermilab E989 continues to
collect data and improve the experimental apparatus, and ultimately aims to measure aµ to a
precision at or below 0.14 ppm by the end of its lifetime. Additionally, a new complementary
experiment to measure the muon’s anomalous magnetic moment and electric dipole moment
is planned for later this decade at J-PARC in Japan [24, 25]. The J-PARC E34 experiment
will employ a different method to determine aµ than the “magic momentum” approach of
both Fermilab E989 and BNL E821 and aims for a precision of 0.45 ppm from its initial run
in 2027 [24, 26].

Corresponding theoretical efforts are underway to reduce the uncertainty on the predic-
tion for aµ in the SM, which currently stands at 0.37 ppm [3]. At present, over 90% of the
SM theory error comes from the leading-order hadronic vacuum polarization (HVP) contri-
bution to the anomaly, aHVP,LO

µ . The HVP contribution is difficult to determine precisely
because the bulk of it comes from the low-energy, nonperturbative regime of quantum chro-
modynamics (QCD). To date, the most precise theoretical results for aHVP,LO

µ are obtained
from a data-driven, dispersive approach [27, 28] using experimental measurements of the
total cross section for e+e− → hadrons (the so-called R ratio) as input. These data-driven
determinations have achieved around 0.5% precision on aHVP,LO

µ corresponding to 0.34 ppm
uncertainty on aµ [8–13] and are the basis of the Muon g−2 Theory Initiative’s SM prediction
for aHVP,LO

µ [3].
Lattice QCD provides an alternative, ab initio, approach for calculating the leading-order

HVP contribution that is independent of experimentally measured cross sections.2 The most
precise lattice QCD calculation of aHVP,LO

µ to date (and the first with sub-percent precision)
comes from the BMW collaboration [29]. Although BMW’s result implies a SM value for
aµ that is within 1.5σ of experiment, it differs from the R-ratio based prediction of Ref. [3]
by 2.1σ. Independent lattice-QCD calculations with commensurate precision are therefore
urgently needed to address this theoretical discrepancy.

The leading-order HVP contribution to the muon’s anomalous magnetic moment is com-
puted in lattice QCD as a weighted integral over Euclidean time of the two-point correlation
function of the quarks’ electromagnetic vector current [30, 31]. By judiciously restricting
the integration range (or “window”), one can construct sub-quantities of aHVP,LO

µ that avoid
problematic statistical and/or systematic effects [32–34]. The same Euclidean-time window
observables can also be obtained from R-ratio data by including a suitable weight function

1 The SM prediction is based on a large body of theoretical work [4–23], and reflects the consensus of the

muon g − 2 theory community.
2 A small number of experimentally-measured quantities are employed in lattice-QCD calculations to fix

the quark masses and lattice spacing in the QCD Lagrangian.
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in the dispersive integral for aHVP,LO
µ [35]. Because Euclidean-time windows allow for more

detailed and sensitive comparisons between independent aHVP,LO
µ calculations, they are a

valuable tool both for diagnosing sources of disagreement between lattice-QCD results and
for quantifying differences (if any) between data-driven and lattice determinations.

Various Euclidean-time windows with differing positive features and drawbacks have been
proposed [32–34]. In 2018, the RBC and UKQCD Collaborations separated the Euclidean-
time integral into contributions from “short” (t ≲ 0.4 fm), “intermediate” (0.4 ≲ t ≲ 1.0 fm),
and “long” (t ≳ 1.0 fm) times [32]. The intermediate window observable aWµ can be computed
in lattice QCD with high statistical precision. Hence, it has been adopted by the muon g−2
theory community as a benchmark quantity. Several independent three- and four-flavor
lattice-QCD calculations of aWµ are now available [29, 32, 36, 37], but the results are not
fully consistent. RBC/UKQCD’s initial intermediate-window result [32] is within about 1σ
of the determination from R-ratio data [35]. More recent lattice-QCD calculations of aWµ
by the BMW [29], Mainz/CLS [36], and ETM [37] collaborations, however, are all more
than 3σ higher than the data-driven value.3 Further scrutiny of the intermediate window is
therefore needed to clarify the picture.

In this work, we calculate the intermediate-window contribution to aHVP,LO
µ in four-flavor

lattice QCD. Using the same methods, we also calculate the “W2” window observable intro-
duced by Aubin et al. [33], which corresponds to the Euclidean-time range t ∈ [1.5, 1.9] fm.
As pointed out in that work, although aW2

µ is statistically noisier than aWµ , effective-field
theory (EFT) estimates of finite-volume, lattice-discretization, and pion-mass corrections
are more reliable at larger times. We focus exclusively on the connected contribution from
light (up and down) quarks in the isospin-symmetric limit, which accounts for about 90% of
aHVP,LO
µ . Calculations of the heavier quark flavors, isospin-breaking corrections and quark-

disconnected contributions are in progress [39–42].
Our calculation of the intermediate and W2 window observables in this work builds

upon our 2019 calculation of aHVP,LO
µ [43]. As before, we employ the MILC collabora-

tion’s dynamical-QCD gauge-field configurations [44] with four flavors of highly-improved-
staggered quarks (HISQ) [45]. Our numerical simulations are again performed at the physical
pion mass and with four lattice spacings ranging from about 0.15 to 0.06 fm. Since our earlier
work, however, we have increased statistics significantly at our three finest lattice spacings.
The new data give better control of the lattice-dependence of the Euclidean-time window
observables and enable stringent tests of the EFT-based corrections, which inform our anal-
ysis of the associated systematic errors. We estimate the uncertainties on aWµ and aW2

µ from
making different, reasonable analysis choices for finite-volume corrections and treating dis-
cretization effects, among others, via Bayesian model averaging [46, 47]. Finally, to avoid
confirmation bias, the Euclidean-time window observables were blinded until the analysis
and error budgets were finalized. (See Sec. IIIA for details.)

This paper is organized as follows. First, in Sec. II A we provide analytic expressions for
aWµ and aW2

µ in terms of the Euclidean-time vector-current correlation function. Next, in
Sec. II B we define the isospin-symmetric QCD limit employed here and describe our nu-
merical correlator computations in Sec. II C. In Sec. III we present a detailed description of
our analysis procedures, starting with how blinding was applied and removed in Sec. IIIA.
Briefly, in Sec. III B, we use the lattice correlators to calculate the Euclidean-time windows
corresponding to our numerical-simulation parameters. We then correct these “raw” window

3 The RBC/UKQCD collaboration’s update [38], which appeared on arXiv on the same day as our paper,

is in good agreement with these recent results.
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values on each ensemble for the finite lattice volume, slight mistunings of the simulated pion
mass, and (optionally) remove taste-breaking discretization effects in Sec. III C. Next, we
extrapolate the corrected window values to zero lattice spacing in Sec. IIID. Sections III E
and III F describe our procedure for Bayesian model averaging and the resulting systematic
error budget. We conclude in Sec. IV by presenting our final results for aWµ and aW2

µ and
comparing them with previous determinations. Appendices A and B provide additional de-
tails on obtaining the Euclidean-time windows from staggered correlators and on computing
corrections to the windows using the chiral model of pions, photons, and ρ mesons intro-
duced in Ref. [48], respectively. Progress reports on related ongoing work can be found in
Refs. [40–42, 49, 50].

II. PRELIMINARIES

A. Definitions of Euclidean-time window observables

The hadronic vacuum polarization function Π(Q2) can be obtained from Euclidean vector-
current correlation functions through the equations

Πµν(Q2) =
(
δµνQ2 −QµQν

)
Π(Q2) =

∫
d4xeiQx ⟨Jµ(x)Jν(0)⟩ , (2.1)

Jµ(x) =
∑

f

qf ψ̄f (x)γ
µψf (x), (2.2)

where Jµ(x) is the electromagnetic current summed over quark flavors f = {u, d, s, c, b, t},
qf are the corresponding electric charges in units of e, and ⟨Jµ(x)Jv(0)⟩ includes both
quark-line connected and disconnected Wick contractions. The HVP contribution to the
muon’s anomalous magnetic moment can then be obtained from a weighted integral of
Π̂(Q2) ≡ Π(Q2)− Π(0) via Eq. (B1).

It is now standard for lattice-QCD HVP calculations, however, to employ the alternative
time-momentum representation introduced by Bernecker and Meyer [31]. This formulation
is more convenient for an inherently space-time approach such as lattice QCD and allows the
construction of Euclidean-time windows. Starting with the spatial-vector-current correlation
function C(t), defined as

C(t) =
1

3

∑

x,k

〈
Jk(x, t)Jk(0)

〉
, k = 1, 2, 3, (2.3)

aHVP,LO
µ is obtained via

aHVP,LO
µ = 4α2

∫ ∞

0

dt C(t)K̃(t), (2.4)

K̃(t) = 2

∫ ∞

0

dQ

Q
KE(Q

2)

[
Q2t2 − 4 sin2

(
Qt

2

)]
, (2.5)

where KE(Q
2) is given in Eq. (B2).

The window observables are then easily obtained by introducing the window function W ,
limiting the Euclidean-time region over which C(t) is integrated [32]:

awin(t0,t1,∆)
µ = 4α2

∫ ∞

0

dt C(t)K̃(t)W (t, t0, t1,∆) , (2.6)
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FIG. 1. (Left) The W (magenta) and W2 (green) window functions (corresponding to the param-

eters in Eqs. (2.8) and (2.9)) overlaid with raw lattice data for the integrand of Eq. (2.4) (blue

crosses) from our finest ensemble. (Right) The windowed integrand of Eq. (2.6) for the correspond-

ing window functions using the lattice data in the left panel.

W (t, t0, t1,∆) =
1

2

[
tanh

(
t− t0
∆

)
− tanh

(
t− t1
∆

)]
+ (t→ −t) . (2.7)

The parameters t0 and t1 of W control the location of the window’s boundaries, while
∆ controls the sharpness of its edges. In this work, we consider two such windows, the
intermediate window W,

aWµ ≡ awin(0.4, 1, 0.15)
µ , (2.8)

and W2,

aW2
µ ≡ awin(1.5, 1.9, 0.15)

µ , (2.9)

with the parameters in fm. We plot W in Eq. (2.7) for these window regions in the left
panel of Fig. 1.

It is convenient in lattice-QCD calculations of aHVP,LO
µ to separately compute and then

sum up the contributions from each quark flavor and from connected and disconnected Wick
contractions. Here we focus on the light-quark connected contribution to the Euclidean-
time windows, all,Wµ (conn.) and all,W2

µ (conn.), in the isospin-symmetric limit. Therefore,
our electromagnetic vector current Jµ(x) includes only the terms for light quarks with
ml = (mu+md)/2 and our correlation function C(t) includes only the connected contractions.
Figure 1, left, shows the light-quark connected contribution to the integrand [K̃(t)C(t) in
Eq. (2.4)] using the lattice correlation function obtained on our finest ensemble (see Sec. II C).
Figure 1, right, shows the corresponding window integrands [C(t)K̃(t)W (t, t0, t1,∆) in
Eq. (2.6)] for the W and W2 windows.

B. Prescription for isospin-symmetric QCD

Both the MILC HISQ gauge-field configurations and light-quark connected correlators
employed in this work correspond to the isospin symmetric limit of QCD, i.e., a pure-QCD
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FIG. 2. Visualization of the ensemble parameters and statistics employed in this work (labeled

“Current”) and in our previous aHVP,LO
µ calculation [43] (labeled “2019”). Each disk is centered

at the corresponding ensemble’s squared lattice spacing and pion mass (a2 and Mπ5 in Table I),

while the disk areas are proportional to the size of each data set (Nconf ×Nloose sources in Table I).

world with equal-mass up- and down-quark masses and without electromagnetism. Following
the prescription introduced (for three flavors) in Refs. [51, 52] and later extended to include
the charm quark in Ref. [53], we set the light-quark masses and lattice scale in physical units
using the pion mass and decay constant. We then set the strange- and charm-quark masses
using the kaon and Ds-meson masses, respectively.

