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ABSTRACT

Causal graph, as an effective and powerful tool for causal modeling,
is usually assumed as a Directed Acyclic Graph (DAG). However,
recommender systems usually involve feedback loops, defined as
the cyclic process of recommending items, incorporating user feed-
back in model updates, and repeating the procedure. As a result,
it is important to incorporate loops into the causal graphs to ac-
curately model the dynamic and iterative data generation process
for recommender systems. However, feedback loops are not always
beneficial since over time they may encourage more and more nar-
rowed content exposure, which if left unattended, may results in
echo chambers. As a result, it is important to understand when the
recommendations will lead to echo chambers and how to mitigate
echo chambers without hurting the recommendation performance.

In this paper, we design a causal graph with loops to describe
the dynamic process of recommendation. We then take Markov
process to analyze the mathematical properties of echo chamber
such as the conditions that lead to echo chambers. Inspired by the
theoretical analysis, we propose a Dynamic Causal Collaborative
Filtering (9CCF) model, which estimates users’ post-intervention
preference on items based on back-door adjustment and mitigates
echo chamber with counterfactual reasoning. Multiple experiments
are conducted on real-world datasets and results show that our
framework can mitigate echo chambers better than other state-of-
the-art frameworks while achieving comparable recommendation
performance with the base recommendation models.
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1 INTRODUCTION

Recommender Systems (RS) aim to provide personalized services
for users, occupying an expanding role in a wide range of appli-
cations, such as e-commerce, video streaming, social media and
online job markets. Recent efforts have been made towards causal
recommendation, which incorporates causation into recommender
systems to enable causal inference over some critical aspects, such
as eliminating bias [5, 44], promoting fairness [14, 30, 59], improv-
ing robustness [28] and enhancing explainability [16, 48, 50].

Causal graph is an effective and powerful tool that enables re-
searchers to estimate desired values [17, 55]. Typically, the causal
graph is constructed as a directed acyclic graph (DAG) depicting
the data generation process. However, in real-word recommender
systems, the data generation process usually spans over a period of
time. Within this period, the recommendation results made by the
system can have a great impact over users’ interests and decision
preference, and in turn influence the feedback that the system re-
ceives. This dynamic process is called a feedback loop [15, 21], which
may not be accurately captured by a DAG causal graph. Therefore,
introducing loops into the causal graph design may allow causal
models to understand the dynamic data generation process in rec-
ommender systems more comprehensively.

While the causal graph with loops can better capture the dynamic
and iterative data generation process in recommender systems, the
presence of feedback loops is not always beneficial. Specifically,
feedback loops may narrow the user’s interest towards certain
contents, which may further lead to decreased engagement with
the system [7]. Additionally, feedback loops, if left unattended, may
also result in what is known as echo chambers [7, 15]. In general,
echo chambers describe the homogenization of social communities
[46] that occur as a result of feedback loops. This homogenization
isolates users in information echo chambers, severely limiting their
information exposure. The existence of echo chambers has been
validated on recommender systems with respect to e-commerce
[15], online media [1, 20, 34], and social networking [39, 45].

Take movie recommendation as an example to better understand
the consequences of echo chambers. Suppose a user has provided
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positive feedback towards action movies, and the system is able
to learn that the user would be highly possible to be interested in
action movies. If the system does not properly handle echo cham-
ber when making recommendations, it may repeatedly recommend
other action movies and will likely receive positive feedback in
the short term. However, over time the system will gradually con-
verge to only showing action movies and make the user dissatisfied
eventually. Given the ubiquity of recommender systems in our
daily-life, it is important to understand when a recommender sys-
tem results in echo chambers and how to mitigate echo chambers
while maintaining the recommendation performance.

In this paper, we particularly seek to answer the following three
questions regarding the task of mitigating echo chambers: 1) how
to design a causal graph with loops to describe the dynamic and
iterative data generation process of recommendation, 2) if a rec-
ommender system does not take care of echo chamber, when will
the system result in echo chamber, and 3) how to mitigate echo
chambers without hurting the recommendation performance.

Specifically, we first design a causal graph as a directed graph
with loops to describe how the data is generated in a dynamic
and iterative manner. Based on our constructed causal graph, we
conduct mathematical analysis to understand the conditions that a
system will result in echo chamber. Concretely, we represent the
dynamic recommendation process as a Markov Process. Then we
categorize user behavior into three types and check the existence
of homogeneity brought by echo chambers. The analysis confirms
the soundness of our proposed causal graph (Section 3.2).

In addition to the above theoretical contributions, our work also
provides essential technical contributions. We propose a Dynamic
Causal Collaborative Filtering (0CCF) framework for recommen-
dation to mitigate echo chambers. More specifically, we apply the
back-door adjustment to estimate the post-intervention effect based
on the unfolded causal graph. Inspired by our theoretical analysis,
we apply counterfactual reasoning to mitigate the echo chamber
effect while retaining the recommendation performance (Section 4).
We conduct experiments over two real-world datasets to evaluate
the effect of echo chambers by measuring the change of content
diversity [15]. The results confirm that our framework is capable
of mitigating echo chambers while obtaining comparable recom-
mendation performance with the base recommendation models.

The key contributions of our paper can be summarized as follows:

We design a causal graph with loops to represent the dynamic
data generation process of recommender systems.

We represent the user-system interaction as a Markov Process to
understand the conditions that lead a system to echo chambers
if the system does not properly handle echo chamber.

We propose Dynamic Causal Collaborative Filtering (0CCF), which
takes the back-door adjustment to estimate user preferences and
applies counterfactual reasoning to mitigate echo chambers.
Experiments on two real-world datasets show that our framework
can mitigate echo chambers better than other methods while
maintaining comparable recommendation performance with the
base recommendation models.

The remainder of this paper is organized as follows. We discuss
the related work in Section 2. In Section 3, we introduce our de-
signed causal graph and the theoretical analysis of echo chambers.
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We show the details of our proposed dynamic causal collaborative
filtering framework in Section 4. We describe our experiments on
real-world datasets and discuss the results in Section 5. Finally, in
Section 6, we conclude the work and discuss future directions.

2 RELATED WORK
2.1 Causal Recommendation

Causal machine learning have been explored to tackle some critical
problems in recommender systems. For example, researchers have
leveraged causal models to enhance explainability [16, 47, 48, 50, 62],
promote fairness [14, 29, 30, 59], eliminate bias [5, 31, 38, 44, 51,
56, 57, 64], improve robustness [13, 28], estimate the recommenda-
tion uplifts [41-43], and enable counterfactual reasoning for data
augmentation [52, 54, 58, 60]. Across the various causal recommen-
dation models, causal graph is shown to be a powerful tool that
enables counterfactual reasoning. Existing models usually assume
that causal graphs are directed acyclic graphs (DAG). However, the
data used to train recommender systems is generated in a continu-
ous and dynamic manner, which cannot be captured by a DAG as a
single snapshot. Therefore, a causal graph with loops is needed to
describe the dynamic recommendation scenario.

2.2 Echo Chambers

Echo chambers have been studied under several contexts such as
social networks [3, 9, 12, 39, 45] and opinion dynamics [4, 26, 36].
Meanwhile, the importance of content diversity has been explored
to address user polarization problems [2, 23, 27, 32, 34]. In recent
years, the study of feedback loops and echo chambers in recom-
mender systems has received a lot of attention [7, 15, 21, 33]. For
example, Ge et al. [15] analyzed the property of echo chambers in
e-commerce recommender systems. Existing works have demon-
strated preliminary progress toward addressing feedback loops and
mitigating echo chambers. For example, Jiang et al. [21] use the
dynamic system framework to model user interest and treat inter-
est extremes as a degeneracy point of the system. However, they
assume that users and items are independent of each other, which is
inconsistent with the principle of how collaborative filtering works.
Kalimeris et al. [22] study the similar phenomenon and solve it by
learning a stable fixed point, where user preferences do not change
in response to the system recommendations. However, this work
is limited to matrix factorization-based recommendation and does
not consider causality. Instead, our work aims to mitigate echo
chambers in a more general setting based on causal reasoning.

3 THEORETICAL ANALYSIS

In this section, we introduce our designed causal graph and the
theoretical analysis of under what conditions will recommender
systems result in echo chamber.

3.1 The Causal Graph

Figure 1(a) shows our designed causal graph for dynamic recom-
mendation. Existing works usually assume the causal graph as a
directed acyclic graph (DAG). However, as we mentioned before,
a causal graph with loops may better capture the mechanism in
recommender systems. We use uppercase letters (e.g., U) to denote
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random variables and lowercase letters (e.g., u) to denote the corre-
sponding specific values. We explain the rationality of our designed
causal graph from the view of data generation as follows:

e Node U represents the user variable. More specifically, we take
user ID as the variable values.

e Node V represents the exposed item variable. Similarly, we take
item ID as the variable values.

o Node Y represents preference score. In this work, for simplicity,
we consider variable Y as a binary variable, i.e., Y = 1 for like
and Y = 0 for dislike.

o Node X represents the user interaction history. More specifically,
it is a sequence of item IDs and the corresponding preference
scores from the user.

e Edges {U, X} — V denote that the exposed item V is determined
by user U and the user interaction history X.

e Edges {U,X,V,Y} — X denote the dynamic generation process
of the user interaction history X. When an exposed item V = v
is generated, user’s preference towards v as Y = y, combined
with the exposed item v will be integrated into the history and
update the previous history as a new history X, which is used
to estimate the next exposed item. These edges representing the
iterative and dynamic process construct the feedback loop in our
designed causal graph.

Edges {U,X,V} — Y denote that the user preference score is

determined by user U, user interaction history X and the exposed

item V. The preference of a user-item pair is not only determined
by the corresponding (u,v) pair but also affected by the previous
interaction history. Recall the example in Section 1, for a user
who is interested in action movies, it is highly likely to obtain

a positive feedback for an action movie in the beginning, but if

the user has already watched so many action movies, the user

may be tired of action movies and provide a negative feedback
towards a new one.

From the causal graph, we can see four loops X - X, X -V — X,
X —>Y > Xand X - V - Y — X. These loops represent
the dynamic and iterative updating process of the user interaction
history, embodying the feedback loop in recommender systems.

3.2 Understanding Echo Chambers

In this section, we will provide a theoretical analysis of echo cham-
bers in recommender systems to understand under what condi-
tion the system will lead to echo chambers if the system does not
properly handle echo chambers. The following analysis targets
recommendation models that do not consider echo chambers.

3.2.1 Problem Setting and Notations. Generally speaking, rec-
ommender systems, especially Collaborative Filtering (CF) based
models, explicitly or implicitly learn the similarity between items
for recommendation [10, 61, 62]. For example, Matrix Factorization
(MF) models such as [24] predict uTv for recommendation, where
u and v are the user and item latent factors, and such models learn
the similarity between items that are projected by user latent factor
u (i.e., for a certain user u, if uTvy is similar to uTvy, then v; is
similar to vz in terms of user u). Since the recommendation models
are able to measure the similarity, models are capable of grouping
items based on the corresponding similarity measurement. Suppose
there are n items and d groups (n > d), we denote the set of items
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(a) Designed Causal Graph

(b) Unfolded Causal Graph

Figure 1: In the causal graph, U is user, V is the exposed item,
X is user interaction history, and Y is preference score. (a)
is our designed causal graph, more details are introduced in
Section 3.1. (b) is the temporal unfolded causal graph, which
guides the design of the proposed framework. We reorga-
nize causal graph using U as exogenous variable to make it
clearer. More details are introduced in Section 4.

as I = {i1, iz, -+, in} and the set of groups as C = {c1, ¢z, - -, ¢4}
We denote the grouping function as A : 7 — C, which returns a
group for each item based on similarity.