Prior to the tuning procedure, however, electromagnetic effects must be removed from the
experimental inputs. Neither Mπ0 nor fπ+ are affected significantly by the quarks’ electric
charges, so their pure-QCD values are defined to beMπ ≡Mπ0 and fπ ≡ fπ+ . In the Fermilab
Lattice and MILC Collaboration’s most recent analysis of pseudoscalar-meson masses and
decay constants [54], the numerical values for these inputs were taken from the 2016 Particle
Data Group: Mπ0 = 134.977 MeV and fπ+ = 130.50(1)exp.(3)Vud

(13)EM MeV [55]. The
remaining pure-QCD meson masses employed in Ref. [54] are MK0 = 497.567 MeV, MK+ =
491.405 MeV, and MDs = 1967.02 MeV. Details on how these values were obtained can be
found in Sec. IV of that work and references therein. For the inputs in isospin-symmetric
QCD we use the same values for Mπ0 and fπ+ as above, while the kaon mass is defined as
the average of MK0 and MK+ , giving MK = 494.486 MeV.

C. Lattice-QCD ensembles and correlation functions

Our calculation employs the MILC Collaboration’s four-flavor lattice-QCD configura-
tions with dynamical up, down, strange, and charm quarks. The ensembles use the HISQ
action [45] for the sea quarks, a Symanzik-improved gauge action [56–60] that includes the
plaquette, the 1 × 2 rectangle, and the so-called bent-chair 6-link term for the gluon fields
as well as tadpole improvement [61] based on the plaquette. Details of the configuration
generation can be found in Ref. [62].

In this work, we employ a subset of the available MILC ensembles, for which the quark

6



TABLE I. Ensemble parameters used in this work. The first column lists the approximate lattice

spacings in fm. The second column gives the spatial length L of the lattices in fm. The third

column lists the volumes of the lattices in number of space-time points. The fourth column gives

the sea-quark masses in lattice-spacing units. The fifth column lists the ratios of the gradient-

flow scale w0 [63] to the lattice spacing, where we take these values from Ref. [43] except for

the newer ensemble with a ≈ 0.12 fm. To convert simulation results to physical units, we take

w0 = 0.1715(9) fm from Ref. [64]. The sixth column gives the taste-Goldstone pion masses [44]. The

seventh column lists the renormalization factors for the local vector current, taken from Ref. [65].

The second-last column lists the number of configurations analyzed. The last column gives the

number of loose-residual solves per configuration used in the truncated solver method [66, 67].

≈ a/fm L/fm N3
s ×Nt amsea

l /amsea
s /amsea

c w0/a Mπ5/MeV ZV Nconf Nloose

0.15 4.85 323 × 48 0.002426/0.0673/0.8447 1.13215(35) 134.73(71) 0.9881(10) 9362 48

0.12 5.83 483 × 64 0.001907/0.05252/0.6382 1.41110(59) 134.86(71) 0.9922(4) 9637 64

0.09 5.62 643 × 96 0.00120/0.0363/0.432 1.95180(70) 128.34(68) 0.9940(5) 5384 48

0.06 5.46 963 × 128 0.0008/0.022/0.260 3.0170(23) 134.95(72) 0.9950(6) 2621 24

masses are well tuned to their physical values. We include ensembles at four lattice spacings
a ≈ 0.15, 0.12, 0.09, and 0.06 fm. The high-statistics ensemble at a ≈ 0.15 fm is unchanged
from Ref. [43], where additional details can be found. The ensemble at a ≈ 0.12 fm was
generated specifically for our muon g − 2 project, and has better tuned sea-quark masses
compared with the ensemble with the same bare coupling used previously [43]. It contains
about 10,000 configurations. We also extended the ensemble with a ≈ 0.09 fm [44] to include
over 5,000 configurations; this is a factor of roughly 3.5 beyond what was used in Ref. [43].
The pion mass for this ensemble is less accurately tuned than for the other three ensembles
used in our study, which were generated more recently using quark masses obtained from a
detailed analysis of pseudoscalar mesons and their decay constants [54]. Finally, we increased
the number of configurations in our finest ensemble with lattice spacing a ≈ 0.06 fm [54] by
about a factor of two compared with Ref. [43]. We are continuing to extend this ensemble in
anticipation of future needs. Our ensemble set is visualized in Fig. 2 and detailed in Table I.

The tuned quark masses listed in Table I are determined from the analysis in Ref. [54]
in which pseudoscalar-meson masses and decay constants were computed using 24 gauge
ensembles with six lattice spacings ranging from ≈ 0.15 to 0.03 fm. The pion decay constant
is used to set the scale and the meson masses used to determine the up, down, strange, and
charm masses are given in Sec. II B. Further details may also be found in Ref. [53] which
used fewer configurations for a similar study.

The light-quark propagators from which the correlation functions C(t) are constructed
are computed using the HISQ action and truncated solver method (TSM) [66, 67]. Using
random-wall sources, we compute one fine-residual conjugate gradient solve and the number
of loose-residual solves (Nloose) shown in the last column of Table I. Compared with Ref. [43],
we have increased the number of loose sources per configuration by factors of 4, 3, and 1.5 for
the ensembles at a ≈ 0.12, 0.09, 0.06 fm, respectively. Exploiting time-reversal invariance,
we further increase statistics by averaging the correlator values at times t and Nt − t on
each configuration. For the electromagnetic-current operator, we use the same local taste-
vector vector current as in Ref. [43]. To match the local vector current to continuum QCD,
we use the nonperturbatively computed renormalization factors obtained by the HPQCD

7



TABLE II. Additional valence-quark masses used to study the pion-mass dependence of aWµ and

aW2
µ . Simulation parameters not listed are the same as in Table I.

≈ a/fm amval
q Mval

π5
/MeV

0.15 0.001524 107.28(56)

0.003328 157.16(83)

0.12 0.001190 107.05(56)

0.002625 157.65(83)

Collaboration in Ref. [65]. Specifically, for the a ≈ 0.15, 0.12, and 0.09 fm ensembles, we
take the “H-H” ZV 4 values from Table IV, while for the a ≈ 0.06 fm ensemble, we use the
extrapolated value at this lattice spacing given in Appendix B of that work. To test our
corrections for pion-mass mistuning (see Sec. III C 2), we generated additional vector- and
pseudoscalar-current correlation functions with unphysical valence-quark masses on our two
coarsest ensembles. Table II lists the valence-quark masses used in these partially quenched
simulations.

In the course of our current analysis, we discovered two mistakes in Ref. [43] pertaining
to the a ≈ 0.06 fm ensemble. First, a small subset (≈ 5%) of this ensemble’s correlation
functions were affected by a software bug in the data processing script. Second, the renor-
malization factor employed for this ensemble was taken from the arXiv version of Ref. [65],
and differs from the published result by ≈ 0.1%. The latter error was realized after we un-
blinded our analysis (see Sec. IIIA). Hence, while keeping the analysis procedure frozen, we
now use the published value of ZV 4 at a ≈ 0.06 fm from Ref. [65] in our determinations of the
window observables. We are preparing errata to Refs. [34, 43], but do not expect the results
for allµ(conn.), a

HVP,LO
µ , or the one-sided Euclidean-time windows to change significantly.

III. DATA ANALYSIS

Here we present the analysis procedure to obtain the window observables all,Wµ (conn.) and

all,W2
µ (conn.) at the physical, isospin-symmetric, pion mass and in the continuum and infinite-

volume limits. First, as discussed in Sec. III A, we blinded the analyses of all components
of aHVP,LO

µ to avoid unintentional introduction of bias. Second, because the correlation
functions C(t) are obtained at discrete Euclidean times, the integral in Eq. (2.6) must be
approximated by a discrete integration rule. As described in Sec. III B, we use both the
trapezoidal and Simpson’s rules to quantify the associated discretization effects.

The resulting lattice data for all,Wµ (conn.) and all,W2
µ (conn.) must then be corrected for

finite-volume effects, pion-mass mistunings and (optionally) taste-breaking effects. Our
estimates of these lattice corrections to the intermediate and W2 window observables in
Sec. III C are based on the use of EFTs and EFT-inspired models that capture the dominant
low-energy, two-pion physics contribution to aHVP,LO

µ . In particular, we consider variations
obtained from four different approaches: next-to-leading-order (NLO) and next-to-next-to-
leading order (NNLO) chiral perturbation theory (χPT) [29, 33, 68–71]; the Chiral Model
(CM) [48] employed in Ref. [43]; the Meyer-Lellouch-Lüscher-Gounaris-Sakurai (MLLGS)
approach [72–79]; and the relativistic pion EFT approach of Hansen and Patella (HP) [80].
In the absence of data-driven guidance, the spread of EFT-based corrections provides an

8



especially important indicator of the underlying uncertainties.
As is well known, staggered actions include additional, unphysical degrees of freedom

(so-called “tastes”), yielding a 16-fold enlarged meson spectrum at finite lattice spacing [44,
62, 81, 82]. The splittings between the tastes are a lattice artifact that vanishes in the con-
tinuum limit. At finite lattice spacing, taste splittings of the pion masses are a significant
discretization effect in aHVP,LO

µ observables (so-called taste-breaking effects). As discussed
in Sec. III C, the splittings also affect the pion-mass and finite-volume dependencies, re-
sulting in an interplay between them. In the case of pseudoscalar meson masses and weak
matrix elements, discretization effects due to the taste-splittings are well-described by stag-
gered chiral perturbation theory [83, 84], providing an additional handle on the continuum
extrapolations.

Our continuum extrapolation analysis in Sec. IIID includes a comprehensive study of
taste breaking and other discretization effects. For each of the two window observables,
we perform continuum extrapolations with and without first correcting for taste-breaking
effects. In addition, we vary the fit function used for the continuum extrapolations, and
we also include continuum-limit fits dropping the data at the coarsest lattice spacing (a ≈
0.15 fm). The fit function used in our continuum extrapolation contains the strong coupling
constant αs. In this work, following Ref. [54] we use αs = αV (2/a) and take αV (nf = 4, µ =
5.0 GeV) = 0.2530(38) from Ref. [85], where we evolve the coupling using the four-loop beta
function.

Our lattice-QCD calculations of all,Wµ (conn.) and all,W2
µ (conn.) entail numerous analysis

choices. As described in Sec. III E, we incorporate the systematic uncertainties due to these
variations using Bayesian model averaging (BMA) [46, 47]. The remaining uncertainties in
the corrected data sets include the statistical errors from the Monte-Carlo integration and
parametric errors from w0, w0/a, and ZV , which are propagated through the analysis as
Gaussian random variables. Our final results for all,Wµ (conn.) and all,W2

µ (conn.) and error
budgets from the respective BMA analyses are presented and discussed in Sec. III F.

A. Blinding

To avoid confirmation bias, we blinded this analysis until the systematic error budgets
were finalized. The analysis was then frozen and used to generate the unblinded results and
figures presented here. We employ a software blinding procedure, in which each observable
is multiplied by an unknown random factor, chosen from a uniform distribution between
[0.7, 1.3]. As the correlation function on the a ≈ 0.15 fm ensemble is unchanged from
Ref. [43], we additionally blinded the results from this ensemble by adding to it an offset
equal to its standard deviation times an undisclosed random number between [−1, 1]. Each
observable receives its own unique blinding factor, which is kept the same for all lattice
spacings, except 0.15 fm. This procedure allows us to unblind specific sub-quantities, such
as the intermediate window observables discussed here, without unblinding other quantities
for which our analyses are ongoing.

B. Extraction of window observables

After the light-quark-connected vector-current correlation functions C(t) are obtained on
each ensemble as described in Sec. II C, lattice values for all,Wµ (conn.) and all,W2

µ (conn.) are
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computed from these correlators via Eq. (2.6), using a chosen numerical integration scheme.
Because we employ a single-time-slice vector-current operator in our computations, the

spectral representation of our staggered correlation functions consists of a sum of positive
contributions from states with the desired parity and, additionally, contributions that os-
cillate in time as (−1)t/a from opposite-parity states (see Eq. (A1) of Appendix A). These
oscillations are discretization effects, and should in principle be removed via the continuum
extrapolation in Sec. IIID. To quantify any residual uncertainty or bias on all,Wµ (conn.) and

all,W2
µ (conn.) from oscillations in our correlation functions, we also perform our full anal-

ysis using the fit-reconstructed correlator without oscillations, Cno osc.(t), which is defined
in Eq. (A3). Appendix A also presents a number of alternate schemes for removing the
unwanted oscillating terms from C(t).