If the system does not consider echo chambers carefully, then
similarity-driven recommendation tends to recommend items that
are similar to previously interacted items, i.e., they may belong to
the same group as the items in the user’s interaction history [23,
27, 33]. This tendency stems from the principle of CF-based models
that users have similar tastes in the past are likely to have similar
interests in the future [10]. For example, a simple MF model such as
[24] recommends items with higher preference which is calculated
as uTv. A well-trained MF model produces high preference scores
on items within the interaction history, thus the recommended
items with high preference scores would be similar to one or more
items within the interaction history since they are both similar to
the user embedding u. Since the grouping is based on the similarity
learned by the model, a recommended item will belong to the same
group with its similar items in the interaction history.

We denote the capacity of items in the interaction history as m
(echo chambers occur in the repetitive behaviors [15] thus the cold-
start scenarios are not within the scope of our discussion). It is worth
clarifying that m can be infinity, but in practice, the items interacted
a long time ago may have little influence on current predictions.
We represent the history as a sequence of items {hy, hg, - -, hm},
where h; € I (if the number of valid items 1 in the history is
less than m, then the first m — m items would be empty). When a
new item is interacted and added to the user history, the first item
would be removed from the history to keep the history at length m.
Applying the grouping function A to the item sequence, we obtain
a historical group sequence {A(h1), A(h2),- -, A(hm)}, A(hi) € C,
which can be simplified as {A1, Ay, - -+, Am}, Ai € C. Since there
are d groups in total, there are d™ possible historical group se-
quences. When the user interacts with a new item, both the item
sequence and the historical group sequence will be updated. Since
the recommendation models that do not consider echo chambers



CIKM 22, October 17-21, 2022, Atlanta, GA, USA

tend to recommend items that are similar with historical items (i.e.,
most likely belong to the same group), the group of the new item
only depends on the current historical group sequence. Therefore,
we can formulate this iterative process as a Markov chain.

We consider the states in the Markov chain as historical group
sequences, therefore, there are d"" different states. The transition
probabilities are determined by the policy of interacting with new
items. To analyze the occurrence of echo chambers for different
users, we categorize user behavior into the following three types.

(1) Users only interact with recommended items.

(2) Users completely ignore the recommendations.

(3) Users interact with both recommended and not recommended
items.

We will separately analyze the above three categories from the
perspective of echo chambers.

3.22 Type 1. When users only interact with recommended items,
the transition probability is fully determined by the recommenda-
tion model. As we mentioned before, recommendation models that
do not consider echo chambers tend to recommend items belong-
ing to the same group as historical items. We can define a general
one-step transition probability as follows:

P{AL - ALY HAL - L Am))
[A,, € {Ay, - -

={O

where [P] represents the Iverson bracket, which maps a statement
into a binary value (i.e., takes value 1 if the statement P is True and 0
otherwise) and P4 is the probability that the recommended items
belong to group A/,. Based on the one-step transition probability
defined as Eq.(1), we are able to discover some special states. If
A=Ay =---= Ay, we have

PH{AL, - ALY{AL - Am})
1 ifA]=A) = = A}, = A

={0

We call these special states absorbing states; once users enter these
states, they can no longer exit.

AmM Py A=A, j=1-m-1 (1)

otherwise

@)

otherwise.

DEFINITION 1. [49] (Absorbing Markov Chains) A Markov chain
is an absorbing Markov chain if:

(a) there is at least one absorbing state and
(b) it is possible to go from any state to at least one absorbing state
in a finite number of steps.

Based on the transition probabilities shown in Eq.(2), there are
d absorbing states in total. Meanwhile, based on Eq.(1), we can
derive that P({Af,--- Al {A1,--- ,Am}) > 0if Ay, = Am,A;. =
Aj1,j =1,--+,m—1.Therefore, it is possible to go from any states
to an absorbing state in m steps. According to Definition 1, we can
claim that in this setting, we have an absorbing Markov chain.

As an absorbing Markov chain with d absorbing states, the tran-
sition matrix P can be transformed into a block matrix, producing
the following k-step transition matrix when k — oo [49]:

_ 19 ok o d-0)7'R
P—[o = lim P —[0 I, ]

k—o0

I 3
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In summary, if a user keeps interacting with the recommended
items, the interacted items will eventually belong to the same group
and will not include other groups any more. This is how echo
chambers lead to homogeneity and polarization.

3.2.3 Type 2. If users completely ignore the recommendation
model, then each group has a nonzero probability to be interacted.
We can define the one-step transition probability as follows:

P({A;,.-. ’A;n}|{A1a"' JAm))
:{P;Vm ifA; =Aj,j=1,---,m—-1
0

where P;l’ is the probability that user chooses to interact with the

4)

else

item in the A;, group without the influence of recommendation.
Based on the one-step transition probability shown in Eq.(4), we
can calculate the k-step transition matrix. Since P’,, is a nonzero
value for any group, there is no absorbing state, which means that
the interaction history will not fall into the same group and re-
main unchanged. We take uniform distribution as a simple example
(i.e., P, = 1/d), in this case, we can obtain the following k-step
transition matrix if k is large enough:
k 1
P= [d_m]d'"xdm ®
For users in this type, users will avoid the drawbacks brought
by echo chambers as long as each group has a nonzero probability
to be interacted. However, considering the extremely large scale of
items in practice, completely ignoring the recommendations will
lose the benefits offered by personalized recommender systems.

, ifk >logm+1

3.2.4 Type 3. For the last type of users, we denote probability
p € (0,1) as following recommendation models and probability
1 - p as not following recommendation models. We can then define
the one-step transition probability as follows:

P({AL -+ AR{AL -+ Am})

_{A;TLP*'P,;n(l—P) ifAl=Ajp1,j=1---,m—-1 (6)
0

else

where Pi:,m = [A}, € {A1,- -+, Am}] Py, represents the probability
of the recommended items belonging to group A}, as Eq.(1), and
PA, is the probability that user chooses to interact with the item

in the A, group without the influence of recommendation.