Numerical integration of the lattice correlators introduces additional discretization errors
that depend upon the method used. Here we consider two integration schemes: the trape-
zoidal rule and Simpson’s rule, which is formally higher order in the lattice spacing. Given
a Euclidean-time correlator C(t), windows of aµ are obtained with the trapezoidal rule via

a
win(t0,t1,∆)
µ, Trap. = 4α2a

Nt/2−1∑

t=1

C(t)K̃(t)W (t, t0, t1,∆) , (3.1)

where the integration kernel K̃(t) and window function W(t, t0, t1,∆) are given in Eqs. (2.5)
and (2.7), respectively, and the boundary terms are omitted as K̃(t)W(t, t0, t1,∆) = 0 for
these cases. Similarly, Euclidean-time windows are obtained with Simpson’s rule via

a
win(t0,t1,∆)
µ, Simp. = 4α2a

3




4

Nt/2−1∑

t∈{todd}

+2

Nt/2−1∑

t∈{teven}


C(t)K̃(t)W (t, t0, t1,∆)


 . (3.2)

Figure 3 compares lattice data for all,Wµ (conn.) (left) and all,W2
µ (conn.) (right) obtained

by integrating C(t) using the trapezoidal rule (blue squares), integrating Cno osc.(t) using the
trapezoidal rule (orange squares), and integrating Cno osc.(t) using Simpson’s rule (red cir-
cles). To enable meaningful comparisons between all,Wµ (conn.) (or all,W2

µ (conn.)) at different
lattice spacings, all data in these plots include corrections for the finite spatial volumes and
pion-mass mistuning using the CM. (See Sec. III C for details.)

The impact of temporal oscillations in our staggered lattice correlators on all,Wµ (conn.)

and all,W2
µ (conn.) can be assessed by comparing the data sets obtained from integrating both

C(t) and Cno osc.(t) using the trapezoidal rule (blue and orange squares in Fig. 3, respec-
tively). For all,Wµ (conn.), the trapezoidal-rule data sets are statistically indistinguishable
at our two finest lattice spacings (see Table VI in Appendix A, which provides the cor-
related pairwise differences). Further, the differences between them decrease rapidly with
the lattice spacing. For all,W2

µ (conn.), which corresponds to a later Euclidean time range,
oscillations in the correlator from heavier opposite-parity states have largely died out (see
Fig. 1). Consequently, the trapezoidal-rule data sets are statistically consistent on all en-
sembles and there is no clear lattice-spacing dependence in their correlated differences. As,
for both all,Wµ (conn.) and all,W2

µ (conn.), the continuum extrapolations of the trapezoidal-rule
data sets are in excellent agreement, we therefore conclude that temporal oscillations are an
insignificant source of discretization error in our calculation.

Similarly, discretization errors stemming from the numerical integration can be estimated
comparing the data sets obtained by integrating Cno osc.(t) with either the trapezoidal rule
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FIG. 3. Comparison of results for all,Wµ (conn.) (left) and all,W2
µ (conn.) (right) from integrating

the raw lattice correlator C(t) with the trapezoidal rule (blue squares), fit reconstruction with

oscillating-state contributions removed Cno osc.(t) with the trapezoidal rule (orange squares), and

Cno osc.(t) with Simpson’s rule (red circles). Data at the same lattice spacing are offset horizontally

for visibility. As described in Secs. III C 1 and III C 2, each point is corrected for finite-volume

effects using the CM and pion-mass mistuning effects using the data-driven approach. For each

integration scheme, we fit the data for the three finest ensembles to a function linear in αsa
2. The

dashed curves show the fits’ error bands, with colors matching the corresponding plot symbols.

or Simpson’s rule (orange squares and red circles in Fig. 3, respectively). As is displayed in
the figure and quantified in Table VII, on our coarse ensembles the differences between in-
tegration schemes are statistically significant for both all,Wµ (conn.) and all,W2

µ (conn.). These

differences, however, decrease with lattice spacing much faster than a2 and are already at
the per-mille level at our finest lattice spacing. We therefore conclude that lattice artifacts
from the choice of numerical integration scheme are negligible compared to the leading dis-
cretization terms in the Symanzik effective Lagrangian, which are of O(αsa

2) (see Sec. IIID
for details).

Based on these observations, we generate two data sets for each of the two observables
(all,Wµ (conn.) and all,W2

µ (conn.)). The first is obtained from integrating the original correlation
function data C(t) with the trapezoidal rule, and the second is obtained from integrating
the reconstructed correlation function data Cno osc.(t) with Simpson’s rule. The inclusion of
both data sets in the subsequent analysis accounts for any residual systematic effects due to
both O(a2) artifacts induced by the trapezoidal rule as well as the oscillating contributions
that remain after the continuum extrapolation. For each observable, the two data sets are
taken as inputs in the next step of the analysis, where the corrections are applied to the aµ
data.

C. Lattice corrections

Before taking the continuum limit, we correct our lattice all,Wµ (conn.) and all,W2
µ (conn.)

data in two (or three) separate steps: first for finite volume (FV), second for pion-mass
mistuning (Mπ), and (sometimes) third for the effects of taste splittings (TB). The last step is
optional, since changing discretization effects will only alter the window observables’ lattice-
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spacing dependence, not their continuum-limit values. Further, the pion-mass corrections
to the intermediate and W2 windows are only numerically significant on the a ≈ 0.09 fm
ensemble for which the simulated pion mass is ∼ 5% below the physical value (see Table II).

Mathematically, our correction scheme is defined via the following equations:

aµ
(
L∞,Mπphys

)
= aµ

(
Llatt,Mπlat ,ξ1

, · · · ,Mπlat ,ξ16

)
+∆FV +∆Mπ +∆TB, (3.3)

where

∆FV = aµ

(
L∞,Mπlat,ξ1

, · · · ,Mπlat,ξ16

)
− aµ

(
Llatt ,Mπlat,ξ1

, · · · ,Mπlat,ξ16

)
, (3.4)

∆Mπ = aµ

(
L∞,Mπphys,ξ1

, · · · ,Mπphys,ξ16

)
− aµ

(
L∞,Mπlat,ξ1

, · · · ,Mπlat,ξ16

)
, (3.5)

∆TB = aµ
(
L∞,Mπphys

)
− aµ

(
L∞,Mπphys,ξ1

, · · · ,Mπphys,ξ16

)
. (3.6)

“aµ” is shorthand for either all,Wµ (conn.) or all,W2
µ (conn.). The first term on the right-hand-

side of Eq. (3.3) is the window observable on each ensemble obtained in Sec. III B. The three
corrections in Eqs. (3.4)–(3.6) are evaluated for each ensemble and added to the lattice
values for aµ. The first correction, ∆FV in Eq. (3.4), takes all,Wµ (conn.) or all,W2

µ (conn.)
from the simulated spatial volume, indicated by Llatt, to the infinite-volume limit, denoted
by L∞. The second correction, ∆Mπ , takes the simulated taste-Goldstone pion mass to
the physical value, while the final correction, ∆TB, removes the effects of the pion taste-
splittings, a2∆ξi . In practice, the lattice and “physical” staggered-pion masses Mπlat,ξi

and

Mπphys,ξi
in Eqs. (3.4)–(3.6) are calculated via the leading-order staggered χPT relationship

M2
πξi

= M2
πξ1

+ a2∆ξi with Mπlat,ξ1
and Mπphys,ξ1

fixed to the taste-Goldstone pion mass

(column six of Table I) and the experimentally-measured π0 mass, respectively.
The order in which the finite-volume, pion-mass, and taste-breaking corrections are ap-

plied impacts the form of the corrections. In our case, we apply the corrections in Eq. (3.3)
from left to right. Therefore, the finite-volume and pion-mass mistuning corrections in
Eqs. (3.4) and (3.5) must preserve the taste splittings. The left-hand-side of Eq. (3.3) is
the infinite-volume, physical pion-mass and finite-lattice-spacing aµ with correct physical
parameters, which are inputs to the continuum extrapolations described in Sec. IIID.

We employ four different effective-field-theory-based schemes for the finite-volume and
taste-breaking corrections:

• Chiral Perturbation Theory (χPT) at next-to-leading order (NLO) and next-to-next-
to-leading order (NNLO) [29, 69, 71]. The staggered NNLO χPT expressions of
Refs. [29, 33, 71] are derived for a taste-singlet vector current, which couples to taste-
diagonal pion pairs. We adapt the expressions of Ref. [33] to the taste-vector vector
current employed here, which couples to taste-nondiagonal two-pion states. We re-
place the pion energies in Eq. (3.3) of Ref. [33] with averages of the energies of the two
pions in the two-pion states which contribute to the taste-vector vector current.4 We
test this approximation for the case of NLO χPT (and for the CM and MLLGS ap-
proaches discussed below) where we have exact formulas for the taste-vector current.
These tests reveal at most sub-percent differences in the corrections computed using
the exact approach versus the approximation.

4 For the term labeled NNLO,4 in the finite-volume correction of [29, 71], we substitute the average masses

of the two-pion state into the energies instead of substituting the average energies. This avoids a numerical

instability in this term for the case of unequal energies.
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• The Chiral Model (CM) is an extension of χPT, where the ρ meson is included explic-
itly through a massive spin-1 vector field. This model was introduced by Jegerlehner
and Szafron to study ρ− γ mixing in e+e− → ππ scattering [86]. It was first applied
to Euclidean-space lattice-QCD calculations of the muon g − 2 HVP (with modifica-
tions to incorporate the staggered-pion mass spectrum) by the HPQCD Collabora-
tion [48].5 The equations for the CM corrections computed in this analysis differ from
Refs. [43, 48] slightly in that the effects of taste-breaking are included as specified in
Eqs. (B8)–(B10).

• The Meyer-Lellouch-Lüscher-Gounaris-Sakurai (MLLGS) approach combines the pion
form-factor parameterization of Gounaris-Sakurai with the mapping (due to Meyer-
Lellouch-Lüscher [72–79]) between the infinite-volume scattering amplitude and finite-
volume energies and amplitudes of the two-pion states. We account for taste-breaking
effects in the same fashion as Ref. [29], by including contributions from two-pion states
constructed with all 16 tastes of pions. Here, we modify the expressions of Ref. [29] to
the case of the taste-vector vector current which couples to taste-nondiagonal two-pion
states. As in [29], we fix the number of finite-volume states to n = 8.

• The relativistic-pion effective-field-theory approach by Hansen and Patella (HP) for
finite-volume effects [80]. We obtain the correction defined in Eq. (3.4) using the same
replacement as described in the χPT description above.

We describe the above schemes as “effective-field-theory-based” because, in some parts of
our analysis, they may be employed outside the schemes’ ranges of validity. Except for the
CM, these EFTs and phenomenological models include only the contributions to aHVP,LO

µ

observables from two-pion intermediate states.6 Because contributions to the Euclidean-time
correlation function fall off as exp(−Et) (see Appendix A), those from low-lying ππ states are
most important at large Euclidean times. Consequently, the correction schemes listed above

should best describe the volume and pion-mass dependence of C(t) and, hence, a
win(t0,t1,∆)
µ ,

for later time ranges. Indeed, we and other collaborations find that, for t0 ≳ 1.5 fm (which
includes the ‘W2’ window), all of the higher-order correction schemes enumerated above
(i.e., excluding NLO χPT) yield similar predictions for the finite-volume, pion-mass, and

taste-breaking corrections to a
win(t0,t1,∆)
µ . Further, the estimates from these schemes for

the sum of finite-volume, pion-mass, and taste-breaking corrections reasonably describe the
observed differences between lattice data in this region. [29, 33, 79, 87]. Therefore, they can
be reliably used to calculate lattice corrections to all,W2

µ (conn.). In the intermediate-window
region, the predicted corrections from the EFT-based schemes display a wider variation. The
sizes of the finite-volume and pion-mass corrections to all,Wµ (conn.), however, are numerically

small (∆W
FV,Mπ

≲ 0.5%), and we incorporate the spread in all,Wµ (conn.) results obtained with
different correction schemes in our systematic error estimate in Sec. III E.

1. Finite-volume corrections

Figure 4 shows the finite-volume corrections to all,Wµ (conn.) and all,W2
µ (conn.) computed

via Eq. (3.4) for each ensemble listed in Table I and the four correction schemes discussed

5 In Refs. [29] and [33], the staggered Chiral Model is denoted “SRHO.”
6 Although χPT, MLLGS, and HP do not treat the ρ meson as a dynamical degree-of-freedom, they

implicitly incorporate some resonance effects through parameters that are tuned to match experiment.
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FIG. 4. Finite-volume corrections to all,Wµ (conn.) (top) and all,W2
µ (conn.) (bottom) obtained from

NLO χPT (open blue triangles), NNLO χPT (purple downward triangles), CM (green circles),

MLLGS (orange diamonds), and HP (brown squares). The data points at each lattice spacing are

offset horizontally for visual clarity. Lattice spatial volumes are given in Table I.

above. For all,Wµ (conn.) (top panel), the finite-volume corrections ∆W
FV are always less than

0.5%. There is, however, a significant spread between the different schemes. In particu-
lar, the finite-volume corrections obtained from the CM (green circles) are close to zero on
all ensembles. This is because in the CM, the renormalized vacuum polarization function,
Eq. (B3), is comprised of two terms: the first is identical to NLO χPT, while the second
accounts for ρ-π-π interactions. For all,Wµ (conn.), the latter contribution produces a correc-
tion opposite in sign to the former. In contrast, in χPT, the NLO (open blue triangles)
and NNLO contributions to ∆FV have the same sign, making the total NNLO corrections
(purple downward triangles) larger. The spread between the finite-volume corrections in
the top panel of Fig. 4 reflects the limitations of the correction schemes in the intermediate
window region, as discussed earlier.

By design [33], χPT (and the other EFTs) should work better in the W2 region, for which
contributions from low-lying ππ states are more important. Hence, we expect better consis-
tency between the finite-volume corrections to all,W2

µ (conn.) from the different approaches.
Indeed, these expectations are borne out in the bottom panel of Fig. 4, where the correc-
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tions from the higher-order schemes have a much-reduced (relative) spread compared to
all,Wµ (conn.). Additionally, the finite-volume corrections to all,W2

µ (conn.) are larger than for

all,Wµ (conn.) (∆W2
FV ∼ 3% at the finest lattice spacing) due to the increased sensitivity to

long-distance contributions at later Euclidean times.
Below a ≲ 0.12 fm, the size of finite-volume corrections to all,Wµ (conn.) and all,W2

µ (conn.)
decrease with increasing lattice spacing. This is because the pion taste splittings are larger
on coarser lattices, and finite-volume corrections in systems with heavier masses are smaller.
The finite-volume corrections at a ≈ 0.15 fm are generally larger than at a ≈ 0.12 fm,
however, because the spatial volume of our coarsest ensemble is substantially smaller than
the others (see Table VII).

In the absence of guidance from a direct finite-volume study, we take the range of finite-
volume corrections for the schemes we consider here as an estimate of the associated sys-
tematic uncertainty. Some or all of the EFT-based models considered are of questionable
reliability in the intermediate-window region. Motivated by this, we generate a second
set of corrections to all,Wµ (conn.) obtained from restricting the window to higher t, namely
[0.7, 1.0] fm. The spread of these restricted corrections is ∼ 20% smaller than the full W
window case. Therefore, in total we include ten sets of finite-volume-corrected data for
each input all,Wµ (conn.) data set in our analysis: two each for NLO χPT, NNLO χPT, CM,
MLLGS, and HP. For the W2 region, the EFTs are on more solid theoretical footing and the
higher-order schemes (NNLO χPT, CM, MLLGS, and HP) yield consistent results. There-
fore, in our analysis we include four sets of finite-volume-corrected data for all,W2

µ (conn.),
omitting NLO χPT because NNLO χPT should be more accurate in this region. These
finite-volume-corrected data sets are inputs into the next step, and eventually feed into the
BMA analysis of Sec. III E.

2. Pion-mass adjustment

We next consider the effects of pion-mass mistuning on all,Wµ (conn.) and all,W2
µ (conn.)

and estimate the pion-mass adjustments to these quantities, ∆Mπ in Eq. (3.5), using a data-
driven approach. As stated in Sec. II C, on our ensembles with a ≈ 0.15 and 0.12 fm, in
addition to the unitary correlation functions listed in Table I, we have partially quenched
correlators (and hence lattice data for all,Wµ (conn.) and all,W2

µ (conn.)) with valence-quark

masses bracketing the physical light quark (see Table II)7. Together with our unitary data
at a ≈ 0.09 and 0.06 fm, this allows us to predict the size of pion-mass adjustments to
all,Wµ (conn.) and all,W2

µ (conn.) on all of our ensembles as follows.
First, we correct our entire dataset for finite-volume effects as described in Sec. III C 1.

We then fit the corrected all,Wµ (conn.) and all,W2
µ (conn.) data to an interpolating function of

the form

all,win
µ

(
a,Mπ

)
=

1∑

i=−1

ci(a)(Mπ/Λ)
2i;

ci(a) =

ni∑

j=0

cij(aΛ)
2j, (3.7)

7 The a ≈ 0.15 fm correlators were also employed in Ref. [39] to study strong-isospin-breaking effects in

allµ(conn.).
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FIG. 5. Data-driven estimate of pion-mass adjustments to all,Wµ (conn.) (top) and all,W2
µ (conn.)

(bottom) on all ensembles. Lattice data (corrected for finite-volume effects using the CM scheme)

are shown as open/filled squares with error bars, with each color denoting a different simulation

pion mass: Mπ0 (blue), the taste-Goldstone pion mass at a ≈ 0.09 fm (magenta), and the partially-

quenched pion masses bracketing Mπ0 at a ≈ 0.12 and 0.15 fm (maroon and orange). The results of

fitting these data to an interpolating function in M2
π and a2 (specifically, Eq. (3.7) with n{−1,0,1} =

{1, 2, 1}) are shown for fixed Mπ as dashed curves with error bands, and share the same color

coding as the data points.

where Λ = 500 MeV (following Ref. [43]) and Mπ is the taste-Goldstone valence-sea pion
mass, which is what enters the leading-order pion loops in χPT. The parametric dependence
on Mπ in Eq. (3.7) is motivated by χPT, with an additional 1/M2

π term accounting for the
expected infrared-divergent behavior of allµ in the Mπ → 0 limit [48, 88]. For each value of
i in Eq. (3.7), we consider several values for ni ≥ 0, requiring only that the {ni} are the
same for both all,Wµ (conn.) and all,W2

µ (conn.), and that each fit has at least one degree-of-
freedom (d.o.f.). (Note that if ni = 0, then j = 0 and ci(a) is independent of aΛ.) Following
Ref. [89], we account for correlations between the independent variables (a and Mπ), as
well as between the independent and dependent variables (all,Wµ (conn.) and all,W2

µ (conn.)),

using Bayesian priors. We monitor the χ2
data/d.o.f. of each fit variation, preferring fits with

χ2
data/d.o.f. closest to 1. (A χ2

data/d.o.f.≫ 1 indicates that the fit function does not describe
the data, while a χ2

data/d.o.f. ≪ 1 suggests that we are overfitting.) After trying several
combinations of {ni}, we select n−1 = 1, n0 = 2, and n1 = 1 for our central analysis because
this functional form gives the best interpolation of our data for both Euclidean-time windows
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FIG. 6. Comparison of predictions for the pion-mass adjustments with error bars show the pre-

dictions of our data-driven analysis, which employs finite-volume corrections from the CM. Open
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triangle), MLLGS (orange diamonds) correction schemes. Black points with error bars show our

final estimates for the pion-mass adjustments on each ensemble, which account for the spread be-

tween predictions as described in the text.

simultaneously.
Once the coefficients cij are determined for a given set of {ni}, we can use Eq. (3.7)

to predict all,Wµ (conn.) and all,W2
µ (conn.) at the target physical pion mass, Mπ,phys = Mπ0

(see Sec. III B) for each ensemble. Figure 5 shows our central fits for all,Wµ (conn.) (upper

panel) and all,W2
µ (conn.) (lower panel). At each lattice spacing, we take the difference in

all,win
µ between the fit prediction at the physical-pion mass (blue dashed curve) and the

unitary lattice data (filled squares) as our data-driven estimate of the pion-mass adjustment
∆Mπ ,DD. As seen in Fig. 5, our data-driven analysis finds that a correction to all,Wµ (conn.)

and all,W2
µ (conn.) of about 1 sigma is needed on the a ≈ 0.09 fm ensemble, for which the

simulation pion mass is about 5% below the physical value.
The all,Wµ (conn.) and all,W2

µ (conn.) data entering our central fits are corrected for finite-
volume effects using the CM. Repeating this analysis using other finite-volume correction
schemes yields almost identical predictions for the pion-mass adjustments. Replacing the
1/M2

π term in Eq. (3.7) with log
(
M2

π

)
also leads to negligible changes in the predicted values

for ∆Mπ .
Figure 6 compares the pion-mass adjustments to all,Wµ (conn.) (upper panel) and all,W2

µ (conn.)
(lower panel) obtained in our data-driven analysis (filled green circles with error bars) and
those estimated within three of the EFT-based correction schemes introduced in Sec. III C:
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the CM (empty green circles), NNLO χPT (empty purple upside down triangle), MLLGS
(empty orange square triangles). On the three ensembles for which the pion mass is well
tuned (a ≈ 0.06, 0.12, and 0.15 fm), the pion-mass adjustment ∆Mπ ,DD is negligible in all
correction schemes. At a ≈ 0.09 fm, however, the picture is less clear. For all,Wµ (conn.), the
spread in model estimates is significantly larger than the error bar on the data-driven eval-
uation. For all,W2

µ (conn.), the models agree with each other, but differ from the data-driven
prediction by ≈ 1.5σ.

In light of the differences between predicted corrections at a ≈ 0.09 fm, we adopt the
following conservative procedure to obtain our final estimates for ∆Mπ (black filled circles
with error bars in Fig. 6). For the central value, we use the average of the data-driven and
chiral-model predictions, i.e., ∆Mπ ≈ (∆Mπ ,DD +∆Mπ ,CM)/2. For the error on a ≈ 0.09 fm,
we add (linearly) to the uncertainty on the data-driven prediction σMπ ,DD an additional
systematic uncertainty given by half the absolute difference between the data-driven and
chiral-model predictions, i.e., σMπ ,DD+|∆Mπ ,DD−∆Mπ ,CM|/2. On a ≈ 0.06, 0.12, and 0.15 fm
we take the uncertainty to be just the uncertainty on the data-driven prediction. As shown
in Fig. 6, our final estimates for the pion-mass adjustment at a ≈ 0.06, 0.12, and 0.15 fm are
essentially those from our data-driven analysis. At a ≈ 0.09 fm, our final estimate for the
pion-mass adjustment covers most (all) of the model spread for all,Wµ (conn.) (all,W2

µ (conn.)).

3. Taste-breaking corrections

The final lattice correction, ∆TB in Eq. (3.6), accounts for the mass differences at finite
lattice spacing between staggered pions with different taste quantum numbers. For the HISQ
action, these taste splittings arise from discretization effects of O(α2

sa
2) and higher. It is

well known, however, that the HISQ taste splittings do not scale linearly with α2
sa

2 [44, 62].8

As shown in Ref. [44], the HISQ pion-taste splittings decrease faster than naive expecta-
tions at lattice spacings below around 0.09 fm, while increasing more slowly at very coarse
lattice spacings above roughly 0.12 fm. The former observation is likely due to the HISQ
smearing [45] suppressing the leading α2

sa
2 taste-breaking discretization contributions, mak-

ing higher-order, e.g., O(α3
sa

2, a4), effects more prominent, while the latter indicates the
presence of additional higher-order terms.

Figure 7 shows the taste-breaking corrections to all,Wµ (conn.) (left panel) and all,W2
µ (conn.)