Notice that the Markov chain is irreducible. In other words, it is
possible to result in any state from an arbitrary starting state after m
steps, because P({A”,--- , A }{A1,--- ,Am}) > O,VA], € C,A;. =
Aj+1,j=1,---,m—1.Since every state is accessible from any other
state, In Type 3, the effect of echo chambers could be alleviated
to some extent. When p is close to 1, the effect of echo chamber
would be increased. When p is close to 0, the effect of echo chamber
would be mitigated, but it also loses the benefits of personalized
recommendation. In other words, if probability p is properly chosen,
users will not only benefit from the recommendation results but
also avoid homogeneity brought by echo chambers.

Given the evidence of echo chambers in some existing works
[7, 15], the above analysis based on our designed causal graph
confirms the rationality of the causal graph. Based on our analysis, if
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Symbol Definition
t The timestamp
U,u User variable and corresponding specific values
Vi, vs The variable denotes exposed item at time ¢ and the
corresponding specific values
Xi,x;  The variable denotes user history at time ¢ and the
corresponding specific values
Y;,y;  The variable denotes the preference score at time ¢
and the corresponding specific values
xi The observed user history at time ¢ in real world
x; The counterfactual user history at time ¢ which is
unobserved in real world
oy The observed exposed item at time ¢ in real world
M The counterfactual exposed item at time ¢ which is
unobserved in real world
y; The observed preference score at time ¢ in real world
y; The counterfactual preference score at time ¢ which

is unobserved in real world

Table 1: Notations

the recommender system does not consider echo chambers, whether
recommendation will lead to echo chamber is determined by user
behavior. If the user actively explores the items of interest instead
of only passively interacting with recommended items, the user
may not be affected by echo chambers. If the user only passively
interacting with the recommended items and the recommendation
models do not consider echo chambers, then the user is likely to be
affected by echo chambers.

In real-world applications, we cannot control the user behaviors.
Therefore, mitigating echo chambers from the perspective of model
design will play a significant role for all kinds of users. The most
straightforward way to mitigate echo chamber is to use a random
recommendation policy. However, this is against the ultimate goal of
recommendation, which is to accurately capture user preference and
recommend items that user may like. As a result, it is impractical to
give up the recommendation accuracy for the pursuit of mitigating
echo chambers. Therefore, it is essential to mitigate echo chambers
while maintaining the recommendation performance. In the next
section, we will introduce our proposed framework for mitigating
echo chambers.

4 METHODOLOGY

In this section, we will introduce our Dynamic Causal Collaborative
Filtering (9CCF) framework in detail. The primary notations used
throughout this section are detailed in Table 1.

4.1 Preference Score Estimation

Our causal graph in Figure 1, with corresponding explanations in
Section 3.1, describes a dynamic data generation process in recom-
mendation. Therefore, the proposed causal graph with loops can
be temporally unfolded. We capture a clip at time ¢ and time ¢ — 1
shown in Figure 1(b). The unfolded causal graph represents the
same data generation process as Figure 1(a) and it helps to mitigate
echo chambers in each step.

In this paper, we establish a counterfactual query similar to
existing causal recommendation models [51, 52, 54], i.e., what would
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have happened if an item had been recommended, which can be
mathematically represented as P(y|u, do(v)) [55]. In our case, we
temporally unfold the causal graph and estimate the causal effect
at each timestamp. Specifically, the desired estimation would be
P(yt|u, do(v;)) at time t. When we unfold the designed causal graph
and capture a snapshot at time t as in Figure 1(b), we can apply
the back-door adjustment to estimate the post-intervention effect
based on the observational data. Since the variable set {U, X;}
satisfies the back-door criterion for estimating P(y;|u, do(v;)) (i.e.,
variable U blocks the back-door path Y; «— U — V; and variable X;
blocks the back-door path Y; « X; — V;), we are able to calculate
P(y¢|u,do(v;)) as follows.

P(yelu do(or) = ) P(yelu,or, x0) P(xe|u)

Xt

(7)

From Eq.(7), the key difference between our causal model and
the traditional associative models is the existence of conditional
probability P(x;|u). In the real world, we denote the conditional
probability P(x|u) = 1for an observed user history x; at time ¢ and
P(x{|u) = 0 for an unobserved user history x; at time t. However,
observing user history x; does not imply that the user is destined to
interact with items in x} at time ¢. Considering the counterfactual
world, if a user had a chance to be recommended different items,
they may also interact with those different items, thus P(x/|u) is
not necessarily to be zero. As a result, calculating Eq.(7) requires
counterfactual reasoning beyond the observational data in the real
world [55]. In the following, we will introduce how we can leverage
counterfactual reasoning to estimate the preference score.

4.2 Counterfactual Reasoning

In our framework, the purpose of counterfactual reasoning is not
only to enable the calculation of Eq.(7) but also to break the feedback
loop in Figure 1 to mitigate echo chambers. As we mentioned before,
the user may have a chance to interact with different items that
belong to the unobserved history x, at time t. Considering a record
(u,vr, yr) at time ¢ in the observational data, the user preference
estimation y; = f;(u,v) can be expressed in the following equations
according to Eq.(7).

Yyt = fr(u,0) « P(ys|u,do(vy))
= " P(yelu, 01, %) P(Felu) = Eg, 1 [P(ye w0, %)) ()

Here we use X; to represent possible user histories, including
the factual history x} and counterfactual histories x;. Based on
Eq.(8), the estimation for P(y;|u, do(v;)) is the expected estimation
of P(y¢|u, vs, X¢).

4.2.1 Generate Counterfactual Histories. We will use the gen-
erated counterfactual histories to calculate Eq.(8) and mitigate echo
chambers. In particular, we design a heuristic-based approach for
counterfactual history generation.

First, we take a look at an example of how the historical sequence
is generated in the feedback loop. Consider an observed status
(u,xj_,) for user u at time t — 1. Based on the observed history
x,_;, the system may recommend item o_, . If the user u passively
accepts the recommended item v;‘_l and likes it, then U;‘_l and
y;_; = 1 would be a part of history x} at time ¢. Based on our
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analysis in Section 3.2, such users will be affected by echo chambers
if the recommendation model does not consider echo chamber.
We cannot force users to actively explore different items in real-
world recommender systems. Instead, we let users actively explore
different items in the counterfactual world. Following the principle
of minimal changes in counterfactual reasoning [47, 48, 52, 55],
we replace the observed interaction at time ¢t — 1 to generate the
counterfactual histories at time ¢:

©)

Intuitively, this represents two possible situations: 1) the user still

interacts with the recommended item o}_, but has a different pref-
erence y,_, (ie,y;_; = 0if y;_; = 1); 2) the user ignores item v;_,
and interacts with a different item v;_, and likes it (ie., y;_; = 1).
To mitigate echo chambers, the user should interact with an item
which is not similar with the recommended item v;‘_l. We select
counterfactual item o], with least similarity to the recommended
item vy_, to maximally mitigate echo chambers.

’ * ’ ’
Xt < XYY

o;_, = arg min Similarity(v,v;_;) (10)
0

Here the similarity is calculated by the dot product between

the embedding of the two items. It is worth mentioning that the

counterfactual item v;_; is not a real interaction nor an item to be

recommended in reality.

4.2.2 Calculate the Expectation. Assume that we have gener-

ated n counterfactual histories {x;(l), e ,x;(m} for user u at time
t. Then, we can calculate P(y;|u, do(v;)) based on the factual his-
tory x; and the counterfactual histories {x;(l)}?zl according to
Eq.(8). For simplicity, we consider P(X;|u) as a piece-wise uniform
distribution over the factual and counterfactual histories, i.e.,

a, when X; = x;

. ,a+np=1 (11
B, When)?zx;(l),ie{l,z-wn} p ()

P(X¢lu) = {
where «a is the probability of the factual example x}, and f is the

probability of each counterfactual example x; @ Since xj is already
7(i)

observed, we apply a higher probability to x; than x,"”, i.e., @ >
B > 0. Then we have:
P(yelu,do(vr)) = ), P(yelu, or, %) P( )
X,
' (12)

n
=a Py(yelu, v, x7) + p Z Py(y:|u, U,,x;(l))
i=1

We use P, to represent the probability estimation of the base rec-
ommendation algorithm.

As we mentioned in Section 4.2.1, the counterfactual histories
intuitively represent the possible historical records if a user ignores
the recommended items. Additionally, if we treat the factual history
as a result of following recommender systems, the probability « in
Eq.(12) can be considered as sharing the same meaning with proba-
bility p in Eq.(6). As we mentioned in Section 3.2, if the probability
p is properly chosen, users will benefit from personalized recom-
mendation while avoiding homogeneity brought by echo chambers.
We will explore the effect of probability « in Section 5.7.
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Table 2: The Statistic of the Datasets

Dataset Phase #Users #Items # Interactions
All 6,040 3,706 1,000,209

Movielens-1m Phasel 1,611 3,322 226,543
Phase2 2,878 3,505 382,025

Phase3 2,738 3,627 391,641

All 33,602 16,448 788,143

Electronics Phasel 8,495 3,679 39,489
Phase2 29,798 13,820 377,460

Phase3 31,193 15,162 371,194

5 EXPERIMENTS

In this section, we will first describe the evaluation metrics, datasets,
baselines and implementation details and then provide our results
and discussion.

5.1 Evaluation of Echo Chamber Effects

Echo chambers will result in homogeneity and polarization, hence
over time the system will narrow the user exposure towards some
specific content. Therefore, similar to [15], we evaluate the effect
of echo chambers by measuring the changes of content diversity.
According to [15, 23], we use the average of the pairwise distance
(i.e., Euclidean distance between item embeddings) to measure the
content diversity, and use the temporal changes of content diversity
to measure the echo chamber effect of the recommender systems.

5.2 Dataset Description

Our experiments are conducted on two real-world datasets from
Amazon' [35] and Movielens® [18]. More specifically, we use Elec-
tronics category from Amazon and Movielen-1m from Movielens.

In order to measure the effect of echo chambers by the temporal
change of content diversity, we use two timestamps to chronolog-
ically split the data into three phases. The Movielens-1m dataset
contains the data in 2000, so we split the data at July 31th, 2000
and November 20th, 2000. The Electronics dataset contains data
spanning May 1996 to October 2018. We use December 31th, 2010
and June 30th, 2015 as two timestamps. The statistics of the datasets
are summarized in Table 2.

For all datasets, following prior works, we consider ratings > 4
as positive feedback (likes) and ratings < 3 as negative feedback
(dislikes). Meanwhile, for all three phases in two datasets, we apply
leave-one-out to split training, validation and test data [63].

5.3 Baseline Models

We also employ other six frameworks for comparison, including
one re-ranking framework and five causal learning frameworks.
MMR [6] is a re-ranking model for information retrieval which
tries to maximize the relevance and novelty in finally retrieved
top-ranked items. IPS [44] is an Inverse Propensity Scoring-based
model, which uses a propensity estimator to re-weight the training
samples to eliminate popularity bias. More specifically, we apply
the clipped propensity score as [40] to reduce the variance of IPS.
CausE [5] creates two sets of embeddings for unbiased and biased

!https://nijianmo.github.io/amazon/
Zhttps://grouplens.org/datasets/movielens/
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Movielens 1m Electronics
Methods

Phase2 Phase3 Echo Chambers Phase2 Phase3 Echo Chambers

n@10 H@10 un@10 uH@10 n@10 H@10 un@10 uH@10 A12 A13 ‘ n@10 H@10 un@10 uH@10 n@10 H@10 un@10 uH@10 A12 A13