(right panel) obtained within the χPT, CM, and MLLGS correction schemes introduced
at the beginning of Sec. III C. Qualitatively, they display the same behavior as the taste
splittings, with ∆TB decreasing more rapidly at finer lattice spacings. Quantitatively, the
estimated corrections span a wide range of values between 0 ≲ ∆TB ≲ 30 × 10−10. This
corresponds to corrections to all,Wµ (conn.) and all,W2

µ (conn.) on our coarsest ensemble of up
to ∼ 15% and ∼ 30%, respectively. Differences between correction schemes and sizes of the
corrections vanish at zero lattice spacing by construction.

For all,Wµ (conn.), the NLO χPT, CM, and MLLGS results are in broad agreement, while
the NNLO χPT prediction is about 2–4 times larger for a ⪆ 0.09 fm. In contrast, for
all,W2
µ (conn.) the three higher-order schemes (NNLO χPT, CM, and MLLGS) predict sim-

ilar corrections, while NLO χPT is the outlier. As with the finite-volume corrections (see
Sec. III C 1), the spread of predicted taste-breaking corrections for all,Wµ (conn.) is likely due
to the correction schemes becoming less reliable at short distances. Indeed, this expectation

8 See also Ref. [33] for a discussion of the HISQ taste splittings as they pertain to calculations of aHVP,LO
µ .
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FIG. 7. Taste-breaking corrections to all,Wµ (conn.) (left) and all,W2
µ (conn.) (right) obtained from

NLO χPT (open blue triangles), NNLO χPT (purple downward triangles), CM (green circles), and

MLLGS (orange diamonds).

is borne out in Figs. 8 and 9, which show the continuum extrapolations of all,Wµ (conn.) and

all,W2
µ (conn.), respectively, with and without taste-breaking corrections. For all,Wµ (conn.),

applying taste-breaking corrections increases the lattice-spacing dependence. In contrast,
for all,W2

µ (conn.) the taste-breaking corrections computed in the three higher-order correc-
tion schemes all substantially reduce the lattice-spacing dependence, indicating that they
capture the dominant discretization effects in this window.

Although the inclusion of taste-breaking corrections (and choice of scheme) will alter
the lattice-spacing dependence of all,Wµ (conn.) and all,W2

µ (conn.), it should not change the
continuum-limit values. Consequently, varying the treatment of taste-breaking in the con-
tinuum extrapolation provides an additional measure of the continuum-extrapolation error.
For the analysis of the intermediate window, we generate taste-breaking-corrected data sets
with NLO χPT, NNLO χPT, CM, and MLLGS corrections for each input all,Wµ (conn.) data
set from the previous sections. We follow the reasoning of Sec. III C 1 and compute the
corrections in two regions, the full intermediate window interval [0.4, 1] fm and the smaller
interval of [0.7, 1] fm, resulting in a total of eight taste-breaking-corrected data sets for each
input set. For each input all,W2

µ (conn.) data set we generate three sets of taste-breaking-
corrected data, one each for NNLO χPT, CM, and MLLGS, dropping NLO χPT, as in
Sec. III C 1. In both cases, we also keep the data sets uncorrected for taste-breaking effects.
The corrected and uncorrected all,Wµ (conn.) and all,W2

µ (conn.) data sets are then taken as
inputs into the continuum limit extrapolations, and feed ultimately into the Bayesian model
averaging analysis of Sec. III E.

D. Continuum extrapolation

To perform our continuum extrapolation we consider fit functions of the form:

allµ(a, {mf}) = allµ
(
1 + F disc.(a) + Fm({δmf})

)
, (3.8)
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where

F disc.(a) = Ca2,n

[
(aΛ)2αn

s

]
+ Ca4(aΛ)

4 + Ca6(aΛ)
6 (3.9)

Fm({δmf}) = Csea

∑

f=l,l,s

δmf/Λ. (3.10)

The function F disc.(a) describes discretization effects and Fm({δmf}) accounts for quark
mass differences in the sea, where δmf is the difference between the physical and the sim-
ulation quark masses (see Secs. II B and IIC). In F disc.(a) we include variations where the
coefficient Ca6 is set to zero and where the power of αs in the a2 term varies as n = 1, 2. For
both variations of n = 1, 2, we label fit functions with Ca6 = 0 as “quadratic” and fit func-
tions where all terms listed in F disc.(a) are included as “cubic”. Following Ref. [43] we take
Λ = 500 MeV and impose the Gaussian prior constraint Csea = 0.0(3). Here, the Csea term
accounts for residual light sea-quark mass miss-tuning effects, remaining after performing
the correction in Sec. III C 2, and also strange sea-quark miss-tuning effects. As in Ref. [43],
the sea-quark masses in the ensembles employed here are so close to their physical values
that our fits are insensitive to the Fm({δmf}) term and return posteriors for Csea with cen-
tral values close to zero and uncertainties close to the initial prior width. This also means
that higher-order terms involving δmf can be safely neglected. Additionally, to regulate the
degrees of freedom in fits with an a6 term, we constrain its coefficient with the Gaussian
prior

Ca6 = 0(2). (3.11)

This prior width conservatively accommodates instances among the over two thousand con-
tinuum fits when the posterior central values are close to or slightly larger than unity. We
also include fits to three ensembles, dropping the coarsest. In this case we include an addi-
tional prior constraint on the quadratic term Ca4 = 0(2) with the same reasoning as above
for Ca6 . We include continuum-extrapolation fit variations, both with and without including
the Csea term in our Bayesian averaging process.

As illustration, in Fig. 8 we show results for quadratic continuum extrapolations of the
all,Wµ (conn.) data with n = 1 in Eq. (3.8). The four panels show finite-volume-corrected
data computed from the CM (top left), NLO χPT (top right), NNLO χPT (bottom left)
and MLLGS (bottom right). For each scheme, we compare continuum extrapolations of data
with and without taste-breaking corrections, where we include fits to all four ensembles as
well as fits to ensembles at only the three finest lattice spacings. For the data sets corrected
with NLO χPT or the CM, we find very good agreement between the four continuum
extrapolated results, whereas the NNLO χPT- and MLLGS-corrected data sets show larger
spreads. Taking into account this variance, we find that the continuum results obtained with
all four correction schemes are consistent with each other. The corresponding continuum
extrapolations for all,W2

µ (conn.) are shown in Fig. 9. In this case we find good agreement
between the continuum extrapolated results, both within each scheme as well as across the
different schemes, albeit with larger uncertainties. We observe, however, that the NLO χPT
taste-breaking corrections do a poor job at removing lattice spacing dependence compared
to the higher-order schemes.

In summary, for each input data set, we perform twelve different continuum extrapo-
lations, the results of which become inputs to the Bayesian model averaging analysis of
Sec. III E: in Eq. (3.8), we take n = 1, 2 in the linear term, and include or don’t include the
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FIG. 8. Continuum extrapolations of all,Wµ (conn.) using the CM (top left), NLO χPT (top right),

NNLO χPT (bottom left) and MLLGS (bottom right) correction schemes. All data are obtained

from integrating the lattice correlator C(t) using the trapezoidal rule, and corrected for finite-

volume effects and adjusted for pion-mass mistuning. Data sets that also include taste-breaking

corrections are shown as circles, while data without these optional corrections are shown as squares.

All corrections come from the full window region. Solid bands (dashed lines) show the fit results

of continuum extrapolations with (without) data at our coarsest lattice spacing (right-most point

in each panel). All fits employ the same fit function, Eq. (3.8) with terms through O(a4).

Csea term9. With these four variations, we perform fits to the data at four lattice spacings
with and without the cubic (a6) term in Eq. (3.8), as well as with quadratic fits to data at
the finest three lattice spacings.

Separately, as an independent analysis cross check of our continuum extrapolations and
associated error estimate, we allow for higher-order terms in all,Wµ (conn.) and all,W2

µ (conn.)
using the empirical Bayes (or maximum marginal likelihood) approach described in Sec. 5.2
of Ref. [90]. For this analysis, the discretization term F disc.(a) in Eq. (3.8) takes the form:

F disc.
alt (a) =

3∑

j=1

c1jxα
j
s +

5∑

i=2

3∑

j=0

cijx
iαj

s + c60x
6, x ≡

(
Qeff

π/a

)2

. (3.12)

The coefficients in Eq. (3.12) are constrained with Gaussian priors cij = 0(1), while the
scale Qeff is chosen to maximize the Gaussian Bayes Factor, Eq. (28) of Ref. [90], which is
proportional to the marginal likelihood (model evidence). The results of this comparison
are discussed in Sec. III E.

9 We find that the fit results are virtually unchanged when the Csea term is included and, in addition, that

they are insensitive to the prior width of Csea, after increasing it by up to a factor of ten.
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FIG. 9. Continuum extrapolations of all,W2
µ (conn.). Figure is described in the caption of Fig. 8.

E. Bayesian model averaging

In order to quantify the systematic uncertainty due to the analysis choices described in
the previous sections, we employ Bayesian model averaging (BMA) [46, 47]. Summarizing
these choices, we include variations of:

• Observable extraction - Two methods are used to extract the uncorrected values
of all,Wµ (conn.) and all,W2

µ (conn.) from the correlation function data, as described in
Sec. III B:

– Raw correlation function data, C(t), integrated with the trapezoidal rule.

– Fit-reconstructed correlation function data Cnoosc.(t) integrated with Simpson’s
rule.

• Finite-volume correction - All correction schemes discussed in Sec. III C 1 above:
χPT, CM, MLLGS, and HP. We include the NLO χPT variation for all,Wµ (conn.) but

not all,W2
µ (conn.).

• Taste-breaking correction - We include χPT, CM, and MLLGS as well as aµ data
sets which are not corrected for taste-breaking effects prior to continuum extrapolation.

• Correction region - For all,Wµ (conn.), we include a variation on the corrections where
they are computed from the range [0.7, 1] fm instead of over the full W window interval.

• Continuum fit - We perform continuum extrapolations using all 12 fit function vari-
ations described in Sec. IIID including fits to the three finest ensembles.
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In the context of BMA, a “model” M is defined as the set of analysis choices that yield
a given result for the desired continuum, infinite-volume, physical observable from a single
data set D. In our case,M is given by a set of choices from the options listed above, while D
consists of the unmodified correlation function data.10 In order to carry out the averaging,
each M is assigned a probability weight given by

pr(M | D) ≡ pr(M) exp

[
−1

2

(
χ2
data (a

⋆) + 2k + 2Ncut

)]
. (3.13)

This is the “Bayesian Akaike information criterion” (BAIC) as defined in [47]. Here, χ2
data

is the standard chi-squared function, not including the contribution of the priors, and a⋆ is
the posterior mode (i.e., the best-fit point for the vector of fit parameters a when optimized
against the augmented chi-squared function [90].) Ncut is the number of data points cut
from a data set—in this case, the number of ensembles omitted from a given extrapolation.
The parameter k is the number of independent parameters in a given fit function. The
factor pr(M) is the prior probability of a given M ; we adopt a flat prior, so that this factor
is a constant over all analysis variations and drops out of the model averaging results. The
BMA mean and variance are then obtained from the following formulas:

⟨aµ⟩ =
NM∑

i=1

⟨aµ⟩i pr (Mi | D) , (3.14)

σ2
aµ =

NM∑

i=1

σ2
aµ,ipr (Mi | D) +

NM∑

i=1

⟨aµ⟩2i pr (Mi | D)−
(

NM∑

i=1

⟨aµ⟩i pr (Mi | D)

)2

. (3.15)

The first term on the right-hand side of Eq. (3.15) is a weighted average over the variances
of the individual results. The second and third terms reflect the spread in results obtained
with different analysis choices (in our case, correction schemes and fit functions). Because
they encapsulate the systematic uncertainty due to analysis choices, we refer to their sum
as the “model variance.”

In Fig. 10, we show the results of the Bayesian model average for all,Wµ (conn.). The
top-right panel illustrates the continuum extrapolations on two data sets, the first corrected
with NNLO χPT and the second corrected with the CM, in both cases computed from the
full W window interval. The dashed lines indicate the continuum extrapolations for each
data set. In total, we include over two thousand separate fit results in the model average.
The resulting distribution is shown in the top left panel of Fig. 10, where it is overlaid on
the BMA result (red line and error band) obtained using Eqs. (3.14) and (3.15). The middle
panel shows the results from the 24 best individual fits for each correction choice, ordered
by the BAIC, in comparison to the BMA result, while the bottom panel gives the associated
Q values [91] computed from χ2

aug. We find that our best fits, as determined by the Q value,
tend to have the smallest BAIC and hence largest model probability. We also note that
the continuum results for data sets corrected for taste breaking using NNLO χPT tend to
be smaller than those from the other variations and also return some of the largest model
probabilities (points in middle panel with lower half purple).