Original | 0.5293 0.7797 0.1939 0.3073 0.5072 0.7482 0.1848 0.2929 0.996 1.174 | 0.2726 0.4567 0.0816 0.1294 0.3206 0.5400 0.0942 0.1494 6.270  7.205

MMR | 0.5267 0.7747 0.1925 0.3052 0.5102 0.7467 0.1900 0.3012 0.971 1.179 | 0.2614 0.4374 0.0820 0.1274 0.3156 0.5304 0.0939 0.1495 6.138 7.178

IPS 0.5233 0.7640 0.1919 0.3041 0.5001 0.7452 0.1786 0.2831 0.956 1.079 | 0.2678 0.4582 0.0788 0.1290 0.3183 0.5376 0.0909 0.1483 6.783 7.275
GRU4Rec | CausE [0.5310 0.7836 0.1954 0.3107 0.5058 0.7546 0.1837 0.2952 1.244 1.352 |0.2764 0.4617 0.0829 0.1315 0.3123 0.5339 0.0891 0.1412 6.395 7.154
CCF |0.5327 0.7807 0.1972 0.3098 0.5091 0.7527 0.1865 0.2937 1.262 1.342 | 0.2838 0.4708 0.0846 0.1367 0.3276 0.5427 0.0952 0.1490 6.832 7.421

DICE [0.5372 0.7882 0.1986 0.3148 0.5026 0.7410 0.1822 0.2887 1.244 1.349 |0.2862 0.4727 0.0885 0.1402 0.3178 0.5320 0.0943 0.1495 7.052 7.630

MACR |0.5360 0.7815 0.2009 0.3184 0.5067 0.7441 0.1834 0.2906 1.167 1.255 0.2699 0.4511 0.0808 0.1280 0.3200 0.5377 0.0947 0.1500 6.163 7.218

dCCF | 0.5268 0.7772 0.1817 0.3081 0.4999 0.7494 0.1848 0.2912 0.743 0.979 |0.2761 0.4615 0.0826 0.1308 0.3227 0.5351 0.0903 0.1475 5.388 7.199

Original | 0.5002 0.7401 0.1813 0.2873 0.4776 0.7214 0.1681 0.2665 2.120 2.244 | 0.2839 0.4687 0.0878 0.1391 0.3065 0.5206 0.0882 0.1398 3.910 4.152

MMR | 0.4845 0.7216 0.1784 0.2827 0.4667 0.6962 0.1705 0.2703 2.118 2.240 | 0.2788 0.4594 0.0883 0.1399 0.3025 0.5138 0.0873 0.1383 3.923 4.133

IPS 0.4920 0.7401 0.1743 0.2763 0.4761 0.7199 0.1679 0.2661 1.779 1.882 [0.2908 0.4764 0.0903 0.1431 0.3258 0.5483 0.0952 0.1508 3.933 4.318

STAMP | CausE | 0.4999 0.7483 0.1847 0.2885 0.4816 0.7267 0.1667 0.2705 2.116 2.231 | 0.2828 0.4754 0.0878 0.1458 0.3172 0.5402 0.0928 0.1411 3.934 4.237
CCF |0.5037 0.7412 0.1802 0.2867 0.4815 0.7260 0.1683 0.2691 2.112 2.249 |0.2926 0.4795 0.0901 0.1428 0.3247 0.5440 0.0963 0.1527 3.933  4.254

DICE [0.5080 0.7612 0.1879 0.3011 0.4868 0.7295 0.1742 0.2801 2.187 2.295 | 0.2818 0.4618 0.0865 0.1343 0.2909 0.5024 0.0802 0.1272 3.918  4.205

MACR |0.5023 0.7462 0.1858 0.2945 0.4746 0.7158 0.1710 0.2710 2.082 2.203 |0.2912 0.4766 0.0910 0.1442 0.3082 0.5239 0.0881 0.1396 3.903 4.177

OCCF | 0.4962 0.7444 0.1803 0.2842 0.4720 0.7192 0.1658 0.2627 2.111 2.242 |0.2849 0.4756 0.0891 0.1349 0.3189 0.5409 0.0929 0.1472 3.901 4.132

Original | 0.4853 0.7579 0.1597 0.2531 0.4725 0.7331 0.1572 0.2492 1.028 1.074 | 0.2522 0.4287 0.0722 0.1145 0.2737 0.4739 0.0750 0.1189 4.705  5.002

MMR | 0.4853 0.7579 0.1633 0.2588 0.4560 0.7218 0.1470 0.2329 0.953 1.027 |0.2549 0.4363 0.0723 0.1145 0.2720 0.4734 0.0749 0.1187 4.676 4.918

IPS 0.4833 0.7622 0.1561 0.2474 0.4626 0.7410 0.1427 0.2262 1.003 1.077 |0.2596 0.4345 0.0773 0.1237 0.2845 0.4887 0.0796 0.1261 4.600 4.920

NCR CausE [0.4959 0.7676 0.1637 0.2613 0.4794 0.7369 0.1685 0.2533 1.059 1.105 [0.2562 0.4327 0.0766 0.1217 0.2780 0.4859 0.0774 0.1241 4.595 4.937
CCF 0.4824 0.7533 0.1603 0.2497 0.4751 0.7403 0.1598 0.2478 1.015 1.087 | 0.2521 0.4306 0.0754 0.1227 0.2853 0.4929 0.0792 0.1255 4.486 4.993

DICE [0.4868 0.7526 0.1579 0.2501 0.4714 0.7275 0.1537 0.2473 1.032 1.050 |0.2590 0.4346 0.0769 0.1235 0.2754 0.4791 0.0759 0.1174 4.650 4.925

MACR [0.4936 0.7615 0.1640 0.2599 0.4746 0.7233 0.1631 0.2586 1.043 1.060 |0.2592 0.4342 0.0775 0.1228 0.2757 0.4798 0.0753 0.1193 4.488 4.965

dCCF |0.4941 0.7547 0.1590 0.2724 0.4659 0.7162 0.1603 0.2541 0.936 0.985 |0.2614 0.4362 0.0784 0.1242 0.2781 0.4762 0.0787 0.1248 4.323 4.841

Table 3: Overall performance of applying our framework on three recommendation models. The recommendation perfor-
mance is evaluated as a ranking task. n, H, un, uH represent nDCG, Hit, u_nDCG and u_Hit respectively. The effect of echo
chambers is measured by change of content diversity (the lower the better). We calculate the content diversity at each phase
and report the change of content diversity. We use Aij to denote the change of content diversity between phase i and phase ;.
The improved performance is bold and the best is underlined.

data separately and regularization is applied to force the two sets
of embeddings similar. CCF [55] is a causal collaborative filtering
framework which uses counterfactual histories and applies coun-
terfactual constraints to estimate causal preference. DICE [64] is a
framework for popularity bias problem, which disentangles user
interest and conformity into two sets of embeddings. MACR [53]
is a model-agnostic framework for alleviating popularity bias is-
sue in recommender systems, which performs multi-task training
according to causal graph to assess the contribution of different
causes on the ranking score. Finally, we use dCCF to denote our
dynamic causal collaborative filtering framework.

We apply all above frameworks on three recommendation mod-

els, including two sequential models and a reasoning model. GRU4Rec

[19] is a session-based recommendation model, which uses recur-
rent neural networks—in particular, Gated Recurrent Units (GRU)—
to capture sequential patterns. STAMP [37] is the Short-Term At-
tention/Memory Priority model, which takes attention mechanism
to model both short-term and long-term user preferences. NCR
[8] is the Neural Collaborative Reasoning model, which employs
neural logic reasoning for recommendation in a logical space.

5.4 Implementation Details

For recommendation performance, we evaluate models as a top-K
recommendation task. For each user in the validation and test set,
we randomly sample 100 negative items for ranking evaluation,
where the negative items are either negative feedback items (i.e.,
items that user dislikes) or non-interacted items. The models are
evaluated on four metrics, two are nDCG@10 and Hit@10 metrics
calculated by ranking on sampled testing data, and the other two
are nDCG@10 and Hit@10 metrics calculated by corrected rank

as [25] to get an unbiased evaluation (denote as u_nDCG@10 and
u_Hit@10). For performance of mitigating echo chambers, we eval-
uate the change of content diversity (i.e., introduced in Section 5.1)
based on the list of recommendations with length 10.

For the hyper-parameters, we take the embedding dimension as
64, the structure of neural networks is a two-layer MLP with dimen-
sion 64. We set the learning rate to 0.001 and the #-regularization
weight to 1e-6. For all base models, we set the maximum length
of history as 10. For our framework, we generate 9 counterfactual
histories for each positive user-item pair (i.e., n in Eq.(12)) and set
the factual probability « as 0.3. We will discuss the influence of
these two parameters in Section 5.7. We report the performance of
each model with the best performance on validation data based on
nDCG@10. For all base models, We first train the base model on
phase 1 data to make sure the content diversity at phase 1 is con-
sistent before and after applying the frameworks. Then, on phase
2 and phase 3 data, we separately train the base model with and
without frameworks to measure the changes of content diversity.

5.5 Results and Discussions

In Table 3, we present the overall performance of applying our
framework and baseline frameworks on three base recommenda-
tion models over two datasets, including recommendation perfor-
mance (nDCG@10, Hit@10, u_nDCG@10 and u_Hit@10) and echo
chambers evaluation (the changes of content diversity).

From Table 3, we can observe that the effects of echo chambers
have been mitigated (i.e., the change of content diversity has been re-
duced) after applying our dCCF framework for all three base models
over two datasets. Averaging the change of content diversity across
all three base models over two phases of both datasets, the change
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of content diversity has been reduced by 7.2%. The largest improve-
ment 25.4% is obtained at phase 2 of the Movielens-1m dataset after
applying on GRU4Rec. For the recommendation performance, we
can observe that applying our framework over the base models will
not hurt the recommendation performance. We can achieve compa-
rable recommendation performance after applying our framework.
When averaging across all recommendation metrics on all datasets
and base models, our dCCF framework achieves 1% improvement
on recommendation performance. The largest improvement is 8.6%
onu_nDCG@10 of NCR at phase2 of the Electronics dataset. There-
fore, our framework is capable of mitigating the echo chambers
without sacrificing much recommendation performance.

The baseline frameworks include five causal learning frame-
works (i.e., IPS, CausE, CCF, DICE, MACR) and one re-ranking
framework (i.e., MMR). For the five causal learning frameworks,
the goals of these causal learning frameworks are improving recom-
mendation performance. Therefore, the best recommendation per-
formance (i.e., the underlined values on recommendation metrics in
Table 3) are usually obtained by those causal learning frameworks.
Although these causal learning baseline frameworks can be helpful
in mitigating echo chambers in some cases, the best performance
on mitigating echo chambers is provided by our dCCF framework
in most cases. Among the 2 (datasets) X 2 (phases) X 3 (base models)
= 12 cases, the dCCF framework achieves 9 best performance on
mitigating echo chambers. For the re-ranking framework MMR, it
tries to maximize both the relevance and the novelty, which is an
accuracy-diversity trade-off. According to Table 3, our CCF frame-
work achieves better performance of mitigating echo chambers
(i.e., achieves 9/12 best performance on mitigating echo chambers).
Comparing the recommendation performance with the base model,
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MMR decreases the recommendation performance by 1% when av-
eraging across all recommendation metrics on all datasets and base
models. Compared with MMR, dCCF can incorporate counterfactual
reasoning to avoid hurting the recommendation performance.

In summary, our framework gets better performance than other
baseline frameworks on mitigating echo chambers without sacrific-
ing the recommendation performance in most cases.