10 Note that for BMA, the single data set D is held fixed even in variations where ensembles are dropped

since this is treated as a model change (see the discussion of data subset selection in [46, 47]). Also note

that throughout this work, we also use the more colloquial definition of “data set” outside the context of

BMA to refer to any set of aµ data points before continuum extrapolation.
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FIG. 10. Results of the Bayesian model averaging (BMA) procedure applied to all,Wµ (conn.). Top

left: Histogram of all continuum extrapolations used in the BMA, the light-red band is the BMA

result. Top right: The subset of data sets and extrapolations corresponding to correcting the

data with the CM and NNLO χPT. Data (without) with taste-breaking corrections are shown as

(squares) circles. Different extrapolations correspond to variations of the fit function and ensembles

included. Lower panels: The best fits according to model probability, Eq. (3.13). The middle panel

shows the fit results, while the bottom one shows the corresponding Q-values [91]. In both panels,

the correction schemes employed for ∆FV and ∆TB are indicated by the symbols’ top and bottom

colors, respectively.

Figure 11 shows the analogous BMA result for all,W2
µ (conn.). Here we include 384 fit

results, which is fewer than for all,Wµ (conn.). This stems from the absence of NLO χPT
corrections and from employing only a single correction region. The general features of this
figure are the same as for Fig. 10. In the top left panel, we note that the BMA uncertainty
for all,W2

µ (conn.) is larger than the spread of the histogram. This is because the bulk of
the uncertainty in this case comes from the first term in Eq. (3.15) with relatively large
statistical and scale-setting uncertainty contributions.

In order to better understand and test the model-averaging results, we also perform
Bayesian model averages on specific subsets of the variations. That is, we fix one of the anal-
ysis choices but vary the rest as usual. The results of these subset averages for all,Wµ (conn.)
are shown in Fig. 12 (left). The top data point is our BMA result from Fig. 10. The two data
points below it, show the BMA results for the two observable extraction choices described
in Sec. III B. They are in excellent agreement with each other and with the full BMA result,
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FIG. 11. Results of the Bayesian model averaging (BMA) procedure applied to all,W2
µ (conn.).

Figure is described in the caption of Fig. 10.

signifying, as expected, that residual effects of oscillating contributions and of O(a2) errors
of the trapezoidal rule are negligibly small. The next five data points are the BMA results
obtained from subsets with specific taste-breaking correction schemes. While these results
are statistically consistent with the overall average, the differences in the central values con-
tribute significantly to the systematic uncertainty through the latter two terms of Eq. (3.15)
(outer uncertainty of the BMA result). In particular, as shown in Fig. 10, the fit results
obtained from NNLO χPT corrected data tend to lie below the average. The following three
data points are BMA results obtained from subsets of specific continuum-extrapolation fit
functions, which agree well with each other and with the full BMA result. The last block of
data points (below the dashed line) are BMA results from subsets that use the same schemes
for finite-volume and taste-breaking corrections, where the top data point (BMA w/o mix)
averages all four schemes (NLO χPT, NNLO χPT, CM, MLLGS), followed by results from
the subsets corresponding to each single scheme, all of which are consistent with the full
BMA result with small variations in central values.

The probability weights defined in Eq. (3.13) can be used to assess the relative weight
of specific analysis choices in the BMA. Comparison of these weights can identify if one
particular choice of observable extraction method, correction scheme or fit-function variation
is preferred by the averaging procedure. More specifically, letting S denote a subset of the
full space of models {M}. We can define the “subset probability” of S by the relative
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FIG. 12. Breakdown of the results from the Bayesian model averaging applied to all,Wµ (conn.).

Left: From top to bottom, the first, main result (BMA) includes all data sets, schemes, and other

variations. The next two use data integrated with either the trapezoidal rule (Trap.) or Simpson’s

rule (No osc. Simp.). The following five results are obtained from subsets with specific taste-

breaking corrections. The next three are subsets with specific continuum fit functions: quadratic,

cubic, or quadratic without the 0.15 fm ensemble. The last block of results (below the dashed line)

uses the same scheme for finite-volume and taste-breaking corrections. The top (“BMA w/o mix”)

includes all four schemes; the final four are breakdowns using only a single correction scheme in the

BMA. The inner error bar on the data points corresponds to the first term in Eq. (3.15), while the

outer is the total error. Right: Pie-charts showing the contributions to the BMA corresponding to

the breakdowns in the left panel. The percentages are computed by summing over Eq. (3.13) for

the particular subsets.

posterior probability of the variations contained in S:

pr(S|D) =
∑

Mi∈S

pr(Mi|D). (3.16)

The subset probability encapsulates the relative weight of the models in a given subset
compared to the whole model space, informed by the data. For example, we can estimate
the subset probability of using NNLO χPT for taste-breaking and finite-volume corrections
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FIG. 13. Breakdown of the results from the Bayesian model averaging applied to all,W2
µ (conn.).

Figure is described in the caption of Fig. 12 (with “four results” replacing “five results” because

NLO χPT is not employed here).

as
pr(NNLO|D) =

∑

Mi∈NNLO

pr(Mi|D). (3.17)

where “Mi ∈ NNLO” denotes the subset of models (i.e., analysis choices) in which NNLO
χPT is used for both corrections. Using this definition, we show the relative probabilities
of the subsets considered above as pie charts in Fig. 12 (right). From the top pie chart, for
the two methods of observable extraction, we find roughly equal contributions to the overall
BMA result, indicating no preference by the BMA procedure. The second pie-chart from the
top shows the subset probabilities for specific taste-breaking corrections. The probability of
the subset in which the data are not corrected prior to continuum extrapolation is smaller
by slightly more than a factor of two compared with the other subsets. This is because the
taste-breaking corrections are computed in two window regions, [0.4, 1] and [0.7, 1] fm in
addition to the continuum fits to data without taste-breaking corrections having larger χ2

values, indicating a preference for data corrected for taste-breaking. The third pie chart
shows that quadratic continuum fits to the full set of four ensembles are preferred over cubic
fits or fits to just three ensembles. In the case of the fits to three ensembles the smaller
subset probability can be traced back to the penalty incurred, Ncut, in Eq. (3.13) due to
dropping a data point. For subsets in which the same correction scheme is used for finite
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TABLE III. Comparison of results for all,Wµ (conn.) and all,W2
µ (conn.) obtained from the BMA

analysis with an empirical Bayes approach. Both analyses use data sets corrected in the CM

scheme. The third and fifth columns show aµ results obtained in the empirical Bayes approach

from fits to data sets without and with first correcting for taste splittings, respectively. The fourth

and sixth columns list the effective scales Qeff obtained by maximizing the Bayes Factor log(GBF).

BMA: CM
Empirical Bayes

∆TB = 0 Qeff/GeV ∆TB ̸= 0 Qeff/GeV

all,Wµ (conn.) 206.28(81) 206.52(69) 1.8 205.83(67) 1.7

all,W2
µ (conn.) 100.9(3.3) 98.7(2.8) 2.9 102.0(2.0) 1.9

volume and taste splittings (bottom pie chart) we find a slight preference for NNLO χPT
and slight disinclination for NLO χPT.

Figure 13 shows the BMA subsets for all,W2
µ (conn.), with results similar to those for

all,Wµ (conn.). As expected, there is greater consistency among the subset averages from

specific correction schemes compared to the all,Wµ (conn.) case, with the largest variation in
central value coming from continuum extrapolations to data not corrected for taste-breaking
effects. The pie charts in the right panel of Fig. 13 reveal roughly equal subset probabilities
in each case, except for the third (from the top) pie chart, which illustrates that here too
quadratic continuum fits to all four ensembles are preferred for the same reasons as above.

The AIC criterion used in Ref. [29] differs from Eq. (3.13) in that the weight assigned
to cutting data points is given as Ncut instead of 2Ncut. In order to test the robustness
of the model-averaging procedure, we repeat the analysis by replacing 2Ncut with Ncut in
Eq. (3.13). We find that this yields central values and uncertainties on the final results
are essentially the same as before, with at most minor changes to the weights in the third
pie-chart from the top in Figs. 12 and 13. This result is not unexpected, because in our case,
Ncut ≤ 1, and only a small fraction of the total variations in our averages have Ncut ̸= 0.

In order to cross check our main continuum-limit extrapolations and the subsequent
BMA analysis, we use an empirical Bayes approach to perform independent continuum-
limit extrapolations (see Eq. (3.12)). In the comparison of the two approaches, we use
the aµ data sets obtained from integrating the correlation functions with Trapezoidal rule
and corrected using the CM scheme, with and without first correcting for taste splittings.
When performing continuum extrapolations using all the terms in Eq. (3.12), we observe
that most of the posterior coefficients are small and consistent with zero — only the linear
∼ c11a

2αs and quadratic ∼ c20a
4 terms in Eq. (3.12) are needed to describe the data.

This observation is consistent with our main continuum-extrapolation analysis, described
by Eqs. (3.8) and (3.9). Table III shows the comparison of the BMA analysis (restricted to
the same CM-corrected data sets) with the empirical Bayes fits for both all,Wµ (conn.) and

all,W2
µ (conn.). We find good agreement in central values and error bars, after considering the

spread between the empirical Bayes results from data sets with and without first correcting
for taste splittings.
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TABLE IV. Approximate error budgets for all,Wµ (conn.) and all,W2
µ (conn.).

Source δall,Wµ (conn.) (%) δall,W2
µ (conn.) (%)

Monte Carlo statistics 0.19 2.44

Continuum extrapolation (a → 0, ∆TB) 0.34 1.05

Finite-volume correction (∆FV) 0.16 0.23

Pion-mass adjustment (∆Mπ) 0.06 0.96

Scale setting (w0 (fm), w0/a) 0.21 1.28

Current renormalization (ZV ) 0.17 0.16

Total 0.50% 3.18%

F. Results and error budgets

Our results for the light-quark-connected contributions to aWµ and aW2
µ are

all,Wµ (conn.) = 206.6(1.0)× 10−10 (3.18)

and
all,W2
µ (conn.) = 100.7(3.2)× 10−10 , (3.19)

where the errors are those obtained from the BMA procedure described in the previous
section, and include both statistical and systematic uncertainties.

Although Bayesian model averaging provides a robust estimate of the total uncertainties
in our results, the construction of detailed error budgets from the BMA is not straightfor-
ward. We start from the expression for the BMA variance in Eq. (3.15). The first term
on the right-hand side is linear in the variances, and hence can be trivially separated into
individual contributions from Monte Carlo statistics and each of the parametric inputs w0,
∆Mπ , and ZV . For example, the statistical uncertainty is given by

σ2
aµ(stat.) =

NM∑

i=1

σ2
aµ,i(stat.)pr (Mi | D) (3.20)

where we average over all analysis variations using the probability weights of Eq. (3.13). Re-
peating this procedure for all the above-mentioned contributions yields the error estimates
in Table IV in the rows marked “Monte Carlo statistics”, “Scale setting”, “Pion-mass ad-
justment” and “Current renormalization”. The second and third terms in Eq. (3.15) depend
solely and non-linearly on the central value of each variation, with the latter term including
pairwise differences between all possible model pairs in the full BMA result. This makes it
impossible to strictly disentangle the contribution from only a subset of model variations,
(e.g., finite-volume corrections or treatment of discretization effects). We can obtain an
approximate error budget, however, as follows.

First, to estimate the systematic uncertainty associated with the finite-volume correc-
tion, we perform subset model averages separately for each finite-volume correction scheme.
These results are shown in Fig. 14. Taking the variance in central values of these results
yields the “finite-volume correction” error in Table IV. Next, we subtract (in quadrature) the
so-estimated finite-volume error from the total model variance. The remaining uncertainty
is associated with variations in the treatment of oscillating states in C(t), the taste-breaking
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FIG. 14. Breakdown of the BMA result into subsets that contain only one choice of finite-volume

correction for all,Wµ (conn.) (left) and all,W2
µ (conn.) (right).

corrections, and the continuum-extrapolation fit function. Combining this uncertainty (in
quadrature) with those on the fit-function coefficient posteriors yields the “continuum ex-
trapolation” error in Table IV.