5.6 User Satisfaction

One consequence of echo chambers is gradually hurting user’s sat-
isfaction. Following [11], we evaluate models with the cumulative
satisfaction to show the performance of mitigating echo chambers.
Specifically, user satisfaction is defined as:

If no echo chambers
Else

Interest

Satisfaction = (13)
It is required to obtain the interest of all possible user-item interac-
tions, which cannot be satisfied by Movielens-1m and Electronics.
Therefore, we use KuaiRec? dataest, which is a real-world dataset
that contains a fully observed user-item interaction matrix (i.e.,
each user has feedback on each video). We define the interest of
a user-item interaction as the video watching ratio which is the
ratio of watching time length to the total video length. During the
training, we consider watching ratio > 2.0 as positive feedback
(like) and watching ratio < 2.0 as negative feedback (dislike) as
noted by authors. Following the exit mechanism designed by [11],
the interaction process ends if the user feels bored. Specifically, for
the most recent N recommended items, if at least Ny items in the

3https://chongminggao.github.io/KuaiRec/
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|  GRU4Rec STAMP NCR
| CS Lem CS Len CS  Len
Original | 1333 26 2987 46 2519 49
IPS 2159 40 1827 35 1412 34
CausE | 1.857 32 2734 42 2459 47
CCF 2577 43 3152 38 2534 49
DICE 1994 36 2859 44 2830 52
MACR | 2960 38 303 52 3107 37
OCCF | 3597 54 3219 58 2998 57

Table 4: The average cumulative satisfaction and interaction
length on KuaiRec dataset. CS represents cumulative satis-
faction and Len represents interaction length. The best per-
formance is highlighted.

N items share at least one attribute with the current recommended
item, then the interaction process ends. Same as [11], we set N as 1
and Ny as 1, and apply softmax sampling to generate the recom-
mendation, then add the recommended item to users’ history for
the next round recommendation. We report the average cumula-
tive satisfactions and the interaction length in Table 4. The MMR
framework is not included because the framework is a re-ranking
framework, which has the same prediction results as the original
model when recommending one item in each round.

From the results in Table 4, we can observe that the dCCF frame-
work achieves the best performance on cumulative satisfaction and
interaction length in most cases. Without considering the echo
chambers, the model may have higher satisfaction in a single round.
However, such recommendation will narrow down to certain con-
tents leading to echo chambers, which in turn makes users feel
bored and quit. In this case, it may actually hurt users’ satisfaction
in the long run. Instead, the dCCF framework may help users to
explore different content to mitigate echo chambers, which may
not achieve the best satisfaction in a single round but will obtain
higher user satisfaction in the long run.

5.7 Sensitivity Analysis

In this section, we will discuss the influence of the two important
parameters in our framework from the perspective of recommenda-
tion performance and mitigating echo chambers. One is the number
of counterfactual histories (i.e., n in Eq.(12)). The other is the value
of factual probability (i.e., « in Eq.(12)).

5.7.1 The number of counterfactual histories. Intuitively, in
our model, each counterfactual history represents a possible result
of the user actively exploring different items in the counterfactual
world. We change the number of counterfactual histories while
keeping other parameters fixed. The results are in Figure 2, includ-
ing recommendation performance and the effect of echo chambers.

For the recommendation performance (i.e., (a) and (c) in Figure
2), we can observe that when the number of counterfactual histo-
ries is small (larger than 0), the recommendation performance is
better than the base model in most cases, which means that proper
counterfactual reasoning will make recommendation models better
capture users’ preference thus improve recommendation perfor-
mance. However, when the number of counterfactual histories is
too large, given that the factual probability is fixed, the probability
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of each counterfactual history (i.e., § in Eq.(11)) is small. In this
case, too many counterfactual histories may introduce too much
noise into the recommendation models and thus hurt the recom-
mendation performance. For the performance on mitigating echo
chambers (i.e., (b) and (d) in Figure 2), we can observe that introduc-
ing counterfactual histories is helpful in mitigating echo chambers
in most cases. However, when the number of counterfactual histo-
ries is too large, the items in counterfactual histories may not be
well trained because the probability of each counterfactual history
is too small, which will lead to worse performance on mitigating
echo chambers. A proper number of counterfactual histories is re-
quired to mitigate the echo chambers without compromising the
recommendation performance.

5.7.2 The value of factual probability. The value of factual
probability determines the distribution over factual and counter-
factual histories. A larger value of factual probability represents
more weights over the factual history. We tune the value of fac-
tual probability « while keeping the other parameters fixed. We
plot the recommendation performance as well as the effect of echo
chambers in Figure 3. We can see that when the value is too small,
the counterfactual histories will dominate the predictions, and thus
may mislead the recommendation, but the framework still can mit-
igate the echo chambers in most cases. When the value is close
to 1, the factual histories will dominate the predictions, thus the
recommendation performance and the performance on mitigating
echo chambers are closer to the base models.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we show that DAG causal graphs cannot fully de-
scribe the dynamic data-generation process. As a result, we design
a directed cyclic causal graph to represent the dynamic nature of
recommender systems. Besides, the dynamic process may result
in unwanted effects such as echo chambers. To theoretically un-
derstand echo chambers, we represent user-system interaction as
a Markov Process and group users into three categories based on
users’ behaviors. Mathematically, for each group of users, we an-
alyze whether the recommendation will lead to an echo chamber.
In addition to the above theoretical contributions, we also design a
Dynamic Causal Collaborative Filtering (9CCF) framework, which
takes the back-door adjustment to estimate user preferences and
leverages counterfactual reasoning to mitigate echo chambers. Ex-
periments on real-world datasets show that our framework can
mitigate echo chambers while achieving comparable recommenda-
tion performance with the base models.

JCCEF is a flexible framework for dynamic analysis of intelligent
systems. In this work, we studied the echo chamber of recommender
systems, while in the future, we can take dCCF to explore other
dynamics such as popularity shifting, influence analysis and emerg-
ing topics. We can also conduct dynamic analysis of other systems
such as social networks, online forums and conversational Al
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