Table IV presents the approximate error budgets for all,Wµ (conn.) and all,W2
µ (conn.) ob-

tained from the above approach. For all,Wµ (conn.), the largest error is from the continuum
extrapolation, and is driven by the spread in results using different taste-breaking correc-
tion schemes. Here we note that the consistency between quadratic and cubic continuum
extrapolations (as illustrated in Figs. 12 and 13) as well as between our main results and
those from the empirical Bayes approach (see Table III) indicate that systematic errors due
residual higher-order discretization effects are well encompassed by our uncertainties. Next
is the parametric uncertainty from the gradient-flow scale, which is about 30% smaller. Er-
rors from Monte-Carlo statistics, finite-volume corrections, and current renormalization are
also non-neglible, and are roughly commensurate. For all,W2

µ (conn.), Monte-Carlo statistics
are by far the largest source of uncertainty. Following that, the contributions from scale
setting, the continuum extrapolation, and the pion-mass adjustment, which are ∼ 50–60%
smaller. Although finite-volume and current-renormalization errors are negligible compared
with these other uncertainties, they will be important for calculations of aHVP,LO

µ aiming for
≲ 0.5% precision.

IV. SUMMARY AND OUTLOOK

In Fig. 15, we compare our intermediate-window result, Eq. (3.18), with other lattice-
QCD calculations of this quantity [29, 32, 33, 36–38, 71, 92, 93], which were obtained using
different lattice actions and analysis methods. Of the results to date, ours has the smallest
statistical uncertainty, 0.19%. Ours is also the first result for all,Wµ (conn.) obtained from
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FIG. 15. Comparison of our lattice determination of all,Wµ (conn.) (red circle) labeled “Fermi-

lab/HPQCD/MILC 23” to nf = 2+1+1 (black circles) and nf = 2+1 (black squares) lattice-QCD

calculations by RBC/UKQCD 23 [38], ETMC 22 [37], Mainz/CLS 22 [36], Aubin et al. 22 [33],

χQCD 22 [92], BMW 21 [29] and Lehner & Meyer 20 [93]. Results by Aubin et al. 19 [71] and

RBC/UKQCD 18 [32], shown in grey, are superseded by Aubin et al. 22 and RBC/UKQCD 23,

respectively. The inner error bar shown for our result is from Monte Carlo statistics.

a blind analysis. While some form of EFT-inspired correction schemes were employed in
every calculation, our analysis is the first to include all of them. Because we incorporate
uncertainties due to analysis choices via Bayesian model averaging [46, 47], our systematic
error estimate is robust without being overly conservative.

In Fig. 16, we compare our result for the “W2” window observable, Eq. (3.19), with the
only other available lattice-QCD result for this quantity [33]. Although the results appear
consistent, they are not wholly independent because the analysis in Ref. [33] is based on
some of the same ensembles as employed in this work. Statistical and systematic correlations
due to the shared configurations must be taken into account to make a quantitative compar-
ison. Other independent lattice-QCD calculations of all,W2

µ (conn.) would provide welcome
consistency checks.

Before our results for all,Wµ (conn.) and all,W2
µ (conn.) can be directly compared with data-

driven determinations, the contributions from heavier flavors must be added as well as
those from quark-line disconnected contractions and isospin-breaking corrections (QED and
mu ̸= md). The s-, c-, and b-quark-connected contributions to aHVP,LO

µ have already been
computed on the HISQ ensembles with high precision [94–96]; windowing these results will
be straightforward. The remaining contributions are being computed in ongoing projects;
see Refs. [40–42, 50].

Looking at the big picture, the observed consistency between so many different, largely
independent, results for the light-quark connected contribution to the intermediate-window
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FIG. 16. Comparison of our lattice determination of all,W2
µ (conn.) (red circle) labeled “Fermi-

lab/HPQCD/MILC 23” with the result of Ref. [33] (black circle) labeled Aubin et al. 22. The

inner error bar shown for our result is from Monte Carlo statistics.

observable (see Fig. 15) indicates that the systematic errors in lattice-QCD calculations
of this quantity are under reasonable control. It is therefore unlikely that the differences
between the lattice-QCD calculations reported in Refs. [29, 36–38] and the data-driven
result of Ref. [35] will be resolved by further improvements in lattice-QCD calculations
of all,Wµ (conn.). Lattice-QCD calculations of the quark-connected contributions from heavier
flavors are also unlikely causes of the difference, since their uncertainties are smaller by an
order of magnitude [29, 95, 96]. The quark-disconnected and isospin-breaking contributions
to aHVP,LO

µ , however, have been computed by only a few collaborations [29, 32, 38, 39,

87, 97].11 Although these contributions are too small to change aWµ substantially, additional
independent lattice-QCD calculations are needed to solidify the central value and uncertainty
in order to better quantify the significance of the difference.

In Ref. [34], we pointed out that other windowed observables can provide more stringent
comparisons between lattice-QCD and data-driven results right now. Because intermediate-
window observables cut out low-t contributions to aHVP,LO

µ where lattice-QCD statistical
errors are smallest, “one-sided windows” without a lower bound on the Euclidean time can
capture a larger fraction of the total aHVP,LO

µ while retaining controlled uncertainties. We
are currently repeating the analysis of Ref. [34] using the larger data set employed in this
work.

The light-quark connected contribution to the intermediate-window observable represents
only around a third of the total leading-order HVP contribution to the muon’s anomalous
magnetic moment. Thus, the work presented in this paper is only a part of a multi-year
project to compute aHVP,LO

µ with ≲ 0.5% precision. Several of our ongoing efforts aim to
reduce the dominant sources of uncertainty in our published result for the total light-quark
connected contribution to aHVP,LO

µ [43]; these will also improve our determinations of the
intermediate-window observables in this work. For example, recently we introduced a “low-
mode-improved” method into our analysis that substantially reduces statistical errors at
large Euclidean times [98]. The uncertainty on the scale-setting quantity w0 is an important
source of uncertainty not only for all aHVP,LO

µ observables, but also for many other analyses
based on the MILC HISQ ensembles. We are therefore working to compute precisely the
Ω-baryon mass on these ensembles [99], as well as the relative scale w0/a, and plan to use
the results to determine the scale in physical units with reduced uncertainty.

With these ongoing efforts, we expect to obtain aHVP,LO
µ with sub-percent-level precision

in the near future. In order to further reduce the precision to match that of the Fermi-

11 Indeed, only the BMW collaboration [29] has presented a complete calculation of all contributions to

aHVP,LO
µ including the disconnected QED and disconnected strong-isospin-breaking corrections.
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lab [1] and JPARC [24, 25] experiments, however, it seems likely that considerable exascale
computing resources will be needed. In particular, the inclusion of MILC’s physical-mass
HISQ ensemble with a ≈ 0.042 fm would enable more robust continuum extrapolations of
all aHVP,LO

µ observables and provide better control over this important source of systematic
error. A direct finite-volume study is needed to better quantify the finite-volume corrections
and reduce the corresponding uncertainty. This would require the generation and analysis
of new ensembles with different spatial volumes and all other parameters held fixed. Finally,
further control over long-distance effects and statistical noise could be achieved by computing
directly the two-pion contributions to the vector current correlation functions [49, 100, 101].
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FIG. 18. (Left) Comparison of the methods used to remove the oscillating contribution to the

integrand for all,Wµ (conn.) at 0.09 fm (top left) and all,W2
µ (conn.) at 0.06 fm (bottom left). Shown

are the integrands obtained with raw correlation-function data C(t) (blue circles), the reconstruc-

tion from the fit including oscillating states Cfit(t) (purple), without oscillating states Cno osc.(t)

(orange), improved parity averaged correlator CIPA(t), (Eq. (A4)) (green), and interpolated cor-

relator Cinterp(t) (Eq. (A5)) (red). (Right) Lattice-spacing dependence of all,Wµ (conn.) (top right)

and all,W2
µ (conn.) (bottom right) data obtained from the correlation functions modified with the

oscillation removal techniques discussed. All data sets are corrected for finite-volume effects using

the Chiral Model and pion-mass mistuning effects using the data-driven approach, described in

Secs. III C 1 and III C 2. The data points are slightly displaced horizontally for clarity. A linear

fit function (see Sec. IIID) is used to fit the all,Wµ (conn.) and all,W2
µ (conn.) data at the three finest

lattice spacings.

Appendix A: Cross-checks of window determinations from staggered correlation

functions

In this section, we detail the methods used to obtain the windowed aHVP,LO
µ from the

staggered correlation function, C(t). First, we compare three different approaches for treat-
ing the oscillating contribution to the correlator. The first method, which we use in our
main analysis, is to fit C(t) over the region of interest and reconstruct it from the fit pos-
teriors excluding the oscillatory contribution. The correlation function has the spectral
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representation,

C(t) =
∑

n

[
Z2

ne
−Ent + (−1)tZ2

n,osce
−En,osct

]
, (A1)

where the sum is over all possible contributing states. We use this expression to craft a
model fit function that separates the oscillating and nonoscillating contributions. For this
purpose, we truncate the sum:

Cfit(t) =
Nstates∑

n

[
Z2

ne
−Ent + (−1)tZ2

n,osce
−En,osct

]
. (A2)

For simplicity, we keep the same number Nstates of regular and oscillating states. We restrict
the fit range [tmin, tmax] to cover the window region of interest. The use of tmin justifies
the truncation to a finite Nstates by suppressing contributions from states with large energy.
On the other hand, the use of a fixed tmax carries a risk that the lowest-lying energies
and amplitudes may not be accurately resolved with finite statistical precision. However,
since we are simply using the expression as a useful model for removing the unwanted
oscillations, it is not critical that our estimates of all energy levels are asymptotically correct
for tmax → ∞. For the energies and amplitudes of the light-quark-connected correlator, we
take the Gaussian priors associated with the local (unsmeared) data in Eqs. (A3) and (A4)
of Ref. [48]. We then have the corresponding fit reconstruction of the correlation function
without the oscillating contribution

Cno osc.(t) =
Nstates∑

n

Z2
ne

−Ent. (A3)

Results for all,Wµ (conn.) computed from the fit reconstruction on the 0.09 fm ensemble are
shown in Fig. 17 (top). Here, for the fit range, we fix tmax = 1.3 fm (t1 +2∆) and vary tmin.
We also fit up to six states with good stability obtained at four, which we take to be our value
for Nstates on all ensembles. The second panel of Fig. 17 shows the ground state energies
obtained from these fits; shown also is the ground state energy obtained from a fit to the full
correlation function (blue band). We see a significant difference in these energies, perhaps
because the full fit picks up some mixture of the hard-to-determine two-pion states in the
large-time region. Nonetheless, we observe in Fig. 18 (as described below) that Cfit accurately
reconstructs the correlation function data in the window region of interest. For all,Wµ (conn.)

and all,W2
µ (conn.) we take tmin and tmax to be 2∆ beyond the t0 and t1 boundaries in the

corresponding window definition. For the coarsest two ensembles, this would correspond
to a tmin/a = 0, 1. To avoid possible staggered-operator complications at small t/a, we
take tmin/a = 2 for those two ensembles. As a test of the fidelity of this method, we show
results for the correlated differences of all,Wµ (conn.) and all,W2

µ (conn.) computed from the fit
reconstruction with the oscillating states, Cfit(t), and the original correlation function in
Table V. One can see tiny differences on the coarsest ensembles for all,Wµ (conn.), likely due
to the restriction of not using the first two time-slices; however, these differences are well
within the uncertainties of the results for all,Wµ (conn.).

The second method we examined is improved parity averaging (IPA) as employed in
Ref. [93] for computing aHVP,LO

µ , a modification of the method developed in Ref. [102]. Here,
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TABLE V. all,Wµ (conn.) and all,W2
µ (conn.) computed from the raw data (columns two and five),

the fit reconstruction with oscillating states (columns three and six) and the correlated difference

between them (columns four and seven).

≈ a all,Wµ (conn.) all,Wµ, fit(conn.) ∆all,Wµ (conn.) all,W2
µ (conn.) all,W2

µ, fit (conn.) ∆all,W2
µ (conn.)

0.15 211.01(79) 211.15(80) −0.14(11) 80.3(1.7) 80.1(1.7) 0.20(19)

0.12 207.13(60) 207.16(60) −0.025(29) 84.7(1.5) 84.6(1.5) 0.09(10)

0.09 206.56(55) 206.58(55) −0.016(10) 92.7(1.8) 92.7(1.8) −0.07(22)

0.06 206.22(61) 206.22(61) 0.003(61) 95.6(2.8) 95.5(2.7) 0.12(73)

the correlation function is replaced by the following equation:

CIPA(t) =
e−mρt

4

[
C(t− 1)

e−mρ(t−1)
+ 2

C(t)

e−mρ(t)
+
C(t+ 1)

e−mρ(t+1)

]
(A4)

The exponent used is the PDG value of the ρ meson mass [103], to give the best cancellation
in the ρ resonance peak which dominates in the regions of W and W2. This approach
introduces additional discretization effects; however, one expects a consistent continuum
limit as the oscillations become small at finer lattice spacing.

The final approach, originally used in Ref. [104], is performed by interpolating the even-
and odd-site correlation functions separately, then averaging the two interpolations to obtain
a new correlation function where the oscillating contribution has been removed.

Cinterp(t) =
1

2

(
Ceven. interp(t) + Codd. interp(t)

)
(A5)

We use a cubic-spline interpolation with the Steffen algorithm implemented in the gvar
Python package [105] to interpolate the correlation functions.

In Fig. 18 (top left), we compare the all,Wµ (conn.) integrand on the 0.09 fm ensemble
obtained from the raw correlator data (blue circles), Cfit(t) (purple line), Cno osc.(t) (orange
line), CIPA(t) (green line), and Cinterp(t) (red line). We find that the Cfit(t) integrand is in
excellent agreement with the raw data in the region of interest, suggesting that Cno osc.(t) is
an accurate representation of the correlation function without the oscillating contribution.
However, we see some differences between the CIPA(t) and Cinterp(t) integrands and the
Cno osc.(t) integrand, especially at shorter times where a large number of excited states
contribute.

Figure 18 (top right) examines the lattice spacing dependence of the all,Wµ (conn.) data

obtained with all of the different oscillation removal techniques. In the case of all,Wµ (conn.)

data obtained from Cno osc.(t) we see only small deviations compared to the all,Wµ (conn.) from
the raw data which are more significant at coarser lattice spacing. As a result, the continuum
extrapolations (which use a simple linear fit in a2αs(2/a) to the three finest ensembles,
leaving out the 0.15 fm data point) of the two data sets are in excellent agreement. While
the IPA method does yield a consistent result in the continuum limit, it exibits much larger
discretization effects. The interpolation method modifies the lattice spacing dependence so
significantly that a linear fit is not enough to describe the observed behavior. This is likely
due to the interpolation scheme not capturing the high energy state contributions sufficiently.
In Fig. 18 (bottom), we compare these methods applied to all,W2

µ (conn.); here the different
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TABLE VI. all,Wµ (conn.) and all,W2
µ (conn.) computed from the raw data (columns two and five), the

fit reconstruction without oscillating states (columns three and six) and the correlated difference

between them (columns four and seven).

≈ a all,Wµ (conn.) all,Wµ,No osc.(conn.) ∆all,Wµ (conn.) all,W2
µ (conn.) all,W2

µ,No osc.(conn.) ∆all,W2
µ (conn.)

0.15 211.01(79) 210.62(79) 0.39(20) 80.3(1.7) 80.2(1.7) 0.13(19)

0.12 207.13(60) 207.34(59) −0.204(34) 84.7(1.5) 84.6(1.5) 0.10(11)

0.09 206.56(55) 206.56(55) 0.001(10) 92.7(1.8) 92.7(1.8) −0.07(22)

0.06 206.22(61) 206.22(61) 0.003(60) 95.6(2.8) 95.5(2.7) 0.12(73)

TABLE VII. all,Wµ (conn.) and all,W2
µ (conn.) computed from the fit reconstruction without oscillating

states with the trapezoidal rule (columns two and five), Simpson’s rule (columns three and six)

and the correlated difference between them (columns four and seven).

≈ a all,Wµ, Simp.(conn.) all,Wµ, Trap.(conn.) ∆all,Wµ (conn.) all,W2
µ, Simp.(conn.) all,W2

µ, Trap.(conn.) ∆all,W2
µ (conn.)

0.15 210.62(79) 210.07(77) 0.55(26) 80.2(1.7) 79.5(1.7) 0.70(16)

0.12 207.34(59) 206.96(61) 0.373(49) 84.6(1.5) 84.9(1.5) 0.254(59)

0.09 206.56(55) 206.60(55) −0.039(12) 92.7(1.8) 92.7(1.8) −0.01(13)

0.06 206.22(61) 206.22(61) 0.0002(691) 95.5(2.7) 95.5(2.7) −0.0003(4285)

methods give nearly identical results because the oscillations are less pronounced and fewer
excited states contribute significantly.

In order to quantify the effects of the oscillations in all,Wµ (conn.) and all,W2
µ (conn.), we use

the fit approach, our preferred method of removing them, in Table VI, where we compare
results and correlated differences obtained using the trapezoidal rule (see Sec. III B) for the
raw correlation function data vs. Cno osc.(t). For all,Wµ (conn.), we find the differences to be
small but statistically significant on the coarsest two ensembles and statistically zero on
the finer ones. For all,W2

µ (conn.), we find the differences to be zero on all ensembles, which
is expected because the oscillating contributions are from heavier states which contribute
significantly less in the long time region.

Finally, we examine the truncation effects associated with the trapezoidal rule by compar-
ing aµ observables computed from it to results obtained with Simpson’s rule. Simpson’s rule
cannot be applied to the raw correlation function data because of the presence of oscillatory
contributions. Hence, the comparisons in Table VII employ the Cno osc.(t) correlation func-
tions. Here, the differences are within errors on all,Wµ (conn.) and all,W2

µ (conn.) and decrease

much faster than a2.
In summary, truncation effects from numerical integration and discretization effects due

to the oscillatory contributions are clearly well-controlled and small compared to other sys-
tematic effects. To make certain that any systematic error due to integration and removal
of oscillatory states is included, we include variations on both numerical integration and
removal of oscillatory contributions in our main analysis, as described in Sec. III E.
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Appendix B: Chiral-model expressions for the Euclidean-space vacuum polarization

function

In this appendix, we provide expressions for calculating lattice corrections to aHVP,LO
µ

(and windows thereof) within the chiral model of pions, photons, and ρ mesons denoted
“CM” in Sec. III and employed in our 2019 work [43].

We begin with Blum’s formulation of the O(α2) Standard-Model HVP contribution as
an integral over the Euclidean-space momentum transfer Q2 [30]

aHVP,LO
µ = 4α2

∫ ∞

0

dQ2KE

(
Q2
)
Π̂
(
Q2
)
, (B1)

where Π̂ (Q2) = Π (Q2) − Π(0) is the renormalized vacuum polarization function and the
integration kernel KE(Q

2) depends on the muon’s mass:

KE

(
Q2
)
=
m2

µQ
2Z3(1−Q2Z)

1 +m2
µ

, Z = −Q
2 − (Q4 + 4m2

µQ
2)1/2

2m2
µQ

2
. (B2)

In the chiral model [48, 86], the renormalized light-quark hadronic vacuum polarization
function is given by

Π̂
(
Q2
)
= −Σ̂

(
Q2
)
+

f̂ 2
ρ

2m̂2
ρ

q2
(
1 + gρgρππΣ̂ (Q2)

)2

Q2
(
1 + g2ρππΣ̂ (Q2)

)
+ m̂2

ρ

, (B3)

where Σ̂ (Q2) ≡ ReΣ (Q2)−Σ(0) is the renormalized photon self energy and m̂ρ (f̂ρ) are the
renormalized ρ-meson mass (decay constant). In the chiral model, the leading contribution
to Σ (Q2) arises from ππ loops, and is given by the integral

− Σ̂
(
Q2,ma,mb

)
≡ 4Q2

3

∫
d3k

(2π)32EaEb

k2

(Ea + Eb)
3 (Q2 + (Ea + Eb)

2) , (B4)

where ma,mb are the masses of the two pions in the loop. The renormalized ρ parameters
can be expressed in terms of the bare mass, ργ coupling, ρππ coupling, and Σ(0) as

m̂2
ρ ≡ m2

0ρ

(
1− g2ρππΣ(0)

)
(B5)

f̂ρ
m̂ρ

≡
√
2

gρ

(
1 + gρgρππΣ(0)−

1

2
g2ρππΣ(0)

)
. (B6)

We take the values of the bare parameters from Ref. [48]:

m0ρ = 0.766GeV gρ = 5.4 gρππ = 6.0. (B7)

In the chiral model, lattice effects are incorporated by modifying the pion self energy in
two ways. First, to account for the finite volume, the continuous momentum integrals in
Eq. (B4) are replaced by sums over the discrete lattice momenta, i.e.,

∫
d3k

(2π)3
→ 1

L3

∞∑

kx=−∞

∞∑

ky=−∞

∞∑

kz=−∞

(B8)
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where ki =
2π
L
ni, ni = 1, 2, . . .. Second, taste-breaking effects are incorporated by replacing

the renormalized photon self energy with an average over sea-pion tastes [43, 48]

Σ̂
(
Q2,mπ,mπ

)
→ 1

16

∑

ξa,ξb

Σ̂
(
Q2,mπ (ξa) ,mπ (ξb)

)
. (B9)

As stated in Sec. III C, for the analysis in this work we also include taste-breaking contri-
butions to Σ(0) via the replacement

Σ (0,mπ,mπ) →
1

16

∑

ξa,ξb

Σ (0,mπ (ξa) ,mπ (ξb)) . (B10)

Finally, the windowed HVP can be computed in the chiral model via [29]

Π̂
(
Q2
)
→ Π̂win.

(
Q2
)
=

∫ ∞

−∞

dP

2π

1

Q2

[
W̃(P −Q)− W̃(P )− Q2

2

d2W̃(P )

dP 2

]
P 2Π̂

(
P 2
)
, (B11)

where Π̂ is given by Eq. (B3) and W̃ is the Fourier transform of the window function defined
in Eq. (2.7).
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[7] C. Gnendiger, D. Stöckinger, and H. Stöckinger-Kim, Phys. Rev. D88, 053005 (2013).

[8] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, Eur. Phys. J. C 77, 827 (2017).

[9] A. Keshavarzi, D. Nomura, and T. Teubner, Phys. Rev. D 97, 114025 (2018).

[10] G. Colangelo, M. Hoferichter, and P. Stoffer, JHEP 02 (2019), 006.

[11] M. Hoferichter, B.-L. Hoid, and B. Kubis, JHEP 08 (2019), 137.

[12] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, Eur. Phys. J. C 80, 241 (2020), [Erratum:

Eur. Phys. J. C 80, 410 (2020)].

[13] A. Keshavarzi, D. Nomura, and T. Teubner, Phys. Rev. D 101, 014029 (2020).

[14] A. Kurz, T. Liu, P. Marquard, and M. Steinhauser, Phys. Lett. B 734, 144 (2014).

[15] K. Melnikov and A. Vainshtein, Phys. Rev. D70, 113006 (2004).

[16] P. Masjuan and P. Sánchez-Puertas, Phys. Rev. D95, 054026 (2017).

[17] G. Colangelo, M. Hoferichter, M. Procura, and P. Stoffer, JHEP 04 (2017), 161.

[18] M. Hoferichter, B.-L. Hoid, B. Kubis, S. Leupold, and S. P. Schneider, JHEP 10 (2018), 141.

[19] A. Gérardin, H. B. Meyer, and A. Nyffeler, Phys. Rev. D100, 034520 (2019).

[20] J. Bijnens, N. Hermansson-Truedsson, and A. Rodŕıguez-Sánchez, Phys. Lett. B798, 134994
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